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Abstract

Stroke, the third leading cause of death and disability worldwide, is undergoing a change in perspective with the
emergence of new ideas on neurodegeneration. The concept that stroke is a disorder solely of blood vessels has
been expanded to include the effects of a detrimental interaction between glia, neurons, vascular cells, and matrix
components, which is collectively referred to as the neurovascular unit. Following the acute stroke, the majority of
which are ischemic, there is secondary neuroinflammation that both promotes further injury, resulting in cell death,
but conversely plays a beneficial role, by promoting recovery. The proinflammatory signals from immune mediators
rapidly activate resident cells and influence infiltration of a wide range of inflammatory cells (neutrophils, monocytes/
macrophages, different subtypes of T cells, and other inflammatory cells) into the ischemic region exacerbating brain
damage. In this review, we discuss how neuroinflammation has both beneficial as well as detrimental roles and recent
therapeutic strategies to combat pathological responses. Here, we also focus on time-dependent entry of immune cells
to the ischemic area and the impact of other pathological mediators, including oxidative stress, excitotoxicity, matrix
metalloproteinases (MMPs), high-mobility group box 1 (HMGB1), arachidonic acid metabolites, mitogen-activated protein
kinase (MAPK), and post-translational modifications that could potentially perpetuate ischemic brain damage after the
acute injury. Understanding the time-dependent role of inflammatory factors could help in developing new diagnostic,
prognostic, and therapeutic neuroprotective strategies for post-stroke inflammation.
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Introduction
Although stroke is the third leading cause of death after

heart disease and cancer, it leads to permanent disabilities

in 80% of survivors [1, 2]. Stroke can be classified into is-

chemic or hemorrhagic, in which 85% of strokes are ische-

mic [3]. Worldwide, cerebrovascular disease and in

particular stroke causes a large percentage (47–67%) of

disability-adjusted life years and death [4]. Ischemic stroke

is characterized by arterial occlusion due to embolus or

thrombus [5]. The functional and metabolic irregularities

that occur during ischemic stroke largely depend on the

artery that is occluded, which in turn determines the size

of the ischemic area in the brain [6].

In 2014, a review by Mehndiratta et al. reported that

there is an increase in incidence of ischemic stroke sub-

types in Asian countries, since Arab countries have

identical epidemiological characteristics to other Asian

countries, that would suggest an increase in ischemic

stroke in Arab countries as well [7]. Moreover, reports

from a population-based screening program indicate that

there is a very high risk for cardiovascular disease, espe-

cially diabetes and obesity in the United Arab Emirates [8,

9]. These reports indicate that there will be a substantial

increase in stroke burden, which results in substantial

economic and societal costs [10]. Thus, understanding

molecular neuroinflammatory mechanisms could signifi-

cantly potentiate therapeutic development.

While the changes due to loss of glucose and oxygen,

including the triggering of a series of oxidative, bio-

chemical, and hormonal reactions culminating in micro-

vasculature injury and blood-brain barrier (BBB)

disruption, are well established, less well understood are

secondary inflammatory cells and their mechanisms that

in turn initiate excitotoxicity, reactive oxygen species

(ROS), and nitric oxidative species (NOS), and these

events will be the focus of the following discussion [11].
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Impact of inflammatory cells on stroke
Various studies demonstrate that apart from neurons,

other cells are involved in the pathogenesis of ischemia.

Moreover, neuronal, glial, and vascular elements together

form a functional “neurovascular unit.” Following ische-

mic stroke, microglia and astrocytes are activated within

hours, leading to the production of cytokines and chemo-

kines [6] and resulting in infiltration of leukocytes [12, 13].

Microglia

Microglia, the resident innate immune cells of the brain

that represent 5–20 % of the glial population, are activated

after ischemic stroke resulting in morphological and

phenotypical changes [14]. Activated microglia act simi-

larly to macrophages during systemic inflammation, and

they have the ability to phagocytose (clearing foreign or-

ganisms and cellular debris) and produce cytokines and

MMPs that can compromise BBB function [13]. Whereas,

quiescent resting microglia are in a ramified state defined

by a small cell soma with wide branches projecting out

[15, 16]. However, following ischemia, microglia cells are

activated but the precise mechanisms are still not clear.

Transient focal cerebral ischemia caused by 15min of tran-

sient middle cerebral artery occlusion (tMCAO) in spon-

taneously hypertensive stroke-prone rat (SHRSP) leads to

activation of microglia in the cerebral cortex of the ische-

mic hemisphere, and the severity of injury may be reflected

in the state of microglial activation [17]. Microglia-

mediated neurotoxicity is augmented by the production of

ROS via NADPH oxidase [18], cytokines [6], and MMPs

[13, 19]. Sun et al. demonstrated that inhibition of micro-

glial activation by 2% isoflurane in transient focal cerebral

ischemia rats (reperfusion after 90min of ischemia)

reduced infarct volume, attenuated apoptosis, and signifi-

cantly decreased microglial activation in ischemic penum-

bra [20]. Microglial activation also causes secondary death

in the penumbra region [21]. Various studies have reported

that CD14 receptors (activated by iNOS) followed by toll-

like receptor 4 (TLR4) are expressed in activated microglia

in infarct brain region, and hence, this could be a possible

microglial activation mechanism [22, 23]. In 2017, McDo-

nough et al. demonstrated that sequential exposure of

wild-type and TLR4−/− microglia to hypoxia/hyperglycemia

(H/H) and normoxia/normoglycemia (N/N) resulted in en-

hanced expression of type-1 interferon-stimulated genes

(ISG) in H/H-N/N wild-type microglia and not in TLR4−/−

microglia. Type-1 interferons such as interferon-α and

interferon-β activate interferon-α/β receptor (IFNAR)

complex and microglial type-1 interferon-stimulated gene

expression and were dependent on IFNAR1. During H/H

conditions, interferon-β induces secretion of ISG chemo-

kines. Enhanced expression of ISG in microglia and micro-

glial ISG chemokine response to TLR4 agonists were

dependent on IFNAR1 and TLR4. To conclude, interferon

triggered gene expression in microglia plays a major role in

ischemia/reperfusion injury [24]. However, during ischemic

stroke, activated microglia have been shown to play a dual

role, and they secrete pro-inflammatory cytokines resulting

in further damage [6] and also secrete anti-inflammatory

factors [25, 26]. Three and 7 days after MCAO, edaravone,

a free radical scavenger that mimics glutathione peroxid-

ase (GPx), diminishes microglial activation and early accu-

mulation of oxidative products in rats [27]. Similarly,

multiple exposures to hyperbaric oxygen (HBO) reduced

infarct volume by decreasing microglial activation [28].

Surprisingly, impaired microglial activation markedly in-

creased infarct size and number of apoptotic neurons fol-

lowing ischemia (MCAO, 1 h followed by 24- or 72-h

reperfusion periods) supporting the dual role of microglia

[29]. Following ischemia, activated macrophages can be

detected as soon as 2 h. Between 22–46 h, both blood born

and resident macrophages are dispersed over the entire le-

sion and stay detectable for up to 1 week in mice following

the 30-min ischemic insult [30]. Microglia found around

the ischemic tissue migrate towards the ischemic lesion

and remain in close association with neurons for a process

called “capping” (following neuron death, capping helps in

early recognition and quick phagocytic removal of dead

neurons) [31, 32]. Genetic deficiency of lymphocyte

function-associated antigen 1 (LFA-1) abolishes the ability

of microglia to migrate towards injured neurons [33]. Also,

microglia play a major role in the production of growth

factor TGF-β1, which represents a neuroprotective prop-

erty [34]. Recently, Jin et al. demonstrated that depletion

of microglia by dual colony-stimulating factor-1 inhibitor,

PLX3397 intensifies brain infarction and neurodeficits. At

day 1 and 3 after 60-min transient MCAO and reperfu-

sion, microglia depletion also exacerbates leukocyte infil-

tration, expression of inflammatory mediators, and

neuronal death in mice. This pathological mechanism is

not only solely dependent on lymphocytes and monocytes

but also due to astrocyte-mediated inflammatory factors.

Hence, the presence of microglia prevented the secretion

of astrocyte-mediated inflammatory factors during ische-

mia [35]. Also, supporting this, microglia produce various

neurotrophic factors which promote neurogenesis and

plasticity [36]. Hence, following ischemia, different subsets

of microglia have different roles.

Astrocytes

Similar to microglia, astrocytes are housekeeping cells

mandatory for maintenance of the central nervous system.

They are actively involved in controlling ion and water

homeostasis, releasing of neurotrophic factors, and scav-

enging transmitters released during synaptic activity, shut-

tle metabolite, and waste products and are involved in

BBB formation [37]. Under normal physiological condi-

tions, astrocytes take up excessive glutamate from
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extracellular space and convert it to glutamine for neur-

onal reuse, but during brain injury, the extent of damage

to astrocyte might affect the ability of its glutamate uptake

[37]. However, it is not clear on how ischemia exactly af-

fects astrocytic glutamate uptake but it has been reported

that the expression of glutamate transporter EAAT2 is de-

fective during ischemia [38, 39]. Following ischemia, cyto-

kines from neurons and glial cells lead to astrocyte

reactivity hyperplasia. Astrocyte proliferation results in ex-

pression of inflammatory factors such as monocyte

chemotactic protein-1, IL-1β [40], glial fibrillary acidic

protein (GFAP), vimentin, and nestin that can lead to re-

active gliosis and scar formation [41]. After stroke, due to

failure of Na+, K+ pump, astrocytes swell, which leads to

high intracerebral pressure and less cerebral perfusion

[42]. Reactive astrocytes release matrix metalloproteinase

2 that causes degradation of matrix protein [43]. Reactive

astrocytes also cause inhibitory condition by inducing

ephrin-A5 at the lesion center disturbing axonal sprouting

[44]. Following photothrombotic ischemic insult in rats,

extensive astroglial response is initiated in the lesions’ core

from 4 h to 1 day and reaches maximum at 4 days and per-

sists until 28 days after onset [45]. Three days after transi-

ent global ischemia (10min followed by reperfusion),

there is a significant upregulation in the expression of

iNOS, NADPH diaphorase, and GFAP in hippocampal as-

trocytes [46]. Post-mortem brain tissues from ischemic

patients who died 3–7 days after stroke revealed an en-

hanced expression of IL-15 in astrocytes. Alternatively,

knockdown of IL-15 in astrocytes diminished ischemic

brain injury in mice subjected to transient MCAO for 60

min [47]. GFAP promoter-controlled IL-15 expressing

transgenic mice showed enlarged brain infarcts, exacer-

bated neuronal deficits following rose bengal induced

cerebral cortical photothrombotic ischemia. Additionally,

GFAP/Vimentin double knockout mice showed enhanced

cortical cerebral blood flow reduction and larger lesions

after focal ischemia [48]. Thus, protection of non-reactive

astrocytes provides significant nutrient and physical sup-

port for the survival of neurons. Calcineurin inhibitor

FK506 and immunosuppressive drugs have been reported

to prevent glutamate-mediated astrocyte death [49]. In

addition, NF-ĸB inhibition in astrocytes protects neurons

against 60-min ischemic injury in mice [50]. Astrocytes re-

lease brain-derived neurotrophic factor (BDNF), fibroblast

growth factor-2, and nerve growth factor (NGF) that play

an important role in neuroprotection [48, 51]. In addition

to neurotrophic support, structurally, astrocytes through

their endfeet possess strong association with brain capil-

lary endothelial cells and pericytes that form BBB. During

ischemia, MMP-9 disrupts the connection between astro-

cyte endfeet and endothelial cells by degrading basal lam-

ina [52]. Hence, ruptured BBB acts as a major gateway for

the invasion of peripheral inflammatory cells.

Endothelial cells and blood-brain barrier

Endothelial cells (EC) are one of the components of the

neurovascular unit. They have tight junction proteins that

are the major interface with the blood. The ECs are sur-

rounded by basal lamina, which is made up of laminin, type

IV collagen, fibronectin, heparin sulfate, and other extracel-

lular molecules (Fig. 1). Pericytes are macrophage-like cells

with smooth muscle properties that are contiguous with

basal lamina and are involved in both angiogenesis and in

injury [53]. Pericytes also play a major role in controlling

neurovascular unit physiology by regulating microvascular

stability, tight junction proteins, and microvessel diameter.

In addition to its role in protecting the neuronal micro-

environment by preventing entry into brain of potentially

toxic activated plasma proteases, the BBB has specific

transport systems that supply essential nutrients [54]. Fol-

lowing ischemic stroke, pericytes respond quickly that may

either be protective or detrimental, such as detachment,

constriction, and migration from microvessel walls and cell

death [55]. One hour after MCAO, pericytes migrate from

the basement membrane which leads to BBB permeability

[56]. In addition, proinflammatory factors enhanced the ex-

pression of chemokines, interleukins, and cellular adhesion

molecules in pericyte-fibroblast co-cultures [57, 58]. On the

contrary, 7 days after ischemic stroke in mice, pericytes

were reported to accumulate in the peri-infarct area which

might support vascular repair, and additionally, they are

able to differentiate into neural and vascular lineage cell

[59]. Surprisingly, pericytes isolated from human stroke

brain tissue are found to highly express microglial markers

that may serve as stem cells generating microglia for phago-

cytic activity [60, 61]. Although pericytes play a major regu-

latory role, endothelial cells and their tight junctions

provide the ultimate barrier. The endothelial cells are inter-

connected via clefts made up of tight junction proteins

(TJP), namely occludins and claudins, which act as a major

barrier between interstitial fluid and blood. Following ische-

mia, dynamic changes in BBB permeability results in endo-

thelial swelling, astrocyte detachment, pericyte detachment,

pericyte contraction, microglial activation, vasoconstriction,

and blood vessel rupture (Fig. 1). Subtle changes in BBB

permeability result in endothelial hyperpermeability to

macromolecules in the peri-infarct area [62]. A biphasic

pattern occurs during transient BBB disruption where on

initial opening occurs 2–3 h following onset and after re-

perfusion (24–48 h), a second opening occurs resulting in

increased intracranial pressure and vasogenic edema in

mice [63, 64]. This leads to the production of adhesion

molecules and proinflammatory cytokines, which, in turn,

aggravates the process [65]. Moreover, 24–48 h following 2

h of MCAO with reperfusion in rats, MMPs activate micro-

glia, macrophage, and neutrophils which secrete additional

MMPs further compromising cerebral vessels [53]. How-

ever, therapeutic approaches, such as agents that induce
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hyperpermeability could help enhance BBB repair. Apart

from dexamethasone clinical trial that failed, administration

of bortezomib (proteasome inhibitor) along with dexa-

methasone reduced BBB permeability [66]. Novel thera-

peutic approaches to enhance BBB repair after stroke have

been extensively reviewed elsewhere [67].

Leukocytes

Similar to other inflammatory cells, leukocytes release pro-

inflammatory factors in the ischemic region of the brain.

Leukocytosis has been shown to be a marker of inflamma-

tory response after stroke. Neutrophils are the first blood-

borne immune cells to invade the ischemic tissue followed

by monocytes [65]. After stroke, neutrophils undergo con-

formational changes due to extensive adhesion molecules

and migrate through the endothelial vessel wall. Later, neu-

trophils are attracted towards the ischemic area by chemo-

kines via concentration gradients, and neutrophils cause

secondary injury by releasing proinflammatory factors,

ROS, proteases, and MMPs [68]. These toxic factors impair

endothelial cell membrane and basal lamina leading to BBB

permeability and post-ischemia edema. Post-invasion (4–6

h) of neutrophils, monocytes adhere to the vessel walls and

move towards ischemic regions with its maximum activity

at 3–7 days after the insult [69]. Neutrophils play a major

pathological role in acute ischemic injury and may also

cause atherosclerosis and thrombus formation [70, 71]. Five

hours following reperfusion, neutrophils enter the damaged

area [72, 73]. In a permanent MCAO model, 12 h after the

insult, peak neutrophils are reported [74]. Leukocytes

potentiate ischemic injury in many ways. First, leukocytes

adhere to the endothelium, which blocks the flow of eryth-

rocytes via microvasculature, leading to cerebral no-reflow

phenomenon. Second, at the surface of endothelium, acti-

vated leukocytes produce proteases, MMPs, and ROS that

can significantly damage blood vessels and brain tissues.

Further, biologically active substances like eicosanoids, leu-

kotrienes, prostaglandins, and platelet-activating factor are

produced when leukocytes are activated by phospholipases,

leading to vasoconstriction and platelet aggregation. Finally,

leukocytes (infiltrated) further exaggerate neuronal injury

by activating proinflammatory factors in and around the

penumbra and the infarct core [16]. Furlan et al. demon-

strated that leukocytosis is significantly associated with a

high degree of disability, impairment, greater risk of total

anterior circulation stroke, and higher mortality [75]. More-

over, hypoxia-related genes are upregulated in leukocytes

isolated from stroke patients [76]. To conclude, all these in-

flammatory cells play a significant role in both initiating

and aggravating pathological response in stroke as well as

in maintaining cellular brain homeostasis (Table 1).

Schematic representation of the role of inflammatory

cells in post-ischemic inflammation is shown in Fig. 2.

However, time-dependent pathomechanisms play a signifi-

cant role in determining the severity of stroke outcome.

Time-dependent entry of immune cells during
ischemic stroke
Various animal models [77–80] and clinical studies [81,

82] have demonstrated that following ischemia, apart

Fig. 1 Schematic representation of the detrimental events following ischemic stroke. Stroke potentiates a cascade of ischemic events that leads to
impairment of NVU resulting in BBB damage. Neurovascular unit is made of highly specialized and polarized endothelial cells interconnected by tight
junction proteins that seal the brain capillaries. Astrocytes, microglia, and pericytes provide structural and functional support to the BBB. Ischemic stroke
leads to NVU remodeling due to detachment of astrocytic endfoot, pericyte detachment, vasconstriction, dysfunction of neurovascular coupling, activation
of microglia, and blood vessel rupture
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from activation of microglial cells in the ischemic brain,

infiltration of circulating cells, such as granulocytes,

neutrophils, monocytes/macrophages, and T cells, oc-

curs aggravating cell death. During an acute phase, last-

ing minutes to hours, the injured tissue releases reactive

oxygen species (ROS) and proinflammatory factors, such

as chemokines and cytokines, which induce the expres-

sion of adhesion molecules on leukocytes and on cere-

bral endothelial cells that in turn promote adherence

and transendothelial transfer of leukocytes [83].

Following the acute phase, in the sub-acute phase, the

infiltrated leukocytes further release cytokines, chemo-

kines, and more importantly excess ROS that promotes

production of matrix metalloproteinases (MMPs) espe-

cially MMP-9. Jalal et al. and various groups have proven

that MMP activation intensifies an inflammatory response,

leading to BBB disruption, brain edema, neuronal death,

and hemorrhagic transformation due to excessive activa-

tion of proteases and resident immune cells, and further

intensifies leukocyte infiltration [84, 85]. Because of the

complex nature of the interaction of the proinflammatory

factors with the tissues, they act in multiple roles. For ex-

ample, MMP-9 not only acts as a proinflammatory factor

in early ischemic brain damage, but also plays a major role

in brain regeneration and neurovascular remodeling dur-

ing repair [53, 86]. Hence, it is critical to understand the

time course of inflammatory events and cells involved that

lead to ischemic brain injury.

Resident microglia and blood-derived macrophages

Various reports have shown that microglia, the resident

macrophages of the brain, are activated within minutes

after ischemic onset leading to production of various

proinflammatory factors, such as interleukin-1β (IL-1β)

and tumor necrosis factor-alpha (TNF-α), aggravating

brain damage [14, 87]. Apart from being a proinflamma-

tory stimulator, microglia cells also promote excitotoxic in-

jury and ischemia in the brain [88]. Following ischemia,

microglia proliferation peaks at 48–72 h and lasts for a few

weeks after the initial injury [89], but contradictory to this,

blood-derived leukocytes are recruited hours to a few days

after initial injury [70, 90].

Since blood-derived monocytes/macrophages and re-

active microglia are almost morphologically and func-

tionally similar, it has been challenging to differentiate

these cells due to lack of cell-specific markers [79, 80,

91]. Blood-derived macrophages patrol the brain to cap-

ture potential pathogens, and just like microglia, blood-

derived macrophages are able to acquire a ramified

morphology. Furthermore, microglia have the ability to

develop a phagocytic phenotype very similar to macro-

phages. Hence, it is very challenging to distinguish be-

tween these two cell types, but an excellent work by

Tanaka et al. using chimera mice with enhanced green

fluorescent protein (GFP) bone marrow provided a use-

ful tool to differentiate the role of resident as well as

blood-derived macrophages in ischemic brain injury

[80]. Many literature reports have shown that 3–4 h after

stroke, blood-derived macrophages are recruited into the

ischemic brain tissue [92, 93]. Schilling et al. using a

transient middle cerebral artery occlusion (MCAO)

chimera mouse model demonstrated that resident

microglia activation predates and dominates blood-

derived macrophages [91, 92]. These reports proved that

following brain damage, neutrophils are the first blood-

derived leukocytes observed at day 1 while GFP positive

Table 1 Beneficial and detrimental role of inflammatory cells in ischemic stroke

Cell type Detrimental effects Beneficial effects

Microglia/
macrophages

Production of proinflammatory cytokines, including TNF and IL-1,
reactive oxygen and nitrogen species, and proteases, such as
MMPs. Brain microglia/macrophage phagocytose viable and
functional neurons causing brain atrophy.

Resolution of inflammation (IL-10 and TGF-β release, production
of arginase, and phagocytic activity). Late reparative processes by
producing growth factors (IGF-1, brain-derived neurotrophic
factor, and glial cell line-derived neurotrophic factor), production
of neurotrophic factors, facilitation of neurogenesis and plasticity,
and scavenge and removal necrotic debris

Astrocytes Production of inflammatory mediators (e.g., TNF-α, IL-1, and
MMPs). Edema formation, inhibition of axon regeneration and
BBB disruption, glial scar formation, and glutamate release

Extracellular glutamate uptake, synthesis, and release of
neurotrophic factors. Glial scar formation, BBB rebuilding, and
neurovascular remodeling.

Neutrophils Microvessel obstruction, ROS production, and release of MMPs
that contribute to BBB damage and exacerbate inflammation,
stimulation of lipid peroxidation, release of proteolytic enzymes,
damage of endothelial cell membrane, increase of BBB
permeability, post-ischemic edema, no-reflow phenomenon

N2 phenotype: promote resolution of inflammation

Dendritic cells Up-regulation of MHC-II and co-stimulatory molecules
that prompt the activation of lymphocytes

T Lymphocytes Facilitate adhesion of platelets and leukocytes to the
vascular endothelium causing thromboinflammation
and promoting proinflammatory pathways

Interaction of T cells with platelets may also

have hemostatic effects preventing hemorrhagic transformation
after severe ischemic stroke
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blood-derived macrophages were rarely seen at day 2

but their number peaked at day 7 and declined thence-

forth. Contrary to blood-derived macrophages, even at

day 1, GFP-negative microglial (resident) cells are acti-

vated rapidly, and interestingly, even at days 4 and 7,

most macrophages are resident microglia (GFP-negative)

in mouse models of transient and permanent MCAO

[80, 94]. Recently, in an effort to understand the gene

expression patterns of resident microglia and blood-

derived macrophages after stroke, Kronenberg et al. used

bone marrow chimerism and dual reporter transgenic

fate mapping to distinguish the responses in MCAO

mouse model. Biased gene expression analysis in 7 days

post-stroke tissue provided 970 transcripts predomin-

antly overexpressed in microglia and 472 transcripts

expressed in blood-derived macrophages. These expres-

sion levels were further compared with transcriptomes

of astrocytes, oligodendrocytes, and neuronal popula-

tions that resulted in specific genes expression in micro-

glia and blood-derived macrophages. Genes upregulated

in blood-derived macrophages are functionally involved

in migration, proliferation, and calcium signaling which

was further confirmed by whole-cell patch clamp tech-

nique. In addition, blood-derived macrophages were

more altered towards neuroprotective M2 phenotype.

Further, using Selplg−/− (gene encoded for P-selectin

glycoprotein ligand-1, an important factor for leukocyte

recruitment in inflamed site) chimera mice, the group

found that the lack of Selplg gene lowered engraftment

of blood-borne cells in the ischemic brain and enhanced

lesions at 7 days with poor sensorimotor performance

[95]. Together, these data represent that during the first

few days following cerebral ischemic injury, the majority

of macrophage-like cells represent activated microglia.

Neutrophils

Apart from microglia and blood-derived macrophages,

neutrophils are one of the most important leukocytes

that infiltrate the ischemic brain from 30min to a few

hours, peaking between days 1–3 following which they

steadily decline over time [69]. Weston et al. reported

that infiltrating neutrophils remain more than 32 days in

endothelin-1-induced ischemic brain regions but their

presence is masked after 3 days by the concentration of

Fig. 2 Schematic representation of post-ischemic inflammatory response in stroke. Initial ischemic event leads to oxidative stress and
excitotoxicity which causes activation of microglia and astrocyte resulting in secretion of cytokines, MMP, and GFAP. These proinflammatory
factors leads to upregulation of cell adhesion molecules such as ICAM-1 and selectins on endothelial cells causing inflow of blood derived
inflammatory cells such as neutrophils, macrophages, and lymphocytes to the ischemic area. In addition, danger-associated molecular patterns
(DAMPs) are released by dying neurons that in turn activates microglia and peripheral immune cells (neutrophil, macrophage, and lymphocyte)
resulting in production of proinflammatory factors causing further activation of microglia and astrocyte. These pathological events lead to
neuronal death and further increase damage to the ischemic brain
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activated microglia/macrophages in the inflammatory re-

gion. Further, neutrophil infiltration elevates at day 1,

spikes at day 3, and begins to decline, but is present

through day 7 and 15 after cerebral ischemia. Neutro-

phils express various endothelial adhesion molecules

within 15min post-ischemia [96]. Six to 8 h after stroke,

neutrophils have already surrounded cerebral vessels and

initiates infiltration [97, 98]. Alternatively, flow cytometry

analysis by Gelderblom et al. using a transient MCAO

model demonstrated that other inflammatory cells such as

macrophages, lymphocytes, and dendritic cells precede

neutrophil influx in the ischemic hemisphere [99]. Con-

sistent with other reports [69, 100], Gelderblom et al.

demonstrated that neutrophils are the predominant cells

present in the ischemic hemisphere at 3 days after MCAO

[99]. Neutrophil increase has been positively correlated

with infarct volume and functional deficits [69]. Neutro-

phil rise might be due to enhanced release from the bone

marrow and spleen along with less neutrophil apoptosis

[101]. In contrast to neutrophils, lymphocytes number

decrease in ischemic stroke and hence neutrophil-

lymphocyte ratio is increased. This ratio is closely associ-

ated with infarct size and mortality [102].

T lymphocytes

Unlike neutrophils, T lymphocytes are recruited in the

later stages of ischemic brain injury [103]. Jander et al.

analyzed leukocyte infiltration in photochemically in-

duced focal ischemia of rat parietal cortex by immuno-

cytochemistry and reported that by day 3, numerous T

cells infiltrated the border zone around the lesion by

sparing the center and their number elevated between

days 3 and 7 [104]. Similar to this study, Stevens et al.

using a transient MCAO mouse model demonstrated

that T cell (CD3+) infiltration increases at days 3–4 post-

ischemia while activated microglia (CD11b+)/macro-

phages and neutrophils (Ly6G+) increased at earlier time

points post-ischemia. Nevertheless, few reports demon-

strated that T cells accumulate within the first 24 h in the

ischemic brain following cerebral ischemia (MCAO),

which might play a major role in influencing tissue inflam-

mation and injury prior to the appearance of these cells in

the extravascular space [105, 106]. Research efforts are in-

creasing to reveal the role of different T cell subtype in is-

chemic stroke. Various studies have demonstrated that

after stroke, CD4+, non-Treg T cells, CD8+ T cells, Tregs,

and γδTcells infiltrate brain parenchyma [107]. Numerous

research groups are focusing on modulating the activity of

Treg cells due to their neuroprotective activity. Immuno-

depletion of Treg using CD-25 specific antibody aggra-

vated tissue loss and impaired neurological function at

day 7 after MCAO-induced ischemia in mice [108]. How-

ever, different approaches to suppress Treg led to contro-

versial results [109, 110]. Pre-clinical and clinical studies

suggest that enhancing the function or number of Treg

could be neuroprotective against ischemic injury [107].

However, Treg cell therapy has its own challenges such as

isolation and purification of Treg, period for ex vivo Treg

expansion, and anergic property of Treg.

Post-stroke pathological mechanisms aggravate cell in-

jury due to primary cellular events, which initiate a

pathological viscous cycle of inflammatory mediators

that further exacerbates neuronal death. The mediators

involved, their beneficial and detrimental role, and re-

cent therapeutic strategies to combat these pathome-

chanisms are discussed in detail below.

Key pathological events and pathways fueling
neuroinflammation
Oxidative stress

Oxidative stress, a disturbance in the balance between

the production of reactive oxygen species (free radicals)

and antioxidant defenses, is induced in cerebral ischemia

especially through inflammation and reperfusion, which

increases the production of ROS [111]. Xanthine oxidase

and NADPH oxidase are the two key oxidative enzymes

that play a major role in the production of superoxide

anion, a key radical after stroke. Van Hemelrijck et al.

using a rat model demonstrated that hydroxyl radicals

(OH•) are elevated 2 h after stroke onset [112]. Nitric

oxide (NO), a key radical, is produced by enzymatic con-

version of L-arginine by three types of nitric oxide

synthases (NOS) namely neuronal (nNOS), endothelial

(eNOS), and inducible NOS (iNOS), which are elevated

after brain ischemia. Although endothelial NOS is up-

regulated directly after brain ischemia, neuronal NOS

and inducible NOS are upregulated only after a day and

even later, respectively [112]. Nitric oxide has both bene-

ficial and detrimental roles in cerebral ischemia. Al-

though NO plays a major role in restoring blood supply

to the ischemic area, reducing brain damage, it also re-

acts either with superoxide anion to form radicals or

with free electrons to form peroxynitrite, contributing to

lipid peroxidation, cellular toxicity, and eventually cell

death [113]. In addition to the action of NO on free rad-

icals, it also enhances the expression of adhesion mole-

cules and inflammatory mediators, inhibits enzymes

necessary for DNA replication, and promotes iron loss

from cells [114]. The pathological effects of NO on brain

tissue damage largely depend on the sensitivity of the

cell to NO, concentration of NO, and whether the in-

flammatory phase is acute or chronic [115]. Knockout

animal studies showed that mice lacking nNOS had

reduced infarct volume, which demonstrates that NO

produced by nNOS leads to tissue damage. Alternatively,

injury after ischemic stroke increased in mice lacking

eNOS showing the protective function of eNOS by dilat-

ing the blood vessels resulting in normal blood flow to
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the penumbra [116]. Furthermore, disruption of iNOS

did not affect infarct volume after day 1, but after 72 h,

iNOS disruption increased infarct size [117]. Various an-

tioxidants such as vitamins, lipoic acid (LA), and N-acet-

ylcysteine have been tested for efficacy in stroke [118].

Vitamin E and its analog MDL 74,722 have been

reported to reduce lesion volume and behavioral impair-

ments in rodent ischemic stroke models [119–121]. Al-

ternatively, a follow-up study in human subjects

demonstrated that vitamin E and C did not reduce the

risk of ischemic stroke and did not enhance functional

recovery in stroke patients, respectively [122–124]. In

addition, other antioxidants such as EPC-K1, a phos-

phate diester of vitamin C, reduced lesion size, lipid per-

oxidation, and renal reperfusion injury in rat model

[125, 126]. Apart from dietary antioxidants as supple-

ments which had little or no effect in clinical trials,

NXY-059, tirilazad, edaravone, and citicoline are being

studied in clinical patients for its efficacy in treatment of

ischemic stroke [118]. However, NXY-059 and tirilazad

failed to provide clinical improvement in larger clinical

trials [127, 128]. In 2001, edaravone was approved in

japan to treat acute phase cerebral infarction. In 2015,

edaravone was approved by Japan and in 2017, by the

US Food and Drug Administration, for treatment of

amyotropic lateral sclerosis [129]. However, a clinical

study demonstrated that early-stage edaravone treatment

delayed progression of infarction and edema and re-

duced acute-phase mortality, but edaravone alone did

not cause any significant functional recovery [130]. Citi-

coline is now being reported as a potential therapeutic

candidate for ischemic stroke. Citicoline, which is also

called as cytidine 5’-diphosphocholine (CDP-Choline), is

a combination of two molecules, cytidine, and choline.

These molecules are efficient in crossing BBB and then

they combine to form CDP-Choline in brain cells [68].

During ischemia, phosphatidylcholine is broken down

into free radicals and fatty acids that worsen ischemic

injury [131]. The hypothesized mechanism is that citico-

line undergoes hydrolysis followed by dephosphorylation

to form cytidine and choline and these two molecules

act as substrates to re-form citicoline in the brain. This

process minimize phospholipid breakdown and enhance

phospholipid resynthesis for membrane repair [132]. In

addition, citicoline also scavenges free radicals providing

antioxidant and anti-inflammatory roles after ischemic

damage [133]. Clark and his colleagues reported that 24

h post-MCAO, administration of citicoline for 28 days

enhanced motor and functional recovery [131]. Due to

promising biological properties, citicoline has also been

administered (500 and 2000mg, i.v.) in a randomized

controlled trial [134]. However, other randomized, pla-

cebo, controlled clinical studies have reported that citi-

coline has limited benefits [135–137]. The controversial

results might be due to methodological limitations such

as odda ratios rather than risk ratio and the use of cu-

mulative meta-analysis rather than trial sequential ana-

lysis. The results of International Citicoline Trial on Acute

Stroke (ICTUS) was published by Davalos et al. where

2298 patients with moderate to severe stroke (within 24 h)

of the anterior territory were randomly assigned to

double-blinded treatment with 2000mg citicoline daily or

placebo for 6 weeks. Assessment for baseline characteris-

tics and a known risk factor for stroke showed that

citicoline-treated patients had well-balanced baseline

characteristics risk factors for stroke. However, no signifi-

cant difference was noted in primary outcome of recovery

assessed by mRS score. Evaluating other pre-specified sub-

groups showed beneficial effects of citicoline in patients

older than 70 years and in patients with less-to-moderate

stroke. Thus, up-to-date meta-analysis of all clinical trials

of citicoline resulted in overall beneficial effect with an

odds ratio of 1.14 of achieving good clinical outcome

compared to controls [138]. Despite the pros and cons,

citicoline is the only promising drug in confirmative clin-

ical trials and no other neuroprotective compound had

any positive effect on subgroup analysis [138].

Cytokines

Cytokines are immunomodulating agents and they play

a major role in cell activation, proliferation, and differen-

tiation [139]. Cytokines are generally small pleiotropic

polypeptides (8–26 kDa) barely detectable in the brain

with their receptors constitutively expressed at very low

levels. Cytokines play a major role in upregulating the

expression of cell adhesion molecules (CAM) [140, 141].

Especially, intracellular adhesion molecule 1 (ICAM 1)

upregulation in the ischemic core leads to BBB disrup-

tion by aiding recruitment of leukocytes, which in turn

release cytokines. BBB disruption causes migration of

various inflammatory cells such as macrophages, natural

killer cells, T lymphocytes, and polymorphonuclear leu-

kocytes to the ischemic site. Various studies have dem-

onstrated that infiltrating leukocytes and microglia

elevate cytokines and some studies have reported that

resident neurons and glia also produce cytokines follow-

ing brain ischemia [106, 142, 143]. However, upon brain

injury, the expression of pro- and anti-inflammatory cy-

tokines is upregulated, but their spatial and temporal up-

regulation largely depends on the type of ischemic

model used [72, 144, 145]. The three major proinflam-

matory cytokines are interleukin 1β (IL-1β), tumor ne-

crosis factor-alpha (TNF-α), and interleukin-6 (IL-6)

that provoke and aggravate an inflammatory response

after stroke [146, 147]. Post-mortem studies demonstrate

that TNF-α positive cells are observed in brains of se-

vere ischemic stroke patients from 3 days post-stroke,

staying positive until 15 months [148]. Tumor necrosis
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factor-α serum levels are increased within 6 h post-

stroke and their levels are maintained for 10 days [149].

Similarly, IL-1β levels are elevated in the CSF with peak

levels at days 2 and 3 post-stroke [150, 151]. However,

some studies have shown no increase in IL-1β levels in

serum and plasma, which might be due to IL-1β

localization at the inflammatory site [152]. Interleukin-

1β mediates ischemic, traumatic, and excitotoxic brain

injury through its action on neurons, glia, and vascula-

ture. Similar to TNF-α and IL-1β, Il-6 levels are elevated

in CSF of severe stroke patients. Few studies report that

CSF IL-6 levels increase within 24 h and peak at days 2

and 4 [153], while some studies report peaking at days 3

and 7 [154, 155]. However, their levels appear to be

dependent on stroke type and severity. Interleukin 1β, an

important mediator of neuroinflammation, upregulates

the expression of IL-6. Hence, IL-1β receptor antagonist,

anakinra administration, demonstrated good clinical im-

provement and decreased peripheral neutrophil count and

IL-6 levels [156]. Alternatively, transforming growth

factor-β (TGF-β) and IL-10 are anti-inflammatory cyto-

kines that inhibit the expression of proinflammatory cyto-

kines thereby reducing inflammation after ischemic stroke

[157, 158]. These pro- and anti-inflammatory agents act

as predictors and help in prognosis in ischemic injury.

However, other cytokines also contribute to brain damage

and repair, but the balance between the beneficial and det-

rimental effects of cytokines largely depends on the bio-

chemical and physiological status of the brain [158].

Chemokines

Chemokines are small signaling proteins (8–10 kDa) be-

longing to the family of cytokines. They have the ability

to induce directed chemotaxis in nearby responsive cells,

especially leukocytes [159, 160]. There are 40 different

chemokines known so far; they all share a similar struc-

tural pattern with 4 cysteine residues and, based on that,

they are classified into four subfamilies that play a major

role in stroke with C-X-C attracting neutrophils and C-

C attracting monocytes/macrophages [161]. The other

two classes being C and CX3C where Cs denote two N-

terminal cysteine residues and depending on whether

amino acid is between them or adjacent to them, they

are classified as CXC and CC, respectively. Similar to cy-

tokines, chemokines have both unique and overlapping

receptors, which belong to the superfamily of G-protein-

coupled receptors [162]. Identical to cytokines, chemo-

kines and their receptors are usually expressed in low

concentrations [163, 164], but after cerebral ischemia,

TNF-α and IL-1β enhance the production and release of

specific chemokines such as cytokine-induced neutrophil

chemoattractant (CINC), monocyte chemoattractant 1

(MCP-1), microglial response factor-1 (MRF-1), and

fractalkine and macrophage inflammatory protein 1

(MIP-1) which are upregulated in the first 3 h and re-

main elevated for at least 6 h [163]. Chemokines and

their receptors play a major role in modulating various

pathological and physiological processes, in which their

role in post-ischemic inflammation is an important con-

tributor to ischemic brain injury [165]. Brait et al. used

PCR arrays to screen temporal expression profile of sev-

eral chemokine-related genes using focal cerebral ische-

mia (occlusion for 30 min) in mice. Gene analysis at 4,

24, and 72 h reperfusion showed that several chemokines

belonging to CXC family were upregulated (> 10-fold),

mediated leukocyte infiltration and played a major role

in stroke pathogenesis [166]. Since chemokines have

been implicated in the worsening of stroke pathogenesis,

their ligands and receptors act as potential therapeutic

targets. One such chemokine, chemokine ligand 2 (CCL-

2) and its receptor CCR2 signaling, mediates patho-

logical post-ischemic inflammatory response by not only

inducing leukocyte recruitment but also disrupts BBB

and leukocyte adhesion to brain endothelial cells in an

MCAO (45min occlusion) mice model [167, 168]. CCL-

2 levels increase in ischemic penumbra from 6 h of re-

perfusion with peak levels at 24 and 48 h [169, 170].

Levels of CCL2/CCR2 are positively correlated with

infarct size and enlargement of the ischemic lesion.

Moreover, CCL2 expression is upregulated in the CSF

and serum in ischemic patients [171]. Thus, genetic de-

letion or manipulation of CCL2/CCR2 expression may

be a therapeutic target for ischemic stroke. CCL2 gene

disruption diminished infarct volume in focal cerebral is-

chemic mice model (30 min occlusion), and CCR2 dele-

tion not only reduced infarct size and brain edema but

also enhanced motor functions in focal transient cere-

bral ischemia mice model with 30min occlusion [169,

172]. Alternatively, overexpression of CCL2 exacerbates

ischemic injury in mice [170]. In a recent study using

CCR2 knockout mice, after MCAO and reperfusion, the

infarct size was less in CCR2 KO mice with lower mor-

tality when compared to WT control when measured 3

days after stroke. Nonetheless, CCR2 KO mice had high

mortality and neurological deficit from 5 to 28 days after

stroke. Hence, CCR-2-dependent monocyte/macro-

phages not only aggravate brain injury but also alleviate

functional recovery after ischemic stroke. Few reports

demonstrated that CCR-2-dependent monocyte infiltra-

tion to the stroke-injured hemisphere peaked at 3 days

after stroke, but after day 7, monocyte-derived macro-

phages (MDM) exhibited both proinflammatory and

anti-inflammatory phenotype equally, but after 2 weeks,

macrophages with anti-inflammatory phenotype domi-

nated. However, blocking monocyte recruitment using

anti-CCR2 antibody at 1 week post-stroke eliminates

long-term behavioral recovery with significant decrease

in anti-inflammatory gene expression in an MCAO mice
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model with 30min occlusion [173]. Apart from the anti-

inflammatory mechanisms, MDM regulate and control

long-term and acute microglia-mediated neuroinflam-

mation [174]. Hence, manipulation of periphery macro-

phage control of microglia could be a therapeutic option

for treatment for microglia-mediated CNS diseases.

Apart from proinflammatory properties of CCR2, CCR-2

recruit bone marrow-derived monocytes/macrophages

to prevent hemorrhagic infarct transformation and these

cells help maintaining neurovascular unit integrity fol-

lowing ischemia in both photothrombotic and tMCAO

mice models [175]. Hence, pharmacological manipula-

tion of CCR2 must be deliberately investigated to avoid

impairment of normal physiological function of CCR2.

Similar to CCL-2, macrophage inflammatory protein 3α

(CCL20) has also been suggested to be involved in pro-

inflammatory macrophage recruitment to the ischemic

brain followed by IL-1β and TNF-α production [176,

177]. The initial production of chemokines is attributed

to activated microglia (MIP-1α, MIP-2, and MRF-1)

followed by astrocytes and injured neurons (fractalkine

and MCP-1) after cerebral ischemia [72, 144, 178].

Under pathological conditions, such as brain injury, che-

mokines act as signals released into cerebrospinal fluid

(CSF) and extracellular fluid to recruit neutrophils,

monocytes, and microglia [179] whereas under normal

physiological conditions, chemokines govern the posi-

tioning of cells in tissues and recruit leukocytes to the

inflammatory site [180]. Leukocyte recruitment is

achieved by chemokines working in harmony with adhe-

sion molecules to affect BBB permeability through dia-

pedesis (passage of blood cells through intact walls of

capillaries, generally along with inflammation). Kim

et al. also proved that mRNA expression of monocyte

chemoattractant protein 1 (MCP-1) was nearly undetect-

able under normal physiological conditions but after is-

chemia caused either by permanent or temporary

MCAO for around 12 h or 2 days, resulted in a signifi-

cant increase in MCP-1 mRNA expression, which per-

sisted for up to 5 days. Supporting this hypothesis, Chen

et al. proved that overexpression of MCP-1 exacerbated

ischemic brain injury (24–48 h following occlusion)

along with enhanced infiltration of inflammatory cells in

MCAO (2 h occlusion) mice model [181]. Similar to

MCP-1, hindering the activation of MIP-3-α resulted in

reduced infarct size in a transient MCAO rat model with

2 h occlusion [182]. Chemokine overexpression results

in chronic neutrophil infiltration, persistent glial activa-

tion, and BBB disruption, resulting in terminal wasting

syndrome, but on the other hand, chemokine knockout

mice show deficiency in leukocyte recruitment [163,

183]. Apart from their chemotactic properties, chemo-

kines directly affect BBB. Co-culture of brain endothelial

cells and astrocytes showed that addition of MCP-1

resulted in a significant increase in BBB permeability

and it causes alteration in tight junction proteins (TJP)

in endothelial cells and the detrimental action of MCP-1

is diminished by the absence of chemokine receptor type

2 [184]. Hence, chemokines may be a potential target for

therapeutic interventions.

Excitotoxicity

Ischemic stroke causes major ATP and phosphocreati-

nine depletion that results in the release of excitatory

amino acids that leads to excitotoxic neuronal damage

called excitotoxicity. Barone et al. reported that accumu-

lation of potassium ions and acidosis are preceding

events in the ischemic cascade leading to ionic distur-

bances [185]. Increase in potassium (K+) levels leads to

the release of glutamate, which in turn stimulates Na+/

Ca2+ channels coupled to N-methyl-D-aspartate recep-

tors (NMDAR). This further elevates Na+ and Cl- levels

along with passive influx of H2O resulting in cyotoxic

edema. Extracellular glutamate also activates α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)

and metabotropic glutamate receptors, which is a critical

step in the inflammatory cascade [186]. Metabotropic

and NMDA receptors work through monoionic channels

and incidentally enhance intracellular Ca2+ levels. Vari-

ous detrimental pathways including voltage and receptor

gated Ca2+ influx leads to a significant increase in free

cytosolic calcium levels thereby creating mitochondrial

calcium overload and further compromising ATP pro-

duction [185]. Moreover, high intracellular Ca2+ levels

lead to the activation of proteases, lipases, kinases, phos-

phatases, endonucleases, and free radicals that promote

breakdown of phospholipids, proteins, and nucleic acids

[187, 188]. In normal physiological state, Mg 2+ blocks

channel pores of NMDA receptor, but when glutamate

is released from pre-synaptic sites and when AMPA re-

ceptors are activated, Mg 2+ is completely removed from

NMDARs due to partial depolarization in post-synaptic

membrane. This causes influx of Na+ and CA+ into the

cell that plays a major role in ischemic cell death [189,

190]. Calcium overload inside neurons activates a series

of downstream death signaling pathways such as calpain

activation [191], ROS production [192], and mitochon-

drial impairment [193]. Hence, NMDAR antagonists

have been rigorously studied as a therapeutic candidate

for treatment of ischemic stroke. In specific, GluN2A-

and GluN2B-containing NMDAR are the two important

NMDAR in adult forebrain. During an ischemic event,

activation of synaptic and extra synaptic GluN2B-

containing NMDARs leads to excitotoxicity followed by

neuronal apoptosis. Alternatively, activation of GluN2A-

containing NMDARs also results in neuroprotection and

neuron survival [194, 195]. Hence, dual roles of
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NMDARs might depend on subcellular locations and

subtypes of the receptors that are activated. GluN2B,

PSD95, and nNOS complexes play a major role in the

activation of death signaling pathways during ischemic

stroke [196]. Post-synaptic density protein-95 (PSD-95), a

scaffolding protein, links NMDARs to downstream mole-

cules, such as nitric oxide synthase (NOS). PSD-95 is

made up of three PDZ domains in which PDZ1 and PDZ2

bind to threnonine/serine-x-valine-COOH (T/SXV) motif

at the intracellular c-termini of GluN2 containing

NMDAR subunits [197]. Also, PDZ2 of PSD95 binds to

N-terminus of nNOS. Both these events lead to Ca2+ in-

flux from overactivation of nNOS, followed by excess pro-

duction of nitric oxide (NO), an effector of excitotoxicity

[198]. Hence, disrupting GluN2B-PSD95-nNOS complex

impairs NO production and prevents excitotoxicity based

neuronal damage [199]. One such study showed that “Tat-

NR2B9c or NA-1,” an interfering peptide that binds to

either PSD95 or nNOS, prevents the activation of down-

stream neurotoxic pathways and neuronal superoxide pro-

duction in neuronal cells [200]. In vitro studies have also

demonstrated that administration of Tat-NR2B9c after is-

chemic stroke reduced infarct volume and improved be-

havioral outcomes [201]. Cook and his colleagues

mimicked clinically relevant situations in a gyrencephalic

non-human primate MCAO model and demonstrated

that Tat-NR2B9c reduced infarct size (MRI and histology),

maintained the ability of ischemic cells to preserve gene-

transcription in genome-wide screens, and also prevented

behavioral impairment [199]. A double-blinded, random-

ized, controlled proof-of-concept study conducted across

14 hospitals in the USA showed that NA-1 administration

decreased ischemic infarcts. This study was performed on

patients who had ruptured or unruptured intracranial

aneurysm amenable to endovascular repair because

diffusion-weighted MRI showed 90% of patients undergo-

ing endovascular repair show small, embolic procedurally

induced ischemic stroke [202]. In addition to peptides,

small molecules targeting GluN2B-PSD95-nNOS complex

are being studied. In vitro and in vivo studies demonstrated

that ZL006 was reported to selectively obstruct PSD95 and

nNOS interaction during ischemia. In addition, ZL006 did

not affect the normal physiological role of MNDARs and

nNOS [196, 203]. Similarly, IC87201 disrupted pathogenic

PSD95-nNOS interaction without impairing normal nNOS

activity in neurons [204]. However, biochemical and bio-

physical studies using fluorescence polarization (FP),
1H-15N.HSQC NMR and isothermal titration calorimetry

have shown that under applied in vitro conditions, both

ZL006 and IC87201 do not interfere with PDZ domains of

nNOS or PDS-95 and it also does not inhibit nNOS-PDZ/

PSD-95-PDZ interface [205].

Currently, safety and optimal neuroprotection of

Neu2000 in ischemic stroke with endovascular

recanalization (SONIC) trial is being performed to

evaluate the neuroprotective efficacy of Neu2000 before

endovascular thrombectomy in ischemic stroke patients

[206]. Neu2000, a sulfasalazine derivative, selectively

blocks NMDA receptors along with robust free radical

scavenging property. Preclinical animal models demon-

strated favorable efficacy and therapeutic window profile

[207]. Apart from these small molecules, neuroprotective

efficacy of peroxynitrite scavenger, disufenton sodium

(NXY-059), uric acid, and antioxidants (edaravone) were

evaluated using rodent models and clinical trials (dis-

cussed in detail in the “Oxidative stress” section). Free

radicals also promote BBB disruption, brain edema and

it has been reported that there is a significant decrease

in free radical scavenging enzymes (superoxide dismut-

ase) and increase in NO levels during ischemic stroke.

In conclusion, decrease or decline in cerebral blood flow

drains energy that is required for cellular ionic homeo-

stasis. Ischemia-induced depolarization results in in-

creased glutamate release, which leads to activation of

endonucleases [208]. Hence, NMDA and AMPA recep-

tor antagonists can be developed as neuroprotective

agents that can inhibit depolarization and prevent ionic

perturbations. Glutamate receptor-mediated excitotoxi-

city is also activated by death molecules like Fas ligand,

generated by matrix metalloproteinase, matrilysin [209].

Tissue inhibitor of matrix metalloproteinase 1 (TIMP1)

inhibits excitotoxic-mediated neuronal death [210].

Hence, the role of MMPs in aggravating ischemic neur-

onal death is discussed below.

Matrix metalloproteinases

Matrix metalloproteinases (MMPs) are a large family of

proteolytic enzymes that degrade all components of

extracellular matrix [211]. MMPs range from matrilysin

(267 amino acids), being the smallest member of the

family to large transmembrane proteins such as MMP-

14 (582 amino acids). All MMPs have a definitive config-

uration consisting of the catalytic zinc site, the propep-

tide region, the fibronectin binding site, and the

transmembrane site. MMPs are broadly classified into

constitutive (MMP-2 and MMP-14) and inducible

(MMP-3 and MMP-9) enzymes, where constitutive en-

zymes act close to the site of activation whereas indu-

cible enzymes are not constrained to act at the

activation site [53]. Although, MMPs act as proinflam-

matory factor, they are also important for normal

physiological function such as neuronal regeneration,

cell proliferation, angiogenesis, and apoptosis [212].

MMPs play a major role in BBB disruption during the

acute phase of ischemic stroke by degrading basal lam-

ina and weakening the blood vessels. MMP-9, an indu-

cible MMP, is a 92-kDa type IV-collagenase initially
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secreted in latent form and is activated by proteolytic

processing in the extracellular space. Studies using ische-

mic rodent models demonstrated that there is a signifi-

cant increase in the expression of pro/active MMP-9

within 24 h following ischemia in rats [213], and they

have been detected in both central and peripheral cells

with a unique expression profile [214, 215]. MMP-9

along with tissue plasminogen activator (tPA) has been

reported to disrupt BBB resulting in hemorrhagic

transformation [216]. Rosenberg et al. using an MCAO

rat model with 2 h occlusion demonstrated that the ac-

tivity of MMP-9 was maximally elevated at 48 h [217].

MMP-9 is initially produced by endothelial cells and

neutrophils, and after 5 days, they are produced by mac-

rophages. During ischemic stroke, endothelial cells over-

express MMP-9 within and at the periphery of ischemic

lesions that results in increased vascular permeability.

Type IV-collagen, laminin, and fibronectin are the key

components of basal lamina that separates cerebral

blood vessels from extracellular matrix. Overexpression

of MMP-2 and MMP-9 can digest basal lamina, and this

digestion begins as early as 2 h following ischemia,

which corresponds with BBB breakdown 3 h following

ischemia [218]. Moreover, following stroke, alterations in

other MMPs such as enhanced levels of pro/active

MMP-2 [219], MMP-3 [84], MMP-10 [219], and MMP-

13 [220] have been reported. MMPs have been associ-

ated with increase in circulating cytokines [221] and es-

calation of thrombolysis [222] along with activation of

microglia and astrocytes [84]. Various studies demon-

strated that MMP inhibition not only reduces infarct

size but also alleviates brain edema and hemorrhage [53,

223]. Moreover, when compared to wild-type mice,

MMP-9 knockout animals had smaller infarct. Whereas,

a similar effect was not observed in MMP-2 knockout

mice which demonstrates that MMP-2 may be involved

with neovascularization whereas MMP-9 may be in-

volved in edema [224]. Apart from this, MMP levels in

plasma could be developed as potential biomarkers since

they can be used to predict the severity of stroke. First-

ever ischemic stroke patients enrolled in intensive re-

habilitation study demonstrated that MMP levels were

stable as healthy volunteers during the study period but

baseline MMP-12 and MMP-13 were correlated with

stroke severity. Surprisingly, plasma MMP3 was signifi-

cantly increased in patients with better motor/functional

recovery [225]. However, serum level of MMP-9 was in-

dependently positively correlated with initial stroke se-

verity, as well as with clinical recovery [226]. Since

MMPs play both beneficial and detrimental roles in

stroke, MMPs are explored as potential therapeutic tar-

gets that are reviewed in detail by Yang et al. [53]. Fur-

ther, MMP-mediated BBB permeability in ischemic

stroke is inhibited by cyclooxygenase 2 inhibitors [227].

Hence, modulating the activity of Cox-2 or prostaglan-

din E2 prevents MMP-mediated BBB disruption.

Cyclooxygenase—an arachidonic acid metabolite

Activation of immune cells results in the release of

phospholipase A2 (PLA2) that leads to initiation of the

arachidonic acid (AA) cascade by hydrolyzing glycero-

phospholipids. This results in subsequent energy failure

and depletion of ion concentrations due to intracellular

calcium accumulation [228]. Tabuchi et al. demonstrated

that AA metabolites act as signaling molecules that initi-

ate a post-ischemic immune response in MCAO (75 min

occlusion) mice model. Further, PLA2 deficient mice

had small infarcts when compared to wild-type mice

demonstrating their detrimental role in brain ischemia

[229]. Cyclooxygenase (COX) further metabolizes AA to

prostaglandin H2, once released from brain phospho-

lipids. Cox is present in three isoforms namely Cox-1,

Cox-2, and Cox-3 [230], where Cox-1 is constitutive and

Cox-2 is inducible. Twenty-four and 96 h following brain

ischemia by MCA occlusion, Cox-1−/− mice had larger

infarcts when compared to COX-1+/+ mice which might

be due to severe cerebral blood flow reduction in the

vulnerable region at the periphery of the ischemic terri-

tory [231]. Thus, vascular function of COX-1 plays an

important role in maintaining cerebral blood flow in

post-ischemic brain. Alternatively, pharmacological in-

hibition of Cox-1 using Valeryl Salicylate in a model of

global cerebral ischemia with 5 min occlusion increased

the number of healthy neurons in the hippocampal CA1

even after 7 days post-ischemia [232]. Under normal

conditions, Cox-2 is involved in synaptic plasticity and

cerebrovascular regulation [233, 234]. Whereas, under

disease conditions, their reaction products have a major

role in glutamate excitotoxicity [235]. Cox-2, an essential

isoform for prostanoid synthesis, has been reported to

be enhanced within the ischemic border zone in rat

models of focal cerebral ischemia [236]. Autopsy studies

have also demonstrated that Cox-2 immunoreactivity

has been observed in vascular cells, infiltrating neutro-

phils and also in neurons sited at the border of an infarct

in stroke patients [237, 238]. Prostanoids, a sub-class of

eicosanoids, which is reported to be a key factor in the

pathological mechanism of ischemic and excitotoxic

brain injury, is derived from Cox-2 [235]. Long-term

treatment with Cox-2 inhibitors has been shown to ele-

vate the incidence of myocardial infarction and stroke

[239]. Hence, it is mandatory to specifically target down-

stream effectors of Cox-2. Specifically, Cox-2-mediated

neurotoxicity is achieved through prostaglandin E2, a

downstream effector molecule that acts through four G-

protein-coupled receptor namely EP1, EP2, EP3, and

EP4 [240, 241]. These receptors have distinct signal

transduction profiles and mostly opposite cellular
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actions [241]. Various studies support the detrimental

role of EP1 subtype of prostaglandin E2 receptor in cere-

bral ischemia [240, 242]. Moreover, administration of EP1

receptor antagonist ONO-8713 followed by striatal unilat-

eral NMDA injection prevents neurotoxicity and dimin-

ishes ischemic and excitotoxic brain injury [242, 243]. EP1

receptors augment neurotoxicity by impairing Na+–Ca2+

exchange leading to disruption of Ca2+ homeostasis and

resultant excitotoxic neuronal death. Moreover, pharma-

cological inhibition of EP1 receptor with SC51089 (EP1

antagonist) 6 h after MCA reduced brain injury suggesting

their importance for therapeutic development [240].

Transcriptional modifications

It is well known that following cerebral ischemia, there is

upregulation of mitogen-activated protein kinase (MAPK)

and nuclear factor kappa beta (NF-κβ) gene expression,

which both play a key role in activation of inflammatory

signals [244]. NF-κβ family shares a Rel homology, and

this heteromeric transcription factor is usually made up of

a sequel of Rel subunits such as Rel (cRel), Rel A (p65),

Rel B, NF-κβ1 (p50 and its precursor p105), and NF-κβ.

The most common composition of NF-κβ is p50 and p65

and is normally found in the cytoplasm bound to its in-

hibitor protein IκB. IκB kinase (IKK) phosphorylates an

inhibitor of kappa B (IκB) that leads to ubiquitination and

dissociation of IκB from NF-κβ and eventual degradation

of IκB by the proteosome. This process helps NF-κβ to

translocate to the nucleus and bind to specific sites of

DNA and in promoter domains of proinflammatory genes

that lead to transcription of TNF, ICAM-1, COX-2, iNOS,

and IL-6. There is a strong correlation between oxidative

stress-mediated neurotoxicity and elevated NF-κβ expres-

sion. NF-κβ expression contributes to the increase in cell

death after MCAO and its activation results in enhanced

expression of downstream target genes that play a vital

role in neuronal injury. Moreover, either inhibition of p50

or p50 in knockout mice models protects from brain is-

chemia [245, 246]. Further, Hermann et al. reported that

inhibition of IkK markedly reduced infarct size and in

contrast activation of IkK enlarged the infarct size. This

work is also supplemented by a selective small molecule

IkK inhibitor studies that mimicked their genetic studies

[247]. Activation of NF-κβ and MAPK pathways also leads

to the expression and activation of nucleotide-binding

oligomerization domain (NOD)-like receptor (NLR) pyrin

domain containing 1 and 3 (NLRP1 and NLRP3) inflam-

masome protein that contributes to neuronal cell death

and brain injury following 1 h occlusion in a MCAO mice

model [248].

Mitogen-activated protein kinase (MAPK)

Mitogen-activated protein kinase (MAPK) family is com-

posed of three groups namely extracellular signal-regulated

kinase ½ (ERK ½), c-Jun N-terminal kinases (JNK), and

p38 [249]. Various stress factors such as cytokines, osmotic

stress, and microtubule disorganization stimulate MAPK

pathway that leads to activation of three-tiered Raf/MEK/

ERK cascade through G-protein-coupled receptors. Stress

activated protein kinases (SAPK), JNK, p38 MAPK, and

ERK have been reported to play a detrimental role in brain

ischemia [250]. Following brain ischemia, activation of

MAPK pathway was noticed to occur 30min and 3 days,

and moreover, many proinflammatory mRNA transcrip-

tions are mediated by p38 MAPK that suggests its role in

inflammation-mediated ischemic brain injury. Following

ischemia (90min occlusion), p38 MAPK signaling plays a

major role in ischemia-induced astrogliosis, while p38 in-

hibition attenuated hypoxia and scratch injury-induced

astrogliosis in a MCAO mice model [251]. Phosphorylated

p38 MAPK was detected in astroglia [252], microglia

[253], and neurons [254] of ischemic brain tissue that dem-

onstrates its role in the inflammatory response. Increased

inflammatory factors can strongly activate P38 MAPK

forming an injury cycle [255]. Following 2-h middle cere-

bral artery occlusion, MAP Kinase/ERK pathway plays a

major role in the expression of MMP leading to BBB

breakdown and upregulation of proinflammatory factors

[256]. Also, inhibition of the MAPK cascade via suppres-

sion of cytokines through anti-inflammatory drugs, which

blocks p38 MAPK, arrested the production of TNF-α and

IL-1β resulting in neuroprotection [185]. Moreover, treat-

ment with a neuronal membrane lipid precursor (CDP-

Choline) after ischemic stroke resulted in the decrease of

phosphorylation in ERK 1/2, MEK ½, and ElK-1 transcrip-

tion factors [19]. Hence, there is increasing evidence that

MAPK is a significant regulator of ischemic damage that

leads to the possibility of using MAPK as a therapeutic tar-

get. Moreover, dioscin, a natural steroid saponin, decreased

MAPK phosphorylation and inhibited HMGB1 transloca-

tion to the cytosol that resulted in less proinflammatory re-

sponse [257]. MEK/ERK inhibitor U0126 also decreased

HMGB1 expression in reactive astrocytes [258]. These re-

ports suggest that MAPK and HMGB1 pathway act as an

important factor in stroke pathology.

High-mobility group box protein family

Alarmins or danger-associated molecular patterns

(DAMPs) are released by dying or necrotic cells, initiat-

ing an inflammatory response in ischemic core. DAMPs

released in the blood stream also help recruit peripheral

immune cells. Several DAMP-s such as nucleic acids,

ATP, S100 proteins, and HMGB1 have been found to

contribute to the inflammatory response in stroke [259].

High-mobility group box (HMGB) proteins are ubiqui-

tous and abundant DNA binding proteins, and they can

act as a trigger of neuroinflammation.A unique structure

of HMGB1 helps them to bind to DNA and intracellular
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proteins to mediate DNA repair and transcription [260,

261]. HMGB1, also known as amphoterin, was initially

described as a non-histone DNA binding protein with

high electrophoretic mobility. It plays a major role in

nucleosomal structure stabilization and binds to the

minor groove of linear DNA without sequence specifi-

city resulting in association of nucleoprotein complexes

and recruitment of transcription factors. Although

HMGB1 plays a major role in the conservation of nu-

clear homeostasis, it also acts as an extracellular signal-

ing factor involved in cell proliferation, differentiation,

and pathogenesis [262]. Various studies reported that

HMGB1 is released in the brain after cytokine stimula-

tion and is associated with inflammation [263, 264].

During cellular stress such as stroke, HMGB1 functions

as a proinflammatory cytokine [265, 266]. Following

cerebral ischemia in mice, HMGB1 translocates from

nucleus to the cytoplasm or within 1 h, it disappears

from the cells completely [259]. The expression levels of

HMGB1 in microglia, astrocyte, and blood vessels in-

creased dramatically 2 h after MCAO in mice [267].

Chin et al. recently demonstrated that HMGB1 protects

Fig. 3 Apoptotic mechanisms involved in ischemic cell death

Jayaraj et al. Journal of Neuroinflammation          (2019) 16:142 Page 15 of 24



oligodendrocytes and prevents white matter injury

during ischemic stress. Mice injected with glycyrrhizin, a

specific inhibitor of HMGB1, resulted in expansion of

demyelinating lesion along with exacerbated sensori-

motor behavioral deficits [268]. HMGB1 is also released

by dying oligodendrocyte to act as an autocrine factor

under ischemic condition [269]. Clinically, HMGB1 were

found to be significantly higher in serum or plasma of

patients with ischemic stroke when compared to age-

and sex-matched controls [270]. The expression levels of

TLR2 on monocytes either stimulated with or without

HMGB1 were evaluated in ischemic stroke patients.

Real-time PCR and ELISA assays resulted in higher ex-

pression of TLR2 in monocytes of stroke patients stimu-

lated with HMGB1. Anti-TLR2 immunomodulation

diminished the expression of IL-17, IL-6, and IL-33

[271]. Faraco et al. reported that HMGB1 promotes in-

duction of iNOS, COX-2, IL-1β, and TNF-α and also in-

creases excitotoxic as well as ischemic neuronal death

in vitro [272]. In addition, there is a strong correlation be-

tween MMP-9 and HMGB1 levels in ischemic stroke pa-

tients, which was associated with poor outcome [273].

Toll-like receptors 2 and 4 and receptor for advanced gly-

cated end products (RAGE) can bind to extracellular

HMGB1 and active transcriptional factor NF-κB [274–

276]. MyD88, a downstream effector molecule of TLR sig-

naling has been shown to be involved in HMGB1-

mediated post-ischemic inflammatory response and en-

hances stroke lesions when compared to MyD88 knockout

mice in fMCAO model [277]. Downregulation of HMGB1

Fig. 4 Neuropathological mechanisms in ischemic stroke and respective targets assessed in clinical trials with and without beneficial effects
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by RNAi (RNA interference) resulted in less microglial ac-

tivation and reduced infarct volume in rodent MCAO

models [278, 279]. Various studies have demonstrated that

blocking or modulating HMGB1 by compounds such as

statins (atorvastatin, fluvastatin) and by shRNA provided

neuroprotective effects against ischemic stroke [280–282].

Hence, similar to other inflammatory mediators,

HMGB1 plays an important role in aggravating detrimen-

tal events during ischemic stroke. Table 2 summarizes the

beneficial and detrimental role of key inflammatory medi-

ators associated with stroke.

To conclude, a cascade of these neuroinflammatory

events leads to activation apoptosis and resultant cell

death. The molecular events initiated in the brain after is-

chemic stroke involves a cascade of intracellular mecha-

nisms such as failure of ionic pumps, activation of

glutamate receptors that leads to excitotoxicity, increase

in calcium influx, and enhanced ROS release that leads to

DNA damage and mitochondrial impairment. Intracellular

calcium influx is enhanced through activation of N-me-

thyl-D-aspartate (NMDA), D,L-α-amino-3-hydroxy-5-me-

thyl-isoxazolpropionic acid (AMPA) glutamate receptors,

or through acid-sensing ion channels (ASICs). Cerebral is-

chemia leads to increased ROS production and activation

of Fas death receptors which results in the activation of

pro-apoptotic caspase-8. Increased ROS results in DNA

damage and phosphorylation of p53 that activates nuclear

cell death pathways. Caspase-8 or calpains activation fur-

ther leads to cleavage of Bid to truncated Bid (tBid). Trun-

cated Bid fuses with Bax, which in a normal physiological

condition, is neutralized by B cell leukemia/lymphoma 2

(Bcl-2) or Bcl-xL. In ischemic state, tBid and Bax inter-

action leads to mitochondrial membrane depolarization

and resultant release of cytochrome C or apoptosis-

inducing factor (AIF) into the cytosol. These events initi-

ate caspase-dependent or caspase-independent neuronal

death. Released cytochrome C interacts with pro-caspase

9 and apoptotic protein activating factor-1 (Apaf-1) to

form apoptosome that leads to the activation of executor

caspases such as caspase-3. In addition, AIF transloacates

to the nucleus causing DNA fragmentation and resultant

cell death. Further, cell death cascade aggravates due to re-

lease of damage associated molecular patterns (DAMPs)

by damaged neurons that result in activation of microglia,

astrocyte, and endothelial cells and inflammasome forma-

tion. These events further orchestrate release of cytokines,

ROS, and BBB disruption. In addition, BBB disruption

causes influx of peripheral immune cells that exacerbates

inflammatory pathways (Fig. 3). Numerous studies both in

pre-clinical and clinical platforms are being performed in

search of novel therapeutic strategies to either inhibit or

slow down pathological mechanisms associated with is-

chemic stroke (Fig. 4). Though various neuroprotective

studies have resulted in frustrating clinical trials, their

results also provided us with knowledge on understanding

the mechanisms involved in ischemic cascades. However,

currently, there remains a pressing need for research and

development of stroke therapies that can be successfully

replicated in clinical trials for prevention as well as for

early critical care in stroke patients.

Conclusion
Accumulating evidence demonstrates that inflammation

plays a key role in the pathogenesis of stroke and it has

become an interesting target for therapeutic interven-

tion. However, numerous reports indicate that inflam-

matory cells are involved in a multiphasic role

(beneficial and detrimental) where inhibiting the same

pathway at the wrong time could exaggerate the patho-

genesis. Hence, a better characterization of stroke patho-

physiology with time-defined treatment might provide a

definitive protective strategy. Moreover, when basic re-

search is performed using stroke models combined with

relevant clinical conditions such as type 2 diabetes, prior

infection, and atherosclerosis, there might be successful

translation from experimental stroke studies to clinical

significance that could pave the way for future successful

stroke therapies.
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