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histone-mutant diffuse midline gliomas, these cytoarchitec-

tural characteristics are taken into account when assigning 

a malignancy grade to the tumour according to the WHO 

classification scheme [28]. This is still the mainstay of the 

diagnostic approach and is suitable and adequate for the vast 

majority of tumours, including brain tumours. While a small 

proportion of brain tumours in adults is caused by germ line 

mutations and is associated with a number of syndromes, the 

majority of adult gliomas develop sporadically. Recent com-

bined efforts by large research consortia have, however, led 

to the discovery of a number of key mutations, chromosome 

copy number variations and epigenetic alterations in a range 

of intrinsic brain tumours [27], challenging the clinical rel-

evance of the traditional diagnostic approach. The first most 

detailed molecular subclassification of brain tumours has 

been achieved with medulloblastomas, a malignant, predom-

inantly paediatric, brain tumour arising in the cerebellum, 

whereby the gene expression profile reflects the activation of 

distinct signalling pathways and correlates much better with 

clinical outcome and therapy response than the conventional 

subclassification approaches based on histological features 

[54]. In adults, the most common intrinsic brain tumours are 

gliomas, such as glioblastomas, astrocytomas, oligodendro-

gliomas and ependymomas, arising throughout the neuraxis 

and displaying variable biological behaviour. The discov-

ery of mutations in specific genes has revolutionised our 

understanding of the pathogenesis of many type of glioma 

and has subsequently led to a biomarker-driven classifica-

tion which in current practice not only supplements, but 

increasingly overrides the histological diagnosis. Another 

important development is the recognition of clinically rel-

evant, molecularly defined tumour classes. Mounting evi-

dence indicates that for certain nosological entities, for 

example, IDH-mutant astrocytomas [40] or ependymomas 

[31], the molecular profile much better reflects the biological 
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nificant shift in how these tumours are diagnosed, managed 

and treated. This article will provide a hands-on overview 

of the relevant biomarkers and their association with newly 
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Introduction

The traditional approach to diagnose brain tumours is the 

examination of a histological specimen. Conventionally, 

pathologists make the histological diagnosis by assess-

ing morphological features of cellular atypia, variation of 

nuclear size (anisonucleosis), shape (pleomorphism), mitotic 

activity, cell density, characteristic architectural patterns, 

vascular properties, and cell necrosis. With the exception of 
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behaviour, superseding the relevance of conventional his-

tological grading, which is based on histological features.

The focus of this review article is limited to primary, 

intrinsic brain tumours occurring in adults. Each molecularly 

defined diagnostic group, i.e. IDH-mutant astrocytomas or 

oligodendrogliomas, histone-mutant gliomas, BRAF-mutant 

gliomas and ependymomas will be discussed separately with 

an emphasis on the specific molecular alterations in each 

group and their clinical relevance.

IDH-mutant gliomas: astrocytomas, glioblastomas 

and oligodendrogliomas

Genetics and pathology

The discovery of mutations in the isocitrate dehydrogenase 

genes 1 and 2 (IDH1, IDH2) in 2008 was a major break-

through towards molecular biomarker-driven diagnosis of 

adult gliomas [34]. Mutations on codon 132 or 172 of the 

IDH1 and IDH2 genes, respectively, results in “neo-enzy-

matic activity” with the production of the novel oncome-

tabolite 2-hydroxyglutarate [11] causing widespread meth-

ylation of the tumour cell DNA [55] and altered regulation 

of histone methylation [9]. IDH-mutant gliomas mainly arise 

in young adults in their second to fourth decade of life and 

are rare in people over 55 [7]. IDH mutations occur in two 

classes of gliomas, astrocytomas and oligodendrogliomas. 

IDH-mutant astrocytomas over time progress to IDH-mutant 

anaplastic astrocytomas and IDH-mutant glioblastomas, pre-

viously also known as secondary glioblastomas. However, 

the IDH-mutant anaplastic astrocytoma and IDH-mutant 

glioblastoma can also develop de novo with no previous 

clinical and radiological evidence of a lower grade glioma. 

The majority (90%) of both astrocytomas and oligoden-

drogliomas carry a specific point mutation (R132H) in the 

IDH1 gene [19], which can be detected immunohistochemi-

cally with a mutation-specific antibody [5]. The detection 

of the other mutations (Fig. 1) requires sequencing of the 

IDH1 and IDH2 genes [20, 36]. The presence of an IDH1 

or IDH2 mutation is also required for the diagnosis of oligo-

dendroglioma and anaplastic oligodendroglioma. The pre-

viously known entity of oligoastrocytoma was defined on 

histological grounds only and is now extinct [44], as there is 

robust evidence that the IDH mutations segregate either with 

the chromosomal codeletion of 1p/19q in oligodendroglio-

mas, or with a loss of function mutation in the ATRX gene 

(alpha thalassaemia/mental retardation syndrome X-linked) 

IDH1 G395A R132H 88% IDH1 C394T R132C 4%

IDH1 C394A R132S 1%

IDH1 C394G R132G 1%

IDH1 G395T R132L <1%

IDH2 G515A R172K 3%

IDH2 G515T R172M 1%

IDH2 A514T R172W 1%

IDH2 G516T R172S <1%

IDH2 A514G R172G <1%

Fig. 1  Frequency of IDH1 and IDH2 mutations in a cohort of 747 

oligodendroglial and astrocytic tumours (extracted from the data in 

[19]) and two added rare IDH2 mutations. The left part of the graph 

shows a typical histological image of immunostaining in an IDH1 

R132H mutant astrocytoma with an antibody detecting this specific 

mutation. Approximately 90% of all IDH-mutant tumours and 95% of 

IDH1 mutations are detected with this antibody. The remaining IDH1 

mutations and all IDH2 mutations are most commonly detected by 

sequencing the hotspot on codon 132 (IDH1) and 172 (IDH2) (right 

part of the figure). The frequency of IDH-mutant gliomas rapidly 

decreases with the age of the patient. The probability of an alternative 

IDH mutation is < 6% in a 50-year-old patient and decreases to < 1% 

in patients aged > 54 years [7]
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in astrocytomas [41] (Fig. 2). Combined 1p/19q loss (also 

known as 1p/19q codeletion) can be tested with a number of 

molecular methods, such as fluorescent in situ hybridisation 

(FISH), qPCR and various array technologies. Mutations 

in the ATRX gene are routinely tested in most laboratories 

by immunostaining for the ATRX protein, which detects 

loss of expression resulting from the majority of ATRX 

gene mutations [23, 25]. However, a small proportion of 

mutations in the ATRX gene does not result in the loss of 

protein expression, and thus are not detectable by immu-

nohistochemistry. Sequencing of the ATRX gene would be 

desirable, but is currently not practical in routine diagnos-

tics in most laboratories, due to the large size of the ATRX 

gene and the wide range of mutation sites. Diagnostically 

Fig. 2  Simplified scheme of known genetic alterations in the most 

common glial and glioneuronal tumours. The inner circle shows the 

presumed driver mutation, such as IDH (green), histone H3.3 K27M, 

G34R, FGFR–TACC fusion (brown), or BRAF alterations (dark 

blue), MYB/MYBL1, PIK3CA and FGFR1 (lighter blue shades). The 

middle circle shows known additional mutations that are associated 

with the respective tumour entities. For example, in the group of 

IDH-mutant tumours, the 1p/19q codeletion defines the oligodendro-

glioma, whilst the ATRX mutation defines the IDH-mutant astrocy-

toma. The IDH-wildtype glioblastoma (light brown) currently does 

not have a defined driver mutation, but it contains a combination of 

signature alterations such as EGFR or PDRGRA amplifications, TERT 

promoter mutation and others. The outer circle shows the histologi-

cal diagnosis with the abbreviations corresponding to the follow-

ing histological entities: A astrocytoma, AA anaplastic astrocytoma, 

GBM glioblastoma, O oligodendroglioma, AO anaplastic oligoden-

droglioma, PXA pleomorphic xanthoastrocytoma, APXA anaplastic 

pleomorphic xanthoastrocytoma, GG ganglioglioma, AGG anaplastic 

ganglioglioma, PA pilocytic astrocytoma, DLGNT diffuse leptome-

ningeal glioneuronal tumour, RGNT rosette forming glioneuronal 

tumour. The grey shades for each histological diagnosis indicate the 

prognosis: light grey corresponds to good prognosis and darkest grey 

corresponds to poorest prognosis. Note that tumours with identical 

histological diagnoses, depending on their underlying genetic altera-

tion, can show different biological behaviour and thus have a differ-

ent prognosis. For example, H3 K27M mutant gliomas (brown) can 

have a low- or high-grade histological appearance but all have a poor 

prognosis. Conversely, BRAF-mutant gliomas cover a wide spectrum 

prognoses ranging from benign to highly malignant tumours. The dia-

gram is for illustrative purposes and does not reflect frequencies of 

any of these entities
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useful is the additional testing for mutations in the promoter 

region of telomerase reverse transcriptase (TERT), which 

leads to an upregulation of the telomerase complex activity, 

increasing tumour cell survival. Two hotspots in the TERT 

promoter (C228T or C250T) are strongly associated with 

oligodendrogliomas. Whilst TERT promoter mutations are 

also seen in a proportion of IDH-wildtype glioblastomas and 

other tumours, they are generally not seen in IDH-mutant 

astrocytomas [24]. IDH-mutant glioblastomas almost never 

show EGFR amplification, unlike their IDH-wildtype coun-

terparts (see below) [41]. Of note, IDH mutations also are 

mutually exclusive with mutations in the BRAF gene (see 

below and Fig. 2).

Clinical relevance

The prognosis is currently determined more by the patient’s 

age, performance status and the molecular genetic profile 

of IDH-mutant tumours, than by standard treatment options 

such as surgery, radiotherapy and chemotherapy [57]. The 

combination of IDH mutation and 1p/19q codeletion pre-

dicts a favourable response to upfront combined radio-

chemotherapy. The importance of a 1p/19q codeletion, in 

particular, in anaplastic oligodendrogliomas has been dem-

onstrated in several prospective phase 3 trials [56]. While 

IDH-mutant astrocytomas have a poorer prognosis than 

IDH-mutant, 1p/19q codeleted oligodendrogliomas, IDH-

mutant glioblastomas have a considerably better prognosis 

than IDH-wildtype glioblastomas [59]. Importantly, there 

appears to be little difference in overall survival between 

IDH-mutant WHO grade II astrocytomas and WHO grade 

III IDH-mutant anaplastic astrocytomas, in this instance 

challenging the current histological approach in assigning 

a malignancy grade to tumours [40]. A targeted therapy in 

the form of a “vaccine” has been developed against IDH-

mutant tumour cells and is currently being rolled out in a 

clinical trial [48]. The production of a specific oncometabo-

lite by IDH-mutant tumours has also led to studies measur-

ing 2-hydroxyglutarate in body fluids, such as plasma and 

urine [14], and by imaging techniques [8] to assess disease 

progression and/or response to therapy.

IDH-wildtype gliomas: glioblastomas and their 

precursors

Genetics and pathology

Glioblastoma is the most common primary malignant brain 

tumour in adults. Glioblastoma shows a variable, but usu-

ally characteristic histopathological appearance and poses no 

diagnostic challenge in most cases. The morphological diag-

nostic features include tumour necrosis and/or microvascular 

proliferation (vessels with multilayered abnormal endothe-

lium) in a diffusely infiltrating, mitotically active astrocytic 

tumour. A challenge to diagnose glioblastoma histologically 

arises from small biopsies, which may contain only the infil-

tration zone of the tumour. It is increasingly important in 

clinical practice to recognise diffusely infiltrating gliomas, 

which do not show high-grade features by imaging or histol-

ogy, yet represent early forms of IDH-wildtype glioblastoma 

[39] (Fig. 2). Prior to the discovery of IDH mutations as 

biomarkers of diffuse astrocytomas, such “early” glioblas-

tomas were morphologically indistinguishable from other 

forms of astrocytomas but showed a rapid progression, 

posing a significant challenge to the WHO classification 

system. Currently, no specific mutation has been identified 

in IDH-wildtype glioblastomas that could serve as a useful 

biomarker, in the same way that IDH mutations do for oli-

godendrogliomas and astrocytomas. Instead, an increasing 

number of genetic and epigenetic alterations are discovered 

in IDH-wildtype glioblastomas, indicating that the nosologi-

cal entity of an IDH-wildtype glioblastoma encompasses 

tumours with multiple distinct molecular signatures. The 

molecular alterations in IDH-wildtype glioblastomas include 

mutations in the TERT promoter [24], chromosome 10q loss, 

7p gain or EGFR amplification, (some with an additional 

EGFR vIII mutation), ID2, MYCN and PDGFRA amplifica-

tions and CDKN2A/B deletions [45]. Molecular testing for 

these alterations can be helpful in identifying glioblastomas 

even in small samples, which do not demonstrate histologi-

cal diagnostic criteria for glioblastoma (Fig. 2). It is now 

well established that the p53 gene, one of the first genes 

found to be frequently altered in gliomas, can be mutant in 

both IDH-wildtype and IDH-mutant glioblastomas [25], and 

therefore the detection of p53 mutations is diagnostically 

and prognostically not relevant [2]. A small proportion of 

IDH-wildtype glioblastomas harbour a BRAF V600E point 

mutation (see below) or FGFR–TACC fusions [13].

Clinical relevance

The molecular alterations mentioned above can under cer-

tain circumstances be diagnostically useful, and thus may be 

important for adequate treatment planning. However, none 

of these tests have any proven prognostic or predictive sig-

nificance on their own. The only known biomarker indicat-

ing a benefit from treatment with a specific alkylating agent 

(temozolomide) is the methylation status of the MGMT pro-

moter. MGMT is a DNA repair protein which repairs chem-

otherapy-induced alkylation at the O6 position of guanine, 

thus counteracting the effects of alkylating chemotherapy. 

Methylation of the MGMT promoter is thought to silence 

gene expression and therefore reduce the repair activity of 

the protein. MGMT promoter methylation is associated with 

prolonged progression free and overall survival in patients 
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with glioblastoma, who are treated with temozolomide [51, 

56]. It must be noted that MGMT promoter methylation 

can occur in many other cancers and therefore cannot be 

used as a diagnostic marker. There are a number of ongoing 

clinical trials and emerging trials for both newly diagnosed 

and recurrent glioblastomas, using inhibitory drugs target-

ing specific cellular pathways or immunotherapy-based 

approaches with monoclonal antibodies or dendritic cell-

derived vaccines. However, the existence of several molecu-

larly and prognostically distinct subtypes of IDH-wildtype 

glioblastomas, and their highly infiltrative nature may con-

tribute to the difficulties in finding an effective and tailored 

treatment for them.

BRAF-mutant gliomas

Genetics and pathology

Somatic mutations in the BRAF gene were initially dis-

covered in melanomas and in a wide range of other can-

cers including colorectal and ovarian tumours as early as 

2002 [12]. A decade later, mutations in the BRAF gene, the 

V600E point mutation in particular, have been demonstrated 

in a range of low-grade IDH-wildtype glial and glioneuronal 

tumours [47], and also are increasingly recognised in malig-

nant variants [47, 53]. Mutations in the BRAF gene activate 

the MAP kinase pathway cascade, stimulating cell growth. 

Tumours in which this point mutation is most commonly 

found are pleomorphic xanthoastrocytoma (PXA, 60%), 

ganglioglioma and gangliocytoma (30%), subependymal 

giant cell astrocytoma (SEGA, 40%), desmoplastic infan-

tile glioma (10%) and pilocytic astrocytoma (5% infratento-

rial and 20% supratentorial) [3, 10]. Unlike the well-defined 

molecular classes of IDH-mutant tumours, the V600E point 

mutation in the BRAF gene occurs only in a subset of these 

nosological tumour entities. In other words, while the pres-

ence of IDH mutation is required for the molecular diagnosis 

of an astrocytoma or oligodendroglioma, in tumours such as 

ganglioglioma, pleomorphic xanthoastrocytoma or pilocytic 

astrocytoma the BRAF V600E mutation is not always pre-

sent. The BRAF V600E mutation has also been documented 

in a morphological variant of glioblastoma (epithelioid glio-

blastoma). It is being debated if epithelioid glioblastoma 

represents the most malignant form of PXA [53].

Currently, the detection of the BRAF V600E mutation is 

diagnostically useful for confirmation of a neoplastic pro-

cess, but it does not identify a specific nosological entity. 

With personalised, targeted therapy in mind, in the future 

it may be more relevant to test for this mutation rather than 

providing a detailed histological characterisation of these 

brain tumours.

Apart from a single substitution V600E mutation, other 

mutations in the BRAF gene, which can occur in IDH-

wildtype gliomas and glioneuronal tumours, include rear-

rangements, duplications and fusions with other genes and 

their detection may be diagnostically helpful. KIAA1549-

BRAF fusions are particularly frequently seen in pilocytic 

astrocytomas, a low grade, predominantly paediatric tumour 

arising most commonly in the posterior fossa. This fusion 

mutation is most common (approximately 85%) in posterior 

fossa pilocytic astrocytomas, and less frequently (50–60%) 

in hemispheric and diencephalic locations [10]. Those pilo-

cytic astrocytomas which do not harbour KIAA1549–BRAF 

fusion mutations, have been found to have mutations in 

genes encoding constituents of the MAP kinase pathway, 

including FGFR1 and NTRK gene family, NF1, PTPN11, 

KRAS and RAF1 [10, 21, 60].

Clinical relevance

Inhibition of the activating effects caused by the BRAF 

V600E mutation was the rationale for developing inhibitor 

drugs interrupting the BRAF/MEK component of the MAP 

kinase pathway. Target-specific drugs (e.g. Vemurafenib, 

Dabrafenib) were developed and initially approved for the 

treatment of BRAF V600E mutant melanomas, and have 

since been trialled first in malignant, and more recently in 

low-grade BRAF V600E mutant brain tumours [1, 35]. The 

development of drug resistance has led to the generation of 

MEK inhibiting drugs (e.g. Trametinib, Cobimetinib) which 

seem to be effective in combination with BRAF inhibitors 

[16, 18]. BRAF fusions have no known prognostic value, 

however, tumours bearing these mutations may in the future 

benefit from MAP kinase pathway inhibitors [43].

Histone-mutant gliomas

Genetics and pathology

Mutations in the histone genes have recently been demon-

strated in several malignant tumours, including high-grade 

gliomas. Several histone gene families exist, and the most 

commonly affected histone genes in brain tumours encode 

histone variant H3.3 (H3F3A, H3F3B), and less commonly 

histone variant H3.1 (HIST1H3B, HIST1H3C) [22]. The 

identified missense mutations affect three specific amino 

acids in the N-terminal tail of histone H3 (i.e. K27M, G34R 

and G34V). These mutations are highly specific, and are 

considered as “driver” mutations, i.e. tumour-initiating [49]. 

The histone H3.3 K27M mutation almost exclusively occurs 

in CNS tumours of the midline (thalamus, basal ganglia, 

brain stem and spinal cord) mostly in children, but as the 

mutation can be easily detected by immunohistochemistry 
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with a histone H3.3 K27M mutation-specific antibody, it 

is increasingly frequently identified also in adults [6]. The 

H3 K27M mutant diffuse midline gliomas of the brain stem 

are also known as diffuse intrinsic pontine gliomas (DIPG). 

H3 K27M mutant gliomas correspond to WHO grade IV 

(i.e. the most malignant grade) irrespective of their histo-

logical appearance. Therefore, these tumours form the first 

entity in the WHO classification in which the molecular 

signature, rather than the morphology, defines the grade of 

malignancy. Instead tumours outside the midline, i.e. in the 

cerebral hemispheric regions, more commonly carry the his-

tone H3.3 G34R or rarely G34V mutations. The majority 

of these mutations are found in the H3F3A gene. A propor-

tion of histone-mutant tumours also harbour mutations in 

the ATRX gene. These often result in the loss of nuclear 

protein expression in tumour cells, which can be detected 

by immunohistochemistry and thus facilitate a more rapid 

histological diagnosis (Fig. 2).

Clinical relevance

For paediatric patients with diffuse intrinsic pontine gliomas 

(DIPG), the largest group of histone-mutant tumours, treat-

ment options are very limited with no effective conventional 

chemotherapeutic agents, and radiation therapy being the 

standard of care, with a poor survival rate of less than 10% 

2 years after diagnosis [26]. Although as of now, there is 

no specific treatment available for histone-mutant gliomas, 

the discovery of mutations in histone genes and ongoing 

further research into the underlying mechanisms has laid 

the foundation for the development of targeted therapies 

with the aim to inhibit histone methylase and demethylase 

(reviewed in [26]). H3.3 K27M mutations lead to a global 

reduction of trimethylated H3K27 (H3K27me3). The level 

of trimethylation at this residue is regulated by the methyl-

ating enzyme EZH2 and the de-methylating JMJD3. High 

EZH2 levels correlate with poor overall survival, suggesting 

it as a potential target, and experimental preclinical studies 

are promising [29]. Another strategy focuses on the inhibi-

tion of the demethylase JMJD3; such a treatment has been 

successful in preclinical studies (reviewed in [50]).

Other low-grade glial and glioneuronal tumours

Genetics and pathology

This paragraph summarises a number of rare, histologically 

diverse tumours, comprising dysembryoplastic neuroepithe-

lial tumour (DNET), the above-mentioned ganglioglioma 

with its histological and grading variants (gangliocytoma, 

a predominantly neuronal variant, and anaplastic gangli-

oglioma, a malignant variant). Other rare entities in this 

group are desmoplastic infantile astrocytoma (DIA) and 

ganglioglioma (DIG), papillary glioneuronal tumour, rosette 

forming glioneuronal tumour (RGNT), diffuse leptomenin-

geal glioneuronal tumour (also described as disseminated 

oligodendroglioma-like leptomeningeal neoplasm [42]), 

central neurocytoma and cerebellar liponeurocytoma. Apart 

from the anaplastic form of the ganglioglioma these lesions 

are well-differentiated, slow-growing neoplasms, which have 

distinct histologies, and varied genetic profiles. The BRAF 

V600E mutations occur in a proportion of gangliogliomas 

(see above) and rarely in DIA/DIG. Papillary glioneuronal 

tumours are rare, clinically benign and are characterised 

by a very specific chromosomal translocation resulting in 

a fusion oncogene SLC44A1–PRKCA [4]. RGNT occurs in 

the fourth and occasionally in the third ventricle and else-

where periventricularly. They are rare, have a distinctive 

rosetting histological pattern and harbour mutations in the 

PIK3CA and FGFR1 genes [17], but they currently have 

little diagnostic value as the histology is characteristic and 

unique in most instances. The rare diffuse leptomeningeal 

glioneuronal tumour has entered the 2016 update of the 

WHO classification as a new entity. Although it often shows 

histological similarities to oligodendroglioma, and harbours 

a solitary 1p or combined 1p/19q deletion, importantly it is 

not IDH mutant. KIAA1549–BRAF fusions can be present 

either alone or in conjunction with the 1p or 1p/19q dele-

tions in diffuse leptomeningeal glioneuronal tumours [42]. 

An important differential diagnosis to this tumour is the 

pilocytic astrocytoma, which can have similar histological 

features (for example, clear cell morphology and leptome-

ningeal spread) and often harbours the KIAA1549–BRAF 

fusion. The central neurocytoma has a characteristic histol-

ogy and apart from WNT pathway activation and MYCN 

amplification in some tumours, no characteristic mutations 

have been identified. Central neurocytoma can resemble, 

histologically, an oligodendroglioma, but can be molecu-

larly easily discriminated as they have no IDH mutations 

or 1p/19q codeletion. A group of histologically relatively 

indistinct low-grade astrocytomas in children and young 

adults have emerged over the last years. These tumours do 

not harbour mutations in the IDH, BRAF or histone genes, 

but instead are characterised by MYBL gene rearrangements 

[37, 38, 60], which are thought to be driver mutations.

Clinical relevance

Most of the low-grade glial and glioneuronal tumours are 

benign have distinct histologies and the molecular markers 

identified in research studies are therefore of limited diag-

nostic value. Given their rarity and relatively indolent clini-

cal behaviour, it is also unlikely that these tumours will be 

on the priority list in the near future for the development of 
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target-specific therapy against the disease causing genetic 

defect.

Ependymomas

Genetics and pathology

Ependymomas (and their variants subependymoma and 

myxopapillary ependymoma) are glial neoplasms predomi-

nantly arising within, or in the vicinity of, the ventricles and 

the spinal cord. The molecular classification of ependymo-

mas has proven more meaningful for prognostication than 

the histological grading [31, 58], and although the nosologi-

cal entity of anaplastic ependymoma is still recognised in the 

2016 update of the WHO classification, it is clearly acknowl-

edged that there is no association between histological grade 

and biological behaviour or survival. Over the last decade, 

distinct molecular subgroups of ependymomas have been 

demonstrated with various genetic techniques. Recently, a 

uniform molecular classification scheme has been proposed, 

based on DNA methylation profiling, resulting in nine dis-

tinct molecular subgroups (Fig. 3): three molecular groups 

are allocated to each, supratentorial, posterior fossa and spi-

nal locations. In the supratentorial location, ependymomas 

with the presence of a fusion gene between C11ORF95 and 

RELA (ST-EPN-RELA) have a poor prognosis, and in the 

posterior fossa location the ependymoma group PF-EPN-A 

is characterised by a poor prognosis. All other ependymo-

mas [the two remaining supratentorial groups ST-EPN-YAP 

(YAP fusion) and ST-EPN-SE (subependymoma) and the 

two remaining infratentorial groups PF-EPN-B, PF-EPN-SE 

(subependymoma)] show a comparatively good prognosis 

[31]. As all spinal ependymomas have a good prognosis 

(when completely surgically resected), a molecular char-

acterisation is not essential in routine clinical pathological 

practice. Surrogate markers have recently been identified for 

some of these subgroups and can be easily implemented into 

routine diagnostic practice. Immunohistochemical detection 

of the global reduction of H3K27me3 is highly sensitive and 

Loca�on Pathology Abbrevia�on Molecular profile

(IHC surrogate marker) 

WHO Grade Overall 

survival 5Y

Age

distribu�on  

Gender distrib 

Supratentorial

(ST)

Subependymoma ST-SE Balanced 100

Ependymoma

(WHO grades II & III)

ST-EPN YAP1
11q aberr, 

YAP1 fusion
100

ST-EPN RELA
11q aberr, RELA-Fusion, 

Chromotrypsis

IHC: L1CAM, p65/RelA

75

Posterior fossa 

(PF)

Subependymoma
PF-SE Balanced 100

Ependymoma

(WHO grades II & III)

PF-EPN-A 
Balanced 

IHC: H3K27me3 
68

PF-EPN-B Chr Instability 100

Spinal (SP)

Subependymoma SP-SE 
6q del

100

Myxopapillary

Ependymoma
SP-MPE

Chr Instability
100

Ependymoma

(WHO grades II & III)
SP-EPN
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Fig. 3  Diagrammatic summary of the most recent molecular sub-

grouping of ependymomas based on DNA methylation patterns [30, 

31]. These molecular subgroups are genetically, epigenetically, tran-

scriptionally, demographically and clinically distinct. Three topo-

graphically distinct overarching groups are identified, supratentorial 

(ST), posterior fossa (PF) and spinal (SP). Within each group there 

are three molecularly distinct molecular subgroups. Two of these nine 

groups are characterised by poor 5 year survival. The molecular pro-

file column includes the immunohistochemically detectable surrogate 

markers of the PF-EPN-A and ST-EPN-RELA. All spinal tumours 

show favourable outcome when surgically completely removed
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specific for PF-EPN-A and robustly discriminates them from 

PF-EPN-B, thus aiding prognostication [32]. The ST-EPN-

RELA subgroup can be identified by immunostaining for the 

surrogate markers L1 cell adhesion molecule (L1CAM) or 

anti-NFkB (p65, RelA) [15], the latter based on the discov-

ery that C11orf95–RELA fusions drive oncogenic NF-kB 

signalling in ependymoma [33].

Clinical relevance

It is recommended that outside clinical trials, the WHO 

grading of ependymal tumours should not be used for the 

treatment decision [30]. Instead, the demonstration of nine 

clinically, demographically and molecularly distinct epend-

ymoma entities offers new opportunities for (molecular) 

evidence-based treatments. A consensus publication [30] 

emphasises the controversy of the traditional histologi-

cal grading system, and highlights the importance of the 

recognition of the molecular subgroups and mandates the 

use of the molecular classification of ependymomas for the 

enrolment in prospective clinical trials. However, as the rec-

ognition of the molecularly distinct subgroups is a recent 

development, no validated clinical trial data are available 

yet. This provides opportunities for the development of pre-

clinical model systems and inclusion of advanced, genome 

wide molecular tests, such as methylation arrays and subse-

quent algorithmic classification into the routine diagnostics 

of supratentorial and infratentorial ependymomas.

Conclusion and outlook

Many of the tumour entities described in this review are 

now defined by the presence of a mutation that serves as a 

biomarker, and there is now a consensus that certain brain 

tumour types should be diagnosed according to distinct 

biomarker profiles rather than histological features alone. 

It is striking, that the histological grade in some entities has 

become subordinate to the molecular profile, e.g. in epend-

ymomas [31] and possibly also in IDH-mutant astrocytomas 

[40]. Continuous advances in next generation sequencing 

and methylation arrays will increasingly aid the diagnosis of 

some brain tumour entities [52] and help the prognostication 

of others [46]. A molecular classifying algorithm based on 

DNA methylation profile has been developed for most types 

of brain tumours, helping pathologists in establishing the 

diagnosis of histologically unusual tumours and to determine 

the molecular subclasses for example of medulloblastomas 

or ependymomas (http://www.molecularneuropathology.

org). In those entities, e.g. Histone H3-, or IDH-wildtype 

glioblastomas, where no driver mutations are found, identi-

fication of molecular heterogeneity and characterisation of 

molecular subgroups in histologically similar tumours will 

help in the design of novel, more effective targeted thera-

pies. The main clinical relevance of identifying specific (epi) 

genetic alterations in each tumour is in their potential to 

serve as target for inhibitor drugs, or for the development 

of therapies, such as immunotherapy with vaccines aiming 

at the destruction of cells expressing a mutant protein [48].
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