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Abstract18

NeuroKit2 is an open-source, community-driven, and user-friendly Python package19

dedicated to neurophysiological signal processing with an initial focus on bodily signals20

(e.g., ECG, EDA, EMG, EOG, PPG etc.). Its design philosophy is centred on21

user-experience and accessibility to both novice and advanced users. The package provides22

a consistent set of high-level functions that enable data processing in a few lines of code23

using validated pipelines, which we illustrate in two examples covering the most typical24

scenarios, such as an event-related paradigm and an interval-related analysis. The package25

also includes tools dedicated to specific processing steps such as rate extraction and26

filtering methods, offering a trade-off between efficiency and fine-tuned control to the user.27

Rather than focusing on specific signals, NeuroKit2 was developed to provide a28

comprehensive means for a simultaneous processing of a wide range of signals. Its goal is29

to improve transparency and reproducibility in neurophysiological research, as well as30

foster exploration and innovation.31
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NeuroKit2: A Python Toolbox for Neurophysiological Signal Processing34

Neurophysiological measurements increasingly gain popularity in the study of cognition and35

behavior. These measurements include electroencephalography (EEG), electrocardiography36

(ECG), electromyography (EMG) and electrodermal activity (EDA). Their popularity is37

driven by theoretical motivations (e.g., the growth of embodied or affective neuroscience;38

Kiverstein & Miller, 2015) as well as practical reasons. The latter include low costs (es-39

pecially compared with other imaging techniques, such as MRI or MEG), ease of use (e.g.,40

portability, setup speed), and the increasing availability of recording devices (e.g., wearables;41

Yuehong, Zeng, Chen, & Fan, 2016). Moreover, the extraction of meaningful information42

from neurophysiological signals is facilitated by current advances in signal processing algo-43

rithms (Clifton, Gibbons, Davies, & Tarassenko, 2012; Roy et al., 2019). Unfortunately,44

these algorithms are mostly inaccessible to researchers without experience in programming45

and signal processing. Moreover, many software tools for neurophysiological analyses are46

limited to one type of signal (for instance, focused on ECG). This makes it inconvenient for47

researchers who might have to learn and concurrently rely on different software to process48

multimodal data.49

Another important issue existing in psychology and neuroscience has been coined as the50

“reproducibility crisis” (Maizey & Tzavella, 2019; Miłkowski, Hensel, & Hohol, 2018; Nosek,51

Cohoon, Kidwell, & Spies, 2015; Topalidou, Leblois, Boraud, & Rougier, 2015), and has lead52

to a profound questioning and reassessment from different actors involved (researchers, pub-53

lishers, fund agencies, …). One of the main identified contributing factor is the actual opacity54

of data processing, where analysis pipelines are not described in enough details to ensure a55

full and exact reproduction. One of the suggested response to that issue has been to provide,56

alongside the study, the analysis script, which in turns opens new challenges. Indeed, these57

scripts must be shareable (not always feasible with closed-source and proprietary software or58

programming languages), accessible (enticing documented and well-organized scripts) and59
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reproducible (which is inherently difficult for many software relying on a graphical user60

interface - GUI - in which the manual point-and-click sequence is hard to automate).61

NeuroKit2 addresses these challenges by offering a free, user-friendly, and comprehensive62

solution for neurophysiological data processing, with an initial focus on bodily signals (in-63

cluding ECG, PPG, RSP, EDA, EMG, EOG) and generic functions that could also support64

other signal processing such as EEG (for which more specific support is in development).65

It is an open-source Python package, developed by a multi-disciplinary team that actively66

invites new collaborators. It aims at being accessible, well-documented, well-tested, cutting-67

edge, flexible and efficient, allowing users to select from a wide range of validated analysis68

pipelines as well as creating their own. Historically, NeuroKit2 is the re-forged successor69

NeuroKit1 (Makowski, 2020), taking on its most successful features and design choices, and70

re-implementing them in a professional and well-thought way.71

The package is implemented in Python 3 (Van Rossum & Drake, 2009), which means that72

NeuroKit2’s users benefit from an large amount of learning resources and a vibrant com-73

munity. The package depends on relatively few, well established and robust packages from74

the Python data analysis ecosystem (Virtanen et al., 2020) such as NumPy, pandas, SciPy,75

scikit-learn and MatplotLib (with an additional system of optional dependencies), making76

NeuroKit2 itself a viable dependency in other software.77

NeuroKit2’s source code is available under the permissive MIT license on GitHub (https://78

github.com/neuropsychology/NeuroKit). Its documentation (https://neurokit2.readthedocs.79

io/) is automatically built and rendered from the code and includes guides for installation80

and contribution, a description of the package’s functions, as well as several “hands-on”81

examples and tutorials (e.g., how to extract and visualize individual heartbeats, how to ana-82

lyze event-related data etc.). Importantly, users can add new examples by simply uploading83

a Python notebook (Kluyver et al., 2016) to the GitHub repository. The notebook will84

automatically be displayed on the website, ensuring easily accessible and evolving documen-85

https://github.com/neuropsychology/NeuroKit
https://github.com/neuropsychology/NeuroKit
https://github.com/neuropsychology/NeuroKit
https://neurokit2.readthedocs.io/
https://neurokit2.readthedocs.io/
https://neurokit2.readthedocs.io/
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tation. Moreover, users can try out the example notebooks directly in their browser via a86

cloud-based Binder environment (Jupyter et al., 2018). Finally, the issue tracker on GitHub87

offers a convenient and public forum that allows newcomers and potential collaborators to88

report bugs, get help and gain insight into the development of the package.89

NeuroKit2 aims at being reliable and trustworthy, including peer-reviewed processing pipelines90

and functions tested against established software such as BioSPPy (Carreiras et al., 2015),91

hrv under review, PySiology (Gabrieli, Azhari, & Esposito, 2019), HeartPy (Gent, Farah,92

Nes, & Arem, 2019), systole (Legrand & Allen, 2020) or nolds (Schölzel, 2019). The repos-93

itory leverages a comprehensive test suite and continuous integration to ensure stability94

and prevent errors. Thanks to its collaborative and open development, NeuroKit2 can re-95

main cutting-edge and continuously evolve, adapt, and integrate new methods as they are96

emerging.97

Finally, we believe that the design philosophy of NeuroKit2 contributes to an efficient (i.e.,98

allowing to achieve a lot with few functions) yet flexible (i.e., enabling fine control and99

precision over what is done) user interface (API). We will illustrate these claims with two100

examples of common use-cases (the analysis of event-related and resting state data), and will101

conclude by discussing how NeuroKit2 contributes to neurophysiological research by raising102

the standards for validity, reproducibility and accessibility.103

Design Philosophy104

As stated above, NeuroKit2 aims at being accessible to beginners and, at the same time,105

offering a maximal level of control to experienced users. This is achieved by allowing begin-106

ning users to implement complex processing and analyses pipelines with very few functions,107

while still enabling fine-tuned control and precision over arguments and parameters to more108

experienced users. In concrete terms, this trade-off is allowed by a API structure organized109

in three three layers of abstraction.110

https://github.com/openjournals/joss-reviews/issues/1867
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Low-level: Base Utilities for Signal Processing111

The basic building blocks are functions for general signal processing, i.e., filtering, resam-112

pling, interpolation, peak detection, etc. These functions are signal-agnostic, and include113

a lot of parameters (e.g., one can change the filtering method, frequencies, and order, by114

overwriting the default arguments). Most of these functions are based on established algo-115

rithms implemented in scipy (Virtanen et al., 2020). Examples of such functions include116

signal_filter(), signal_interpolate(), signal_resample(), signal_detrend(), and117

signal_findpeaks().118

Mid-level: Neurophysiological Processing Steps119

The base utilities are used by mid-level functions specific to the different physiological modal-120

ities (i.e., ECG, RSP, EDA, EMG, PPG). These functions carry out modality-specific signal121

processing steps, such as cleaning, peak detection, phase classification or rate computa-122

tion. Critically, for each type of signal, the same function names are called (in the form123

signaltype_functiongoal()) to achieve equivalent goals, e.g., *_clean(), *_findpeaks(),124

*_process(), *_plot(), making the implementation intuitive and consistent across different125

modalities.126

For example, the rsp_clean() function uses signal_filter() and signal_detrend(),127

with different sets of default parameters that can be switched with a “method” argu-128

ment (corresponding to different published or established pipelines). For instance, setting129

method="khodadad2018" will use the cleaning workflow described in Khodadad et al. (2018).130

However, if a user wants to build their own custom cleaning pipeline, they can use the clean-131

ing function as a template, and tweak the parameters to their desires in the low-level signal132

processing operations.133
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High-level Wrappers for Processing and Analysis134

The mid-level functions are assembled in high-level “master” functions, that are convenient135

entry points for new users. For instance, the ecg_process() function internally chains136

the mid-level functions ecg_clean(), ecg_findpeaks(), ecg_rate(). A specific processing137

pipeline can be selected with the method argument, that is then propagated throughout the138

internal functions. Easily switching between processing pipelines allows for the compari-139

son of different methods, and streamlines critical but time-consuming steps in reproducible140

research, such as the validation of data preparation and quality control (Quintana, Al-141

vares, & Heathers, 2016). Finally, the package includes convenience meta-functions (e.g.,142

bio_process) that enable the combined processing of multiple types of signals at once (e.g.,143

bio_process(ecg=ecg_signal, eda=eda_signal)).144

Performing an entire set of operations with sensible default parameters in one function can145

be rewarding, especially for beginners, allowing them to perform cutting-edge processing or146

replication of research steps without requiring much programming expertise. Moreover, it147

contributes to the demystification of the usage of “pure” programming tools (as opposed to148

GUI-based software such as SPSS, Kubios, or Acqknowledge), providing a welcoming frame-149

work to further explore the complexities of physiological data processing. Importantly, more150

advanced users can easily build custom analysis pipelines by using the mid-level functions,151

allowing for a finer control over the processing parameters. We believe that this implemen-152

tation is a well-calibrated trade-off between flexibility and user-friendliness.153

Examples154

In this section, we present two examples that illustrate the most common use-cases. The first155

example is an event-related paradigm, in which the interest lies in short-term physiological156

changes related to specific events (see Figure 1 and Table 1). The second example shows157

how to extract the characteristics of physiological activity during a longer period of time (not158
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necessarily tied to a specific and sudden event). The example datasets are made available159

with the package and can be downloaded using the data() function.160

Figure 1. Illustration of the difference between event-related analysis, focusing on activity

changes in short windows (the orange rectangles), and interval-related analysis, pertaining to

features of large areas, or the whole signal (e.g., the green rectangle).

Event-related Paradigm161

This example dataset contains ECG, RSP and EDA signals of one participant who was162

presented with four emotional images (from the NAPS database; Marchewka, Żurawski,163

Jednoróg, & Grabowska, 2014), in a typical (albeit highly shortened) experimental psychol-164

ogy paradigm.165

Signals are 2.5 minutes long and are recorded at a frequency of 100Hz (note that the sampling166

rate is low for storage purposes and should be higher in actual recordings, see Quintana et167

al., 2016). It has 4 channels including three physiological signals, and one corresponding to168
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Table 1

Examples of features computed in different domains.

Event-related Features Interval-related Features

ECG Rate Changes (Min, Mean, Max, Time of Min,

Max, Trend)

ECG Rate Characteristics (Mean, Amplitude)

RSP Rate Changes (Min, Mean, Max, Time of Min,

Max)

Heart Rate Variability (HRV) indices

RSP Amplitude Measures (Min, Mean, Max) Respiratory Rate Variability (RRV) indices

ECG and RSP Phase (Inspiration/Expiration,

Systole/Diastole, Completion)

Respiratory Sinus Arrhythmia (RSA) indices

SCR peak and its characteristics (amplitude, rise time,

recovery time)

Number of SCR Peaks and mean amplitude

the marking of events with a photosensor (which signal decreases when a stimulus appeared169

on the screen).170

# Load the package

import neurokit2 as nk

# Download the example dataset

data = nk.data("bio_eventrelated_100hz")

# Process the data

df, info = nk.bio_process(ecg=data["ECG"],

rsp=data["RSP"],

eda=data["EDA"],

sampling_rate=100)

# Find events

conditions = ["Negative", "Neutral", "Neutral", "Negative"]
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events = nk.events_find(event_channel=data["Photosensor"],

threshold_keep='below',

event_conditions=conditions)

# Epoch the data

epochs = nk.epochs_create(data=df,

events=events,

sampling_rate=100,

epochs_start=-0.1,

epochs_end=4)

# Extract event related features

results = nk.bio_analyze(epochs)

# Show subset of results

results[["Condition", "ECG_Rate_Mean", "RSP_Rate_Mean", "EDA_Peak_Amplitude"]]

Table 2

Subset of the ouput related to event-related analysis characterizing the pattern of physiological

changes related to specific stimuli.

Condition ECG_Rate_Mean RSP_Rate_Mean EDA_Peak_Amplitude

Negative -0.92 1.41 0.93

Neutral -3.03 1.25 0.41

Neutral 0.28 0.00 0.02

Negative -3.34 -1.12 1.06

In this example, after loading the package and the example dataset, each physiological171
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signal is processed using bio_process(). Stimulus onsets in the photosensor are detected172

separately with events_find(). Once we have the preprocessed signals and the location of173

events, we can slice the data into segments corresponding to a time window (ranging from174

-0.1 to 4 seconds) around each stimulus with epochs_create(). Finally, relevant features175

are computed for each epoch (i.e., each stimulus) by passing them to bio_analyze().176

The features include for example the changes in rate of ECG and RSP signals (e.g. maximum,177

minimum and mean rate after stimulus onset, and the time at which they occur), and the178

peak characteristics of the EDA signal (e.g., occurrence of skin conductance response (SCR),179

and if SCR is present, its corresponding peak amplitude, time of peak, rise and recovery180

time). In addition, respiration and cardiac cycle phases are extracted (i.e., the respiration181

phase - inspiration/expiration - and cardiac phase - systole/diastole - occurring at the onset182

of event).183

This example shows the straightforward process of extracting features of physiological re-184

sponses. This pipeline can easily scale up to group-level analysis by aggregating the average185

of features across participants. In addition to streamlining data analyses, NeuroKit2 aims186

to provide researchers an extensive suite of signal features, allowing for precise interpreta-187

tions in terms of relationship between physiological activity and neurocognitive processes.188

In this example (see Table 2), exposure to negative stimuli, as compared to neutral stimuli,189

is related to stronger cardiac deceleration, higher skin conductance response, and acceler-190

ated breathing rate (note that this descriptive interpretation is given solely for illustrative191

purposes).192

Resting-state Features193

The second dataset corresponds to 5 minutes of physiological activity of a human participant194

at rest (eyes-closed in a seated position), under no specific set of instructions. It contains195

three channels (ECG, PPG and RSP) sampled at a frequency of 100Hz.196
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# Load the package

import neurokit2 as nk

# Download the example dataset

data = nk.data("bio_resting_5min_100hz")

# Process the data

df, info = nk.bio_process(ecg=data["ECG"],

rsp=data["RSP"],

sampling_rate=100)

# Extract features

results = nk.bio_analyze(df)

# Show subset of results

results[["ECG_Rate_Mean", "HRV_RMSSD", "RSP_Rate_Mean", "RSA_P2T_Mean"]]

Table 3

Subset of properties characterizing the physiological activity over a period of 5 minutes of

resting-state.

ECG_Rate_Mean HRV_RMSSD RSP_Rate_Mean RSA_P2T_Mean

86.39 3.88 15.74 0.01

In this example, the steps of the analysis are identical to the previous example, including197

loading the package, the dataset and processing the data. The difference is that there is198

no epoching, as we want to compute features related to the whole dataset (see Table 3).199

Thus, we can directly pass the dataframe to bio_analyze(), which will detect that these are200
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not epochs, and compute the appropriate features accordingly. These include for instance201

the average heart and breathing rate, as well as indices of heart rate variability (HRV) and202

respiratory sinus arrhythmia (RSA).203

This example illustrates a second type of physiological analysis, that we refer to as interval-204

related (as opposed to event-related). Interval-related analyses compute features of signal205

variability and activation patterns over a longer-term period of time (typically minutes).206

NeuroKit2 allows for the fast creation of a standardized and reproducible pipeline to describe207

this kind of physiological activity, which can be beneficial for a wide variety of applications.208

Discussion209

NeuroKit2 is a neurophysiological signal processing software accessible to people with all210

levels of programming experience and background. Its development is focused on creating an211

intuitive user-experience, as well as building a collaborative community. It is also a pragmatic212

answer to the broader need for transparent and reproducible methods in neurophysiology.213

Its modular structure and organization not only facilitates the use of existing and validated214

processing pipelines, but also creates a fertile ground for experimentation and innovation.215

We expect the package’s future evolution to be driven by the communities’ needs and the216

advances in related fields. For instance, although NeuroKit2 already implements a lot of217

useful functions for EEG processing (such as entropy and fractal dimensions quantification),218

its support could be further improved (for example with high-level functions built on top219

of utilities provided by the leading EEG Python software, namely MNE; Gramfort et al.,220

2013). Possible other future directions include extending the support for other types of221

bodily signals (e.g., electrogastrography - EGG, electrooculography - EOG) and achieving222

performance gains for large datasets by using efficient algorithms. Further validation of the223

available processing pipelines could be made through the (re)analysis of public databases.224

In line with this objective, the support of standardized data structure formats (e.g. WFDB,225
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BIDS, …) could be extended.226

In conclusion, we believe that NeuroKit2 provides useful tools for anyone who is interested227

in analyzing physiological data from research-grade hardware as well as wearable “smart228

health devices”. By increasing the autonomy of researchers and practitioners, and by short-229

ening the delay between data collection and results acquisition, NeuroKit2 could be useful230

beyond academic research in neuroscience and psychology, including applications such as231

biofeedback, personal physiological monitoring and exercise science. Finally, we hope that232

NeuroKit2 encourages users to become part of a supportive open-science community with233

diverse areas of expertise rather than relying on closed-source and proprietary software, thus234

shaping the future of neurophysiology and its related fields.235
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