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The irruption of SARS-CoV-2 during 2020 has been of pandemic proportions due to its
rapid spread and virulence. COVID-19 patients experience respiratory, digestive and
neurological symptoms. Distinctive symptom as anosmia, suggests a potential
neurotropism of this virus. Amongst the several pathways of entry to the nervous
system, we propose an alternative pathway from the infection of the gut, involving Toll-
like receptor 4 (TLR4), zonulin, protease-activated receptor 2 (PAR2) and zonulin brain
receptor. Possible use of zonulin antagonists could be investigated to attenuate
neurological manifestations caused by SARS-CoV-19 infection.
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INTRODUCTION

SARS-CoV-2 emerged in December 2019 and rapidly caused a global pandemic extending along
2020. Since March 2020, when the World Health Organization (WHO) declared the pandemic
nature of the problem, the virus has caused 102 million infections and approximately 2 million
deaths (https://www.worldometers.info). SARS-CoV-2 causes both upper and lower respiratory
tract infections (1). The infection is characterized by a process ranging from asymptomatic and mild
disease to severe systemic symptoms involving mainly the lung and gastrointestinal (GI) tract, and
finally, it can cause multi-organ failure (2). Transmission of SARS-CoV-2 is mainly caused by
human respiratory droplets or aerosol carrying the virus, which enters the airways of the host and
infects epithelial cells (3). One of the factors determining severity of COVID-19 is the aggressive
inflammatory response from the host, which can cause severe systemic damage by the so-called
“cytokine storm” (4). It is well known that SARS-CoV-2 infects the host cell by binding its spike
protein to the receptor binding domain of angiotensin-converting enzyme 2 (ACE2) (5).
NEUROLOGICAL MANIFESTATIONS OF COVID-19

Acute hypoxia and acute respiratory disease syndrome (ARDS) are two of the major causes of the
high fatality rate of COVID-19 patients (6). However, this virus frequently causes neurological
manifestations (such as headache, dizziness, impaired consciousness, stroke, encephalitis, anosmia,
dysgeusia, Guillain-Barre syndrome, ataxia, etc.) (7, 8). The percentage of COVID-19 patients that
org April 2021 | Volume 12 | Article 6653001
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develop some form of neurologic symptom varies depending on
the studies. Most researchers accept that it is around or above
50% of the patients. In fact, the study by Romero-Sánchez et al.,
found that 57.4% of hospitalized COVID-19 patients exhibited
some type of neurological manifestation (8). These figures are
important because COVID-19 patients with neurological
disorders have an increased risk of in-hospital mortality and
lower rates of discharge home compared to COVID-19 patients
without neurological disorders.

Possible routes of entry of this virus into the central nervous
system (CNS) have been recently reviewed by Kumar et al. (9).
Distinctive symptoms of the infection by this virus, such as
anosmia, indicate a potential viral neurotropism, and a direct
route of entry into the CNS via the olfactory nerves (9), which
may lead to viral replication and CNS invasion (10). Other
mechanisms of brain invasion that have been postulated are a
retrograde spread through the vagus nerve and a hematogenous
route (9). There is evidence that neurological damage in COVID-
19 patients is not primarily due to direct invasion of the virus
into the CNS. For example, in the majority of infected patients
with severe neurological manifestations, in whom real-time RT-
PCR was performed, the cerebrospinal fluid (CSF) was positive
for SARS-CoV-2 in less than 3% of the patients (11).
NEUROLOGICAL VERSUS
GASTROINTESTINAL COVID-19

SARS-CoV-2 infected patients also experience enteric symptoms
(such as fever, myalgia, lethargy, dry cough, dyspnea, anorexia,
abdominal pain, and diarrhea) (12). While gastrointestinal
symptomatology is, behind the respiratory, among the most
frequent in COVID-19 patients (13, 14), whether digestive and
neurological disorders combine in a significant manner is unclear.
We collected the epidemiological data and clinical symptoms of
every COVID-19 patient (945 patients) admitted to our hospital
(UniversityGeneralHospital of Albacete), duringMarch 2020.We
found that neurological and gastrointestinal symptoms (unrelated
to the prescribed drugs) were frequent in hospitalized patients:
54.5% and 53.2%, respectively. Interestingly, we found that
suffering from gastrointestinal symptoms was significantly
associated with the display of some neurological symptom (p =
0.027). Therefore, in these hospitalized patients, gastrointestinal
symptoms are a risk factor for developing mild neurological
complications such as headache, myalgia, anosmia, or dysgeusia.
Table 1 displays the details of the different data.
BLOOD-BRAIN BARRIER DISRUPTION

If we assume that the neurological involvement in COVID-19
disease is not mainly due to direct invasion by the virus, why
does it occur? Most authors currently argue that it is caused by
disruption of the blood-brain barrier (BBB), (15).Even though
the respiratory tract is the main site of infection and viral
replication, growing evidence indicates an extrapulmonary
Frontiers in Immunology | www.frontiersin.org 2
dissemination of the virus (16) (17) (18). A paracellular
pathway, disrupting epithelial or endothelial barriers is an
alternative route that viruses use to enter the bloodstream and
thereby contribute to viral dissemination. Viruses via this
pathway disrupt epithelial or endothelial barriers including the
BBB. To achieve this, tight junctions (TJ) must be disassembled.
TJ are complex and dynamic structures involved in several key
functions of epithelial and endothelial barriers under
physiological conditions as well as in pathological
circumstances (19). TJ impairment specifically occurs in severe
COVID-19 patients (20).
ZONULIN

Zonulin is a 47 KDa protein initially described by Wang et al. in
2000 (21) that works as an endogenous regulator of intestinal
paracellular permeability disassembling tight junctions (TJ).
Zonulin has been mainly localized in the GI tract (22) and
linked to GI disease like coeliac disease (23). Zonulin has been
reported to be upregulated also in extraintestinal tissues such as
the lung (24) and brain tissue (25). Concerning the lung,
Rittirsch et al. showed that the zonulin peptide antagonist, AT-
1001, attenuated acute lung injury in mice (24). Concerning the
TABLE 1 | Relationship of neurological complications and gastrointestinal
symptoms during the course of coronavirus disease 2019.

Gastrointestinal
symptoms

p Value

Total patients
(n = 945)

No
(n = 442)

Yes
(n = 503)

Any neurological symptom No (n = 430) 218 212 0.027
Yes (n = 515) 224 291

Myalgias No (n = 781) 389 392 < 0.001
Yes (n = 164) 53 111

Headache No (n = 805) 391 414 0.008
Yes (n = 140) 51 89

Anosmia No (n = 896) 429 467 0.004
Yes (n = 49) 13 36

Dysgeusia No (n = 883) 425 458 0.002
Yes (n = 62) 17 45

Psychiatric symptoms No (n = 768) 368 400 0.142
Yes (n = 177) 74 103

Meningoencephalitis No (n = 943) 441 502 1.000
Yes (n = 2) 1 1

Demyelinating diseases No (n = 944) 441 503 0.486
Yes (n = 1) 1 0

Seizures No (n = 935) 433 502 0.008
Yes (n = 10) 9 1

Movement disorders No (n = 939) 437 502 0.104
Yes (n = 6) 5 1

Guillain-Barre syndrome No (n = 944) 441 503 0.486
Yes (n = 1) 1 0

Ischemic stroke No (n = 930) 428 502 0.001
Yes (n = 15) 14 1

Brain hemorrhage No (n = 940) 438 502 0.135
Yes (n = 5) 4 1
April 20
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Data were collected and analyzed using SPSS version 25 software (SPSS, Chicago, IL,
USA). The ratios were compared using the c2 test, and the Fisher exact test when the
sample size was too small, considering a value p less than 0.05 as statistically significant.
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brain, zonulin receptor has been found in the brain tissue (26).
Skardelly et al. demonstrated that zonulin is able to reach the
brain and increase BBB permeability (25).
HYPOTHESIS

The aim of the present review is to develop a feasible hypothesis
complementary to the current information that exists regarding
the SARS-CoV-2 virus’ journey to the brain (9). From our
results, the core of our hypothesis emerges to provide a
mechanism for both intestinal and cerebral zonulin expression
linked to SARS-CoV-2 infection. Furthermore, to label zonulin
as one of the factors responsible for destroying or disrupting the
Frontiers in Immunology | www.frontiersin.org 3
BBB is crucial in order to find a possible therapy directed against
the neurological manifestations that occur in COVID-19
patients. In fact, the already mentioned zonulin peptide
antagonist, AT-1001, has been proposed as a specific anti-
SARS-CoV-2 drug (27).

Our hypothesis is illustrated in the Figure 1: SARS-CoV-2
reaches the intestine protected by the mucus from infected lungs
by the pulmonary mucus clearance system. Viruses land on the
mucus layer and are moved by cilia up the trachea, through
the vocal chords, and then swallowed and cleared by the
gastrointestinal tract. During a cough, central airways narrow,
and globs of mucus are propelled forcefully by a column of air
moving at high velocity directly into the pharynx where they mix
with saliva from the mouth and are swallowed into the esophagus
FIGURE 1 | Hypothesis illustrated. Upper panel (A) Scheme of the SARS-CoV-2 journey towards to the brain: 1.-Infected lungs. 2.- The pulmonary mucus
clearance system. 3.- Enteroinvasion. 4.- An increased intestinal permeability allows the virus to access the bloodstream and spread. 5.- Haematogenous route. 6.-
Neuroinvasion. Lower panel (B) SARS-CoV-2 virus reaches the intestine protected by the mucus from infected lungs. The virus can bind and activate the TLR4,
which via MyD-88 could activate both zonulin and proinflammatory cytokines expression. Zonulin, secreted to the lumen, binds with PAR2 inducing disassembling of
TJ. Now, the virus can use the paracellular pathway to access the circulatory system and reach the brain. Zonulin can also access to the bloodstream. Then, the
virus, via brain zonulin receptor, can induce expression of zonulin and consequently increase permeability of the BBB by inducing disassembling of TJ. This causes
neuroinvasion of the virus. TLR4, toll-like receptor 4; MyD-88, myeloid differentiation primary response gene 88; PAR2, protease-activated receptor 2; TJ, tight
junctions; IEB, intestinal epithelial barrier; BBB, blood-brain barrier. Created with BioRender.com.
April 2021 | Volume 12 | Article 665300
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(28). Then, the virus can bind enterocyte surface ACE2 and
replicates. However, it can also bind and activate the TLR4
receptors, which via MyD-88 could activate zonulin and
promote proinflammatory cytokine overexpression. Zonulin,
secreted to the lumen, binds PAR2 inducing the TJ disassembly
of intestinal epithelial barrier (IEB). At this point, the virus can use
the paracellular pathway to access the circulatory system and reach
the brain. Then, the virus, via brain zonulin receptor, can induce
the overexpression of zonulin, which increases BBB permeability
through a similar TJ disassembly mechanism finally causing
neuroinvasion. On the other hand, both the complement system
activated by zonulin (see below) and the cytokine storm inducted
during viral infection might potentiate the disruption of the BBB
and account for the neurological symptoms exhibited by COVID-
19 patients.

We have analyzed data from previous studies and detailed in
the following paragraphs, the scientific evidence that support
our hypotheses:

SARS‐CoV‐2 Directly Infects and
Replicates in Intestinal Cells
Digestive symptoms as nausea, vomiting, diarrhea, abdominal
pain, and hematochezia, are frequently found in COVID-19
patients (13, 14). In addition to the lungs, several lines of
evidence point to the gut as a possible target of SARS-CoV-2.
Hoffmann et al., showed that SARS-CoV-2 employs ACE2 as a
cellular receptor and that its spread is dependent on the activity
of transmembrane serine protease 2 (TMPRSS2) (29). Later,
Kumar and colleagues found enriched expression of ACE2 and
significantly enhanced expression of TMPRSS2 in intestinal
epithelial cells (30).

The following data provides the basis to suggest that SARS‐
CoV‐2 may be capable of infecting and replicating in
the intestine:

-ACE2, the key host cell entry receptor for SARS‐CoV‐2, is
highly expressed in the brush border of the intestinal
epithelial cells (31).

-High levels of expression of ACE2, TMPRSS2 and TMPRSS4,
which are essential factors for host cell infection by SARS-
CoV-2, have been observed in lower GI epithelial cells (32).

-The presence of SARS‐CoV‐2 viral RNA in the stool samples
from infected patients that persists over 1-5 weeks has been
reported even with serum specimens negative for the presence
of the virus (33, 34).

-SARS-CoV-2 RNA detection and intracellular staining of viral
nucleocapsid protein has been reported in gastric, duodenal,
and rectal epithelia (18).

-The hemorrhagic colitis reported during SARS-CoV-2 infection
involves the GI tract in the transmission of SARS-CoV-2
infection (35).

-Typical coronavirus virions have been observed by electron
microscopy in rectal biopsy samples (36–38).

-COVID‐19 patients with concomitant GI symptoms show
poorer clinical outcomes requiring more often mechanical
ventilation (39).
Frontiers in Immunology | www.frontiersin.org 4
-Infection of mature human enterocytes by SARS-CoV-2,
through viral fusion and entry via ACE2, has been
demonstrated in vitro in studies based on monolayer
cultures of intestinal epithelial cells (40, 41). This has
also been shown in human small intestinal organoids
(which are the 3D structures that are grown from
adult stem cells) (42, 43). Direct viral infection and
replication of SARS-CoV-2 in the intestinal epithelium
and endothelium has been demonstrated by means of
organ-on-a-chip technology (44).
Access of SARS-CoV-2 to the Small Bowel
We hypothesize that the intestine is an entry site for SARS-
CoV-2 towards the CNS. However, this must involve a reduced
gastric acid level because the virus cannot survive a normal
gastric acid environment of pH 1.5-3. There is evidence that
SARS-CoV-2 can survive a pH level above 3 (45). Thus, in a
hypochlorhydria the virus can survive the route from the
mouth to the bowel, where the virus could directly infect
enterocytes (46). Hirose et al, have reported that viscous
sputum or nasal discharge may protect human influenza A
and B virions (IAV/IBV). These are viruses that are inactivated
by low pH and vulnerable to surfactants such as bile (47).
Usually, the mucus secreted by cells lining the intestinal tract
serves to clear respiratory viruses, including IAV/IBV.
Therefore, the presence of the SARS-CoV-2 virus in the gut
may be due to the self-ingestion of mucus from the airways by
coughing discharge. Viral particles would preserve their
infectivity protected by mucus from the degrading action of
gastric acid, bile and pancreatic juices. Once SARS-CoV-2 has
overcome these defensive barriers, it penetrates into host cells
through viral fusion via ACE2 accomplished by the mentioned
serine proteases TMPRSS2 and TMPRSS4 (30). Upon viral
entry, virus-specific RNA and proteins are synthesized in the
cytoplasm to assemble new virions (48), which can be released
to the GI tract. This would explain the presence of viral RNA in
stool samples from COVID-19 patients. However, it should not
be forgotten that viruses and bacteria frequently use other
pathways to disseminate, such as the paracellular pathway. We
postulate that the SARS-CoV-2 virus entering via the
paracellular pathway is a contributing factor in the
exacerbated immune response of the host’s intestine,
culminating with the cytokine storm and, finally leading to
the dissemination of the virus to the brain.

Association of SARS-CoV-2 and TLR4
In addition to the ACE2, binding to toll-like receptors (TLRs),
especially TLR-4, may contribute to the infectivity and
pathogenesis of SARS-CoV-2 (49). TLR4 is not only present in
immune cells, but is also expressed in intestinal epithelial cells
(50). TLR4 is overexpressed in chronic inflammatory conditions
and participates in the antiviral defense against RNA viruses
such as respiratory syncytial virus (51) or coxsackievirus B4 (52).
Also, TLR4 is known to recognize the envelope (Env) proteins of
mouse mammary tumor virus and murine leukemia virus (53).
Recognition of viral particles produces activation and
April 2021 | Volume 12 | Article 665300
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dimerization of TLR4 and triggers two distinct signal
transduction pathways mediated by the adaptor proteins: Toll/
IL-1 receptor (TIR) domain-containing adaptor inducing IFN-b
(TRIF) and MyD88. TRIF activates a signal transduction
pathway responsible for the production of additional type I
interferons, which are involved in antimicrobial host defense.
MyD88, which has been reported to be involved in the release of
zonulin (54), activates a signal transduction pathway resulting in
the release of the NF-kB, a transcription factor required to
induce the gene expression of most proinflammatory
cytokines, like IL-1, IL-6 or TNF-a (50).

Existing data supports the association of COVID-19
with TLR4:

-The main cytokines involved in severe COVID-19 cases (IL-6 and
TNF-a) are downstream of the TLR4 signaling pathway (55).

-An in-silico study demonstrated that the spike protein of SARS‐
CoV‐2 binds with surface TLRs (TLR1, 4, and 6), the binding
being especially strong with TLR4 (56).

-A ligand of TLR4 was the most highly increased among other
inflammatory mediators in COVID 19 severe patients when
compared to healthy control (57).

We postulate that the virus’ spike protein activates TLR4,
triggers MyD88 signal transduction pathways that would end in
the overexpression of zonulin. Once secreted from enterocytes,
zonulin binds specific receptors leading to the phosphorylation
of TJ proteins and produces an increase in intestinal permeability
and, consequently, the disassembly of these proteins.

Activation of TLR4 by SARS-CoV-2 Would
Induce the Expression of Zonulin
Zonulin signaling has been postulated to be dependent upon
protease-activated receptor 2 (PAR2) (58). PAR2 mRNA is
strongly expressed in the small intestine, colon, liver, and
pancreas. Immunoreactive PAR2 is localized to the apical and
basolateral membrane of enterocytes and numerous other tissues
(59). It has been also reported that PAR2 plays a key role in
modulating several diseases such as experimental autoimmune
encephalomyelitis, multiple sclerosis (MS) (60) and arthritis (61).
This signaling protein interacts physically and functionally with
TLR4 (62). Several studies have investigated the possible
connection between PAR2 and TLR4-mediated signaling
pathways. For example, concurrent activation of PAR2 and
TLR4 by the PAR2 activating protein (AP) and LPS, respectively,
amplifiesNF-kBactivationand IL-6production inendothelial cells
(63). Furthermore, PAR2 expression is upregulated by pro-
inflammatory cytokines such as TNFa and IL-1b, leading to a
self-sustaining and amplified inflammatory process (64).

It is well established that IL-6 is the proinflammatory cytokine
that is found in highest levels in serum of severe COVID-19
patients (65). Indeed, higher than normal IL-6 levels are detected
in COVID-19 patients requiring hospitalization or with acute
respiratory failure (65, 66). It is interesting that the promoter of
zonulin is under IL-6 control (67). Thus, overexpression of
zonulin may be related to expression of IL-6 by MyD88.
Frontiers in Immunology | www.frontiersin.org 5
Zonulin Activates the Complement System
Activation of the complement system is the first response of the
host innate immune system against any foreign invasion, like
SARS‐CoV‐2 infection. However, uncontrolled complement
activation can be damaging. This possibly initiates the clinical
complications affecting others organs in COVID-19 patients
(68). Zonulin, both in vitro and in vivo, induces activation of
components of complement C3 and C5 facilitating acute lung
injury (ALI) by an increased accumulation of neutrophils and
cytokines (24). With regard to this, it is worth noting that during
SARS‐CoV-2 infection, the activation of complement
component C3 exacerbates ARDS and deposits of C3‐C5
complements are abundant in lung biopsies from COVID‐19
patients (69).

Neuroinvasion by SARS-CoV-2 From
Enteroinvasion
Two main pathways have been proposed for the entry of
neurotropic respiratory viruses into the CNS: a retrograde
neuronal route and a hematogenous route. In the retrograde
neuronal route, viruses undergo retrograde axonal transport to
reach the neuron cell bodies in the peripheral and or CNS. In the
hematogenous route, viruses gain access by infecting endothelial
cells of the BBB, epithelial cells of the blood-cerebrospinal fluid
barrier of the choroid plexus, or alternatively use inflammatory
cells as Trojan horses to gain access into the CNS (70).

Recently, it has been postulated that SARS‐CoV‐2
neuroinvasion may occur via the vagal afferents from the GI,
highlighting a role for gut-brain axis in the pathogenesis of the
disease (71). The gut-brain axis has been involved in the
pathogenesis of neuroinflammatory diseases such as MS,
epilepsy, and stroke (72). The enteric nervous system is
strongly interconnected with enteric glial cells, which express
the major histocompatibility complex class II and therefore acts
as antigen‐presenting cells for immune cells of the gut‐associated
lymphoid tissue (GALT). Upon activation by viral infection,
GALT initiates immune responses, increases in the endothelium
permeability and release of higher IL‐6 levels and other
inflammatory mediators. It contributes to ARDS as observed in
the COVID‐19‐induced cytokine storm (71, 73). Esposito et al.,
suggest that SARS‐CoV‐2–related diarrhea and the GI
dysfunction serve as a possible marker of the involvement of
the enteric nervous system/enteric glial cell in the pathogenesis of
GI COVID-19 (71). Additionally, Kumar and coworkers
proposed intestinal ACE2 as an essential entry factor involved
in the digestive symptoms of COVID-19 (30). Thus, the gut
could be used as a gateway through which viruses can either
directly neuroinvade or indirectly immunologically prepare the
enteric nervous system to achieve an ascending route towards the
CNS through intestinal vagal afferents.

SARS‐CoV‐2 has been shown to directly infect engineered
human blood vessel organoids in vitro. Furthermore, viral-like
particles have been observed in brain capillary endothelium
actively crossing the endothelial cells (74, 75). This suggests
that the hematogenous route is the most likely route for SARS-
CoV-2 to the brain. Considering all this data together and in
April 2021 | Volume 12 | Article 665300
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line with our results (Table 1), we propose that the increased
intestinal permeability caused by overexpression of zonulin
opens an entry door for SARS‐CoV‐2. Through this way, the
virus reaches the bloodstream or the lymphatic system, infects
endothelial cells of blood or lymphatic vessels, infects local
tissues, and then is disseminated to many organs, including
the CNS.

SARS-CoV-2, Zonulin and BBB.
Integrating Concepts
Increasing the permeability of the BBB is a common mechanism
of damage used by numerous viruses (76, 77). The IEB and the
BBB are formed by epithelial and endothelial cells, respectively.
Both barriers exhibit similarities. Both are regulated by
interactions with glial cells that are connected with the enteric
nervous system and the central nervous system (CNS), their cells
are sealed by tight junctions and are sensitive to disruption by
external stimuli (78). Breakdown of the BBB plays an important
role in the pathogenesis of numerous brain diseases, including
neurological diseases such as stroke, epilepsy, and MS, brain
infarction, or brain hemorrhage (79). BBB disruption
significantly contributes to brain inflammation through the
leakage of plasma factors into the brain, blocking of
endothelial pericyte interaction, activation of glial cells, and
induction of immune cell migration into brain tissue. On the
other hand, brain inflammation facilitates BBB disruption
through digestion of the basement membrane by proteinases
and injury of BBB cells (80).

As mentioned above, COVID-19 patients with neurological
disorders have increased risk of in-hospital mortality and lower
rates of discharge home compared to COVID-19 patients
without neurological disorders (7).

Other types of receptors or cellular entry mode for SARS‐
CoV‐2 have been considered in the nervous cells or tissues (81).
Using a combination of structural and molecular approaches,
Fantini and co-workers demonstrated that the ganglioside‐
binding domain (111–158) at the tip of the N‐terminal domain
of the spike protein of SARS‐CoV‐2, as well as sialic acids linked
to glycoproteins of host cell surface can also serve as an
additional cellular entry for SARS‐CoV‐2 (82).

Several clues point to thepossibility that zonulin is implicated in
the neurological manifestations of SARS-CoV-2 infection: zonulin
could act in the brain throughout the BBB disruption. Support for
this possibility arises from a recent report using the zonulin
agonist peptide AT-1002 which shows that zonulin is associated
with an increased permeability of the BBB (83). Over-activation
of the complement system has also been linked to an enhanced
permeability of this barrier. This is the case of neuroinflammatory
diseases involving C5 signaling through its G‐protein coupled
receptor (84). Besides, and as stated above, zonulin can induce
the activation of components C3 and C5 of complement system
(24). TLR4 and PAR2, necessary for the overexpression and
functional of zonulin, are expressed in neuronal and glial cells
and are involved in development and progression of
neurodegenerative diseases with an inflammatory component
(85). Moreover, the human brain receptor for zonulin is a
Frontiers in Immunology | www.frontiersin.org 6
glycoprotein that contains multiple sialic acid residues (26),
which, interestingly, is the new receptor postulated above for
SARS-CoV-2. A remarkable in vitro study by Karyekar et al.,
studying a zonulin analogue (named Zot, a choleric toxin),
suggested that its receptor might also be expressed in the
endothelium of brain capillaries, and that it could dissemble TJs
in vivo (86). Taking altogether, these evidences introduce in our
hypothesis, a possible mechanism responsible for the neurological
symptomatology caused by the virus: upon arrival of the virus to
the brain via the hematogenous route, this would bind to the
zonulin receptor and thereby, activate the expressionof zonulin via
MyD88. Zonulin would be secreted to the brain tissue side, bind to
its receptor (PAR2), induce the disassembly of TJs, disrupt the BBB
and consequently allowing the entry of the virus to the brain. On
the other hand, during SARS-CoV-2 infection the overexpression
of zonulin in the brain could also be dependent on thedisruption of
the IEB, resulting in enhanced secretion of cytokines into the
bloodstream that can reach the brain capillaries. Although, under
physiological conditions, most cytokines exert their effects locally
at secretion sites, under pathological conditions high levels of them
are secreted into the bloodstream, acting on distal cells in an
endocrine manner to mediate systemic responses (87). Since high
levels of the cytokine IL-6 are found in COVID-19 patients (65)
and the promotor of zonulin is under control of this cytokine (67),
the overexpression of zonulin in the brain could also be related to
the presence of IL-6 in the brain capillaries.
TESTING THE HYPOTHESIS

Further in situ or in vivo studies will be necessary to establish a
substantial role of zonulin in COVID-19 neuropathology. In
this regard, several unresolved questions in this review must be
tested, as following:

Crystal structure studies to confirm the interaction between
SARS-CoV-2 spike protein and human TLR4 need to be
performed (56).

A biochemical and molecular characterization of the brain
zonulin receptor as well as a detail localization in the brain of the
zonulin receptor needs to be established (26). On the other hand,
the confirmation of the existence of the zonulin receptor in the
luminal side of the capillaries constituting the BBB, is also
necessary. It would also be necessary to verify that intestinal
zonulin reaching the brain via the bloodstream could bind to the
capillary zonulin receptor. In this sense, a biochemical and
molecular study of intestinal and brain zonulin to test their
differences would also be of great interest.

A longitudinal dataset related to the mechanism of
pathogenesis of SARS-CoV-2 involving TJ impairment must be
performed (20).

In summary, we hypothesize that after lung infection, SARS-
CoV-2, protected with airway-borne mucus, reaches the gut
undigested. Once here, the spike protein binds TLR4 and, via
MyD88, induces the expression of proinflammatory cytokines,
especially IL-6. This cytokine promotes the overexpression of
zonulin, which, via PAR2, disassembles TJ, opening paracellular
April 2021 | Volume 12 | Article 665300
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pathways and allowing the virus to pass through. The virus can
now infect vascular endothelial cells and disseminate to the CNS
through a hematogenous route. Once at the BBB, SARS-CoV-2
binds zonulin receptor and promotes zonulin release. Then
zonulin, via PAR2, induces the BBB disruption allowing the
virus to enter.

We hope that this article will open up the possibility of
investigating the effect of zonulin antagonists on the attenuation
of neurological symptoms caused by SARS-CoV-19 infection.
LIMITATIONS

Our data were obtained retrospectively, so selection bias may
arise and some important information could be missing. Finally,
this study is hospital-based, so it does not necessarily reflect the
incidence of gastrointestinal or neurologic symptoms of patients
with mild COVID-19.
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