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Abstract: Neuroinflammation, a protective response of the central nervous system (CNS), is associated
with the pathogenesis of neurodegenerative diseases. The CNS is composed of neurons and glial cells
consisting of microglia, oligodendrocytes, and astrocytes. Entry of any foreign pathogen activates the
glial cells (astrocytes and microglia) and overactivation of these cells triggers the release of various
neuroinflammatory markers (NMs), such as the tumor necrosis factor-α (TNF-α), interleukin-1β
(IL-1β), interleukin-1β (IL-10), nitric oxide (NO), and cyclooxygenase-2 (COX-2), among others.
Various studies have shown the role of neuroinflammatory markers in the occurrence, diagnosis,
and treatment of neurodegenerative diseases. These markers also trigger the formation of various
other factors responsible for causing several neuronal diseases including Alzheimer’s disease (AD),
Parkinson’s disease (PD), Huntington’s disease (HD), multiple sclerosis (MS), ischemia, and several
others. This comprehensive review aims to reveal the mechanism of neuroinflammatory markers
(NMs), which could cause different neurodegenerative disorders. Important NMs may represent
pathophysiologic processes leading to the generation of neurodegenerative diseases. In addition,
various molecular alterations related to neurodegenerative diseases are discussed. Identifying these
NMs may assist in the early diagnosis and detection of therapeutic targets for treating various
neurodegenerative diseases.

Keywords: astrocytes; microglia; neuroinflammation; cytokines; inflammation; neurodegenerative
diseases

1. Introduction

Inflammation is a protective response against external pathogens or damaged cells.
The inflammatory response is essential for the elimination of pathogens and wound healing.
For years, the central nervous system (CNS) has been regarded as an immune privilege
without association with inflammation. However, various new studies revealed that the
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CNS shows the characteristics of inflammation when injured or infected. In this respect,
CNS cells produce inflammatory mediators, such as prostaglandins and pro-inflammatory
cytokines, among others, which sequentially induce the production of chemokines and
adhesion molecules, recruit immune cells, and stimulate glial cells. Excessive secretion of
pro-inflammatory cytokines results in neuroinflammation. The CNS is mainly composed
of two types of cells: neurons and glia consisting of astrocytes, oligodendrocytes, and
microglia. When glial cells are activated, which is necessary for neurogenesis (forming
neurons from neural stem cells and progenitor cells), they produce cytokines. Still, over-
production of these cytokines causes different neurodegenerative diseases [1]. However,
microglia participates in innate immune responses and gets activated by cellular commu-
nication and secretion via cytokines, chemokines, and other mediators [2]. Astrocytes
and other neural cells communicate through neurotransmitters, which play an essential
role in growth, development, and cell proliferation. On the entry of pathogens, damaged
cells release adenosine triphosphate (ATP) and behave cytotoxic as a pro-inflammatory
mediator. Due to the excessive release of ATP from damaged neural cells during pathology,
the concentration of purine nucleotides increased. Thus, ATP may act as a chemoattractant
of microglia [3].

Inflammation in the brain does not show heat, pain, redness, or swelling symptoms.
This is referred to as chronic rather than acute inflammation. The key players in neu-
roinflammation are cellular and molecular immune constituents such as macrophages
(microglia), cytokines, complement, and pattern recognition receptors [4]. In this respect,
low-level neuroinflammation is protective, whereas high-level chronic neuroinflammation
is harmful. Numerous factors such as trauma, the normal aging process, dementia, hyper-
tension, stroke, depression, diabetes, drugs, and toxins, contribute to neuroinflammation in
the CNS. Moreover, neuroinflammation accounts for the progression of several neurode-
generative diseases. It plays a significant part in the development of Alzheimer’s disease
(AD), Parkinson’s disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis
(ALS) [5,6]. Prevalent neurodegenerative disorders are characterized by the aggregation
of misfolded proteins in AD and PD. However, it does not indicate that inflammation
might be the primary cause of illness. Furthermore, the pathophysiology of neurodegener-
ative diseases involves changes in protein conformations aggregation into neurofibrils or
oligomers, which results in neuronal toxicity and ultimately leads to neuronal degeneration
and brain inflammation [7–9].

Neuroinflammation is a protective physiological response in the brain that targets the
CNS. It is a strong reaction that protects the brain from detrimental intrinsic and extrinsic
factors; however, excess secretion of inflammatory mediators is harmful to the CNS. Neu-
roinflammation can be categorized into two types: neuroprotective and neurodegenerative.
Neuroinflammation is neuroprotective when the effect of injury lasts for a short period.
In contrast, it is neurodegenerative when it becomes chronic and lasts for an extended
period with harmful effects on the CNS [4]. Inflammasomes or cytosolic molecular factories
are generally composed of an adaptor protein (apoptosis-associated speck-like protein), a
sensor protein, and pro-inflammatory caspase (caspase-1). The inflammasome, nucleotide-
binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3
(NLRP3), is the most intensively investigated inflammasome, which has been reported as a
critical player in neurodegenerative diseases [10].

Cellular immune components, such as microglia or astrocytes, mediate the release
of inflammatory molecules, including tumor necrosis factor, growth factors, adhesion
molecules, or chemokines. Over- and under expression of pro- and anti-inflammatory
molecules, respectively, may result in neuroinflammation and thus disease initiation and
progression. In addition, levels of several inflammatory factors were altered in the brain or
bodily fluids of patients with AD, reflecting their neuropathological changes. Therefore,
simultaneous detection of several inflammatory molecules in the early or pre-symptomatic
stage may improve the early diagnosis of neurodegenerative disorders [11].
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In an inflammatory cascade, there is a series of immune receptors; NOD-like receptors,
TLRs, nucleotide-binding oligomerization domains (NODs), microglia, and astrocytes
can identify the harmful stimuli and respond by producing inflammatory cytokines such
as TNF-α, IL-6, IL-1β, Interferon-γ (IFN-γ) and several chemokines [4]. During brain
development or injury, complement system components produce Toll-like receptors (TLRs)
and complement receptors. These are also expressed by neuronal and glial cells. The
connection linking the immune system and the CNS has been the subject of research in
neuropsychiatric diseases caused by neuroinflammation [12]. In light of the importance
of neuroinflammatory attributes, which are strongly associated with neurodegenerative
diseases, this review focuses on these markers emphasizing the underlying mechanisms
of action. In addition, the present review covers the most recent relevant literature that
deals with these markers and their mechanisms of action. Presented in Table 1 are a few
inflammatory molecules, their sources, and their functions.

Table 1. Inflammatory molecules and their functions [13].

Inflammatory Molecules Family Main Sources Functions

IL-1β IL-1 Macrophages and monocytes Pro-inflammation, proliferation, apoptosis,
and differentiation

IL-4 IL-4 T-cells Anti-inflammation, T-cell and B-cell
proliferation, and B-cell differentiation

IL-6 IL-6 Macrophages, T-cells, and adipocyte Pro-inflammation, differentiation, and
cytokine production

IL-8 CXC Macrophages, epithelial cells, and endothelial cells Pro-inflammation, chemotaxis,
and angiogenesis

IL-10 IL-10 Monocytes, T-cells, and B-cells Anti-inflammation and inhibition of the
pro-inflammatory cytokines

IL-12 IL-12 Dendritic cells, macrophages,
and neutrophils

Pro-inflammation, cell differentiation, and
activation of NK cells

IL-11 IL-6 Fibroblasts, neurons, and epithelial cells Anti-inflammation, differentiation, and
induces acute phase protein

TNF-α TNF Macrophages, NK cells, CD4+ lymphocytes,
and adipocyte

Pro-inflammation, cytokine production, cell
proliferation, apoptosis,

and anti-infection

IFN-γ INF T-cells, NK cells, and NKT cells Pro-inflammation, innate, and adaptive
immunity anti-viral

GM-CSF IL-4 T-cells, macrophages, and fibroblasts Pro-inflammation, macrophage activation,
increases neutrophil and monocyte function

TGF-β TGF Macrophages and T-cells Anti-inflammation and inhibition of
pro-inflammatory cytokine production

2. Neuroinflammatory Markers in the Pathogenesis of Neurodegenerative Diseases
2.1. Tumor Necrosis Factor-α (TNF-α)

In the brain, TNF-α, a pro-inflammatory cytokine, is mainly produced by neurons
and glial cells, including astrocytes and microglia as the significant glial cells [14]. By
initiating inflammatory cytokine signaling cascades, TNF-α plays a vital role as a regulator
of acute phase inflammation, acting as a key player in inflammation [15]. Besides injury and
inflammation, TNF-α is also responsible for various physiological functions, including fatal
development, hematopoietic cell regeneration, cardiovascular health, and different immune
system constituents [16,17]. In addition, TNF-α maintains the maturation of dendritic cells,
establishes a synaptic connection, responds to various changes in sensory stimuli, and
retains homeostatic flexibility [18,19]. Furthermore, TNF-α is the critical regulator of
α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors synchronized
signaling. Notably, glial TNF-α improves synaptic efficiency by increasing the cell-surface
appearance of AMPA receptors. On the contrary, jamming of TNF-α-directed signaling has
a contradictory action [20].
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At the onset of injury, TNF-α provides protection against infection, neuronal degen-
eration, and neuronal toxicity. However, uncontrolled TNF-α expression leads to chronic
inflammation, high gliosis, synaptic loss, and glutamatergic toxicity. Persistent expression
of TNF-α is detected in multiple sclerosis (MS), HIV-associated dementia, Parkinson’s
disease (PD), ischemia, and Alzheimer’s disease (AD) [21,22]. An increase in brain TNF-α
plays a role in the pathogenesis of neurodegenerative disorders. In this respect, for any
delayed inflammatory response that will result in malfunction, TNF-αmay be a principal
remedial target as a treatment approach to diminish neurodegenerative diseases [23].

2.2. Interleukin-1β (IL-1β)

In the pathology of neurodegenerative diseases, interleukin (IL)-1 is an essential
inflammatory cytokine, which acts as a significant key molecule in MS [24]. Levesque and
co-workers reported that neutrophils and monocyte-derived macrophages express IL-1β
in experimental autoimmune encephalomyelitis (EAE), leading to their transmigration
into the spinal cord parenchyma [25]. Microglia and astrocytes are the two key players in
neuroinflammation that respond to IL-1β [26,27].

Research findings showed that IL-1β induces a quick pro-inflammatory reaction in
the cell culture of astrocytes, leading to the cytokine’s expression and adhesion molecules,
chemokines, and matrix metalloproteinases [28,29]. IL-1 also plays a role in neurodegen-
eration, induces IL-6 production, and stimulates inducible nitric oxide (iNOS) activity in
astrocytes [30]. Additionally, IL-1 enhances brain acetylcholinesterase activity and mi-
croglial activation. In this respect, more IL-1 production results in astrocyte activation, and
expression of the beta-subunit of the S100 protein (S100β) by astrocytes, thus establishing a
self-processing cycle [31,32]. Interleukin-6 (IL-6) performs various roles in neuroinflamma-
tion and is one of the key roles in defending the host [33] with focused regulatory effects
leading to the inflammatory response [34]. IL-6 is also associated with the neuropoietic
family of cytokines [35] and exerts direct and indirect neurotrophic effects on neurons [36].
IL-6 stimulates astrogliosis microglial activation and boosts the production of acute-phase
proteins [37,38].

2.3. Nitric Oxide (NO)

Nitric oxide (NO), a small bioactive lipophilic molecule that diffuses crossways to the
cell membrane, controls numerous physiological functions of the body [39]. NO production
occurs in the presence of nitric oxide synthase (NOS), which catalyzes L-arginine oxidation
to L-citrulline [40]. There are three different isoforms of NOS found in mammals: inducible
NOS (iNOS), endothelial NOS (eNOS), and neuronal NOS (nNOS) [41]. The eNOS and
nNOS collectively accomplish the vasodilation of vessels and functions of the CNS. In
addition, numerous inflammatory triggers can induce the iNOS expression in different
types of cells, such as neutrophils, macrophages, dendritic cells, and epithelial cells [42].
iNOS is also expressed in endothelial cells at the blood-brain barrier (BBB), microglial cells,
astrocytes, and neurons in the brain [43]. Published research showed a medical connection
between iNOS and the pathogenesis of organ-specific autoimmune inflammatory diseases,
MS, and experimental autoimmune encephalomyelitis (EAE) [44,45]. The iNOS expression
in microglial cells and macrophages results in high levels of NO and peroxynitrite, which
ultimately causes damage to the CNS [46].

2.4. COX-2

Cyclooxygenases (COX) are enzymes that convert arachidonic acid into prostanoids.
Three isoforms of COX have been described: COX-1, 2, and 3; COX-1 and COX-2 isoforms
are involved in neurodegenerative diseases. COX-2 is stimulated by inflammatory compo-
nents such as cytokines, TNF-α, IL-1, and IL-2 and has been documented for its combined
expression in some cell masses of the brain [47]. Studies reported that COX-2 expression
is deficient in astrocytes [48], increases in the early phases of the disease [47,48], and is
principally expressed in pyramidal neurons [49].
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2.5. Reactive Oxygen Species (ROS)

ROS cause a damaging effect on neurons and accumulate in the brain, resulting in
neurodegenerative diseases [50]. In addition, ROS can cause damage to macromolecules
such as proteins and lipids, which obstruct mitochondrial functions. ROS damage lipids by
interrupting lipid peroxidation to malondialdehyde (MDA), protein carbonyls, and guanine
oxidation to 8-oxo-deoxyguanosine in DNA [50,51]. ROS also disrupt the mitochondrial
DNA, which is linked with decreased mitochondrial gene expression.

3. Role of Neuroinflammatory Markers in Neurodegenerative Diseases
3.1. Alzheimer’s Disease

Recent studies have revealed the significant role of neuroinflammation in the progres-
sion of the neuropathological alterations in Alzheimer’s disease (AD). Researchers have
shown the relationship between immune-linked proteins and cells near the plaques of
β-amyloid [32,52]. At the beginning of the 1990s, several findings emphasized the vital
function of neuroinflammation in AD progression. In this respect, the protective properties
of anti-inflammatory drugs against various disorders, including rheumatoid arthritis, and
AD development have been reported in multiple studies. Those studies showed that people
taking non-steroidal anti-inflammatory drugs (NSAIDS) for a long time have decreased the
risk of developing AD [53–55]. Similarly, several studies have demonstrated the importance
of inflammatory processes in AD development. However, the inflammation hypothesis
linked to AD pathogenesis has been recently proposed. Even in this hypothesis, the in-
flammatory reaction is believed to be a consequence of tau and β-amyloid protein [56,57].
Inflammation of the brain seems to display a dual function by showing a neuroprotective
effect in the acute-phase stimulus; however, it appears to be harmful when a chronic stimu-
lus is activated [58]. The stimulation of microglia via traditional means leads to the release
of different pro-inflammatory and detrimental molecules such as NO, ROS, and cytokines.
Furthermore, increased levels of interleukin 1β enhance the formation of other cytokines
such as interleukin 6, which then activates CDK5 stimulation, a kinase known to induce tau
hyperphosphorylation. The neuroinflammation in AD plays a significant role in increasing
the burden of Aβ and hyperphosphorylation of tau, indicating that this dual function could
be a major bound between the pathologies of AD. Stimulation of the resident macrophage
of the brain is now a primary factor in the investigation of AD [52,59].

3.1.1. Microglial and Alzheimer’s Disease

Microglia are the primary immune cells in the central nervous system. In a normal
brain, microglia are ‘resting’ and are structurally ramified cells with somas [60,61]. In this
context, the cell somas do not move, whereas the cell processes extend and retract, monitor-
ing their environment and interacting with nerve cells and other glia cells. When microglia
detect a condition in the CNS, such as injury, invasion, or disease, it results in microglial
stimulation, leading to a morphological alteration, which causes cell enlargement, retrac-
tion of processes, and migration [62–64]. In AD, studies showed that the primary factor
of the microglia stimulation is the presence of Aβ. In the early stage of AD pathogenesis,
the stimulated immune stimulus leads to Aβ clearance and displays positive action on
pathologies linked to AD in animal studies [53,65]. However, Aβ accumulation and sus-
tained pro-inflammatory cytokine initiation induce nerve cell damage [66,67]. Additionally,
the sustained microglial activation leads to a reduction in the efficiency of microglia re-
sponsible for interacting and phagocytosing Aβ and a drop in the activity of Aβ degrading
enzyme, resulting in a decreased ability to degrade the plaques of Aβ. At the same time,
it was observed that the capacity of microglia to form pro-inflammatory cytokines is not
altered [68,69]. Furthermore, findings showed a specific property of pathogenesis in which
the total clearance of Aβ becomes affected. The continuous formation of neurotoxins from
microglia leads to an increase in neuroinflammation and neurodegeneration, resulting in
excessive activation of microglia [52].
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The involvement of microglia in Aβ clearance induces the formation of pro-inflammatory
cytokines that stimulate the release of more microglia to plaques [11,70,71]. Recent studies
showed that low clearance of Aβ by microglia induces macrophages from the deposition
of Aβ plaque to clear Aβ [72]. In this regard, peripheral macrophage recruitment into the
brain may cause the influence of sustained inflammation and, therefore, AD pathology.
Most recent studies regarding the role of inflammation in the pathogenesis of AD and con-
trol of immune response indicated that an alteration (mutation) in the triggering receptor
expressed on myeloid cells 2 (TREM2) has a greater possibility of causing AD [72–74]. An
uncommon missense mutation substantially exacerbated AD risk [75].

3.1.2. The Pathology of Alzheimer’s Disease and the Role of TREM2

Recent works on genetic variations of TREM2 have emphasized the interest in
the mechanisms implicated in AD pathogenesis and several other neurodegenerative
disorders [52]. Initially, the interest in the role of neurodegeneration and TREM2 started
in the 2000s when links were discovered between TREM2 and Nasu-Hakola disease and
polycystic lipomembranous osteodysplasia with sclerosing [76,77].

3.1.3. Cross Talk between Peripheral and CNS Immune Cells in Alzheimer’s Disease

Activation of microglia and astrocytes leads to the release of soluble inflammatory
mediators that, instead of staying in the local vicinity, can cross the blood brain barrier
(BBB), inflammatory mediators then disperse into the bloodstream and move around the
periphery. Simultaneously, the CNS is solely responsible for the activation of the immune
system; on the onset of injury/pathogen attack, pro-inflammatory cytokines released by
peripheral cells travel through blood flow towards the BBB. When cytokines cross the
brain parenchyma they act upon glial cells, responsible for increasing their vulnerability to
disease [78,79]. There is an increase in inflammatory signals in the brain, which can activate
resident immune cells and convert them to a pro-inflammatory phenotype [80].

3.1.4. Progression of Mild Cognitive Impairment to Alzheimer’s Disease

Criteria for a dementia syndrome and probable AD were [81] designed to be conserva-
tive so that a neurodegenerative condition could not be established unless the cognitive
function was sufficiently compromised to interfere with either an individual’s social, occu-
pational, or both, functions. Because AD develops several years before cognitive symptoms
arise, cognitive deficits appear before the onset of a full-blown dementia syndrome [82],
and more emphasis is being paid to mild cognitive impairment (MCI) as a stage between
normal cognition and AD [83]. The presence of a memory or other cognitive complaints
by an individual or other knowledgeable informants, objective deficits on standardized
objective cognitive tests, and the absence of a dementia syndrome characterized by intact
general intellectual function and no significant deficits in either social, occupational, or
both, functions is the generally accepted criteria for MCI. As disease-modifying drugs are
identified, the best hope for prevention or cure is to treat the problem early on, before
multisystem degeneration significantly compromises the brain [84,85].

3.2. Parkinson’s Disease

After the inflammatory pathway stimulation by defective signals, there is an impair-
ment synapse by many molecular mechanistic actions. This process also leads to a positive
feedback loop that contributes to more significant injury, which is regulated by microglia
cells [86]. In this regard, elevated blood-brain barrier permeability and neurovascular
impairment could be associated with inflammation molecules infiltration into the middle
brain, dopaminergic nerve cell death, and activation of microglia. The inflammatory stimu-
lus in PD appears to be improved by activation of peripheral lymphocytes, and augmented
concentrations of serum mediators including IL-6, IL-2, and TNF-α are observed in PD
patients [87]. However, there is no confirmation of pro-inflammatory mediator’s secretion
linked to PD [88]. Among the several mechanistic pathways, which move cells of the
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immune system and microorganisms into the brain, are direct vascular channels. These
channels link the bone marrow in the skull to the brain’s surface via the meninges, making
other cells move into this part, usually regarded as ‘aseptic’ [89]. Leukocytes formed from
the bone marrow can stimulate inflammatory processes in the tissue and display their
protective action [88].

Moreover, numerous brain pathologies, which contribute to neurodegeneration, show
neuroimmune dynamics stimulating neuroinflammation, apart from their other mech-
anistic actions [86]. Pathogens and inflammatory processes, which enable the immune
stimulus contribute to the progression and initiation of PD and several other neuronal
disorders following their invasion of brain cells [88]. The previous sections showed that mi-
croglial activation can be enhanced by various impaired signals such as toxins, pathogens,
molecules formed by dying nerve cells, endogenous proteins, and other toxic molecules.
Furthermore, the expression of constitutive pro-inflammatory mediators such as TNF-α,
IL-6, IFN-γ, IL-2, IL-1β, eicosanoids, and ROS were observed in post-mortem PD patients.
The microglial stimulation may result in a vicious circle of neurodegeneration and neu-
roinflammation [87,88]. In recent studies, astrocytes have been involved in α-syn fibrils
degeneration. This mechanical action is stimulated by α-syn transfer to surrounding cells,
which are more effective in astrocytes and are found inside lysosomes, where they appear to
be broken down [88,90]. After that, it was documented that α-syn fibrils move via tunneling
nanotubes between nerve cells inside lysosomes and stimulate the aggregation/misfolding
of the standard proteins since lysosomal impairment is a significant factor in neurological
diseases [91].

3.3. Amyotrophic Lateral Sclerosis

Neuroinflammation, characterized by astrocyte and microglial activation, infiltration
of T lymphocyte, and inflammatory cytokines overproduction, has been linked with neu-
ronal loss in both human and animal tissues in the amyotrophic lateral sclerosis (ALS)
pre-symptomatic phase [92]. Findings from a preclinical study have implicated immune
system cells in either displaying protective or harmful actions on motor neurons (MN)
survival, depending on the point of disorder progression. However, the mechanism is still
speculative [93].

3.3.1. Microglia and Amyotrophic Lateral Sclerosis

Microglia are the main form of active defense activities of the immune system in the
spinal cord and brain. They monitor the brain’s environment and respond to ‘harmful sig-
nals’ resulting from damaged or injured tissues. Published research showed that damaged
astrocytes and MNs liberate misfolded proteins, including human mutant superoxide dis-
mutase 1 (mSOD1) in ALS, which stimulates microglia via Toll-like receptor (TLR) 2, CD14,
TLR4, and scavenger receptor-dependent cascade [94–96]. Direct evidence of microglia
activation in the brain of individuals with ALS and mice with SOD1G93A was determined
with the help of positron emission tomography [97–99], with a marked correlation between
microbial stimulation intensity in the motor cortex and the potency of MN impairments [99].
A study on mSOD1 transgenic mice showed that the substitution of mSOD1 microglia with
wild-type microglia and that the decreased expression of mSOD1 in microglia blocks the
degeneration of MN and prolongs the animal’s life span [100,101]. Similarly, the work of
O’Rourke and co-workers showed that the expression of C9orf72 was highest in myeloid
cells and that blocking the activity of C9orf72 in experimental mice induces impairments in
lysosomal trafficking, reduces microglia’s ability to remove aggregated proteins, and causes
neuroinflammation and alters microglia stimuli [102]. Concomitant results in macrophages
showed that even C9orf72 haploinsufficiency promotes impaired inflammatory stimuli in
macrophages. These results indicate that C9orf72 may have a dual effect on myeloid and
nerve cells [93].

On the other hand, ATP liberated by impaired nerve cells may stimulate microglia via
the metabotropic P2Y and ionotropic P2X purinergic receptors. In this context, findings
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indicated that the level of P2X7 expression increases in microglia of the post-mortem spinal
cord of patients with ALS [103]; a similar situation is observed in SOD1G93A mice [104]. In
addition, it was found that up-regulation of P2Y6, P2X7, and P2X4 receptors in mSOD1
microglia, is associated with decreased hydrolysis of ATP in the same microglial ALS, which
induces elevated synthesis of cyclooxygenase-2 (COX-2) and tumor necrosis factor-alpha
(TNF-α) with consequent toxic effect to neurons [105]. Other studies have shown the harm-
ful effect mediated by microglia in ALS could be blocked by genetic impairment of P2X7
receptors or by utilizing specific receptor antagonists [104,106]. However, other studies
showed the role of multiplex P2X7 in the pathogenesis of ALS. In this respect, Apolloni
and co-workers discovered that constitutive deletion of the P2X7 receptor contributes to
the progression of the disease, elevated astrogliosis, loss of motoneuron and microgliosis,
stimulated MAPKs cascade, and exacerbated the liberation of pro-inflammatory mark-
ers including iNOS and nicotinamide adenine dinucleotide phosphate oxidase 2 in the
end-stage lumbar spinal cord in SOD1G93A mice [107]. In addition, findings showed that
administration of P2X7 antagonist at the beginning of the pre-symptomatic phase (Brilliant
Blue G) remarkably promoted the survival of MN in the lumbar spinal cord via decreasing
microgliosis and control inflammatory markers expression [108].

Published data highlight the dual activity of P2X. The double-action of P2X7 during
the progression of ALS may be associated with the switch of microglia from the protective
M2 to harmful M1 phenotype. Thus, the advance of ablation of the receptor is harmful,
and its therapeutic blockade at the initial pre-symptomatic stage or after the onset of the
disease might be too late or too early. Stimulated microglia showed specific and flexible
phenotypes, with either neuroprotective or neurotoxic action, depending on activation
stage and disease state. In the early ALS progressive stage, microglia show a phenotype
with up-regulated M2 markers expression including Ym1 and CD206, which contribute to
tissue regeneration and repair and react with protective signals including fractalkine and
CD200 [94,109]. As the disorder progresses, damaged MNs liberate ‘harmful signals’ such
as mSOD1 that cause microglia to possess the M1 phenotype with the marked formation of
ROS, NADPH oxidase 2 (NOX2), and pro-inflammatory cytokines such as interleukin-6
(IL-6), TNF-α, IL-1 [101,110]. An in-vitro study reported that, at the early stage of M2,
microglia improved the survival of MN, whereas, at the end-stage of M1, microglia were
harmful to MNs [110].

3.3.2. Astrocytes and Amyotrophic Lateral Sclerosis

Genes associated with ALS are expressed in astrocytes and their expression in
MNs [111,112]. In-vivo and in-vitro studies showed that astrocytes with mSOD1 expression
are harmful to both MNs, formed from embryonic stem cells (ESC) with mSOD1 gene
and normal MNs [113,114]. Selective blockage or silencing of the gene for mSOD1 gene in
astrocytes or healthy astrocytes transplantation could lessen the loss of MN and astrocyte-
mediated toxicity and delayed mSOD1 mice lifespan [115–117]. On the other hand, it is
reported that transplantation of astrocytes with mSOD1 caused death and degeneration of
focal MN in wild-type rats’ spinal cords [118]. Additionally, astrocytes formed from ALS in-
dividual fibroblasts affect the MNs survival and therefore, the expression of mutant proteins
linked to ALS in astrocytes leads to non-cell-autonomous toxicity. Qian and co-workers
discovered that non-MNs were lost before MNs, indicating ALS astrocytes-induced non-
cell-autonomous toxicity and showing that sporadic ALS astrocytes can induce neuronal
degeneration [119].

As stated above, astrocytes are vital in ALS; however, it is still speculative how mutant
proteins linked to ALS lead to astrocytes impairment and how impaired astrocytes display
toxicity that is non-cell-autonomous to MNs. Astrocytes attenuate excess glutamic acid
from synaptic clefts via glutamic acid transporters. In familial and sporadic individuals
with ALS and mice models with mSOD1, loss of glutamic acid transporters (EAAT2/GLT-1)
caused a decline in glutamic acid uptake by astrocytes. It thus increased the degeneration
of MN [93,119,120].



Molecules 2022, 27, 3194 9 of 25

Mitochondrial impairments in mSOD1 (not in wild-type astrocytes) are harmful to
MNs, and this could be blocked by inhibitors of nitric NOS and antioxidants [121,122].

Moreover, post-mortem-derived astrocytes with ALS conditions and mice with
SOD1G93A display harmful actions on MNs by releasing inflammatory markers such as
leukotriene B4 and NOX2, prostaglandin E2, and NO [122,123]. A recent report showed
that astrocytes contribute to the death of MN by stimulating a caspase-independent
type of apoptosis known as necroptosis, which involves plasma membrane integrity loss
via receptor-interacting mixed lineage kinase domain-like and threonine/serine-protein
kinase 1. Abrogation of the major necroptosis effectors (mixed lineage kinase domain-like
or threonine/serine-protein kinase 1) could confer protection of MNs against toxicity of non-
directional ALS astroglia and prolong the initiation of motor impairment, thus indicating
these as possible novel therapeutic targets [124,125].

3.4. Huntington Disease

Huntington’s disease (HD) is a devastating autosomal dominant neurological dis-
order characterized by emotional impairments, loss of weight, motor impairment, and
dementia [126]. The first gene responsible for the disorder was cloned in 1993, and its codes
for a highly conserved protein with unknown actin is called huntingtin (htt) [126,127]. In
persons with HD, a polymorphic trinucleotide repeat sequence, CAGn, at the gene 5′ end
is enlarged more than the standard repeat limit, resulting in the translation of an enlarged
series of polyglutamine in the protein [126]. Mutant ‘htt’ proteolytic cleavage is vital in HD
pathogenesis [128,129]. These abnormal ‘htt’ fragments stimulated a complicated pathway
of compensatory and damaging molecular processes, such as neuroinflammation. These
processes result in marked atrophic, fragile, impaired nerve cells susceptible to different
stressors, including excitotoxic stress, oxidative damage, pro-apoptotic signals, depletion of
energy, impaired proteolysis, and defective neurophysiology. All these might be involved
in the death of neurons [129].

Microglia and Huntington’s Disease

Apart from other CNS disorders, microglia’s role in HD is not yet fully explored [130].
Singhrao et al. were the first to document the impairment of microglia in individuals with
HD [131]. The number of microglial cell counts is elevated in the HD caudate-putamen,
and their expression promoted the number of complement factors. Later on, a more
comprehensive study on microglial morphological alterations linked to HD was carried out
by Sapp and co-workers [132]. Their work localized structurally stimulated microglial cells
in the cortex, globus pallidus, and neostriatum. In the cortex and striatum, the collection
of thymosin β-4 reactive microglia was elevated with levels of pathology. In another
study, accumulation of microglia was observed in HD tissue and the striatum R6/2 mouse
model [130,133]. Furthermore, this report was the first to indicate that microglial express
httexp, which in specific cells form aggregates. It has been shown that accumulated httexp

induces transcriptional alterations in nerve cells and that microglial transcription might be
similarly affected [130].

Silvestroni and co-workers showed that post-mortem tissue of human HD has a
clear inflammatory effector profile [134]. Inflammatory molecules such as TNF-α and
IL-1β, were specifically elevated in the striatum, whereas MMP-9, IL-6, and IL-8 were up-
regulated in the cortex and cerebellum region [130]. This is different from the other known
neuroinflammatory indices of the other neurodegenerative disorders such as PD or AD,
which indicate an up-regulation of a broad category of inflammatory molecules [135,136].
It is assumed that the inflammatory regulators seen in the striatum are indications of the
ongoing pathological processes. At the same time, the abnormal regulation of molecules
such as MMP-9, IL-6, and IL-8, indicate the more generalized effect of httexp. In addition,
researchers have shown that IL-6 secretion is elevated in httexp expressing monocytes in
human HD. Based on the preceding discussion, it will be safe to say that HD, in contrast
to other neurological disorders, including AD and multiple sclerosis, peripheral immune
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cells influx, including neutrophils or lymphocytes, has not been fully covered. Moreover, it
was reported that T-cells are not elevated in the post-mortem tissue of human HD [134].
Thus, HD neuroinflammation appears mainly sustained by the interactions of nerve cells,
microglia, and microglia [130].

3.5. Prion Disease

Initially, it was presumed that prion disease (PRD) does not stimulate the immune
system due to the lack of a humoral stimulus to protease-resistant prion protein and
interferon formation in the infected organism [137]. Later, it was found that an assortment
of pro-inflammatory chemokines and cytokines are elevated in the CNS in response to
prion infection. The neuroinflammation may be caused by CNS cells because leucocyte
infiltration from the periphery has a limit and are mildly detectable mainly at the end
phase of the disease [138,139]. Many high-throughput procedures, including suspension
array systems and microarray expression profiling, have shown protein transcriptional
changes in the brains of prion-infected mice compared to the controls. It is now known
that PRD has a neuroinflammatory component that is involved in neurodegeneration,
with elevation in several pro-inflammatory chemokines and cytokines, such as TNF, IL-1α,
IL-β, CXCL10, and CCL2-CCL6, in the brain of infected mice [138,140,141]. The qRT-PCR
array, is a more focused and sensitive strategy, which gives room for estimating temporal
alterations in several genes by comparing scrapie stains 22L-infected mice at 131, 94, 70,
and 44 dpi with mock-challenged mice. In this respect, various pro-inflammatory cytokines
are elevated at 44 dpi, and the quantity increases as prion disorder progresses. It seems
that neuroinflammation during prion disorder increases with time, resulting in severe
inflammation that may promote the pathogenesis of prion [138,140].

Many of the proteins/genes appear to be chronically elevated during scrapie infection,
possibly harmful to the host’s CNS. Expression of Ccl5, Iasa1, Olr1, Oas1a, and Tnfsf11 is
linked to the stimulation of cellular apoptosis [142–144], whereas the expression of Tnf,
Cxcl10, A2m, and Ccl1 promote neurotoxicity in other models of the disease [145–148], indi-
cating that signal transduction via these pro-inflammatory molecules and their receptors
can result in injury. Research findings showed that several mouse-adapted scrapie cause
similar profiles of elevated inflammatory proteins and genes [149]. In this respect, an aqRT-
PCR study involving ten signaling cascades showed that the NF-κB and JAK-STAT are
substantially stimulated in mice with prion disease. More than 50% of the pro-inflammatory
genes were elevated in prion disorder, which NF-κB could boost. Moreover, numerous
additional genes marked are mediated by specific STAT complexes [149]. Phosphorylated
STAT3 and STAT1 are elevated in scrapie strain ME7 mice. Consistently, it was shown that
in 22l-scrapie there is an elevation in overall STAT1α and pSTAT3 and pSTAT1α [149].

On the other hand, phosphorylated STAT proteins are involved in synergistic action
with NF-κB, which might occur in PRD. NF-κB and pSTAT3 have been reported to affect
transcription at the promoters regulating genes that are elevated in the CNS during prion
infection (that is, A2m, Ccl4, and Cxcl10) [150–152], and together they potently affect acute-
phase protein expression, including ceruloplasmin, serum amyloid A, haptoglobin, and
α1-anti chymotrypsin [153–155]. In addition, regions of the NF-κB complex, such as RELA,
can bind with STAT3 to change transcriptional action [156–158]. Moreover, there have been
multiple reports describing the expression of several inflammatory genes such as Icam1,
Ccl5, Nos2, and Cxcl9, by STAT1 and NF-κBh, which also show an elevation in scrapie
disease [159,160]. Though many signaling cascades promote neuroinflammation in the
brain with prion infection, the actual cause of the cascade activation is still speculative [161].

Several studies have investigated mice lacking immune genes such as Tnfr1, Ccr2,
Tnf, Cxcr5, IL-6, and Ccr5, and showed that expression loss of these genes does not
affect the pathogenesis of prion [161–163]. Removing some genes, such as IL-10 and
Ccl2 [162,164,165], on prion infection has proven controversial by both reducing and pro-
longing survival times in mice. In addition, IL1r1 deletion extended the incubation time in
infected mice; however, the incubation time of mice with prion infection is reduced and
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lacks the expression of IL-13, IL-4, Cxcr3, Tlr2, and Tlr4 [164,166,167]. Although removing
many immune effectors does not change the pathogenesis of prion, it is vital to know that
the disease is still fatal and progressive. Another overlapping or intact system may replace
immune molecules. Therefore, it is not new that applying single deletion mutation may
result in partial prevention from prion disease. Accordingly, different strategies including
network analysis to alter and identify ‘signaling bottlenecks’ may be required to understand
the neuroinflammatory role in the pathogenesis of prion infection [161].

Researchers have shown that statins reduce inflammation in different neurodegen-
erative disorder models [168,169]. Simvastatin and atorvastatin affect neuroinflamma-
tion in PD mouse models by decreasing brain pro-inflammatory proteins. In addition,
atorvastatin decreases pro-inflammatory cytokine production and lessens microglia num-
ber in the hippocampus in AD rodent models [170,171]. In a similar work, statins de-
creased pro-inflammatory cytokines and monocytes infiltration into the CNS, elevated
anti-inflammatory stimuli, and reduced the expression of adhesion molecules on cells
of the immune system in rodents with experimental autoimmune encephalomyelitis for
multiple sclerosis [172–174]. Furthermore, certain clinical studies showed that statin in-
tervention decreases PD incidence. However, other studies revealed that the drugs are
inefficacious in inhibiting risk, progression, or linked dementia in PD [175–177]. Mixed
findings have also been reported in human studies investigating the efficacy of statins on
AD progression. Some studies showed that statin intervention improved memory and en-
hanced cognition in individuals with AD [168,178,179]; however, other works revealed no
effect of the statin intervention [168,176,180]. Moreover, studies involving human subjects
with multiple sclerosis showed that treatment with statins might provide little beneficial
effect [161,181–183].

4. Glial Cells and Neuroinflammatory Markers
4.1. Microglial

Microglia are the brain’s primary innate immune cells and the first to react to patholog-
ical injuries [184,185]. They have three crucial roles in maintaining homeostasis and defend-
ing the host [186]. They first detect changes in their surroundings via their sensomes, en-
coded by multiple genes [186]. Their second function is physiological housekeeping, which
includes migration to injured sites, synaptic re-modeling, and myelin homeostasis [187,188].
The third phase protects against damaging stimuli such as pathogen-associated molecular
patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Toll-like receptors
(TLRs), nuclear oligomerization domain-like receptors, and viral receptors are among
the cellular receptors that microglia express to recognize PAMPs and DAMPs [189,190].
Microglia release pro-inflammatory cytokines such as TNF, interleukin (IL)-1, IL-16, and
chemokines such as C-C motif chemokine ligand 2 (CCL2) and IL-18 in response to such
stimuli recruiting additional cells and eradicating harmful chemicals [186,189]. Despite its
beneficial properties, neuroinflammation can also produce neurotoxicity and is associated
with neurodegeneration [186]. Furthermore, microglia priming causes dystrophic morphol-
ogy and enhances inflammatory response in the context of aging and chronic stress [191].
Microglial activity can be measured via imaging and fluid markers. In addition, 11C-(R)
PK11195 positron emission tomography (PET) can be used to detect microglial activation
because of its ability to bind to the translocator protein that is overexpressed in activated
microglia [192,193]. The microglial activation biomarker sTREM2 (soluble triggering re-
ceptor expressed on myeloid cells 2) is a fluid biomarker. It is a TREM2 cleavage product
expressed on microglia cell surfaces [194,195]. Recent research has discovered a relationship
between CSF sTREM2 levels and plasma sTREM2 levels, implying that CSF sTREM2 could
be a biomarker for microglial activation [195,196].

Inflammatory responses play a beneficial role when stimulated in a well-regulated
way for a definite time; though, extended or disproportionate dysregulated inflammation
causes several systemic, chronic diseases such as multiple sclerosis, arthritis, and systemic
lupus erythematosus, and many more [197]. In adaptive immune responses, these cells are
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chief players, that obstruct viral increase during the cytotoxic reaction, with other related
inflammatory actions. It was reported that remaining T lymphocytes have been identified
inside the postmortem brain tissue after viral infection which led to the study of T-cell:
microglial cell interactions [198].

4.2. Astrocytes

Astrocytes are the most common glial cells in the brain [199]. Although astrocytes were
previously assumed to have passive roles, new research revealed that they play an active
and critical role in maintaining brain homeostasis [200]. They regulate the extracellular
balance of ions, fluid, transmitters, and scar formation, by keeping the BBB, delivering
energy metabolites to neurons, influencing synaptic activity, governing neurotrophin pro-
duction, eliminating dead cells, and maintaining the BBB [199–201]. GFAP, S100B, YKL040,
and D-serine are now being investigated as CSF biomarkers, whereas GFAP and S100B
are blood biomarkers [202]. In imaging biomarkers, astrocyte reactivity is measured by
magnetic resonance spectroscopy, 11C-deuterium-L-deprenyl (11C-DED) PET, and 11C-BU
PET [202]. The degree of reactive astrogliosis, a hallmark of CNS illness, can be determined
by GFAP, which measures astrocyte molecular expression and morphology [201].

According to a study in a chronic experimental EAE mouse, astrocyte defects are
consistently linked to worsened clinical outcomes, neuroinflammation, BBB alteration, and
neuronal death during the early stages of injury, such as spinal cord injury (SCI) and exper-
imental autoimmune encephalomyelitis (EAE) [199]. Astrocytes produce lactosylceramide
(LacCer) during chronic CNS inflammation, promoting inflammation and neurodegener-
ation. These data imply that the effect of astrogliosis may be advantageous or harmful
depending on the time, disease, and other inputs from the microenvironment, such as mi-
croglia. Moreover, astrocytes have a continuous spectrum and can have multiple response
profiles simultaneously. As a result, more significant research into reactive astrocyte hetero-
geneity is required [203]. Similarly, astrocytes have pro-inflammatory and immunoregula-
tory (neuroprotective) subpopulations. Pro-inflammatory reactive astrocytes up-regulate a
variety of genes (e.g., complement cascade genes) and create pro-inflammatory chemicals
(e.g., IL-1, TNF-, and NO), all of which have detrimental consequences [189,204]. On the
other hand, neuroprotective reactive astrocytes up-regulate numerous neurotrophic factors,
including thrombospondins [204]. Anti-inflammatory cytokines such as IL-4, IL-13, and
IL-10 can activate astrocytes and cause them to produce IL-4, IL-10, and TGF [200,205].

4.3. Oligodendrocytes

In neurodegenerative disorders, oligodendrocyte death and myelin loss may directly
respond to cytotoxic viral infections such as the JC virus, which causes progressive multifo-
cal leukoencephalopathy [206]. The immune response is focused on the virus and infected
cells that are undergoing apoptosis and necrosis in these circumstances. Cells attacked by
viruses or exposed to ROS begin stress response pathways to fight and prevent damage and
apoptosis. Numerous mechanisms are known to generate oligodendrocyte stress, including
several pathophysiological events, such as inflammation, genetic abnormalities, mitochon-
drial malfunction, hypoactive N-methyl-d-aspartate receptors, and neuronal and axonal
damage. The myelin-producing cell, as previously stated, is susceptible to oxidative stress.
Pro-apoptotic signaling cascades are triggered when the sphingomyelinase/ceramide path-
way is activated, leading to oligodendrocyte loss in pathological circumstances such as
ischemia and MS [207].

Furthermore, research findings showed that metabolic abnormalities such as
unbalanced glucocorticoid levels reduce oligodendrocyte proliferation and viability. It
has been claimed that oligodendrocyte abnormalities in depression are caused by such
modifications [208]. The myelin-producing cell is prone to glutamate toxicity and pro-
inflammatory cytokines, which are essential players in brain injury, due to the expression
of a variety of receptors. One of the most prominent factors of oligodendrocyte stress is
inflammation. Studies suggest that pro-inflammatory cytokines have the potential to impair
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the oligodendrocyte as early as development. In an in-vivo study, LPS is induced on the
15th-day pregnant mouse, and it is observed that apoptosis of oligodendrocytes occurs after
five days from an injection, and hypomyelination occurs on the 21st day after birth [209].
Besides the damaging effect of pro-inflammatory cytokines released during these infections,
the accumulation of pathogens also leads to the destruction of the cell [207,210]. In humans,
maternal infection with the herpes simplex virus, the chance of the offspring developing
neuropsychiatric illnesses are linked to oligodendrocyte abnormalities including autism
and schizophrenia [208,209].

Tumor necrosis factors are cytokines, produced by glia, neurons, and macrophages,
and established as key regulators of several immune processes. They act as pro-inflammatory
factors, induce gene expression and apoptosis, serve as gliotransmitters, and regulate synap-
tic communication between cells [211,212]. In contrast, the growth factors in the CNS and
peripheral nervous system play a role in brain development and axonal growth. They also
support the growth and survival of nerve cells and play mostly a protective role in the
different neurological disorders, including AD [38].

Chemokines are expressed in every cell type of the CNS. While some chemokines
(e.g., CXCL13 and CX3CL1) are found in normally functioning brain cells and play a role
in typical intercellular communication, others are up-regulated after a brain injury. In
fact, both acute and chronic inflammatory reactions can result in the up-regulation of
chemokines and chemokine receptors. Chemokines play multiple roles in AD progression;
they might be involved in inflammatory processes and also in neuronal survival [213–215].
Meanwhile, cell adhesion molecules (CAMs) mediate the interaction between immune cells
and the surrounding environment, such as helping the monocytes migrate through the
BBB. CAMs play roles in cell survival, activation, and migration [216].

4.4. Blood-Brain Barrier (BBB) Proteins in Neurodegenerative Diseases

Glial cells are one of the most important components of the BBB, which is a continuous
membranous network that surrounds the arteries and organizes molecular signals via
pericytes and ECs. This ‘highly selective permeability barrier’ keeps brain homeostasis in
check by allowing essential nutrients into the CNS while keeping potentially hazardous
chemicals out [217,218]. As a result, the BBB plays a crucial role in protecting specific
neuron functions from biochemical attacks in the systemic circulation. In this respect,
capillary ECs, which provide a junctional complex comprised of AJs and TJs and mediate
paracellular solute transfer between the blood and the brain [219–222], are another BBB
component structure. Intercellular cleft-spanning proteins (occluding and claudin) and
junctional adhesion molecules are found in TJs [219,222]. The zona occluding protein
family, which includes ZO-1, ZO-2, and ZO-3, interacts with actin to bind occluding and
claudin to the cytoskeleton [223]. Cadherin is an AJ protein that acts as structural support
and bridges the intercellular cleft [219,222]. Connexins (Cx) proteins’ role in the junctional
complex has recently received more attention [224,225]. Even though sticky characteristics
are essential for adjacent cells, Cx proteins, unlike TJ and AJ proteins, do not establish a
tight barrier between the connecting cytoplasm and surrounding cells [226].

4.5. Inflammatory Cytokines and Bioactive Kynurenines

The kynurenine (KYN) pathway possesses the ability to produce various miniature
receptor agonists and bioactive components with a wide array of activities together with
neurotoxic, oxidative, neuroprotective, antioxidative, anti-inflammatory, and immune prop-
erties. Inflammation stimulates key enzymes involved in the KYN pathway. Indoleamine 2
and 3-oxygenase (IDO 1) in the brain and surrounding tissues are the initial rate-limiting
enzymes of the tryptophan metabolism. IFN-γ, a pro-inflammatory cytokine, stimulates
formamidase in human microglial cells and macrophages, leading to augmented KYN
synthesis. Kynurenic acid (KYNA), an endogenous antagonist of N-methyl-d-aspartate and
alpha 7-nicotinic acetylcholine receptors, is synthesized by kynurenine aminotransferases
(KATs) and it is associated with neurological and cognitive features [227,228]. Pyridoxal
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phosphate (PLP), a cofactor along with the active form of vitamin B6, and a co-substrate,
α-ketoacid, are required for KATs [229]. PLP deficiency has been linked to neurological
illnesses such as Alzheimer’s disease, Parkinson’s disease, and epilepsy [230]. Furthermore,
it was reported that about 20% of the elderly are noticed to have lower dietary vitamin B6
absorption. Additionally, vitamin B6 supplementation ameliorates cognitive performance
in the elderly. It was projected that folate, vitamin B6, and vitamin B12 are related to cogni-
tive performance [227,228]. IFN-γ induced kynurenine-3-monooxygenase (KMO) activities
in human microglial cells and macrophages, responsible for augmented quinolinic acid
(QA) synthesis. The stimulation of macrophages and glial cells triggers the augmentation
of QA [231]. Furthermore, microglia cells are liable for the substantial augmentation of
the kynurenine pathway (KP) branch that is noticed upon the stimulation of the immune
system [232].

4.6. Neuroinflammatory Factors Regarding Innate Immune Activation Reflecting Their
Neuropathological Changes

Microglia, the resident immune cells of the central nervous system (CNS), play
an important role in innate immune responses by producing cytokines and chemokines,
such as type I and II IFNs and TNF, that promote the expression of hundreds of
interferon-stimulated genes (ISGs), such as those that participate in inflammatory cell
infiltration [233,234]. Microglia also up-regulate the expression of numerous receptors
and produce various chemokines after CNS injuries, such as chemokine (C-X3-C motif)
receptor 1 (CX3CR1) and chemokine (C-C motif) receptor 2 (CCR2) [235]. Similarly, reactive
astrocytes also express many of these receptors and chemokines, suggesting that astrocytes
and microglia communicate via chemokines. Astrocyte release of chemokines is important
for attracting peripheral and CNS myeloid cells to the lesion site. In models of traumatic
injury and parasitic infection, astrocytes are a source of chemokine (C-C motif) ligand 2
(CCL2) [236,237]. Astrocytes have also been shown to produce chemokine (C-X3-C motif)
ligand 1 (CXC3L1) and CXCL1, detected by monocytes and microglia, in response to viral
infection and spinal cord injury, respectively [238–240].

After entry into the brain or activation within the brain, innate immune cells demon-
strate a spectrum of phenotypes, ranging from pro- and anti-inflammatory states, and can
express a variety of cytokines and chemokines, including IL-1β, IFN-γ, and TNF, that con-
tribute to neuroinflammation. Reactive astrocytes have a demonstrated role in modulating
immune responses by releasing cytokines that stimulate microglia and macrophages to
adopt either pro- or anti-inflammatory responses [241]. Some immune cells played an
essential role as good markers for neurodegenerative disorders (Table 2).

Table 2. Role of immune cells in the pathogenesis of neurodegenerative diseases [242].

Immune Cells Alzheimer’s Disease Parkinson’s Disease Multiple Sclerosis

Monocyte A higher proportion of monocytes in
the peripheral blood

Exerted pro-inflammatory effects and
participated in repair of injured brain

Contributed to MS-associated
neuroinflammation

Macrophage Mediated the clearance and
degradation of Aβ

Produced pro-inflammatory and
anti-inflammatory factors

Infiltrating macrophages and
microglia promoted the pathogenesis

of MS

Dendritic Cell (DC) Vaccination of DCs sensitized to Aβ
generated antibody responses

Tolerogenic bone marrow-derived
DCs induced neuroprotective

regulatory T cells

Circulating myeloid DCs and
lymphocyte like DCs

T Cell Might act in either protective or
damaging properties

T-cell levels are down-regulated in
peripheral blood

MS traditionally recognized as a
predominantly T-cell-mediated

autoimmune disease

B Cell Played an essential role in cerebral
Aβ pathology

Memory B cell repertoire of PD
patients might represent a potential
source for biomarkers and therapies

Involved in neuroinflammation of
cortical cells, leading to

neuronal death
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4.7. Neuroinflammatory Markers Targeted by Herbal Therapeutics

As previously stated, AD and PD are complex illnesses with different pathology. Still,
their biochemical and physiological cascades are linked directly or indirectly to the same
basic neuro-inflammatory processes. In this context, growing evidence supporting the role
of neuroinflammation in neurodegenerative diseases, coupled with increasing knowledge
of the biochemical pathways that govern the neuro-inflammatory response, have assisted
in the development of drugs that inhibit multiple molecular targets. This paradigm shift
occurred after single molecular target-driven drug discovery, which had previously been
the most effective avenue to novel medications, failed to advance against multifactorial
disorders such as AD and PD. Anti-cholinesterase for the treatment of AD provides symp-
tomatic relief with no disease-modifying benefits and provides a moderate potential to slow
the progression of the disease [243,244]. Moreover, various plant-derived compounds with
anti-inflammatory properties exert their effects through different mechanisms of action.
These mechanisms involve modulation of the cytokine system controlling NF-B and p38
MAPK pathways; this is supported by a substantial body of evidence obtained from both
in-vivo and in-vitro studies [245]. This is advantageous because it avoids the ‘one drug,
one mechanism of action’ scenario and is expected to improve clinical results in disorders
linked to neuroinflammation, where several biochemical events and bio-receptors are active
at the same time [243]. There is growing evidence that natural plant products work through
interacting with pro-inflammatory mediators such as NO and TNF, which involves cytokine
system modulation [245,246].

In CNS inflammation, pro-inflammatory cytokines, IL-1 and TNF-α are produced by
microglia that actively participate in BBB interruption [79]. As a result, various phytochem-
ical compounds in the treatment of AD are expected to reduce microglial activation and
reduce the production of pro-inflammatory and anti-inflammatory cytokines. In this regard,
Oridonin, a bioactive component isolated from Rabdosia rubescens, inhibits NO production
as well as the expressions of iNOS, IL-1, and IL-6, all of which contribute to neuroinflam-
mation and dementia [78]. Peng and co-workers reported that triggering nuclear factor
erythroid 2-related factor 2 (Nrf2) and modulation of NF-κB pathways, causes a reduction
of TNF- α and IL-12 production [80].

5. Perspective and Future Suggestions

There are uncountable factors involved in the pathogenesis of neuroinflammation, it is
a difficult task to identify or diagnose a few markers responsible for NDs. The NDs might be
occurring due to augmentation in chronic inflammatory diseases. Exploring the mechanism
of neuroinflammation and neurodegeneration connecting to general inflammation would
be a fascinating part of future research. There is a requirement for proper diagnosis
of markers responsible for NDs, as there are various markers that individually account
for types of NDs. The probable preclinical phases could supply the best window for
therapeutic or defensive access to the general and fundamental role of inflammation in
neurodegenerative diseases.

6. Conclusions

In summary, results from this review showed that neuroinflammation plays a vital
role in several neurodegenerative diseases. The neuroinflammatory process occurs due
to the overactivation of glial cells present in the CNS and the secretion of various neu-
roinflammatory markers such as TNF- α, Il-1β, iNOS, COX-2, and ROS, among others.
Overactivation of glial cells (astrocytes and microglia) in the CNS, causes the release of dif-
ferent inflammatory mediators and triggers various neurodegenerative diseases. As a result,
neuroglial activation may provide an effective involvement to control the pathophysiology
of neuroinflammation in neurodegenerative diseases. Different therapeutic approaches
are very suitable in the treatment of various neuronal diseases; these include NSAIDS,
monoclonal antibodies, nutraceuticals, gene knockout, and many others. However, there is
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a need to explore more novel approaches and strategies for treating neuroinflammation
and suppression of related markers and pathways.
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