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ARTICLE

Neuroinspired unsupervised learning and pruning
with subquantum CBRAM arrays
Yuhan Shi1, Leon Nguyen1, Sangheon Oh1, Xin Liu1, Foroozan Koushan2, John R. Jameson2 & Duygu Kuzum1

Resistive RAM crossbar arrays offer an attractive solution to minimize off-chip data transfer

and parallelize on-chip computations for neural networks. Here, we report a hardware/

software co-design approach based on low energy subquantum conductive bridging RAM

(CBRAM®) devices and a network pruning technique to reduce network level energy con-

sumption. First, we demonstrate low energy subquantum CBRAM devices exhibiting gradual

switching characteristics important for implementing weight updates in hardware during

unsupervised learning. Then we develop a network pruning algorithm that can be employed

during training, different from previous network pruning approaches applied for inference

only. Using a 512 kbit subquantum CBRAM array, we experimentally demonstrate high

recognition accuracy on the MNIST dataset for digital implementation of unsupervised

learning. Our hardware/software co-design approach can pave the way towards resistive

memory based neuro-inspired systems that can autonomously learn and process information

in power-limited settings.
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I
nspired by the biological neural networks giving rise to human
intelligence, artificial neural networks1 have revolutionized
numerous computer vision2,3 and speech recognition4,5 tasks.

Their near-human performance has been widely leveraged in
various applications, including automated systems6, aerospace
and defense7, health care8, and home assistance devices9. How-
ever, training of neural networks requires substantial computing
power and time due to the iterative updates of massive number of
network parameters. For example, today’s advanced neural net-
work algorithms require training times ranging from days to
weeks and use carefully organized datasets consisting of millions
of images to recognize objects such as animals or vehicles10–12,
while it only takes a few repetitions for a 2-year-old toddler to
identify these accurately and effortlessly13. Another example is
AlphaGo, an advanced neural network trained for playing the
board game Go against world champions, requiring 1920 CPUs
and 280 GPUs and consuming hundreds of kilowatts per game14.
The human brain, which can perform the exact same task, is
30,000 times more efficient, only consuming power on the order
of 10W13,15. High energy consumption and extensive training
time have been the major limitations for widespread adoption of
neural networks at every scale—from mobile devices to data
centers. The need for back and forth data transfer between the
memory and processor in conventional computing systems based
on von Neumann architecture is one of the major causes of high
energy consumption during neural network computations. To
address this major architectural drawback, on-chip memory
storage and in-memory computing solutions using resistive
switching memory arrays have been proposed to perform storage
and computing at the same location. Non-volatile memory-based
synaptic devices such as phase change synapses (PCM)16,17, Ag-
based conductive bridging synapses (CBRAM)18, and resistive
RAM synapses (RRAM)19–21 have been investigated for imple-
menting synaptic weight updates during neural network opera-
tion. The synaptic arrays using memristors have also been widely
used in energy efficient implementation of unsupervised learn-
ing22–25 and MNIST classification26–34 in the past.

On a separate front, the pruning algorithm35,36 inspired from
neuroscience37 has been suggested toward reducing network level
energy consumption and time by settings the low valued weights
to zero. However, these methods were mostly applied on the
trained networks35,36. Pruning during training by back-
propagation was previously employed in literature to prevent
overfittings38,39. Yet, there is no systematic study showing how
pruning can address the energy consumption and excessive
training time problems during the training in hardware.

In order to overcome the energy consumption challenge,
incremental improvements in devices or algorithms alone will not
be sufficient. Therefore, in this work, we focus on a hardware/
software co-design approach that combines the advances in low-
power device technologies with algorithmic methods to reduce
the energy consumption during neural network training. First, we
experimentally investigate and characterize the gradual con-
ductance change characteristics of subquantum CBRAM devices,
targeting implementation of neural network training in hardware.
We show that the subquantum CBRAM devices can achieve
gradual switching using stepwise programming and they can be
directly programmed into any arbitrary level by controlling
wordline (WL) voltage. Then we develop a spiking neural net-
work (SNN) model for unsupervised learning and evaluate its
performance by simulations for both analog and digital hardware
implementations. In order to improve network level efficiency, we
introduce a pruning algorithm carried out during the training and
investigate its limits and performance through software simula-
tions. Different from previous algorithmic approaches employing
pruning on already trained networks35,36, our neuro-inspired

pruning method is applied during the network training to
minimize the energy consumption and training time. Combining
the energy-efficient subquantum CBRAM devices and the prun-
ing technique, we experimentally demonstrate highly energy
efficient unsupervised learning using a large-scale (512 kbit)
subquantum CBRAM array. The hardware/software co-design
approach presented in this work can open up new avenues for
applications of unsupervised learning on low-power and
memory-limited hardware platforms.

Results
Subquantum synaptic device characteristics. In this section, we
investigate device characteristics of subquantum CBRAM relevant
to the general context of neural network operation. We explore
gradual switching capability of subquantum CBRAM for imple-
mentation of different biological or non-biological weight update
rules. For CBRAM devices, the 1-atom conductance (G1atom),
which corresponds to the conductance (G) of a filament just one
atom “wide” at its thinnest point, is a critical parameter affecting
energy consumption and filament stability (retention)40. G1atom is
on the order of the fundamental conductance G0= 2e2/h ≈ 80 μS
for CBRAM cells based on filament metals such as Ag and Cu, so
typical programming voltages of about 1–3 V yield a minimum
programming current (i.e., to form a filament just 1-atom “wide”)
of Iprog ≈G0(1–3 V)= 80–240 µA, resulting in high energy con-
sumption in the range from about 1 to 100 pJ for commonly used
programming pulse durations (10–100 ns) (Supplementary
Table 1). Subquantum CBRAM cells reduce programming energy
and improve filament stability (Fig. 1a) by utilizing filaments
comprising a semiconductor or semimetal (at least at their
thinnest spot, which dominates the resistance)40. A subquantum
CBRAM memory cell utilizing tellurium (Te), an elemental
semiconductor with a band gap of 0.3 eV41, which has a 1-atom
conductance deduced40 to be G1atom= 0.03G0, is shown in
Fig. 1b. With a much lower G1atom than Ag or Cu and with write/
erase speeds as low as about 10 ns (Supplementary Figure 1), such
subquantum CBRAM cells can consume as little as about 0.2 pJ
(Iprog ≈ 0.03G0(1–3 V) ≈ 2.4–7 µA and E= Iprog × Vprog × pulse
duration= 7 µA × 3 V × 10 ns= 0.2 pJ) when programmed to
their 1-atom limit. This is an order of magnitude lower than for
metal filament-based devices programmed to their corresponding
1-atom limit (Supplementary Table 1). The retention of the
subquantum CBRAM device is shown in Supplementary Figure 2
and is discussed in Supplementary Note 1.

Figure 1b shows a cross-section TEM of a subquantum
CBRAM cell, fabricated using Ta as the cathode material,
sputtered amorphous Al2O3 as the insulating layer, and sputtered
amorphous ZrTe as the anode material. The array (Fig. 1b)
containing the subquantum CBRAM device has one-transistor
one-resistor (1T1R) structure, which provides access to individual
cells. I–V characteristics of subquantum CBRAM cells measured
by a typical double DC sweep exhibit bipolar characteristics
(Fig. 1c). In the positive regime, a voltage bias is applied to the
anode and swept from 0 to + 3 V with step size 5 mV. The
resistance of the cell was switched from a high resistance state to a
low resistance ON-state. This process is suggested40 as inducing
an electrochemical replacement reaction wherein Te is liberated
from the anode by O from the oxide layer. In the negative regime,
reversing the polarity of the voltage will break the filament and
switch the cell back to a high resistance OFF-state. The resistance
can be read without disturbing the state of the cell by applying a
small voltage (~100 mV) of either polarity. These two distinct
states are utilized in memory applications to store binary
information. On the other hand, a gradual, analog-like con-
ductance change has been suggested as a requirement for
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implementation of synaptic plasticity and learning42. Gradually
increasing and decreasing device conductance is equivalent to
long-term potentiation (LTP) and long-term depression (LTD) of
synapses in the brain, which are two major forms of synaptic
plasticity. LTP and LTD allow for fine synaptic weight updates
during network training. Subquantum CBRAM cells can
potentially provide more gradual changes in conductance than
metal filament-based cells since during programming G tends to
increase in increments of ~G1atom, which for Te is an order of
magnitude smaller than for metals.

We investigate general gradual programming characteristics
of subquantum CBRAM cells using two different methods.
Controlling WL voltage allows to change programming current
values to program the CBRAM devices to different conductance
levels, as this property of resistive memories has been studied
before. Figure 2a shows gradual switching of a subquantum
CBRAM cell by application of stepwise voltage pulses applied to
the WL with an increasing step of 10 mV for conductance
increase and 4 mV for conductance decrease over many cycles.
Subquantum CBRAM cells can provide linear weight tuning
for both LTP and LTD (Fig. 2a, as shown by linear trend lines).
The linearity of the weight tuning was previously reported to be
important for implementation of various operations and achiev-
ing high accuracy in artificial neural network implementations
with resistive memory devices43,44. Stepwise gradual program-
ming of subquantum CBRAM synapses (Fig. 2a) can be used
to`implement various forms of learning and plasticity. As
representative examples, Supplementary Figure 3 shows two
different forms of biological spike-timing-dependent plasticity
(STDP)16,42,45 implemented with subquantum CBRAM synapses.
Symmetric plasticity (Supplementary Figure 3a) can be employed
for associative learning and recall16, and asymmetric plasticity
(Supplementary Figure 3b) can be used to transform temporal
information into spatial information for sequence learning16. The
STDP implementation is discussed in Supplementary Note 2.

Alternative to stepwise programming, the subquantum
CBRAM cells can also be directly programmed into an arbitrary
conductance state by controlling the WL voltage without being
bound to a particular sequence of states. Figure 2b shows a
sequence of programming operations in which the WL voltage
increases with step size 20 mV followed each time by an erase
operation. This offers flexibility for implementing weight
update rules of greater complexity. Supplementary Figure 4
shows that the nonlinear weight update rule we used can be
greatly represented by the device conductance change using this
WL voltage modulation.

In order to implement neural network training with 1T1R
resistive memory arrays, synaptic weights can be represented in
either binary (digital) or analog manners46. For digital imple-
mentation, N binary 1T1R cells are grouped to represent one
synaptic weight (Fig. 2c) and each cell is programmed to high or
low conductance states, providing N-bit weight precision in a
binary format. For analog implementation, the cells can be
arranged into a pseudo-crossbar array and synaptic weights are
stored in the form of multi-level conductances (Fig. 2d)46. As
shown in the measurement results presented in this section, the
subquantum CBRAM devices are capable of both digital and
analog implementations. The tradeoff between analog and digital
implementations in terms of energy consumption, latency and
area will be further discussed in the context of our neural network
model in the following section.

Neural network algorithm for unsupervised learning. Here, we
investigate neuro-inspired SNN configurations and implement
unsupervised learning on 1T1R CBRAM synaptic arrays to clas-
sify MNIST handwritten digits, which consists of 60,000 training
samples and 10,000 test samples. Different from other neural
networks trained using backpropagation, neuro-inspired SNNs
use event-based and data-driven updates to reduce redundant
information processing to gain efficiency and minimize energy
consumption, making them ideal for hardware implementa-
tions47–49. Neuromorphic hardware platforms based on SNNs
have already been demonstrated and employed in various appli-
cations of neural networks48–50. To reduce the network size, we
crop some black background pixels from the full image of 784
(28 × 28) pixels. Therefore, our network contains 397 input
neurons with a bias term and 500 output neurons, resulting in
199,000 synaptic weights (Fig. 3a). SNNs encode information
between input and output neurons using spike trains. The firing
frequency of the Poisson spike trains generated by the input
neurons scales linearly with respect to the pixel intensity (0 Hz for
intensity value of 0 and 200 Hz for intensity value of 1). The
output neurons integrate all the inputs to generate output spike
trains based on a probabilistic winner-take-all (WTA) mechanism
(see Methods section for more details)51,52. The synaptic weights
of the firing output neuron are updated by a simplified STDP rule
shown in Fig. 3b during training. STDP rule that modulates
weights based on the timing of input and output spikes: if the
time difference between the post-spike and pre-spike is <10 ms,
the synaptic weight is updated via the LTP rule, otherwise, it is
updated via the LTD rule. Here, the LTD update is a constant

~2 atom

Metal Semiconductor or

semimetal

G
1atom

 ~ G
0

G
1atom

 << G
0

~1 atom

NG
0

2G
0

G
0

0.1G
0

0.01G
0

G

~N atoms

~1 atom

Amorphous

Te alloy

Oxide

Metal cathode

0 1 2 3–3 –2 –1

VAnode – VBL (V)

C
u
rr

e
n
t 
(µ

A
)

50

–50

–25

0

25

7

1

2

3

4

5
6

a b c

Fig. 1 Subquantum CBRAM characteristics. a Semiconductor or semimetal filaments can yield lower conductance than metal filaments of comparable

width. b Subquantum conductive bridging RAM (CBRAM) cell fabricated in a standard 130 nm logic process. Photograph shows 512 kbit subquantum

CBRAM chip with one-transistor one-resistor (1T1R) array architecture. Cell cross-section shows amorphous Te alloy as anode, metal as cathode and oxide

as switching layer. c Example of bipolar current-voltage characteristic of a subquantum CBRAM cell. Directionality of switching is shown in arrows

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07682-0 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:5312 | https://doi.org/10.1038/s41467-018-07682-0 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


weight decrease and the LTP update depends on the current
weight state of the synapse with an exponentially decaying
function shown in Fig. 3c. Exponential LTP updates will guar-
antee that the weights converge to the upper bound of 1. For LTD
updates, the lower bound of the weight is clipped to −1. Overall,
these rules result in weight values that are in the range of −1 to 1,
allowing for a feasible and practical hardware implementation.
During the training, the weights are adjusted incrementally based
on the STDP rule so that output neurons fire selectively for a
certain class in the dataset. Before training, output neurons
exhibit random spiking response to the presented digits (Fig. 3a).
However, after training, output neurons fire selectively during the
presentation of specific samples learned during the training
(Fig. 3a). Figure 3d and e show MNIST digit classification accu-
racy as a function of training epoch and neuron number. Training
more than 3 epochs (Fig. 3d) or increasing the output neuron
number beyond 500 (Fig. 3e) do not result in noticeable increase
in accuracy, similar to what has been reported for single layer
spiking neural networks in literature53. Therefore, we choose to
use 500 neurons and 3 epochs for the training in our analysis. The
algorithm we used for unsupervised learning is summarized in
Supplementary Figure 5. After training is complete, the training
dataset is presented again to assign neuron labels to the output

neurons by determining which digits provoked the highest
average firing rate for each of the output neurons53. We predict
the labels from the test set, which consists of 10,000 new samples
from the MNIST test set, based on the same framework used
during training to find the output neuron with the highest
average firing rate for each sample (see Methods section for more
details). We simulate our network for the ideal software (64-bit),
and our proposed digital (Fig. 2c) and analog implementations
(Fig. 2d). Table 1 summarizes classification accuracy for all three
cases. For the ideal software implementation, it is important to
point out that ~94% accuracy is already very high for unsu-
pervised learning with SNN53. Increasing the accuracy further to
the levels of deep neural networks will definitely require intro-
ducing supervision to the SNN54–56. For digital implementation,
we use 8-bit digital synapses and the weights are quantized to 256
levels distributed evenly between [−1, 1–2/256]. For analog
implementation, we directly use conductance values (Fig. 2a)
from device characteristic in our simulation to perform weight
update during training. Neural network weights in the range of
[−1, 1] can be mapped to device conductance using a linear
transformation, as explained in the Methods section. Our results
suggest that 8-bit digital implementation achieves comparable
recognition accuracies with ideal software case and analog
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implementation has slightly lower accuracy due to the limited
conductance states exhibited by each CBRAM synapse.

In order to compare the digital (Fig. 2c) and analog synaptic
core (Fig. 2d), we develop a SNN platform for NeuroSim46 (SNN
+NeuroSim). NeuroSim is a C++ based simulator with
hierarchical organization starting from experimental device data
and extending to array architectures with peripheral circuit
modules and algorithm-level neural network models46. We use
SNN+NeuroSim to perform circuit-level simulations (Table 2) to
estimate the energy, latency and area for the digital and analog

implementations using the experimental data measured from
subquantum CBRAM devices (Fig. 2). The left two columns of
Table 2 show benchmarking results for analog synaptic core and 6-
bit digital synaptic core. 6-bit precision is chosen to match the
number of levels that can be achieved by gradual programing of
subquantum CBRAM devices for the analog implementation.
However, in order to achieve a recognition accuracy above 90%, 8-
bit precision is required. Therefore, we include the third column,
showing the results for 8-bit digital case, which is also used in the
hardware demonstration (see the section 'Hardware demonstration
of pruning during training'). The best performing metrics are
shown byb in Table 2. As shown in the table, the 6-bit digital
scheme has better accuracy, shorter latency and lower energy
consumption. On the other hand, the analog scheme occupies
smaller chip area. Therefore, the benchmarking results suggest that
digital implementation could be more advantageous in terms of
energy consumption and latency for hardware implementation of
on-line learning using subquantum CBRAM array.

Pruning during the training. Neural network pruning algo-
rithms have been very effective to reduce the time and energy
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Table 1 Network accuracy

Precision Accuracy

64-bit 94.05%

CBRAM (analog) 82%

8-bit (digital) 92.02%

The table summarizes the recognition accuracy of 64-bit ideal software simulation, 8-bit digital

implementation and analog CBRAM synapses implementation evaluated using our network
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consumption during inference by removing unimportant weights.
Conventional pruning methods35,36, which we also refer to as
pruning in this work, set the low valued weights to zero. However,
these methods are not suitable to be directly applied to the net-
work learning algorithms that can produce non-zero centered
weight distributions. In such situations, zero-valued weights are
also important so that arbitrarily setting pruned weights to zero
may affect accuracy. Additionally, conventional pruning mostly
targets the networks which have already been trained. Therefore,
the issues of excessive time and energy consumption during
training remain unaddressed. To address both of these, we
develop a method as an extension of pruning, which we refer to as
soft-pruning57. Instead of completely removing the weights from
network by setting them to zero, soft-pruning sets the values of
pruned weights to a constant non-zero value and prevents them
from being updated during the rest of the training while allowing
them to still participate in the inference step after the training.
Therefore, pruning weights during training helps to significantly
reduce the number of weight updates, minimizing computation,
and energy consumption. To decide when to prune weights
during the training, we determine if the output neurons are
trained enough to recognize a class from the dataset. We quantify
this by counting the occurrences of consecutive output spikes
(Supplementary Figure 6) from a single output neuron. The
corresponding time interval between consecutive output spikes
follows a Poisson distribution. Once an output neuron sees p
occurrences of consecutive spikes during the training, a certain
percentage of its weights are pruned to their lowest possible value
(in our case, Wmin=−1). The pruning algorithm is summarized
in Supplementary Figure 7. Potential hardware implementations
of this pruning algorithm are discussed in Supplementary Note 3
and associated overheads estimation in area, energy and latency
via simulation (SNN+NeuroSim) are shown in Supplementary
Figure 8 and Supplementary Table 2. We investigate the dis-
tribution of weights in the SNN before and after soft-pruning
along with a baseline control case, where pruning is not employed
(no pruning) (Fig. 4a). Simulation of recognition accuracy for
different p values in Fig. 4b suggests that p= 10 provides the
highest accuracy even for very large pruning percentages (up to
80%). Visualization of weights from ten representative output
neurons (bottom row of Fig. 4a) shows that foreground pixels
(the digits) correspond to higher weight values on the distribu-
tions, and background pixels (background of the digits) corre-
spond to lower weight values for no pruning case (weights
visualization for all output neurons can be found in Supple-
mentary Figure 9). The Supplementary Movie 1 and 2 show the
development of the output neurons’ weights during the training
for both soft-pruning and no pruning cases. Before pruning, the
distributions indicate that the weight updates have been the same

for both cases. Figure 4c compares recognition accuracy for as a
function of pruning percentage for soft-pruning and pruning
during the training, in comparison to pruning at the end of
training for both cases. The recognition accuracy for pruning falls
below ~90% for ~40% pruning percentage. In contrast, soft-
pruning maintains high classification accuracy (~90%) even up to
~75% pruning percentage (Fig. 4c). The accuracy improvement
achieved by the soft-pruning algorithm can be understood from
the following two perspectives. First, since the pruned weights are
set to −1 instead of being completely removed from the network,
they still participate in the inference. Pruning the unimportant
weight to −1 effectively decreases the membrane potential of
output neurons, which helps to prevent false positive spikes.
Second, the soft-pruning algorithm preserves the original weight
distribution. As shown in Fig. 4a, the final distribution of learned
weights clearly consists of two distinct parts which correspond to
the foreground and background pixels of the image. The weights
concentrated at −1 are associated with the background pixels,
while the remaining weights centered around zero accounts for
the foreground pixels. Soft-pruning sets pruned weights to −1,
grouping them with the background pixels. On the contrary,
pruning sets pruned weights to 0, which is in the range of weights
that are associated with foreground pixels; this significantly
changes the shape of foreground weight distributions, which leads
to the accuracy degradation. Our soft-pruning method achieves
high recognition accuracy for extensively pruned networks,
offering superior energy efficiency during training for hardware
implementations of unsupervised learning.

Hardware demonstration of pruning during training. In order
to implement unsupervised learning and pruning during the
training on the hardware, we used a 512kbit subquantum
CBRAM chip fabricated in a 130 nm Cu back end of line (BEOL)
process (Fig. 1b). The array has a 1T1R architecture, which
provides access to individual cells. Although each individual cell
in our array has gradual conductance switching capabilities as
demonstrated in Fig. 2a and b, the digital implementation offers
smaller energy consumption and shorter latency which is
important for online learning as shown in Table 2. Furthermore,
analog approach with varying amplitude pulses requires periph-
eral neuron circuits to produce non-identical pulses with fine
grained duration58,59. Therefore, we choose to use digital imple-
mentation for hardware demonstration. We uniformly quantize
the weights and map them onto the CBRAM array using an 8-bit
digital representation between Wmin=−1 and Wmax= 1 (details
are explained in the Methods section), as our simulations have
shown high recognition accuracy for 8-bit representation. Each
weight is approximated to its closest quantized level when

Table 2 Circuit-level benchmark results

Analog Digital (6-bit) Digital (8-bit)

Conductance levels 57 levels (~6 bit) 64 levels 256 levels

LTP pulse 0.8−1.32 V/10mV/1 μs 2 V/1 μs 2 V/1 μs

LTD pulse 1.6−1.84 V/4mV/10 μs 2 V/1 μs 2 V/1 μs

Accuracya 82% 85.87%b 92.02%

Area (µm2) 12,277.05b 35,397.34 47,233.8

Latencya (s) 516 129.72b 401.1

Energya (mJ) 149.4097 62.911b 151.977

Leakage power (μW) 53.78 54.14 58.99

aFor 60,000 training images
bBest performing metrics

The table summarizes circuit-level benchmark results using SNN+NeuroSim for analog synaptic core and digital synaptic core with 6-bit and 8-bit. The simulations are performed for 14 nm technology

node
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updating. Using our proposed network size to implement 10-
digits MNIST classification requires at least 199,000 × 8= 1.5
Mbit array. Given our array size limitation of 512 kbit, we reduce
the network size to 395 input and 10 output neurons to classify
three classes (“0”, “3”, and “4”) from MNIST. Figure 5a shows
recognition accuracy as a function of bit precision in the range
of 5–12 bits, corresponding to quantization to 25 and 212

discrete levels. The recognition accuracy stays relatively constant
down to 8 bits but shows a steep decrease for bit precisions
< 7 bits. For hardware implementation of online unsupervised
learning, the weights are updated on the subquantum CBRAM
array at run-time. Figure 5b shows experimentally obtained
weight maps from the subquantum CBRAM array for the
10 output neurons for the no pruning and 50% soft-pruning
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cases after unsupervised online training with 1000 MNIST sam-
ples. Weight update history during the online training process is
investigated. Supplementary Figures 10a and b show the number
of switching cycles of every bit in CBRAM cells for no pruning
and 50% soft-pruning, respectively. Least significant bits (LSB)
update more frequently than the most significant bits (MSB) in
both cases. For the no pruning case, all bits are constantly

updated throughout training, causing extensive energy con-
sumption through programming and erasing of the subquantum
CBRAM devices. In contrast, pruning reduces the number of
switching cycles for all of the individual bits and the number of
cumulative switching cycles as shown in Supplementary Fig-
ure 10b and Supplementary Figure 10c, respectively. Figure 5c
shows the accuracy for the pruning and no pruning cases for the
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experimental results obtained with the subquantum CBRAM
array as a function of training set size. This hardware imple-
mentation achieves 93.19% accuracy, which is very close to the
accuracy for no pruning (93.68%) and the 8-bit and 64-bit ideal
software implementations. Figure 5d shows the number of bit
updates by device updates vs. training set size, where the data for
the first 1000 samples are obtained from the hardware imple-
mentation, and the rest is computed using software simulations.
The number of bit updates for both cases is identical until
pruning starts. After all output neurons are pruned, the 50%
pruned network has around twofold reduction in the number of
bit updates compared to the no pruning case. Although our
hardware demonstration focuses on 50% pruning, our simula-
tions suggest that pruning percentages up to 80% can be imple-
mented to further increase energy savings.

The performance of our hardware implementation for
unsupervised learning is far superior to the previous state-of-
the-art unsupervised learning of MNIST dataset with synaptic
devices in terms of recognition accuracy, energy consumption per
programming, number of weight updates in training, and
network size (Supplementary Table 3). For energy consumption
per programming event, subquantum CBRAM is two to three
orders of magnitude more efficient than transistor-based devices
(Supplementary Table 1) and shows the lowest energy consump-
tion among RRAM based synaptic devices (Supplementary
Table 3). Our pruning algorithm can reduce the number of
parameter updates significantly and lead to ~20× less number of
parameter updates compared to previous reports (Supplementary
Table 3). Combining device level energy savings provided by
subquantum CBRAM with network level energy savings by
pruning may lead up to two orders of magnitude reduction in
total energy consumption for hardware implementation of weight
updates during unsupervised learning.

Compared to other software simulations in the literature
(Supplementary Table 4), our network achieves a high classifica-
tion accuracy on MNIST dataset using the lowest number of
neurons and synapses and a low-complexity one-layer architec-
ture that can be easily mapped onto 1T1R or crossbar arrays.
Supplementary Table 5 compares hardware demonstration of our
pruning method with other software approaches of pruning in
terms of energy savings and accuracy loss. Our method provides
comparable energy savings with minimal accuracy loss, while
being the only method, which can be applied during the training.
Last but not least, our work presents the demonstration of
mapping of pruning onto a hardware platform.

Discussion
In this study, we demonstrate unsupervised learning using an
energy efficient subquantum CBRAM array. Synaptic pruning is
implemented during the training and mapped onto hardware to
reduce energy consumption while maintaining a classification
accuracy close to ideal software simulations. We show that sub-
quantum CBRAM cells are capable of gradual and linear con-
ductance changes desirable for implementing online training in
hardware and can be directly programmable into different con-
ductance states indicating their potential for implementing a
broad range of weight update rules for neuromorphic applica-
tions. Following a software/hardware co-design approach, we
develop a neuro-inspired synaptic pruning method to sig-
nificantly reduce the number of parameter updates during neural
network training. Low-energy subquantum CBRAM devices
combined with the network-level energy savings achieved by
pruning can provide a promising path toward realizing AI
hardware based on spiking neural networks that can autono-
mously learn and handle large volumes of data. Our hardware/

software co-design approach can also be adapted to other net-
work models to reduce the energy cost in implementing network
training in low-power mobile applications.

Methods
Neural network algorithm. Here we describe the network architecture of the SNN
including the input and output layers. Then, we explain our training, labeling, and
classification procedure for the MNIST dataset. Supplementary Table 6 sum-
marizes the parameters used in simulations.

(A) Network architecture: Our SNN is a one-layer network defined by the
number of inputs neurons m, the number of outputs neurons n, and an m by n
weight matrix. Each output neuron is fully-connected to every input neuron. Our
SNN has 398 input and 500 output neurons. Our output neurons do not have
refractory periods and there is no lateral inhibition between them.

(B) Input layer: We crop each training sample by removing pixels that represent
the background in at least 95% of the training samples. Because the pixels have
intensity values in the range [0, 1], those with a value of 0 correspond to the
background and are thus candidates for removal. After this step, we have 397 input
neurons in total by including an additional bias term, which has an input value of
1. The weights associated with this bias input neuron are learned via the same
learning rule as the other weights. Each input neuron generates a Poisson spike
train Xi whose mean firing rate is determined linearly by the pixel intensity, where
a pixel of value 0 corresponds to 0 Hz and a pixel of value 1 leads to 200 Hz. The
timing of each spike that is generated by the Poisson process is rounded toward the
nearest millisecond, which is the time step of the simulation.

(C) Output layer: The SNN fires an output spike from any given output neuron
according to a Poisson process with the specified frequency. The output neuron
that fires is chosen from a softmax distribution of the output neurons’ membrane
potentials as (1):52

P ukð Þ ¼
euk

PN
k¼1 e

uk
ð1Þ

where P(uk) is the softmax probability distribution of the membrane potentials
uk (k= 1, …, N). N is the number of output neurons. We calculate membrane
potentials uk using (2)

uk ¼
X

i

WkiXi þ bk ð2Þ

Wki is the weight between input neuron i and output neuron k. Xi is the spike
train generated by input neuron i and bk is the weight of the bias term.

(D) Training: The SNN displays each input sample for the first 40 ms of a 50 ms
presentation period, and thus the input spikes for a given sample only occurs in
this 40 ms window. Figure 3a shows an example of the input spiking activity for the
duration of four training samples. We use the whole training set, which contains
60,000 samples, and train for three epochs. It is important to note that 50 ms is a
virtual simulation parameter along with the firing frequency chosen for generating
input spikes. In the real hardware implementation, the presentation time of one
image can be much shorter than 50 ms as long as enough number of input spikes
are generated. The weights are updated via STDP rule shown in Fig. 3b. The LTP
and LTD rules are detailed in equation (3) and (4), respectively,

ΔWLTP ¼ a ´ e�b Wþ1ð Þ ð3Þ

where a and b are parameters that control the scale of the exponential, and W is
the current weight value. The result ΔW is the amount of weight update of LTP and
it is dependent on current W. LTD is a constant depression in terms of c in Eq. (4),

ΔWLTD ¼ �c ð4Þ

(E) Labeling: After training is done, we fix the trained weights and assign a class
to each neuron by the following steps. First, we present the whole training set to the
SNN and record the cumulative number of output spikes Nij, where i= 1,…, N (N
is number of output neurons) and j= 1, …, M (M is number of classes). Then, for
each output neuron i, we calculate its response probability Zij to each class j using
Eq. (5). Finally, each neuron i is assigned to the class that gives the highest response
probability Zij.

Zij ¼
Nij

PM
j¼1 Nij

ð5Þ

(F) Classification: We use the standard test set which contains 10,000 images.
We use equation (6) to predict the class of each sample, where Sjk is the number of
spikes for the kth output neuron that are labeled as class j and Nj is the number of
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output neurons labeled as class j53.

J ¼ argmax
j

PNj

k¼1 Sjk

Nj

ð6Þ

(G) Weight mapping for analog synapse implementation: The network weights
(W) ranging from −1 to 1 are mapped to the device conductance data range from
~1 to 200 µS, we map the device conductance to the weight range [−1, 1] by using
below linear transformation (7),

GNORM ¼
G� GmaxþGmin

2
Gmax�Gmin

2

ð7Þ

In Eq. (7), we denote this normalized conductance as GNORM. G, Gmax, and Gmin

are extracted from experimental data (Fig. 2).

Hardware Implementation. For the hardware demonstration of unsupervised
learning and pruning shown in Fig. 5. CBRAM devices are employed as binary
synapses. The network contains 395 input neurons (crop using the same method
explained in '(B) Input layer') and 10 output neurons to classify three classes from
MNIST. In 3-digits classification, out of the ~20,000 samples that represent the
digits “0”, “3”, or “4” in the entire MNIST dataset, we randomly sample 5000 to
create our training set. We present this training set for one epoch to train our SNN.
We form the test set by drawing 10,000 samples from the remaining 15,000 sam-
ples. Neurons are implemented using a custom software to program the digital
peripheral circuitry of the chip. Weight summation is performed by this program
to implement the integrate-and-fire neuron. Weight update values are converted
into programming pulses by the peripheral circuitry to update binary weights in
the digital implementation. Fixed wordline voltages are used for binary program-
ming of CBRAM devices. We use 8 bits to represent a synaptic weight in the
network, where 1 bit is used to represent the sign of the weight value and the other
7 bits stores the absolute weight value. Bit 1 is MSB and bit 7 is LSB. The weight
range [−1,1] is first uniformly divided into 256 (28) discrete intervals

�1½ þ i
128

;�1þ iþ1
128

�

, where i= 0, …, 255. Then we map the weight whose value

lies in the ith interval to the ith discrete values. For example, the weights between
[−1, −0.9921875) are mapped to 00000000, whereas the weights between
[−0.9921875, −0.984375) are mapped to 00000001, etc. For the boundary case
where the weight takes the value of 1, we map it to 11111111. The weights are
updated on the hardware at run-time. We track the weight update history during
the online training process (Supplementary Figure 10).

Code availability. The code that used for the software simulation for this study are
available from the corresponding authors upon reasonable request.

Data availability
The data that support the findings of this study are available from the corre-
sponding authors upon reasonable request.
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