
Frontiers in Cellular and Infection Microbiolo

Edited by:
Nico Pregi,

University of Buenos Aires, Argentina

Reviewed by:
Luciana Pinato,

São Paulo State University, Brazil
Bala S. C. Koritala,

Cincinnati Children’s Hospital Medical
Center, United States

*Correspondence:
Mark R. Zielinski

Mark_Zielinski@hms.harvard.edu

Specialty section:
This article was submitted to

Microbes and Innate Immunity,
a section of the journal
Frontiers in Cellular and
Infection Microbiology

Received: 12 January 2022
Accepted: 24 February 2022
Published: 22 March 2022

Citation:
Zielinski MR and Gibbons AJ (2022)

Neuroinflammation, Sleep, and
Circadian Rhythms.

Front. Cell. Infect. Microbiol. 12:853096.
doi: 10.3389/fcimb.2022.853096

REVIEW
published: 22 March 2022

doi: 10.3389/fcimb.2022.853096
Neuroinflammation, Sleep,
and Circadian Rhythms
Mark R. Zielinski1,2* and Allison J. Gibbons1

1 Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States, 2 Harvard Medical School, West
Roxbury, MA, United States

Molecules involved in innate immunity affect sleep and circadian oscillators and vice versa.
Sleep-inducing inflammatory molecules are activated by increased waking activity and
pathogens. Pathologies that alter inflammatory molecules, such as traumatic brain injury,
cancer, cardiovascular disease, and stroke often are associated with disturbed sleep and
electroencephalogram power spectra. Moreover, sleep disorders, such as insomnia and
sleep disordered breathing, are associated with increased dysregulation of inflammatory
processes. Inflammatory molecules in both the central nervous system and periphery can
alter sleep. Inflammation can also modulate cerebral vascular hemodynamics which is
associated with alterations in electroencephalogram power spectra. However, further
research is needed to determine the interactions of sleep regulatory inflammatory
molecules and circadian clocks. The purpose of this review is to: 1) describe the role of
the inflammatory cytokines interleukin-1 beta and tumor necrosis factor-alpha and
nucleotide-binding domain and leucine-rich repeat protein-3 inflammasomes in sleep
regulation, 2) to discuss the relationship between the vagus nerve in translating
inflammatory signals between the periphery and central nervous system to alter sleep,
and 3) to present information about the relationship between cerebral vascular
hemodynamics and the electroencephalogram during sleep.

Keywords: NLRP3 inflammasome, cytokines, electroencephalogram power, vagus nerve, neurovascular
unit, inflammation
INTRODUCTION

Evidence of the involvement of immune-related molecules including those that are involved in
inflammation in sleep regulation has increased over the past several decades (Opp and Krueger,
2015; Krueger et al., 2016; Zielinski et al., 2016; Besedovsky et al., 2019). Anecdotally, many people
are aware of the relationship between infection and the immune system from disrupted sleep
undergone from being infected by the common cold or influenza. When an individual remains
awake late into the evening or is woken early in the morning without insufficient time to sleep, they
are often aware of the resulting sleepiness. Additionally, individuals who travel across time zones
become cognizant of the difficulty to sleep at their usual time or remain awake at times of the day
when they are typically up and alert due to jet-lag. Research studies in humans and animals have
uncovered specific immune and inflammatory molecules and mechanisms that regulate sleep and
alter the circadian clock (Opp and Krueger, 2015; Krueger et al., 2016; Zielinski et al., 2016; Zielinski
et al., 2017; Besedovsky et al., 2019). Research has also described how physiological mechanisms
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involving the vagus nerve and cerebral blood flow are involved
with modulating sleep and the electroencephalogram (Zielinski
et al., 2019; Williams and Lewis, 2020). Interestingly, a balance
appears to occur between sleep and wake promoting molecules
and vasoconstrictive and vasodilative molecules that affect sleep
and wake states and the amplification of electroencephalogram
power spectra, which are plausibly modulated by circadian
oscillations (Zielinski et al., 2019). Herein, we describe the role
of innate immune inflammatory molecules in sleep regulation
and interactions with the circadian clock.
CIRCADIAN RHYTHMS

Circadian rhythms occur at approximately 24 h in length
corresponding to the earth rotation around the sun and
function to align molecular, cellular, and behavioral activity
(Patke et al., 2020). Light intensity from the sun or artificial
sources are a major source of entrainment for circadian rhythms
(Patke et al., 2020). Yet, other mechanisms of circadian rhythm
entrainment exist including food, temperature, and exercise
(Mistlberger RE, 1995; Refinetti, 2010; Pickel and Sung, 2020;
Hughes et al., 2021). Light signals the retino-hypothalamic tract
to activate neurons in the suprachiasmatic nuclei (SCN) located
in the hypothalamus (Muindi et al., 2014). The SCN is a master
pacemaker as it functions to entrain genes that govern circadian
rhythms (Patke et al., 2020). In the absence of entrainment
factors, circadian rhythms circadian synchronicity will drift over
time under constant light or dark (Duffy and Czeisler, 2009).
Circadian dysregulation is found for increased morbidity risk for
inflammatory diseases including cardiovascular disease
(Reutrakul and Knutson, 2015), cancer (Levi and Schibler,
2007), and metabolic disease (Arble et al., 2010). Circadian
disruption is also prevalent with sleep disorders (Kim
et al., 2013).

All cells have circadian rhythms and circadian clocks alter cell
activity by transcriptional, posttranscriptional, translational, and
posttranslational mechanisms to modify signaling pathways,
metabolic activity, organelle functions, and the cell cycle
(Chaix et al., 2016). For example, astrocytes within the brain
are involved in promoting circadian rhythms from the SCN
(Brancaccio et al., 2019). In organs and tissues, peripheral clocks
are synchronized and coordinated by the SCN through the
hypothalamic pituitary adrenal axis and the autonomic
nervous system (Dibner et al., 2010). In mammals, a
transcription-translational feedback loop is controlled by
molecules that regulate circadian control processes (Patke
et al., 2020). Circadian locomotor output cycles kaput
(CLOCK) transcription factors and brain and muscle aryl
hydrocarbon receptor nuclear translocator-like 1 (BMAL1) and
bind E-box regulatory motifs to promote gene expression (Allada
et al., 2001; Young and Kay, 2001; Takahashi, 2017). CLOCK-
BMAL1 genes regulate the expression of the repressors period
(PER) and cryptochromes (CRY) (Takahashi, 2017). PER and
CRY proteins function to oligomerize and enter the nucleus to
repress CLOCK-BMAL1 (Takahashi, 2017). BMAL1 expression
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timing and amplitude are mediated by competitive binding of
Rev-Eebs, which are encoded by the nuclear receptor subfamily 1
group D member 1 (NR1D1) and member 2 (NR1D2) genes,
resulting in repressing BMAL1 transcription or retinoic acid-
related orphan receptor alpha (RORa) activation of BMAL1
transcription (Preitner et al., 2002; Sato et al., 2004). In addition,
the albumin D-box binding protein (DBP) transcriptional
activator and nuclear factor interleukin 3 regulated repressor
act on PER and DBP to modulate their expression (Mitsui
et al., 2001).

Several molecules that regulate or modulate sleep also alter
the circadian clock and contrariwise. Inhibiting clock and period
genes including CLOCK, BMAL1 PER1,PER2, PER3, CRY1, and
CRY2 modifies homeostatic sleep (Albrecht, 2002). Mice lacking
both CRY1 and CRY2 genes have impaired clock functions but
interestingly have increased non-rapid-eye movement (NREM)
sleep and electroencephalogram (EEG) delta power (0.5-4 Hz
frequency range) occurring during NREM sleep [also referred to
as slow-wave activity (SWA)] (Wisor et al., 2002). Additionally,
PER1 and PER2 double knockout (KO) mice have increased
SWA compared to control mice (Shiromani et al., 2004). Mice
with a mutated CLOCK gene have reduced sleep when compared
to wild-types (Naylor et al., 2000). In rats, cholinergic projections
to the SCN from the pedunculopontine tegmentum (PPT) and
laterodorsal tegmentum (LDT) suggest that acetylcholine activity
in the brain can alter clock functions (Bina et al., 1993).
Serotonergic projections to the SCN from the dorsal raphe also
have the potential to alter clock functions (Moore et al., 1978).
However, stronger evidence suggests that adenosine and
glutamate, which are well known to regulate sleep, act on SCN
clock functioning (Deboer, 2018). Findings also suggest that
cellular activity in the SCN stimulates neurons in the
ventrolateral preoptic nucleus to release the molecule
noradrenaline that has potent arousal functions (Saint-Mleux
et al., 2007)—which was observed from the long-lasting
inhibition of norepinephrine from the selective alpha2-
adrenoreceptor antagonist yohimbine. In vitro and in vivo
studies using dopamine b-hydroxylase KO mice that do not
produce norepinephrine or epinephrine show that in peripheral
heart, liver, and white adipose tissue norepinephrine and
epinephrine control clock gene, PER1, PER2, the basic leucine
zipper transcriptional factor nuclear factor interleukin (IL)-3 also
known as E4BP4, and DBP, although clock genes were preserved
after chronic propanol and terazosin were administer suggesting
these effects were not due to dopamine (Reilly et al., 2008).
Nevertheless, evidence also suggests that circadian clocks are not
altered by sleep deprivation, which is suggested by only small
shifts or no changes in circadian phases in mice and hamsters
(Mistlberger et al., 1983; Challet et al., 2001; van Diepen
et al., 2014).
INNATE IMMUNITY

The innate immune system is highly conserved between species
(Riera Romo et al., 2016). The innate immune system is present
March 2022 | Volume 12 | Article 853096

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Zielinski and Gibbons Neuroinflammation, Sleep, and Circadian Rhythms
in simple life forms and is largely used in more developed life
forms such as vertebrates including rodents and humans (Riera
Romo et al., 2016). The innate immune system functions include
recruiting immune cells to infections sites, producing cell
signaling molecules called cytokines, identification of foreign
substances including bacteria, viruses, and protozoa, activation
of complement cascades, clearing antibody complexes and dead
cells, activating the adaptive immune system through antigen
presentation of antigen presenting cells (APCs), altering the
vascular system to protect the spread of pathogens or
damaging substances, and regulates non-immunological
functions such as cognition, and mood, and sleep (Zielinski
and Krueger, 2011; Filiano et al., 2015; Riera Romo et al., 2016;
Masih et al., 2019). Based on the visual observations of Celsius
and Galen near the beginning of the common era, five cardinal
signs of inflammation were identified including rubor (i.e.,
redness), tumor (i.e., swelling), calor (i.e., increased
temperature), dolor (i.e., pain, and function laesa (i.e., loss of
function) (Tracy, 2006). Notwithstanding, over the last two
centuries, inflammation is now understood to be involved with
many beneficial functions such as stimulating chemical
substances to recruit cells or molecules to an injured cell,
providing a physical barrier and response against pathogens,
and also sleep (Zielinski and Krueger, 2011; Cui et al., 2014; Riera
Romo et al., 2016). In this review, we discuss how inflammatory
molecules and processes are critical to sleep regulation and the
restorative functions of sleep aid in protection against pathogens
and excessive increased activity. We also describe how chemical
substances produced during inflammation affect sleep and SWA
including nitric oxide, prostaglandins, energy-related molecules,
and cytokines (Cui et al., 2014).

Cytokines are small protein or glycoprotein cell signaling
molecules that are produced by nucleated cells (Oppenheim,
2001). Cytokines communicate through autocrine, paracrine,
and endocrine mechanisms at very low concentrations, such as
at picomolar levels (Zielinski and Krueger, 2011; García Morán
et al., 2013). Cytokines function in immune responses,
inflammation, and several physiological processes (Zielinski
et al., 2019). A subset of cytokines called chemokines are major
regulators of cell recruitment. Cytokines and chemokines are
involved in regulating homeostatic sleep and sleep responses to
sleep loss and infection (Zielinski et al., 2016; Zielinski et al.,
2019). Cytokines in the periphery can also affect cytokines in the
brain to affect sleep (Zielinski et al., 2019). Consequently,
cytokines dysregulation in the brain is found with conditions
that largely effect peripheral tissue and sleep such as cancer and
cardiovascular disease (Williams et al., 2019) (Waldmann, 2018).
Pro-inflammatory cytokines tend to promote sleep and SWA
while anti-inflammatory cytokines, such as IL-4, IL-10, IL-13,
and IL-1 receptor antagonist (RA), tend to attenuate sleep and
SWA responses induced by sleep promoting stimuli including
sleep deprivation, pathogens, orpathogenic components. Pro-
inflammatory and anti-inflammatory molecules are expressed
over different time courses which can potentially modulate the
expression of each other (Zielinski and Krueger, 2011; Zielinski
et al., 2016) IL-1 beta (IL-1b) and tumor necrosis factor-alpha
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(TNF-a) are the two most investigated pro-inflammatory
cytokines that regulate sleep, and these molecules interact with
the circadian system (Zielinski and Krueger, 2011; Zielinski et al.,
2016). Nevertheless, many cytokines and chemokines are
reported to modulate sleep or sleep responses to somnogenic
stimuli (Zielinski and Krueger, 2011; Zielinski et al., 2016).
IL-1b AND SLEEP

The IL-1 family of cytokines is currently defined by 11 members
(IL-1a, IL-1b, IL-18, IL-33, IL-36a, IL-36b, IL-36 gamma (g), IL-
1RA, IL-36RA, IL-37, IL-38) which have both analogous and
different effects (Xu et al., 2019). IL-1 family members function
in immune responses, inflammation, and sleep (Zielinski and
Krueger, 2011; Zielinski et al., 2016; Dinarello, 2018). Most IL-1
family members have pro-inflammatory actions, although IL-37
and IL-1RA have anti-inflammatory functions (Zielinski and
Krueger, 2011; Dinarello, 2018). IL-1 family members are
dysregulated in pathologies with disturbed sleep including
cancer (Berger et al., 2005; Gelfo et al., 2020), brain damage
(Viola-Saltzman and Watson, 2012), and cardiovascular disease
(Boutin et al., 2001). Evidence in animal and human studies
indicate that several IL-1 family members are shown to either
regulate or modulate sleep including IL-1b, IL-1a, IL-18, and IL-
37. The sleep altering actions of these IL-1 family members
occur, in part, from the downstream activity of the receptors that
they act upon (Zielinski and Krueger, 2011; Zielinski et al., 2016).

In rodents, IL-1b expression and protein levels in the cortex
demonstrate diurnal patterns of activation with greater levels
occurring during times of higher sleep propensity that happen at
the beginning of the light period (Zielinski et al., 2017). On the
one hand, these findings might suggest that the circadian clock
controls the expression pattern of IL-1b in the brain. On the
other hand, increased waking activity increases IL-1b levels
suggesting that the diurnal variations might be largely
attributed to increased local brain area use (Zielinski and
Krueger, 2011; Zielinski et al., 2016). Sleep deprivation
increases IL-1b expression and protein levels in the cortex and
several other brain areas, peripheral tissue, and circulation in all
species that have been investigated including rabbits, cats,
monkeys, mice, rats, and humans (Zielinski and Krueger, 2011;
Zielinski et al., 2016). Chronic sleep restriction also increases IL-
1b in several brain areas including the cortex of rats (Zielinski
et al., 2014). In rats, IL-1b expression in the hippocampus is
increased after long terminal potentiation using tetanic
stimulation (Balschun et al. , 2003). Increased IL-1b
immunoreactivity is also reported in corresponding barrel
cortices after whisker stimulation further indicating the role of
local use in inducing IL-1b activity in the brain of rats (Hallett
et al., 2010). Infectious agents and their components also increase
IL-1b in the brain of rodents and rabbits (Zielinski and Krueger,
2011; Zielinski et al., 2016). For example, when the gram-
negative bacterial cell wall component lipopolysaccharide (LPS)
is applied to the periphery of mice there is a resulting increase
in IL-1b expression in the cortex (Zielinski et al., 2013).
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Also, influenza given to mice intranasally induces increased IL-
1b expression in the hypothalamus (Zielinski et al., 2013). LPS,
muramyl dipeptide, and influenza increase NREM sleep in
rabbits, rats, mice, or humans (Zielinski and Krueger, 2011;
Zielinski et al., 2016). These components of/or infectious agents
also alter SWA (Zielinski and Krueger, 2011; Zielinski
et al., 2016).

IL-1b applied centrally or to the periphery increases NREM
sleep in all species (Zielinski and Krueger, 2011; Zielinski et al.,
2016). IL-1b applied into the brainstem including the dorse
raphe nuclei and the locus coeruleus increases NREM sleep
amounts in rats and guinea pigs, respectively (De Sarro et al.,
1997; Manfridi et al., 2003). Yet, often increased NREM sleep
occurring after IL-1b administrate results in immediate
reductions in rapid-eye movement (REM) sleep. Larger
dosages of IL-1b can result in increased waking (Krueger et al.,
2007). The reason for this effect is unknown but it could be from
increased expression of anti-inflammatory cytokines including
IL-4, IL-10, or IL-13 that can attenuate increased sleep after sleep
promoting stimuli or sleep deprivation occurs, increased
compensatory waking molecule induction, or discomfort
(Zielinski and Krueger, 2011; Zielinski et al., 2016). IL-1b also
largely increases SWA in most species (Zielinski and Krueger,
2011; Zielinski et al., 2016). Spontaneous sleep and sleep
responses to sleep deprivation were attenuated after anti-IL1a
and anti-IL-1b antibodies were given to rabbits (Obal et al.,
1990). IL1b also can function to alter clock genes including
CLOCK- BMAL1 activation of E-box regulatory elements, which
may serve to alter spontaneous sleep and the normal homeostatic
sleep responses to sleep promoting stimuli (Early et al., 2018;
Timmons et al., 2021).

IL-1 receptor 1 (IL-1R1) and IL-1 receptor type 2 (IL-1R2) are
two receptors for IL-1b and are found on a variety of cell types
including, glia, neurons, epithelial cells, endothelial cells,
macrophages, monocytes, neutrophils, T lymphocytes
(Dinarello, 2018; Visan, 2019). IL-1 binding to the IL-1R1
leads to the activation of downstream signaling processes,
although the IL-1R2 acts a decoy due to the lack of a signaling
domain to prevent IL-1b signaling on the IL-1R1 (Dinarello,
2018). In addition, an IL-1RA exists that can bind to the IL-1R1
preventing IL-1b from acting on the IL-1R1 to induce
downstream functions (Dinarello, 2018). IL-1R1 and the IL-1
receptor accessory protein (IL-1RAcP) form a heterodimer
complex that allows for the signaling (Dinarello, 2018). The
IL-1 receptor accessory protein b (IL-1RAcPb) also interacts with
the IL-1R1 complex to inhibit the actions of IL-1RAcP (Gosselin
et al., 2013). IL-1RAcPb is found predominantly in the brain on
neurons (Gosselin et al., 2013). IL-1 receptor complex
ectodomains attach to Toll/interleukin-1 receptor (TIR)
domains within the cytoplasm. IL-1 receptor kinase (IRAK)
adaptor molecule is associated with the TIR complex leading
to myeloid differentiation primary response 88 (MYD88)
signaling including c-Jun N-terminal kinase (JNK), p38
mitogen activated protein kinase (MAPK), and nuclear factor-
kappa B (NF-kB) (Krumm et al., 2014; Dinarello, 2018).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
NF-kB enters the nucleus and is involved in the transcription
of cytokines and other molecules that regulate sleep, circadian
rhythms, and immunity including IL-1b and TNF-a (Zielinski
and Krueger, 2011; Liu et al., 2017; Hong et al., 2018). However,
NF-kB also functions in the mitochondrial intermembrane space
(Albensi, 2019). Activation of TNF-a and IL-1b receptors
through their ligands results in NF-kB transcription (Liu et al.,
2017). NF-kB activation involves intracellular processes that lead
to the inhibitory-kappa B (I-kB) kinase complex to undergo
phosphorylation (Liu et al., 2017). I-kB phosphorylation induces
I-kB ubiquitination and degradation allowing NF-kB to
translocate into the nucleus to induce the transcription of
inflammatory molecules that can regulate sleep (Liu et al.,
2017). NF-kB is regulated by several subunits that have either
activation or repressor capabilities including p50, p52, p65,
ribonucleic acid editing ligase A (RelA), ribonucleic acid
editing ligase A (RelB), and c-terminal ribonculeic acid editing
ligase (c-Re)l (Oeckinghaus and Ghosh, 2009). A diurnal
variation in the expression of NF-kB has been reported to
occur in the cortex of rodents with increased levels occurring
during times of the day of increased sleep propensity (Chen et al.,
1999). Increased waking activity from sleep loss increases NF-kB
levels in the lateral hypothalamus, basal forebrain, and cortex in
rodents and peripheral blood mononuclear cells in humans
(Chen et al., 1999; Brandt et al., 2004; Ramesh et al., 2007;
Irwin et al., 2008). Studies targeting NF-kB with KO mice or
peptidergic inhibition indicate that NF-kB is involved in
spontaneous sleep and sleep responses pathogens or their
components. (Kubota et al., 2000; Ramkumar et al., 2011) For
example, NF-ĸB p50 subunit KO mice have lower adenosine A1
and A2a receptors activation in the cortex and spontaneous sleep
than control mice (Ramkumar et al., 2011). In mice, LPS acting
through the Toll-like receptor 4 activation leads to NF-kB
activation and the transcription of IL-1b and TNF-a (Liu
et al., 2017). Mice lacking the NF-kB p50 subunits show
reduced NREM sleep responses after LPS administration when
compared to wild-type mice (Jhaveri et al., 2006). NF-kB p50 KO
mice also have reduced NREM sleep responses to influenza
infection compared to control mice further indicating the role
of NF-kB in sleep regulation under homeostatic and pathogenic
infection circumstances (Jhaveri et al., 2006).

An IL-RA reduced spontaneous NREM sleep and sleep
responses muramyl dipeptide and IL-1b in rabbits (Opp and
Krueger, 1991; Imeri et al., 1993). In rats, applying an IL-1R1
fragment intracerebroventricularly reduced NREM sleep
(Takahashi et al., 1999). Mice lacking IL-1R1 have reduced
NREM sleep and REM sleep amounts during the light period
compared to wild-type mice (Fang et al., 1998; Huang, 2013).
Mice lacking the IL-1R1 do respond to TNF-a with increased
sleep (Fang et al., 1998). Furthermore, IL-1R1 and TNFR1
double KO mice have reduced NREM sleep and REM sleep
rebounds after sleep deprivation (Baracchi and Opp, 2008). Sleep
responses to LPS, influenza, and sleep deprivation also indicate a
role of IL-1RAcP and IL-1RAcPb using transgenic mouse models
(Taishi et al., 2012; Davis et al., 2015; Nguyen et al., 2019; Oles
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et al., 2020). Collectively, these findings indicate the somnogenic
role of IL-1b on components of the IL-1 receptor in the brain.

Caspase-1 is the main enzyme that converts the pro-forms of
IL-1b, IL-18, and IL-33 into their mature active forms (Sollberger
et al., 2014). Additional molecules including elastase, chymases,
granzyme A, cathepsin G, and proteinase-3, are also reported to
cleave the pro-form of IL-1b into its mature form (Kaneko et al.,
2019), although these molecules are currently not reported to
have significant effects in glia and neurons. Inflammasomes are
intracellular protein complexes that function to activate caspase-
1 in response to specific danger associated molecular patterns
(DAMPs) and pathogen associated molecular patterns (PAMPs)
through their respective pattern recognition receptors (PRRs)
(Figure 1). Inflammasomes are classified based upon nucleotide-
binding oligomerization domain (NOD)-like receptors (NLRs),
absent in melanoma 2 (AIM2), retinoic acid-inducible gene I
(RIG-I), or pyrin which have specificity of activation based on
their inducing factor (Voet et al., 2019; Li and Wu, 2021). Most
inflammasomes have a apoptosis-associated speck-like protein
containing a C-terminal caspase-recruitment domain (ASC)
(also known as pycard1), which forms with their binding
domains and pro-caspase-1 to form the inflammasome (Voet
et al., 2019). The nucleotide-binding domain and leucine-rich
repeat protein-3 (NLRP3) inflammasome is the most well-
studied inflammasome and is involved in sleep regulation
(Zielinski et al., 2017).

The NLRP3 inflammasome can be activated by a conical and
a non-conical process (Pellegrini et al., 2017). The non-conical
process is dependent on caspase-11 in mice and is dependent on
caspase-4/5 in humans (Pellegrini et al., 2017). Non-conical
NLRP3 inflammasome are activated by intracellular bacteria
and bacteria cell wall components that function with caspase 1
to cleave a pore forming protein gasdermin-D to permeabilize
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
the cell membrane and trigger a form of programmed cell death
call pyroptosis (Pellegrini et al., 2017). The conical NLRP3
inflammasome is activated by a two-step process and does not
always lead to apoptosis (Voet et al., 2019; Carty et al., 2019). The
first step of NLRP3 inflammasome activation involves PRRs,
such as the Toll-like 4 receptor activation by LPS or
inflammatory molecule receptor activation, such as IL-1R1 or
tumor necrosis factor receptor 2 (TNFR2) by IL-1b and TNF-a,
respectively. The activation of these receptors leads to the
activation of NF-kB to bring the transcription of components
of the inflammasome and pro-forms of the cytokines that will be
cleaved by caspase-1 (Zielinski et al., 2019). Evidence also
suggests that the transcription factor activation protein-1 (AP-
1) can be activated to transcribe components of the NLRP3
inflammasome (Zielinski et al., 2019). The second step of NLRP3
inflammasome activation uses energy-related molecules and
oxidative stress components. Notably, extracellular adenosine
tri-phosphate (ATP), which binds to purine type 2 receptors
including the P2X7 receptor , can act ivate NLRP3
inflammasomes (Zielinski et al., 2019). Extracellular ATP
activation involves a reduction of intracellular potassium levels
and increased intracellular calcium levels to activate NLRP3
inflammasomes (Zielinski et al., 2019). The thioredoxin
inhibitor interacting protein (TXNIP) is released by oxidative
stress by the activation of the redox protein thioredoxin (TRX1)
to activate NLRP3 inflammasomes and mitochondrial reactive
oxygen species can activate the mechanistic target of rapamycin 1
(mTORC1) complex to increase the activation of NLRP3
inflammasomes indicating the role of oxidative stress on
NLRP3 inflammasome activation (Zhou et al., 2010; Moon
et al., 2015).

In mice, diurnal variations in caspase-1 activity, IL-1b protein
levels, and NLRP3 and ASC gene expression are found in the
FIGURE 1 | Major inflammasomes, their activators, and mechanisms that lead them to activate the somnogenic cytokines IL-1b and IL-18. NLRP3, RIG-1, AIM2,
and NLRP1 are activated to combine with ASC and pro-caspase-1 to activate mature caspase-1, which will cleave the pro-forms of IL-1b and IL-18 into their mature
active forms. NLRP3 is activated by multiple mechanisms including by extracellular ATP through the purine type 2 X7 receptor, oxidative stress involving TRX1 and
TXNIP, and involves the priming of inflammasomes through NF-kB transcriptional processing of components of the inflammasome. This priming step can be
activated by several somnogenic substances including LPS, IL-1b, and TNF-a through the TLR4, IL-1R1, and TNFR1, respectively.
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somatosensory cortex with the greatest values occurring when
there is high sleep propensity (Zielinski et al., 2017). These
findings suggest that diurnal variations in IL-1b in the cortex
occur, in part, from NLRP3 inflammasome activity. The caspase-
1 inhibitor Ac-Tyr-Val-Ala-Asp chloromethyl ketone applied
intracerebroventricularly reduced spontaneous NREM sleep in
rats (Imeri et al., 2006). Cortical caspase-1 activity, IL-1b protein,
levels, and caspase-1, NLRP3, ASC, and IL-1b gene expression
are increased after sleep deprivation in wild-type but not NLRP3
KO mice (Zielinski et al., 2017). In mice, sleep deprivation also
increases NLRP3 and IL-1b gene expression in the hippocampus.
NLRP3 KO mice have attenuated spontaneous NREM sleep
during the light period and lack the typical diurnal variation in
SWA during spontaneous sleep (Zielinski et al., 2017). NLRP3
KO mice also have attenuated NREM sleep and sleep responses
to sleep deprivation and LPS applied intracerebroventricularly
compared to wild-type mice (Zielinski et al., 2017). Yet, NLRP3
KO mice show similar sleep responses after IL-1b is applied
intracerebroventricularly, which is a molecule downstream of
NLRP3 activation further indicating the role of NLRP3
inflammasome activity in the brain in sleep regulation
(Zielinski et al., 2017). IL-18 infused centrally into rats, rabbits
and mice promotes NREM sleep (Kubota et al., 2001; Zielinski
et al., 2019). Alterations in the expression and immunoreactivity
of IL-18 its receptor components IL18R1 and IL-18RAP were
found in microglia within the somatosensory cortex, thalamus,
and brainstem after sleep deprivation in wild-type mice but not
NLRP3 KO mice (Gerashchenko et al., 2018; Johnston et al.,
2018). Mice lacking IL-18 have attenuated NREM sleep and
SWA responses to sleep deprivation and LPS compared with
controls, although they have similar increased NREM sleep and
SWA responses to centrally applied IL-18 protein (Zielinski et al.,
2019). Together, these findings suggest that NLRP3
inflammasomes somnogenic effects can come from inducing
both IL-1b and IL-18.
TNF-a AND SLEEP

The TNF family consists of 19 members and 29 related receptors
(Dostert et al., 2019). TNF-a is the most widely studied TNF
family member and has well-established sleep regulatory
functions (Rockstrom et al., 2018). TNF-a is produced by
most nucleated cells including neurons and glia (Probert,
2015). TNF-a is involved in inflammation, immune
functioning, cell survival, proliferation, and differentiation,
cognition, mood and fatigue (Zielinski et al., 2019). Altered
TNF-a expression is associated with pathologies that have
dysregulated sleep and SWA including cancer, major
depression, cardiovascular disease, and stroke (Zielinski et al.,
2019). Elevated TNF-a levels are also associated with sleep apnea
in humans (Cao et al., 2020).

The tumor necrosis factor converting enzyme (TACE), also
known as a disintegrin and metalloprotease 17 (ADAM 17),
functions to cleaves TNF-a into a soluble form that can bind to
the TNF-a receptors—tumor necrosis factor receptor 1 (TNFR1)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
and TNFR2 (Sedger and McDermott, 2014). These receptors are
found on most cells including immune cells, endothelial cells,
glia, and neurons (Sedger and McDermott, 2014; Probert, 2015).
TNFR1 has affinity for both the soluble and membrane forms of
TNF-a but the TNFR2 has a higher affinity for its soluble form
(Wajant and Siegmund, 2019). TNF-a activation is involved in
cell death, which occurs, in part, by a death domain associated
with TNFR1 (Wajant and Siegmund, 2019). TNFR2 does not
contain the death domain (Wajant and Siegmund, 2019). Both
TNF receptors can activated NF-kB, AP-1, and MAPK signaling
(Wajant and Siegmund, 2019). TNF-a is also regulated
translationally by a UA-rich sequence in the 3′ untranslated
region in TNFa messenger RNA (Dean et al., 2001).

The exact mechanisms of how TNF-a is induced during
homeostatic sleep remain unknown, although TNF-a is known
to be involved in both sleep regulation and circadian biology. In
rats, TNF-a protein levels in the cortex, hippocampus, and
hypothalamus are higher during the beginning of the light
period when sleep propensity is greatest (Floyd and Krueger,
1997). TNF-a can alter CLOCK-BMAL1 activation suggesting
that circadian rhythms are altered can be modulated by TNF-a
(Cavadini et al., 2007). Moreover, TNF-a shows daily rhythms in
peripheral organs suggesting that peripheral clocks have the
capability to alter TNF-a levels (Keller et al., 2009).
Notwithstanding, in rodents, acute sleep deprivation or chronic
sleep restriction increases TNF-a expression in the cortex,
hippocampus, and brainstem suggesting the diurnal variation
in TNF-a occurs, in part, from local activity use (Zielinski et al.,
2014; Zielinski et al., 2016). Although the length of time that
TNF-a is expressed differs from IL-1b and other cytokines, the
effect of TNF-a increasing NREM sleep at the expense of REM
sleep often occurs similar to that seen with IL-1b (Shoham et al.,
1987; Kapas and Krueger, 1992). In rats, applying TNF-a to
specific brain areas such as the locus coeruleus or the preoptic
area of the anterior hypothalamus increases NREM sleep (De
Sarro et al., 1997; Kubota et al., 2002). In mice, LPS applied to the
peritoneum increases TNF-a expression in the cortex and
nucleus tractus solitarius (NTS) (Zielinski et al., 2013). TNF-a
expression is also increased in the hypothalamus after influenza
is administer intranasally (Zielinski et al., 2013). Sleep increases
after recombinant TNF-a is infused centrally in rabbits (Shoham
et al., 1987). TNF-a applied intraperitoneally also increases
NREM sleep in mice (Zielinski et al., 2013).

Experimental strategies targeting TNF-a and its receptors
demonstrate their role in homeostatic sleep and sleep responses
to pathogens. Antibodies targeting TNF-a or the TNF soluble
receptor given to rodents attenuates increased sleep found after
sleep deprivation (Takahashi et al., 1995). TNFR1 KO mice have
lower spontaneous NREM and REM sleep and reduced sleep
responses to TNF-a (Fang et al., 1997). However, TNFR1 KO
mice respond normally to IL-1b with increased NREM sleep
suggesting that IL-1b does not have a function in driving sleep by
activating TNF-a. Mice lacking both TNF receptors have
reduced SWA responses to influenza infection compared to
control mice (Kapás et al., 2008). In rabbits given a TNF
receptor fragment, their sleep responses to TNF-a and
March 2022 | Volume 12 | Article 853096

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Zielinski and Gibbons Neuroinflammation, Sleep, and Circadian Rhythms
muramyl dipeptide were attenuated (Takahashi et al., 1996).
Nevertheless, one study showed that TNF-a KO mice do not
show difference in sleep and SWA responses to sleep deprivation
from controls suggesting that effects of TNF-a are orchestrated
by other sleep regulatory pathways such as NLRP3
inflammasomes (Szentirmai and Kapás, 2019).
IL-1b AND TNF-a EFFECTS ON
GLUTAMATE AND GAMMA-
AMINOBUTYRIC ACID (GABA)

The exact mechanisms responsible for how inflammatory
cytokines such as IL-1b and TNF-a affect neurons to induce
sleep are unknown. However, much evidence indicates that
glutamate/GABA signaling is imperative to sleep and
wakefulness. TNF-a and IL-1b can induce glutamatergic
activity (Furukawa and Mattson, 1998; De et al., 2003; De
et al., 2003). TNF-a (Rindflesch et al., 2018) can modulate the
glutamate receptor and synaptic scaling (Wang et al., 2012). The
a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptor is a subtype of the ionotropic glutamate
receptor coupled to ion channels. AMPA receptor potentials
are induced by TNF-a (Beattie et al., 2002), and calcium
conductance is involved from AMPA receptor voltage-
dependent mechanisms (Furukawa and Mattson, 1998; De
et al., 2003; Stellwagen and Malenka, 2006). TNF-a can also
increase the post-synaptic membrane (Beattie et al., 2002). Both
TNF-a and IL-1b increase intracellular and extracellular
glutamate levels (Ye et al., 2013; Zumkehr et al., 2018). TNF-a
and IL-1b can also increase the glial glutamate transporter 1
which can facilitate glutamatergic transmission. (Ye et al., 2013;
Zumkehr et al., 2018) IL-1b also modulates AMPA receptor
expression and phosphorylation in neurons (Lai et al., 2006).
Nevertheless, multiple mechanisms are likely involved of how
cytokines alter molecules that can alter sleep and interact with
circadian biology and indicative of the necessity of sleep. For
example, TNF-a transient effect on inhibiting gene expression of
the melatonin precursor Aa-nat, hiomt and synthesis of the
melatonin precursor N-acetyl-serotonin in the pineal gland of
rats (Fernandes et al., 2006).
ADENOSINE AND ATP AND SLEEP

ATP has been hypothesized to be involved in sleep regulation
(Benington and Craig Heller, 1995). Some studies suggest that
ATP is reduced in brain cells with increased wakefulness
(Dworak et al., 2010), and other evidence suggests that
sustained wakefulness increases extracellular levels of ATP and
adenosine (Krueger et al., 2010). A major function of ATP is to
store energy and transfer it within a cell but ATP is released from
presynaptic neurons and can also act as a neurotransmitter
(Khakh and North, 2012). Extracellular ATP is involved in the
induction of inflammatory signaling (Burnstock, 2006).
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Nucleotide and nucleoside release stimulates ATP to enter the
extracellular space (Idzko et al., 2014). Pannexins and connexins
are involved in ATP signaling and ATP binds to purine type 2X
and type 2Y receptors (Makarenkova et al., 2018). As previously
mentioned, the P2X7 receptor is involved in NLRP3
inflammasome activation (Pelegrin, 2021). In rats, P2X7
receptor expression varies with times of the day where greater
levels are seen when sleep propensity is greater (Krueger et al.,
2010). Pharmacologically inhibiting the P2X7 receptor
attenuates sleep responses to sleep deprivation in rats (Krueger
et al., 2010). A pharmacological agonist of the P2X7 receptor
applied centrally increases spontaneous sleep and SWA in rats
(Krueger et al., 2010). P2X7 receptor KO mice have reduced
NREM sleep and SWA responses to sleep deprivation. P2X7
receptor expression in the cortex is also reduced after sleep
deprivation in mice (Krueger et al., 2010).

CD39 converts ATP to adenosine di-phosphate (ADP) and
adenosine mono-phosphate (AMP) (Zielinski et al., 2012). Mice
lacking the rate limiting enzyme, CD73, which converts AMP to
adenosine have reduce NREM sleep and SWA responses to sleep
deprivation suggesting that adenosine has sleep promoting
effects after increased waking activity (Zielinski et al., 2012). A
well-described molecule that is involved with regulating sleep/
wakefulness is adenosine (Basheer et al., 2004; Bjorness and
Greene, 2009). Adenosine acts through its receptors, especially
the adenosine A1 and A2a receptors to affect sleep. In cats,
extracellular adenosine levels are increased in the cortex and
basal forebrain with increased waking activity (Porkka-
Heiskanen et al., 1997; Porkka-Heiskanen et al., 2000). The
adenosine A1 receptor works, in part, through neuron in the
basal forebrain to promote wakefulness (Basheer et al., 2004;
Bjorness and Greene, 2009). In rats, adenosine A2a receptors can
activate GABAergic neurons in the ventrolateral preoptic
nucleus that is located in the hypothalamus to promote sleep
(Scammell et al., 2001; Kumar et al., 2013). In addition,
adenosine A2a receptor KO mice have reduced sleep responses
to sleep deprivation demonstrating the sleep promoting effects of
the adenosine A2a receptor (Urade et al., 2003).
CYCLOOXYGENASE-PROSTAGLANDIN
PATHWAY AND SLEEP

An additional major inflammatory pathway that is involved with
modulating sleep and SWA is the cyclooxygenase (COX)-
prostaglandin pathway (Huang et al., 2007; Zielinski and
Krueger, 2011). COX is the rate-limiting enzyme that converts
arachidonic acid to prostaglandin H2 (Ricciotti and FitzGerald,
2011). COX-2 is normally express at low levels but an inducible
form functions in inflammation (Melikian et al., 2009). COX-2 is
an inducible form of COX that is found in most cells including
neurons and glia (Temel and Kahveci, 2009). COX-1 is a form of
COX that is constrictively active and express on most cells
(Fitzpatrick, 2004). COX-2 is induced by inflammatory and
physiological stimuli and growth factors (Simon, 1999). In
rodents, COX-2 expression is increased in astrocytes and
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microglia after intracerebroventricularly applied LPS (Font-
Nieves et al., 2012). LPS induces COX-2 and prostaglandin E2
synthase-1, the enzyme that generates prostaglandin E from
prostaglandin H2, in part, by MyD88-dependent NF-kB and
MAPK pathways (Font-Nieves et al., 2012). Prostaglandin E2 is a
vasoactive that as vasodilative properties. COX-2 can also be
induced by IL-1b and TNF-a (Aïd and Bosetti, 2011). In rabbits,
spontaneous sleep and sleep responses to TNF-a applied to the
basal forebrain are reduced with COX-2 inhibition (Yoshida
et al., 2003). Prostaglandin D2 synthase leads to the conversion
of prostaglandin H2 from arachidonic acid and is increased in
the brain after prolonged wakefulness (Huang et al., 2007).
Prostaglandin D2 can activate adenosine A2a receptors and
inhibit the histaminergic arousal system, and these
mechanisms likely contribute to the sleep enhancing effect of
prostaglandins (Huang et al., 2007). Evidence suggests that the
somnogenic effects of prostaglandin D2 occur from the actions of
the prostaglandin EP4 receptor (Yoshida et al., 2000).
Additionally, prostaglandin E2 has been shown to suppress
wakefulness (Onoe et al., 1992). The arousal effects of
prostaglandin E2 appear to function, in part, from the
activation of the prostaglandin EP1 and EP2 receptors in
the posterior hypothalamus where the histaminergic
tuberomammillary nucleus is located (Yoshida et al., 2000).
Notwithstanding, non-steroidal anti-inflammatory agents that
reduce COX and downstream prostaglandins only have modest
effects on sleep in humans (Murphy et al., 1994).

Nitric oxide (NO) acts to induce inflammation and increase
blood flow by causing local vasodilation (Chen et al., 2008).
NOsynthase (NOS) serves to catalyze arginine and nicotinamide
adenine dinucleotide phosphate (NADPH) and dioxygen to
produce NO (Chen et al., 2008). There are three forms of NOS
including neuronal NOS (nNOS), endothelial NOS (eNOS) and
inducible NOS (iNOS) that are produced by neurons, endothelial
cells, and microglia in the brain (Costa et al., 2016). Arginine is
produced from citrulline in arginine and proline metabolism and
consumes ATP in the process (Pols et al., 2021). Citrulline is
produced by several mechanisms including from the byproduct
of arginine and NOS and glutamine and glutamate (Swamy et al.,
2010). Mouse KO models, pharmacological studies, and
optogenetics indicate that NO, nNOS, iNOS, and eNOS can
increase sleep and/or SWA (Zielinski et al., 2016). Microdialysis
experiments indicated that iNOS and NO levels are increased in
the frontal cortex and basal forebrain of sleep deprived rats
(Kalinchuk et al., 2010; Kalinchuk et al., 2011). In rats, inhibiting
NO with after L-nitro-arginine methyl ester (L-NAME) reduces
sleep deprivation increases in NREM and REM sleep (Kapás
et al., 1994). Mice lacking iNOS have less spontaneous NREM
sleep (Chen et al., 2003). The activity of iNOS in cells is increased
in the frontal cortex and basal forebrain of rats after sleep
deprivation as assessed by immunoreactivity to iNOS and c-
Fos antibodies (Kalinchuk et al., 2010; Kalinchuk et al., 2011).
nNOS knockout mice have reduced homeostatic SWA sleep
responses to sleep deprivation (Morairty et al., 2013).

In rodents, a novel subset of GABAergic interneurons that co-
express neuropeptide Y, somatostatin, and the neurokinin-1
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receptor located in the cortex, the caudate-putamen, olfactory
bulb, corpus callosum and amygdala are activated during sleep
occurring after prolonged wakefulness are correlated with
increased SWA (Gerashchenko et al., 2008). When specifically
targeting nNOS in somatostatin positive cells using a cross-
sectional breeding strategy that largely inhibits the expression
of nNOS neurons in the cortex, these mice primarily exhibited
affects, albeit small, at the lower end of SWA frequency
spectrum (i.e., < 1.5 Hz) (Zielinski et al., 2019). Using
immunohistochemistry, chronic sleep restricted rats were
found to continue to have activated cortical nNOS cells during
sleep yet they did not have increased SWA suggesting that
adaptations occur with chronic sleep loss that might limit their
effect on SWA (Zielinski et al., 2013). Substance P is an
inflammatory molecule that acts on the neurokinin-1 receptor
and is found throughout most of the brain (Zielinski et al., 2015).
Local administration of a NK-1R inhibitor and a substance P
agonist to the cortex of mice attenuated or enhanced SWA,
respectively, suggesting that cortical nNOS cells play a role in
altering SWA (Zielinski et al., 2015)., However, the activation of
neurokinin-1 receptors leads to the activation of pro-
inflammatory cytokines that could also alter SWA (Zielinski
et al., 2015).
VAGUS NERVE, CYTOKINES IN THE
BRAIN, AND SLEEP

Inflammatory molecules in the periphery can induce
inflammatory molecules in the brain by traversing through
leaky areas of the blood-brain-barrier such as the
circumventricular organs including the subfornical organ, area
postrema, vascular organ of the lamina terminalis, median
eminence, pituitary gland, and pineal gland (Gross, 1992;
Miyata, 2015), or stimulating the vagal afferent nerves
(Figure 2) (Zielinski et al., 2019). The longest nerve in the
autonomic nervous system is the tenth cranial nerve which is
the vagus nerve. The vagus nerve has parasympathetic control of
the viscera and mediates oxygen demand by altering respiratory
control of the diaphragm, lungs, and heart (Bordoni et al., 2018).
Vagal afferent stimulation can act to translate signals from the
viscera from their projections to the dorsal vagal complex which
involves the NTS, the dorsal motor nucleus (DMN), and the area
postrema that is in the medulla area of the brainstem (Zielinski
et al., 2019). The NTS projects to the amygdala, cortex, central
nucleus of the amygdala, nucleus accumbens, paraventricular
nucleus, and lateral hypothalamic areas of the hypothalamus,
cerebellum, and other areas of the brainstem which all can affect
sleep (Garcıá-Medina and Miranda, 2013). However, the vagal
efferents can relate signals from the brainstem to organs in the
periphery resulting in an attenuation in inflammation (Pavlov
and Tracey, 2012).

In rodents that have their vagus nerve severed (i.e.,
vagotomized), NREM sleep and SWA are typically attenuated
after IL-1b, TNF-a, or LPS is applied intraperitoneally (Hansen
and Krueger, 1997; Kubota et al., 2001; Zielinski et al., 2013).
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The sleep modularly effects of the vagal afferents occur, in part,
through the translation of inflammatory signals between the
brain and periphery. Pro-inflammatory molecules including IL-
1b and TNF-a or LPS, which induces IL-1b and TNF-a,
administered to the peritoneum increase IL-1b and TNF-a
expression in the cortex, hypothalamus, and NTS by
stimulating the vagal afferents (Laye et al., 1995; Hansen et al.,
1998; Zielinski et al., 2013). Mice and rats that have vagotomies
have attenuated IL-1b and TNF-a expression in the brain after
IL-1b, TNF-a, or LPS is applied to the peritoneum (Zielinski
et al., 2013) (Laye et al., 1995) (Hansen et al., 1998). The effects of
peripheral inflammation stimulating brain inflammatory
molecules tend to occur through the vagal afferents at lower
concentrations of inflammatory stimuli but at greater
concentrations the effects of the vagotomy are reduced
suggesting that inflammatory molecules are increased in the
brain through leaky areas of the blood-brain-barrier in the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
circumventricular organs (Pavlov and Tracey, 2012; Zielinski
et al., 2013; Kaur and Ling, 2017).
CEREBRAL VASCULAR HEMODYNAMICS
AND SWA

The relationship between SWA and sleep amount need is strong
regarding sleep occurring after acute sleep deprivation (Davis
et al., 2011). Independent mechanisms that can influence sleep/
wakefulness states have consistently been described regarding
sleep/SWA and circadian clocks, there is not always a distinction
between SWA and sleep need (Davis et al., 2011). This effect is
seen in rats that have the SCN lesioned have increased NREM
sleep and SWA following sleep deprivation (Tobler et al., 1983;
Trachsel et al., 1992; Wisor et al., 2002; Larkin et al., 2004). The
lack of distinction between NREM sleep and SWA is also seen in
mice with the genetic inhibition of circadian clocks or altering
circadian clocks with light pulses results in normal homeostatic
sleep responses (Borbély et al., 2016). The two-process model of
sleep regulation incorporates SWA and sleep need as one of the
two arms mediating sleep/wake states—the other being circadian
factors (Borbély et al., 2016). However, much evidence indicates
that sleep need and SWA are regulated by independent
mechanisms (Davis et al., 2011). For example, benzodiazepines
increase sleep but reduce SWA (Dijk, 2010). In addition, LPS or
TNF-a applied to the peritoneum of mice induces marked
increases in NREM sleep amounts but reductions in SWA
(Zielinski et al., 2013). Moreover, chronic sleep restriction or
sleep fragmentation in rats results in increased sleep amounts
during spontaneous sleep following the restriction but SWA is
not increased (Kim et al., 2007; Deurveilher et al., 2012; Zielinski
et al., 2013).

The amplitude of electroencephalogram signals occurs, in
part, from the sum of neuronal action potentials that are affected
by synaptic scaling (Buzsáki et al., 2012). Neurotransmitters,
ions, and numerous molecules including cytokines affect neuron
signaling. Intracellular signaling mechanisms, neuronal
projections, intracellular shuttles, receptor expression and
density, and extracellular molecular concentrations, and
clearance pressure of the molecules can all potentially serve to
alter local neuronal action potentials and thus the amplitude of
slow waves (Buzsáki et al., 2012). The extracellular space is a fluid
filled space that is external to cell membranes and involves
interstitial space between cells, blood vessels, perivascular
spaces, and ventricular and subarachnoid spaces within the
brain (Nicholson and Hrabětová, 2017). The extracellular space
contains ions that aid in cellular signaling including maintaining
resting and action potentials to allow the release of
neurotransmitters from synapses by volume transmission
(Nicholson and Hrabětová, 2017). Diffusion, tortuosity, and
bulk flow, which is mainly confined to the perivascular face by
glymphatic clearance, are two mechanisms that mediate
molecule flow through the extracellular space are altered by
cerebral blood flow (Nicholson and Hrabětová, 2017). Cerebral
blood flow function to supply the brain with oxygen, nutrients,
FIGURE 2 | Pro-inflammatory and reductions in inflammatory responses
occur in the brain and periphery, respectively, and are controlled by the vagus
nerve. The vagal afferents can relay inflammatory stimuli from peripheral
viscera to stimulate the NTS of the brain stem. The NTS projects to multiple
sleep regulatory brain areas, which can induce pro-inflammatory somnogenic
molecules and actions. The vagal efferents have anti-inflammatory actions
that, in part, occur from acetylcholine receptor activation in the dorsal motor
nucleus (DMN) and nucleus ambiguus (NA) to stimulate the vagal efferents to
reduce inflammatory molecules in the periphery. The SCN plays a role in
modulating the circadian actions of molecules in the brain and periphery.
Additionally, peripheral clocks can affect these peripheral molecules that
potentially can affect actions of vagal stimulation. Moreover, circadian clocks
can alter glucocorticoids and epinephrine and norepinephrine, which can
further modulate inflammatory responses to affect signaling between the
periphery and brain.
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and signaling molecules to maintain homeostasis (Daneman and
Prat, 2015). Intriguingly, growing evidence in humans and
rodents indicates that cerebral blood flow is associated with
change in SWA (Gerashchenko and Matsumura, 1996; Hofle
et al., 1997; Tüshaus et al., 2017; Turner et al., 2020).

Cerebral blood vessels are relatively close to neurons and
average about 15 um to the center of the closest neuronal soma
(Tsai et al., 2009). The extracellular space is dynamic, and
changes occur with increased brain activity, sleep and
pathologies (Syková and Nicholson, 2008; Xie et al., 2013;
Nicholson and Hrabětová, 2017). Several cell types surround
cerebral blood vessels and release substances into the
extracellular space and around blood vessels that can modulate
cerebral blood flow. These cell types include endothelial cells,
pericytes, astrocytes with end-feet that encompass the
vasculature, neurons, interneurons, perivascular macrophages,
and surrounding microglia and comprise the neurovascular unit
(Figure 3) (Zielinski et al., 2019). Astrocytes are key modulators
of cerebral blood flow (Macvicar and Newman, 2015). Blood
flows from higher pressure areas to lower pressure areas and the
velocity inversely correlates to the cross-sectional area of the
vessel (Zielinski et al., 2019). Cerebral blood flow is the product
of blood velocity and blood volume. Consequently, as vessels
dilate then cerebral blood flow increases and as blood vessels
constrict then cerebral blood flow is reduced (Zielinski et al.,
2019). Interestingly, many but not all sleep promoting molecules
including adenosine, IL-1b, TNF-a, and NO are vasodilative
(Zielinski et al., 2019). Wake promoting molecules such as
monoamines like norepinephrine tend to be vasoconstrictive
(Zielinski et al., 2019). There is relative consistency between
vasoregulatory actions of sleep promoting molecules and cells
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with those that increase SWA. However, this tenet does not hold
true for all molecules and cells. This could be due, in part, to
multiple different molecules that are released from certain cell
populations and the bulk actions of these molecules on their
receptors and downstream pathways, and the overall balance of
the summation of the local activities of all sleep and wake
promoting substances. Changes in cerebrovascular resistance
modulate blood vessel diameters to maintain constant blood
flow by cerebral autoregulation (Fantini et al., 2016). Vessel
compliance normally functions to allow the vessels to dilate
when demands need it (Zamir et al., 2018); however,
circumstances exist that can impair vessel compliance such as
occurs with prolonged or chronic inflammatory states. This is
seen with animal models studying the activation of IL-1b
inducing cerebral blood flow (Boutin et al., 2001; Farkas et al.,
2006). Yet, IL-1b given chronically intracerebroventricularly
results in a reduction in cerebral blood flow (Maher et al.,
2003; Farkas et al., 2006).
FUTURE DIRECTIONS

A need exists to understand the exact mechanisms of how innate
immune and inflammatory mechanisms affecting sleep and
circadian systems interact. The complexity of these
relationships is affected by physics and physiology that are
local, regional, and transverse peripheral and central nervous
systems. We have entered an exciting time in the fields of
neuroscience where we can activate and inhibit specific cells
and molecules using techniques such as clustered regularly
interspaced short palindromic repeats (CRISPR), optogenetics,
FIGURE 3 | The neurovascular unit (NVU) tightly and rapidly regulates homeostasis in the brain by controlling the cerebral microvasculature. The neurovascular unit
is comprised of endothelial cells, pericytes, astrocytes with end-feet that encompass the vasculature, neurons, interneurons, perivascular macrophages, and
surrounding microglia. The NVU regulates blood flow in the brain in order to maintain the need from local use. The NVU also functions to sense local changes in the
environment and responds to maintain homeostasis. The NVU acts in immunosurveillance to respond to potential pathogenic challenge or energy demand changes
and responds with the release of inflammatory molecules. Sleep regulatory pro-inflammatory molecules can vasodilate to increase cerebral blood flow while other
molecules, while many wake promoting molecules produced by neurons and glia have vasoconstrictive functions. Thus, the NVU likely has a major role in modulating
cerebral blood flow changes occurring during sleep/wake states.
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chemogenetics, and fiber photometry and molecular and
immunological techniques including next-generation
sequencing and cytometry by time of flight (CyTOF) that can
assess cell specific activity of far greater markers than previously
possible. Recent advances in genetic-wide-associated studies
(GWAS) are providing insight into genes and molecules that
are dysregulated in sleep/wake and circadian disorders. For
example, a recent GWAS publication in humans indicated that
molecules upstream and downstream of NLRP3 inflammasome
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
activation are associated with oxidative saturation levels in sleep-
disordered breathing (Cade et al., 2019). Consequently, the rapid
development of experimental models can now be made from
these studies and allow for new discoveries on inflammatory
mechanisms that affect sleep/wake and circadian disorders.
CONCLUSION

In summary, several inflammatory molecules and pathways can
modulate sleep and SWA (Opp and Krueger, 2015; Krueger et al.,
2016; Zielinski et al., 2016; Besedovsky et al., 2019) IL-1b and TNF-
a function through their receptors to regulate sleep (Opp and
Krueger, 2015; Zielinski et al., 2016;Krueger et al., 2016; Besedovsky
et al., 2019). NLRP3 inflammasomes are critical sensing
mechanisms that induces sleep and SWA in response to increased
waking activity and pathogens (Zielinski et al., 2017). Increased
evidence indicates that SWA and sleep need are independently
regulated and alterations in vasohemodynamics likely is involved in
altering SWA (Gerashchenko and Matsumura, 1996; Hofle et al.,
1997; Davis et al., 2011; Tüshaus et al., 2017; Turner et al., 2020).
Inflammatory molecules that regulate sleep can affect clock genes
and vice versa, which likely contributes to an overall enhancement
or suppression of sleep pressure that can induce or suppress sleep.
Consequently, there appears to be a balance of circadian factors,
inflammatory molecules, neurotransmitters, and physiological
mechanisms governing vasohemodynamics that govern sleep
regulation (Figure 4).
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