
Neuromantic : from semi-manual to semi-

automatic reconstruction of neuron

morphology

Article

Published Version

open access

Myatt, D. R., Hadlington, T., Ascoli, G. A. and Nasuto, S. J.

(2012) Neuromantic : from semi-manual to semi-automatic

reconstruction of neuron morphology. Frontiers in

Neuroinformatics, 6 (4). pp. 1-14. ISSN 1662-5196 doi:

https://doi.org/10.3389/fninf.2012.00004 Available at

https://centaur.reading.ac.uk/32272/

It is advisable to refer to the publisher’s version if you intend to cite from the

work. See Guidance on citing .
Published version at: http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2012.00004/abstract

To link to this article DOI: http://dx.doi.org/10.3389/fninf.2012.00004

Publisher: Frontiers

Publisher statement: This Document is Protected by copyright and was first

published by Frontiers. All rights reserved. it is reproduced with permission.

All outputs in CentAUR are protected by Intellectual Property Rights law,

including copyright law. Copyright and IPR is retained by the creators or other

copyright holders. Terms and conditions for use of this material are defined in

the End User Agreement .

www.reading.ac.uk/centaur

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

CentAUR

Central Archive at the University of Reading

Reading’s research outputs online

NEUROINFORMATICS
METHODS ARTICLE

published: 16 March 2012
doi: 10.3389/fninf.2012.00004

Neuromantic – from semi-manual to semi-automatic
reconstruction of neuron morphology

Darren R. Myatt 1,Tye Hadlington1, Giorgio A. Ascoli 2 and Slawomir J. Nasuto1*

1 School of Systems Engineering, University of Reading, Reading, UK
2 The Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA

Edited by:

Daniel Gardner, Weill Cornell Medical

College, USA

Reviewed by:

Jan G. Bjaalie, University of Oslo,

Norway

Badri Roysam, Rensselaer Polytechnic

Institute, USA

Alvaro Duque, Yale University School

of Medicine, USA

*Correspondence:

Slawomir J. Nasuto, School of

Systems Engineering, University of

Reading, Whiteknights, Reading,

Berkshire RG6 6AY, UK.

e-mail: s.j.nasuto@reading.ac.uk

The ability to create accurate geometric models of neuronal morphology is important

for understanding the role of shape in information processing. Despite a significant

amount of research on automating neuron reconstructions from image stacks obtained

via microscopy, in practice most data are still collected manually. This paper describes

Neuromantic, an open source system for three dimensional digital tracing of neurites.

Neuromantic reconstructions are comparable in quality to those of existing commercial

and freeware systems while balancing speed and accuracy of manual reconstruction. The

combination of semi-automatic tracing, intuitive editing, and ability of visualizing large

image stacks on standard computing platforms provides a versatile tool that can help

address the reconstructions availability bottleneck. Practical considerations for reducing the

computational time and space requirements of the extended algorithm are also discussed.

Keywords: morphology, neuronal reconstruction, neuromantic, computational neuroscience, LiveWire

1. INTRODUCTION

Dendritic and axonal morphology plays an important role in

determining neuronal behavior in health (van Elburg and van

Ooyen, 2010) and disease (Kaufmann and Moser, 2000; Nasuto

et al., 2001; Whalley et al., 2005). Thus, neuromorphological

reconstruction using image processing is an important aspect of

computational neuroanatomy.

Although two-photon microscopy (Denk et al., 1990) can pro-

vide higher resolution, the majority of neuronal reconstructions

are obtained using widefield microscopy. Typically, neurons from

histologically prepared slices are either stained dark via labels such

as Neurobiotin or filled with a fluorescent dye. Available methods

for neuronal reconstruction vary in their degree of automation

(Meijering, 2010; Donohue and Ascoli, 2011; Svoboda, 2011). Tak-

ing into account the amount of required human intervention, four

main classes can be distinguished:

Manual (Camera lucida). Prisms are employed to visually over-

lay the microscope image onto a piece of paper, and the neuron is

then traced by hand. Although primarily used for 2D tracings, 3D

reconstructions can be derived from these with time consuming

post-processing (Ropireddy et al., 2011).

Semi-manual (e.g., Neuron_Morpho, Neurolucida). Digital seg-

ments are added by hand through a software interface, typically

sequentially, beginning at the soma, and working down the

dendritic tree.

Semi-automatic [e.g., NeuronJ (Meijering et al., 2004; 2D recon-

struction only) and Imaris (3D reconstruction)]. User interaction

defines the basic morphology, such as identifying the tree root

and terminations, but branch paths are traced by the computer.

Fully automatic (e.g., Imaris, NeuronStudio; Rodriguez et al.,

2003, AutoNeuron add-on for Neurolucida). The entire mor-

phology is extracted with minimal user-input.

The development of such techniques and increasing computa-

tional power and memory allow the collection of greater amounts

of morphological data and execution of more complex analyses.

The purpose of semi-automatic methods is to provide significant

assistance in tracing neurites; rather than forcing the user to manu-

ally segment each point along a dendrite, clicking on two positions

on a neurite will automatically trace along it. Both Imaris Fila-

mentTracer and the freeware NeuronJ perform semi-automatic

tracing through the application of steerable Gaussian filters (Free-

man and Adelson, 1991), although NeuronJ is restricted to 2D

reconstructions from single bitmap images, and does not provide

an estimate of dendritic radius.

Theoretically, fully automatic tracing should be able to produce

a full and accurate 3D reconstruction of a neuron from an image

stack with minimal user-input. Hence, in principle, fully automatic

methods should be highly preferable to semi-manual tracing. In

practice, however, most tracing is still performed semi-manually

with applications such as Neurolucida. The primary reason for this

is inaccuracy: the time required to edit the results of an automatic

reconstruction in order to obtain the desired accuracy is greater

than the time required to perform a semi-manual reconstruction.

Additionally, such algorithms tend to be restricted to high-quality

imaging technologies such as confocal or electron microscopy

(Rodriguez et al., 2003; Lu, 2011). If dendrites can be distinguished

from the background by luminosity alone via global thresholding,

the morphological reconstruction may be achieved with a skele-

tonization algorithm. However, such imaging technologies are still

less widely available in neuroscience laboratories than standard

widefield microscopes, due to significantly higher cost.

A large collection of neuronal reconstructions is freely avail-

able at NeuroMorpho.Org (Ascoli et al., 2007). However, taking

into account the great diversity of morphological neuron types

(Ascoli, 2006), there is still a paucity of reconstructed neurons: the

Frontiers in Neuroinformatics www.frontiersin.org March 2012 | Volume 6 | Article 4 | 1

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=42899&d=1&sname=TyeHadlington&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=1471&d=1&sname=GiorgioAscoli&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=26854&d=3&sname=SlawomirNasuto&name=Technology
mailto:s.j.nasuto@reading.ac.uk
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2012.00004/abstract

Myatt et al. Neuromantic

complexity of dendritic trees requires very large samples for reli-

able estimation of statistical measures and for drawing conclusions

about different classes of neurons.

In order to increase neuronal reconstruction throughputs, soft-

ware development needs to address the main stages of the process:

automating tracing, editing, and visualizing reconstructions. The

need for increasing automation has motivated the recent DIgi-

tal reconstruction of Axonal and DEndritic Morphology (DIA-

DEM) Challenge and the resulting competition aimed at stim-

ulating advancement of automated morphology reconstruction

software1. The goal of DIADEM was to identify the automated

morphology reconstruction system that could improve the post-

editing speed of manual reconstruction by a factor of 20 (Liu,

2011; Svoboda, 2011). In spite of many interesting advances in

automating the reconstructions, including (Bas and Erdogmus,

2011; Chothani et al., 2011; Narayanaswamy et al., 2011; Türetken

et al., 2011; Wang et al., 2011; Zhao et al., 2011), none of the

finalists achieved this landmark, and the jury decided to split

the DIADEM prize to encourage further development (Gillette

et al., 2011b). This outcome demonstrates that automating 3D

neuronal reconstruction remains an open problem (Donohue

and Ascoli, 2011; Senft, 2011). Thus, despite DIADEM’s signif-

icant technological advances, there is still a strong demand for

interactive, user-friendly 3D segmentation techniques affording

efficient correction of reconstruction errors, suitable to produce

accurate results from noisy data such as standard light micro-

scope images. An efficient way of reconstructing neurons using

a low-cost and readily available hardware set-up may be useful

to address the morphological data collection bottleneck, par-

ticularly enabling such research where cost may otherwise be

prohibitive.

Neuromantic2 is an open source, user-friendly application for

neuronal reconstruction. Its quick, easy, and intuitive editing func-

tionality combined with semi-automatic tracing and good visual-

ization capabilities, offers an attractive alternative to commercial

packages. It can be used to generate accurate reconstructions from

a wide variety of imaging techniques. Thus, it should help increase

the number of reconstructed neurons available. The efficiency and

accuracy with which Neuromantic can reconstruct trees is illus-

trated vis a vis another freeware application, Neuron_Morpho, and

the commercial application Neurolucida (MicroBrightField, Inc.).

Furthermore, an extension of the neurite tracing algorithm pro-

posed in Meijering et al. (2004) to a 3D image stack, rather than

a single image is presented, together with results of parameter

optimization experiments.

2. MATERIALS AND METHODS

2.1. NEUROMANTIC

Neuromantic is a stand-alone freeware application programmed

in Borland C++ Builder; it is designed to provide a simple and

intuitive interface for the exploration of serial image stacks and

the reconstruction of dendritic trees. Once a stack of images is

loaded (JPEG, BMP, and single/multi-page TIFF file are all sup-

ported), it can be explored effectively to translate, scale, and move

1DiademChallenge.Org
2sourceforge.net/p/neuromantic

through the data using the mouse via a simple click-and-drag

interface. The morphology may also be easily modified by deleting

segments/branches or changing connectivity to correct errors.

Reconstructions are stored in the freeware SWC format (Can-

non et al., 1998; Ascoli et al., 2001), an ASCII-based format repre-

senting dendritic trees as a series of connected cylinders of varying

radii. This is achieved by storing the reconstruction as a sequence

of 3D points, each associated with a measured radius, along with

the index of its parent point (or −1 if it is a root node). The result-

ing files are reasonably compact (especially compared to the size

of the original image stack), and easy to read and analyze by a wide

variety of applications.

In order to add a segment to the current reconstruction, a line

is dragged orthogonally across a dendrite from edge-to-edge, thus

providing an estimate of the diameter of the dendrite at that point.

The parent of subsequent segments is then set to the most recently

added one. Once a given dendrite has been completed, a previous

branch point may be selected by left-clicking, and then subsequent

segments will follow on from there.

The current slice in the stack, and thus the z coordinate of

the next segment, can be altered by either dragging a scroll bar,

holding down the middle mouse button, and moving the mouse

vertically or clicking the middle mouse button to perform an auto-

focus. The auto-focus function analyses a number of images above

and below the current one and jumps to the slice with the largest

first derivatives around the desired area. This feature significantly

improves semi-manual reconstruction efficiency as less time is

spent manually selecting which slice is more in focus.

There are also several modes available for overlaying the cur-

rent reconstruction over the stack. It may be displayed as a simple

skeleton or a series of varying width rectangles to illustrate each

segment’s radius. Also, the segments themselves may be colored

according to either their type or their distance from the currently

viewed image slice. Finally, there is an option to hide segments

that are not near the current plane of focus, thus helping to avoid

visual clutter during segmentation.

Figure 1 shows a selection of screenshots from the current

release of Neuromantic, illustrating the reconstruction process,

from initial loading of the stack, through tracing the tree,

culminating in a full 3D rendering of the finished reconstruction.

Neuromantic also includes some useful real-time image pro-

cessing options to aid reconstruction. With TLB stacks, where the

neurites are dark on a light background, the luminosity may be

inverted to allow more details to be observed in the neurites;

the contrast may also be adjusted as desired through histogram

stretching. These changes are only performed when drawing the

visible image and do not affect the underlying stack data, thus

preventing information loss.

2.1.1. Tracing algorithm

The semi-automatic reconstruction capabilities of Neuromantic

are based on the LiveWire algorithm (Barrett and Mortensen, 1997;

Falcao et al., 1998) for interactive segmentation of medical images,

where the user selects start and end points on an image and the

algorithm determines the “least cost” path between the two points.

Originally designed for marking out boundaries in image data such

as MRI scans, it was subsequently adapted in NeuronJ for tracing

Frontiers in Neuroinformatics www.frontiersin.org March 2012 | Volume 6 | Article 4 | 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Myatt et al. Neuromantic

FIGURE 1 |The process of semi-manual reconstruction and the

Neuromantic application. The top panel illustrates the process of

reconstruction from an image stack to a full 3D reconstruction, and the

bottom panel displays the application interface with labels indicating the main

features. Most of the functionality available via the interface is also replicated

in mouse and keyboard shortcuts for efficiency.

dendrites (Meijering et al., 2004) in 2D images. More recently,

Meijering’s algorithm has been further automated on 2D images

for estimating neurite length over a whole 2D image with multiple

neurons (Zhang et al., 2007).

The algorithm uses Steerable Gaussian Filters (Freeman and

Adelson, 1991) in order to identify pixels within the image stack

that are likely to belong to dendrites. Additionally, it identifies

the likely “flow” direction of the dendrites for each given pixel by

analyzing the eigenvectors of the estimated Hessian.

Subsequently, the actual neurite path is calculated by applying

Dijkstra’s graph optimization algorithm (Dijkstra, 1959) on the

image pixels to find the lowest cost pixel-per-pixel route between

the user-defined start and end points.

The algorithm may be readily extended to 3D (as previously

implemented in other LiveWire variations for segmentation) by

taking into account the new image geometry when expanding

nodes. The image processing remains essentially the same, except

that every image in the stack is now processed in the same way to

estimate neuriteness and vector flow.

2.1.1.1. Image processing. The primary function of the image

processing is to score pixels based on their likelihood that they

Frontiers in Neuroinformatics www.frontiersin.org March 2012 | Volume 6 | Article 4 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Myatt et al. Neuromantic

belong to a neurite, as well as producing an estimate of the direc-

tion of each neurite for a given pixel. For the neurite tracing appli-

cation, it is important for image processing to be computationally

efficient, as the system needs to update fast enough for real-time

user interaction. Steerable filters were therefore employed (Mei-

jering et al., 2004), because calculating six 1-dimensional image

convolutions scales linearly with respect to the number of image

pixels.

Convolving the image I (x) with three linearly separable basis

functions (Freeman and Adelson, 1991) produces the three

basis-filtered images B1,2,3:

B1(x) = δ2

δx2 I (x) ∗ G(x)

B2(x) = δ2

δxδy I (x) ∗ G(x)

B3(x) = δ2

δy2 I (x) ∗ G(x),

where G(x) is a normalized Gaussian with standard deviation σ.

From these images a Gaussianly smoothed estimate of the Hessian

for pixel x is

H (x) =
[

B1(x) B2(x)

B2(x) B3(x)

]

. (1)

However, following the example of Meijering et al. (2004), in

this case a modified version of the Hessian is used, such that

H ′(x) =
[

B1(x) − 1
3 B3(x) 4

3 B2(x)
4
3 B2(x) B3(x) − 1

3 B1(x)

]

. (2)

This modified Hessian implicitly represents a more elongated

version of the steerable filter. The eigenvalues and corresponding

eigenvectors of the modified Hessian H′(x) can then be used to

calculate analytically the maximum response of a steerable filter

at x.

The eigenvalues and eigenvectors of the modified Hessian can

be calculated from those of the standard Hessian:

λ′
1(x) = λ1(x) − λ2(x)/3,v′

1(x) = v1(x)

λ′
2(x) = λ2(x) − λ1(x)/3,v′

2(x) = v2(x)
(3)

The measure of neuriteness, ρ(x), is calculated as

ρ(x) =
{

λ(x)
λmax

, If λ(x) < 0,

0, Otherwise.
, (4)

where λ(x) is the eigenvalue of the modified Hessian with the

greatest absolute magnitude,

λ(x) =
{

λ′
1(x), If |λ′

1(x)| > |λ′
2(x)|,

λ′
2(x), Otherwise.

(5)

The normalizing term of λmax in (4) is the greatest absolute

eigenvalue of the correct sign over the entire image (which is neg-

ative when tracing light dendrites and positive when tracing dark

dendrites). Previous work (Meijering et al., 2004; Zhang et al.,

2007) has labeled this value as λmin rather than λmax, because

only considering light dendrites on a dark background (thus refer-

ring to the negative eigenvalue with greatest magnitude). In the

generalized case the use of λmax is more intuitive.

The original equation (4) is designed to only respond to light

dendrites on a dark background, such as those generated through

fluorescence microscopy. The ability to follow either light or dark

dendrites makes the algorithm applicable to standard transmit-

ted light bright field and other forms of microscopy. Getting the

image processing to score highly on dark dendrites instead of light

can be simply achieved by changing the sign of the eigenvalues

considered, in effect switching the definition of ρ(x) to

ρ(x) =
{

λ(x)
λmax

, If λ(x) > 0,

0, Otherwise.
(6)

In both definitions (4) and (6), the neuriteness value is bounded

such that ρ(x) ∈ [0,1].

The primary parameter affecting the estimation quality of ρ(x)

is the standard deviation, σ, of the Gaussian filters. The value of

σ is proportional to the radius of the dendrite that obtains maxi-

mum response with the steerable filter (Figure 2). If σ is too small

compared to the radius of a given neurite then ρ(x) will become

high on either side of the dendrite and low in the middle, and

will effectively be perceived by the algorithm as two separate and

parallel dendrites (third panel of Figure 2).

Conversely, a high value of σ will lead to poor tracking on thin

dendrites as some curvature will be lost by the Gaussian smooth-

ing (fourth panel of Figure 2). However, for a given value of σ,

accurate traces can be made of quite a large range of dendritic

radii, resulting in quite robust algorithm performance in practice.

The directional flow of the dendrite, v(x), is estimated by

the eigenvector associated with the eigenvalue with the smaller

absolute value.

2.1.1.2. Dijkstra routing algorithm. The Dijkstra algorithm

(Dijkstra, 1959) can be used to calculate optimal routes between

two given nodes on a weighted graph. It is effectively a best-first

tree search, in which the node with the lowest cumulative cost is

examined first at each stage.

The algorithm employs two lists, the open and closed list. The

open list initially contains only the first node (or root node), which

corresponds to the pixel in the image stack that the tracing will

begin at, and the closed list is empty. The algorithm then proceeds

as follows:

1. Take the node A with the lowest cumulative cost from the open

list (or terminate if the list is empty). Move the node to the

closed list.

2. Add to the open list any nodes connected to A that are not in

the closed list, and calculate their cumulative cost, which is the

sum of the cost of A and the cost of moving along that specific

graph edge.

3. Repeat steps 1 and 2 until the desired destination node is added

to the open list or the algorithm terminates unsuccessfully

(if there is no route between the root node and the desired

destination node).

Frontiers in Neuroinformatics www.frontiersin.org March 2012 | Volume 6 | Article 4 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Myatt et al. Neuromantic

In this way, once a given node has been considered, the opti-

mal cost path from the source to that node is immediately known.

Another useful property is that if a series of nodes x1. . .xn rep-

resent an optimal route, then a subset x1. . .xn−i (where i is a

positive integer) must also be the optimal route between nodes 1

and n − i.

Extending the Dijkstra algorithm from two to three dimensions

is straightforward: instead of adding just the 8 pixel-neighborhood

of a pixel A to the list when A is expanded, the 9 pixels on the

slices directly above and below to the open list are also added, as

demonstrated in Figure 3. Even without altering the cost function,

the algorithm then tends to correctly follow between slices as more

in focus dendrite will have a higher neuriteness score.

The cost function is fundamental to the neurite tracing algo-

rithm, as it determines which overall route will be optimal. In

general, the cost should be inversely related to the “likelihood”

that the given pixel belongs to a neurite.

Let the vector x = {x, y, z} specify a given pixel in 3D within the

image stack. The x,y coordinates specify the location within a given

image, and the z coordinate specifies the stack image. Let x’= {x,

y} be the sub-vector of x containing only the x, y coordinates.

The first of the cost function terms used in Dijkstra algo-

rithm is the neuriteness, Cλ (x), which is inversely propor-

tional to how likely a given pixel is to belong to a neurite.

The second term represents a measure of how well the cur-

rent pixel-to-pixel move reflects the “flow” of the dendrite, as

estimated using the eigenvectors of the Hessian matrix at that

point.

Meijering’s cost function is a linear combination of these two

terms, with a weighting parameter γ, and calculates the cost of

moving from pixel x to y, C (x, y), as follows:

C(x,y) = γCλ(y) + (1 − γ) Cv (x,y)

The neuriteness cost, Cλ (y), is calculated simply from the

neuriteness function defined in Section 1 as

Cλ(y) = 1 − ρ(y),

such that the cost of the pixel is inversely proportional to its neu-

riteness. The second term,which penalizes the movement when the

FIGURE 2 | Example of ρ(x) response from the steerable filters for

varying values of σ. From left-to-right: the original image, the ρ(x)

response with an appropriate value of σ, the response with an

inappropriately small value of σ and the response with an overly large σ.

Areas where the original image show through indicate values of zero

for ρ(x).

FIGURE 3 | An illustration of how the routing algorithm is extended to 3D by adding nodes on 3 × 3 pixel neighborhoods for the slices directly above

and below the specified node.

Frontiers in Neuroinformatics www.frontiersin.org March 2012 | Volume 6 | Article 4 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Myatt et al. Neuromantic

neurite flow differs from the proposed pixel-to-pixel movement,

is defined as

Cv (x,y) = 1

2

[

√

1 − ψ(x,y) +
√

1 − ψ(y,x)

]

,

where

ψ(x,y) =
∣

∣v(x) · d(x,y)
∣

∣

and

d(x,y) = y′ − x′
∣

∣y′ − x′
∣

∣

.

The vector flow term, Cv (x, y), is bounded in the interval 0–1,

where a value of 0 indicates the pixel-to-pixel movement is com-

pletely parallel to the neurite flow on pixels x and y, and a value of

1 indicates that the movement is orthogonal to both flows.

Of the two terms, the neuriteness is considerably more impor-

tant. The tracing algorithm still functions effectively when γ = 1,

but completely fails as γ → 0.

Meijering’s original algorithm did not take into account nor-

malization for diagonal pixels. The cost function for this step

is multiplied by
√

2 to account for the increased distance trav-

eled compared to moving vertically or horizontally. Without this

normalization the algorithm would be biased toward traveling

diagonally. The diagonally corrected cost function then becomes:

C(x,y) =
∣

∣y′ − x′∣
∣

[

γCλ(y) + (1 − γ) Cv(x,y)
]

.

For the expansion to 3 dimensions, changes in z are dealt with

independently, such that if the z difference between pixels x and

y is non-zero then the pixel cost is multiplied by a constant value,

η. In this way, the routing may be penalized for jumping between

different stack images frequently. The multiplicative z penalty, Cz

(x, y), is defined as:

Cz (x,y) =
{

η, If xz �= yz ,

1, Otherwise.
(7)

Integrating Cz into the above formulation yields the Neuro-

mantic cost function:

C(x,y) =
∣

∣y′ − x′∣
∣ Cz (x,y)

[

γCλ(y) + (1 − γ) Cv(x,y)
]

.

Subsequent to optimizing pixel-by-pixel routing with the Dijk-

stra algorithm, the final solution is obtained by sub-sampling this

route. The z value of each subsampled pixel is taken as the mean

value of the pixels that make up that segment, rounded to the

nearest integer.

One minor issue with strict graph optimization is that the

algorithm is generally biased toward physically shorter routes

(i.e., those traversing the fewest pixels). This was observed in

Meijering et al. (2004), where dendrite length was consistently

underestimated, although usually by a small proportion.

2.1.2. Patchwork approach

The image stacks used for this type of reconstruction can easily

reach one Gigabyte in size, resulting in estimated 20 GB of RAM

needed for proper operation, based on required 20 bytes per pixel

and 8-bit grayscale images. Thus, image processing the entire stack

would be expensive in terms of both time and space.

A practical solution to this problem is to process, in real-time,

smaller patches of the image stack, rather than pre-processing

the entire stack. Therefore, when the user initially clicks on the

3D start point for the dendrite, a stack of patches is added that

is centered on that point (usually 128 × 128 pixels), encompass-

ing several patches above and below the current Z coordinate

(typically ±5). Overall, then, 2n + 1 patches must be analyzed,

where n is the selected spread. Each patch is fully image-processed,

and the neuriteness and image flow calculated and stored for

each pixel, as well as sufficient memory allocated for routing

information.

Neuromantic allocates new patches dynamically as the user

moves the cursor along the neurite; when the mouse is moved

over an area not containing a patch, a new patch stack is allocated

and linked in the routing algorithms so that a trace may be created

across any number of patches.

The optimal solution found using patchwork is not necessar-

ily identical to the theoretical optimum calculated without it,

although in most cases they coincide. For example, for a given

set of patches, after a certain amount of processing every node in

those patches will have been evaluated by the Dijkstra algorithm,

leaving an empty Open list. If a new patch were added after this

happened, no further routing would take place as all nodes would

be already analyzed.

To avoid this problem, when a new patch is added all nodes that

have already been routed to at the edge of any overlapping existing

patch are re-added to the Open list, such that the routing may

continue onto the new patch. However, because some nodes with

a greater cost than the lowest nodes in the new patch may have

already been expanded, the strict guarantee of optimality is lost.

In practice, this may only have detectable effects on meandering

dendrites moving from one patch to another and then back again,

but it has no effect if the second patch is added before routing

reaches the edge of the first one, which is the usual case.

2.2. MANUAL RECONSTRUCTION

An experiment was performed to examine the semi-manual recon-

struction capability of Neuromantic, the time required to complete

a reconstruction, and the statistical properties of these recon-

structions compared with Neuron_Morpho and Neurolucida

reconstructions of the same neuron.

The trial consisted of ten participants (postgraduate student

volunteers at the University of Reading’s), each of whom recon-

structed the basal dendrites of a CA1 rat hippocampal neuron (as

described in Section 4).

All the participants worked with a luminosity-inverted version

of the stack as the dendrite details were more apparent. They were

also able to alter the contrast to highlight branches more effectively,

but advised to keep it at one setting throughout the reconstruction.

Participants were given step-by-step instructions for adding

new segments and branch points, and example images of how

Frontiers in Neuroinformatics www.frontiersin.org March 2012 | Volume 6 | Article 4 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Myatt et al. Neuromantic

correctly segmented branches should look, enabling more effective

identification, and tracing of dendrites with high spine density.

2.3. SEMI-AUTOMATIC RECONSTRUCTION

The key to routing algorithm accuracy is the quality of its cost

function. The cost function should be monotonically decreasing

with increasing likelihood that the pixel belongs to a neurite.

We examined the effect of applying exponential function to the

cost terms on the tracing quality. Integer exponents were selected

because they would help penalize areas with low neuriteness and

help reduce the incidence of shortcuts taken over non-neurite pix-

els. Also, they are highly efficient to compute, so the speed of the

algorithm would not be significantly reduced.

The considered cost function is generalized to

C ′(x,y) =
∣

∣y − x
∣

∣

[

γCλ (y)a +(1 − γ)Cv (x,y)b
]

,

where a ≥ 0, b ≥ 0,

where a and b are non-negative integers.

The original cost function is a specific case of the generalized

function where a = 1, b = 1. The quality of tracing was explored

for several values of a and b over a variety of neuronal tracing

tasks, and the accuracy of the tracings compared to a carefully

hand-segmented reconstruction.

2.3.1. Error metrics

Two main metrics were used in order to assess reconstruction

accuracy – midline tracking (considering x, y) and depth error

(considering z), (Myatt et al., 2006). The z axis was treated sepa-

rately because the z axis is qualitatively different from the x/y axis

in many microscopy techniques, particularly light microscopy. It

is typical for the z resolution of the image stack to be significantly

lower than the x, y resolution.

Let the series of 3D points representing the ground-truth

be ω1. . .n , where ωi = {x, y, z}. Similarly, the estimated recon-

struction is ω̂1...m . A piece-wise linear model of the estimated

dendrite midline can then be generated by connecting straight

segments between the specified 3D coordinates of ω̂j and ω̂j+1 for

j = 1. . .m − 1.

For each of the ground-truth segment points, ωi, the closest

point along this piece-wise linear midline may be determined: the

parameters of that point, ω̂′, are assumed to be a linear combina-

tion of the parameters of the two segment points that defined it,

ω̂j and ω
ĵ+1

, such that

ω̂′ = α ω̂j+1 +(1 − α) ω̂j , (8)

where α ∈ [0, 1] was the proportional distance along the line. This

allows the estimation of a value of the z coordinate at this point,

although individual z values for each point are rounded to the

nearest integer. The errors are then calculated based on parameter

differences between ωi and ω̂′.

Midline tracking error is the error, in pixels, from the x, y

positions defined by ωi and ω̂′.
Depth error is the error, in slices, between the depths defined

by ωi and ω̂′. Both depths are rounded to the nearest integer

value, as the original hand segmentation is only accurate to

±0.5 slices.

2.3.2. Experiments varying cost function

Eight different cost functions combining different polynomial

terms of the neuriteness and neurite flow were examined to

investigate neurite tracing accuracy:

N N + V N 2 + V

N + V 2 N 3 + V N + V 3

N 2 + V 3 N 4 + V

where N represents the neuriteness term Cλ (y) and V the vector

flow term. The first condition of N alone was added to verify the

necessity of the vector flow term, as it has a much less significant

effect than the neuriteness term. The second condition represents

the original cost function.

A z penalty multiplier of η = 1.3 was selected. The cost func-

tion, informed by the default setting in NeuronJ, was substantially

biased toward the neuriteness term with γ = 0.9.

For comparison, the final paths were subsampled by a factor

of 5.

2.3.3. Significance testing

To be recommended, a given cost function variant must perform

significantly better than the standard function N +V. The per-

formance of each cost function on all benchmark neurites was

ranked applying Wilcoxon rank sum test (Wilcoxon, 1945) with

significance level α = 0.05.

The Bonferroni correction for multiple comparisons was

applied (Miller, 1991), to minimize spurious significant results.

This overly conservative approach increases the false negative

probability, as the different costs functions are not truly indepen-

dent.

The null hypothesis, H 0, is that there is no significant consis-

tent difference between the tracing quality produced by different

cost functions, whereas the alternative hypothesis is that the cost

function has some consistent effect on tracing quality.

In the case of testing the varying values of η, each other value

will be compared against a value of η = 1.0, as this represents the

default case of no biasing for moving between different image

slices.

2.4. DATA

The benchmark data used to evaluate manual reconstruction as

well as semi-automatic tracking came from 200 µm brain sections

from adult, male, Sprague-Dawley rats (Desmond et al., 1990)

stained using a modified rapid-Golgi method (Desmond and

Levy, 1982). A manually selected CA1 pyramidal neuron from

hippocampal CA1 area was imaged using an Olympus BX51

microscope with an Olympus Arch x60 dry objective. The resulting

image set consists of 5 stacks stitched together using the Vol-

ume Integration and Alignment System (VIAS) freeware software

(Rodriguez et al., 2003). Every stack contains 86 images, each with

a resolution of 2862 × 1649. Using 8-bit color depth, the total

memory required to hold the stack is 387 MB.

The original Neuron_Morpho and Neurolucida reconstruc-

tions from (Brown et al., 2005) were kindly made available to us.

Frontiers in Neuroinformatics www.frontiersin.org March 2012 | Volume 6 | Article 4 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Myatt et al. Neuromantic

To constrain the duration of experiments, only the basal tree was

considered. The two original reconstructions were therefore edited

in Neuromantic to remove their apical dendrites. This can be

achieved easily in Neuromantic by holding down the ALT key and

clicking on any apical dendritic segment, selecting all apical den-

drites. Pressing delete will then remove all such segments. Of these

edited reconstructions, the Neuron_Morpho basal tree had 2573

segments, and the Neurolucida reconstruction 2258 segments.

For the semi-automatic reconstruction experiments five

branches were selected as benchmarks and manually reconstructed

by the first author to obtain the ground-truth against which the

semi-automatic reconstruction could be assessed.

The second set of benchmarks for semi-automatic reconstruc-

tion comes from a guinea pig piriform cortex neuron labeled with

Neurobiotin, (Libri et al., 1994) and imaged with a Nikon Eclipse

E1000 with a Nikon x20 dry objective in a single field of view,

with a z resolution of 0.8 µm. The image stack has a resolu-

tion of 3840 × 3072 pixels, and contains 99 slices. This neuron

had undergone significant deformation from shrinkage during

histology, yielding highly meandering dendritic paths: although

an artifact, these dendrites are very difficult to trace due to both

the low contrast and shape, and thus represent a very challenging

benchmark. The dendrites frequently double back on themselves,

meaning that it is exceedingly easy for a tracing algorithm to miss

sections by jumping from one part to another.

Five branches were carefully segmented using the semi-manual

capabilities of Neuromantic as test cases. Analogously to Meijer-

ing et al. (2004), the midline was identified while using a highly

zoomed version of the stack with bicubic image interpolation

enabled to maximize accuracy.

Example images from the two benchmark stacks are shown in

Figure 4, along with the ten selected test dendrites.

3. RESULTS

The number of reconstructed segment per time produced by

participants varied from 861 and 4549, and the overall time

taken from 140 to 290 min. The segments added per minute

ranged from 4.5 to 15.7, with a mean value of 10.2. For com-

parison, Brown et al. (2005) reported that each entire pyramidal

neuron took approximately 20 h (1200 min) to reconstruct with

both applications. Therefore the Neurolucida reconstruction (with

5759 segments) yielded approximately 4.8 segments/min, whereas

the Neuron_Morpho reconstruction (with 7499 segments) gave

6.2 segments/min.

The number of segments per time is used here as an index

indicative of the ease of use of reconstruction software, elimi-

nating variations due to the average segment length. However,

it is worth noting that the amount of segments in semi-manual

reconstructions produced by each participant varied significantly,

despite the fact that the introductory demonstration included a

recommended segment size in order to reduce this issue. This is

mainly attributed to the varying desire of the participants to com-

plete the task as quickly as possible, and seems unavoidable in a

trial of this kind without imposing some physical segment length

limit within the software itself.

A variety of statistical measures from the reconstructions were

calculated using L-Measure (Scorcioni et al., 2008).

FIGURE 4 | An example image from both benchmark image stacks,

with the position of the ten benchmark dendrites marked upon them.

The luminosity is inverted in both cases (the stacks are naturally dark

dendrites on a light background), and the luminosity histogram has been

stretched to improve the contrast with the background.

3.1. MORPHOLOGICAL COMPARISON OF RECONSTRUCTIONS

Figure 5 shows a rendering of the ten reconstructions generated

by the participants in the experiment, along with the cut-down

Neuron_Morpho and Neurolucida reconstruction. The basic mor-

phology is similar for each, although there is significant variance

with respect to the presence of the smaller branches.

The most obvious gross morphological difference between the

Neuron_Morpho and Neurolucida reconstructions is that the for-

mer lacks the large branch furthest to the right. All Neuromantic

reconstructions contain at least part of this branch.

Significant variation in radius estimation can be clearly seen

over the reconstructions: visually reconstruction 5 appears to have

the thinnest dendrites (closest to the original Neurolucida recon-

struction). Reconstruction 2, on the other hand, demonstrates the

widest dendrites, and should therefore have the largest overall vol-

ume and surface area. These observations are confirmed by the

statistical analysis.

3.2. STATISTICAL ANALYSIS OF RECONSTRUCTIONS

Segment data were post-processed in order to remove obvious

reconstruction errors (e.g., tracing an obvious length of axon

Frontiers in Neuroinformatics www.frontiersin.org March 2012 | Volume 6 | Article 4 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Myatt et al. Neuromantic

FIGURE 5 |Variation in morphology of the 10 basal tree reconstructions created by the participants in the experiment (they are in ascending order from

left-to-right). The Neuron_Morpho reconstructions and Neurolucida reconstructions presented in Brown et al. (2005) are shown to allow visual comparison.

rather than dendrite, tracing a wildly out-of-focus dendrite, initi-

ation of the reconstructions at different points on the soma). This

resulted in minor discrepancy between the numbers of segments

used for calculation of speed of reconstruction (original raw num-

bers of segments used in Table 1) and the number of segments used

for calculating dendritic tree statistics (Tables 2 and 3). However,

this difference had a negligible effect on the considered dendritic

branch statistics.

3.2.1. Gross neuron statistics

The total reconstructed dendritic surface area and volume, defined

as the sum over all segments of respectively, segment surface and

volume, were based on the assumption that each segment is a

uniform cylinder (as opposed to a tapering one), Table 1.

The interquartile range for overall volume is around 3000 µm3,

which is about 25% of the median value. However, such variation

is not unexpected, as other investigations into inter-user variance

on different systems have consistently found very significant vari-

ation between both different operators on the same system and the

same operator on different systems (Jaeger, 2000; Kaspirzhny et al.,

2002). The interquartile range for overall surface area is approxi-

mately 4000µm2 (17% of the median value); consistent with the

volume being quadratic function of the radius, rather than a linear

one (as with surface area).

The variations in the quality of a reconstruction come from two

major sources: the number of identified and segmented branches,

and the quality of the segmentation of each branch (midline

and radius estimation). Some gross properties, such as the total

Frontiers in Neuroinformatics www.frontiersin.org March 2012 | Volume 6 | Article 4 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Myatt et al. Neuromantic

Table 1 | Gross neuron statistics for each of the ten reconstructions created by the participants.

Neuron characteristics 1 2 3 4 5 6 7 8 9 10

Segments 4599 1815 4057 859 2130 2125 1431 1924 2208 2033

Branches 54 52 48 47 34 41 35 56 40 41

Total length (µm) 4944.7 5188.3 4348.3 4448.2 3543.3 4746.1 3221.0 4633.7 4131.1 3999.1

Total area (µm2) 23952.7 33657.2 24868.6 26040.0 16777.6 25542.4 22080.1 21983.5 22400.6 24849.0

Total volume (µm3) 14028.3 24463.4 16845.5 16399.7 9553.3 16480.0 15910.7 13361.6 14166.7 16858.5

Table 2 |The median and interquartile range of the experimental

reconstructions compared to the Neuron_Morpho and Neurolucida

reconstructions.

Property Median LQ UQ NM NL

Segments 2079 1623 3132.5 2259 2572

Branches 44 37.5 53 36 32

Total length (µm) 4398.3 3771.2 4845.4 3618.64 3627.3

Total area (µm2) 24400.9 22031.8 25791.2 19469.1 17321.9

Total volume (µm3) 12672.2 10347.55 13605.6 9189.1 7059.8

LQ and UQ are the lower and upper quartile values, respectively, with NM and

NL representing Neuron_Morpho and Neurolucida.

number of branches, are only attributable to one of these factors

(branch identification), whereas the overall volume, for example,

is a function of both.

The measurement of the dendritic radius contributing to the

quality of branch segmentation is always the most variable aspect

of neuronal reconstructions: due to the integration of the image

volume with the Point Spread Function the edges between the

dendrites and the background are blurred, and thus the choice of

diameter tends to be subjective. Estimation of radii can vary signif-

icantly between different labs performing neuronal reconstruction

(Scorcioni et al., 2004).

For this experiment, participants were instructed to estimate

the dendrite edge as where the brightest luminosity of the pixels

first began to decrease (since the participants were working with

a luminosity-inverted stack, the dendrites were lighter than the

background). On the other hand, the reconstruction procedure

used in (Brown et al., 2005) in Neuron_Morpho and Neurolucida

employed a measuring scheme of 4 pixels on either side of the

darkest pixels. Consequently, one has to be cautious not to draw

quantitative conclusions when comparing the relative volumes of

the reconstructions.

Table 2 shows the median and interquartile range over all

reconstructions for the metrics in Table 1.

In summary, these data suggest that the Neuromantic inter-

face makes it simple to navigate the image data and identify

dendrites that have not yet been segmented. This might be due

to the use of an inverted image stack making dendritic details

clearer or the variety of options available for overlaying the current

reconstruction.

3.2.2. Branch statistics

Table 3 contains the mean value of branch statistics for all

the reconstructions, whereas Table 4 shows the median and

lower/upper quartiles over all reconstructions, along with the cor-

responding Neurolucida/Neuron_Morpho values for comparison.

The mean diameter of the Neuron_Morpho and Neurolucida

reconstructions falls within the interquartile range observed in the

experiment (0.45 µm), with the proportional difference between

the median and the original reconstructions being just over 10%

at maximum.

The median path, and Euclidean mean, distances for branches,

however, do not fall within 10% of either the Neurolucida or

Neuron_Morpho reconstructions reflecting the generally larger

number of branches identified by the participants.

Contraction (always between 0 and 1) is a measure of den-

dritic meandering, with 1 indicating perfectly straight dendrites

and decreasing values increasing “wiggle.” The interquartile range

of the experimental contraction values (≈0.05) encompasses the

associated values of both original reconstructions. The median

value observed in the experiment is also within <5% of both the

original values.

For the partition asymmetry, the Neuron_Morpho and Neu-

rolucida values again lie within the experimental interquartile

range, and the median within <10% of both values. Interestingly,

though, the Neuron_Morpho and Neurolucida values differ signif-

icantly by around <20% on this metric; likely attributable to the

missing right hand branch in the Neuron_Morpho reconstruc-

tion (Figure 5). Also, partition asymmetry, like branch order, is

somewhat sensitive to the presence/absence of minor branches.

The taper measure used here is the mean decrease in diameter

per unit length. The experimental reconstructions tended to have

greater mean taper rates than the original reconstructions, and the

interquartile range of this metric was large at 0.04.

The daughter ratio is the ratio of the radius of the wider daugh-

ter branch from a bifurcation to the thinner branch (and thus is

always ≥1). Here, a large difference is observed between the Neu-

ron_Morpho and Neurolucida reconstructions (1.64 and 1.21,

respectively), with the Neuromantic interquartile range encom-

passing the Neuron_Morpho value but not the Neurolucida one,

and the Neuromantic median being highly similar to the Neu-

ron_Morpho value (at 1.63). It is possible that the differing inter-

faces bias operators into segmenting bifurcations in different ways,

and Neuromantic’s basic method for semi-manual reconstruction

is much more similar to Neuron_Morpho than Neurolucida’s.

As for the parent daughter ratio (the diameter of the daughter

branch divided by that of the parent branch), the interquartile

range includes neither the Neuron_Morpho nor the Neurolu-

cida reconstructions. This may be partly due to a tendency for

the inexperienced participants to systematically overestimate the

radius leading to larger parent daughter ratio scores.

Frontiers in Neuroinformatics www.frontiersin.org March 2012 | Volume 6 | Article 4 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Myatt et al. Neuromantic

Table 3 |The mean branch statistics for each of the ten reconstructions performed by the participants.

Measure (mean) 1 2 3 4 5 6 7 8 9 10

Diameter (µm) 1.512 1.951 1.732 1.948 1.474 1.69 2.113 1.487 1.719 1.939

Path distance (µm) 145.8 138.5 145.4 134.4 124.3 137.3 131 125.1 130.7 136.6

Eucl. distance (µm) 97.41 96.49 101.1 99.46 94.61 102.5 102.5 95.55 98.31 104.5

Branch order 3.260 3.576 3.475 3.207 2.884 3.513 3.277 4.173 3.188 3.492

Contraction 0.7797 0.8725 0.8214 0.9100 0.8568 0.858 0.8727 0.8867 0.8428 0.853

Partition asym. 0.4297 0.4815 0.3786 0.3444 0.4692 0.4778 0.4314 0.4312 0.5167 0.3764

Taper −0.0437 −0.0438 −0.0767 −0.0408 −0.0374 −0.0925 −0.0230 −0.0403 −0.0217 −0.0048

Daughter ratio 1.667 1.704 1.421 1.388 1.604 1.920 1.512 1.708 1.63 1.621

Parent daughter ratio 0.7898 0.8984 0.8038 0.8959 0.7872 0.7599 0.8686 0.731 0.7625 0.6617

Bif. amp local (˚) 95.53 75.5 86.16 65.27 60.74 75.38 67.24 69.16 67.85 68.43

Table 4 |The median and interquartile branch statistics for each of the ten reconstructions performed by the participants.

Property Neuromantic L.Quart. U.Quart. NM NL

Diameter (µm) 1.726 1.500 1.950 1.671 1.519

Path distance (µm) 135.5 127.9 142.0 125.1 110.2

Eucl. distance (µm) 98.9 96.0 102.5 95.5 88.4

Branch order 3.376 3.198 3.545 3.630 3.485

Contraction 0.8574 0.8321 0.8797 0.8600 0.8704

Partition asym. 0.4313 0.3775 0.4797 0.3949 0.4755

Taper −0.0406 −0.0603 −0.0224 −0.0257 −0.0300

Daughter ratio 1.626 1.467 1.706 1.641 1.211

Parent daughter ratio 0.789 0.746 0.882 0.662 0.664

Bif. amp local (˚) 68.8 66.3 80.8 77.0 77.0

NM is the Neuron_Morpho reconstruction value and NL is the Neurolucida one.

The local bifurcation angles measured in the experiment were

also significantly different than the original reconstructions. The

Neuron_Morpho and Neurolucida values were both highly sim-

ilar (with less than a degree’s difference), and are encompassed

by the experimental interquartile range (≈14˚). As the bifurcation

angle is only calculated based upon the angle between the parent

and daughter segments, there is significant scope for subjective

difference as to the parent segment placement.

Both of the original reconstructions were segmented by the

same individual, thus minimizing subjective inter-user differences.

Therefore, it is to be expected that the Neuron_Morpho and Neu-

rolucida reconstructions would be more similar to each other than

to Neuromantic ones.

Some of the reconstruction variability may be attributed to

the fact that the participants were non-experts, hence reflecting

some of the participants’ incorrect understanding of the actual

task, rather than issues with the application itself (based on a

short debriefing session afterward). Each participant increased in

speed over the course of the experiment as they became more

used to visually interpreting the image stacks and repeating the

basic process of segmenting the neurons.

3.3. THE EFFECT OF COST FUNCTION ON TRACING ACCURACY

The results reported illustrate the effect of modifying the cost func-

tion on the x/y tracking. The corresponding effect on z tracking,

was examined but found negligible (results not shown).

Table 5 shows the mean square x/y tracking error (as defined

in Section 1) for each cost function over all ten benchmarks.

Significant variation is observed between cost functions. Partic-

ularly, much larger errors are seen in the second set of benchmarks

6–10, as it is possible for the routing algorithms to miss out

significant sections of the neurite because of their meandering

nature. Figure 6 shows typical shortcut errors made when tracing

benchmark 10.

Table 6 displays the mean (ascending x/y tracking error) rank-

ing of each cost function over all ten benchmarks. The Bonferroni

corrected value of α is 0.05/8 = 0.0063, implying statistical sig-

nificance for the N 4 +V cost function. However, 4 out of the 8

alternative cost functions had p-values lower than 0.05. The like-

lihood of such an event occurring by chance is 0.037%, so some

Type II errors (false negatives) have probably been made. In gen-

eral, though, cost functions with a neuriteness exponent of greater

than one are likely providing real and consistent improvements,

whereas changes to the vector flow exponent are insignificant.

As expected, the neuriteness term exponent, a, is significantly

more important than the associated vector flow exponent b.

Increasing the vector flow exponent improves quality on x/y track-

ing to a much lesser extent, consistently with the neuriteness being

the most significant term in the cost function. Therefore, these

results indicate that cost functions using higher exponents are gen-

erally to be preferred for x/y tracking to the original cost function

N +V.

Frontiers in Neuroinformatics www.frontiersin.org March 2012 | Volume 6 | Article 4 | 11

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Myatt et al. Neuromantic

Table 5 |The mean square x/ y tracking error for each of the ten benchmark problems over all nine cost functions.

Cost function Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 Trace 6 Trace 7 Trace 8 Trace 9 Trace 10

N 4.8707 4.5262 2.2036 5.6949 3.8731 41.6660 3.6509 164.3688 159.4037 254.2347

N +V 4.7795 3.3969 2.2779 5.6806 3.6484 41.3370 3.5962 164.3757 151.8812 204.9152

N2 +V 3.0021 4.1559 2.2034 5.3960 3.3608 35.2498 2.3363 142.2176 177.5774 199.9689

N +V 2 3.4211 3.3865 2.1943 5.6674 3.6418 41.2335 3.5976 164.6490 141.2616 260.3797

N2 +V 2 4.0023 4.0240 1.8946 4.8941 3.2774 40.1589 2.3352 143.2290 174.8229 169.0122

N3 +V 2.5819 3.8798 2.1710 5.0038 3.5078 40.1783 3.7550 118.5361 24.8087 199.9920

N +V 3 4.8383 3.5333 2.0861 5.6070 3.5499 41.9231 3.4952 165.1431 150.0178 265.7633

N3 +V 3 2.6480 3.9194 2.2710 5.4042 3.3421 30.9186 2.4176 65.7683 25.5060 160.7103

N4 +V 2.6324 3.5679 2.1196 5.3163 3.0866 35.6291 1.8305 39.9139 7.5303 204.9826

FIGURE 6 |The ground-truth tracing for benchmark neurite 10 (rotated

90˚ anticlockwise), along with examples of the tracing errors caused

by taking shortcuts.

Table 6 |The mean quality ranking for each cost function based on x/ y

tracking alone, as well as the p-values obtained from statistical

testing.

Cost Mean rank Overall rank p-Value Reject H0

N 7.8 9 0.1128 No

N +V 6.5 8 – No

N2 +V 4.7 5 0.0860 No

N +V 2 5.8 6 0.4404 No

N2 +V 2 3.8 3 0.0266 No

N3 +V 4.0 4 0.0163 No

N +V 3 6.2 7 0.8482 No

N3 +V 3 3.6 2 0.0133 No

N4 +V 2.5 1 0.0014 Yes

Table 7 shows the effect on the overall length estimation of the

benchmark dendrite as a result of varying the cost function.

As expected from previous work, the actual length tends to be

underestimated, due to Dijkstra’s algorithm preference for physi-

cally shorter routes. For the normal dendrites (benchmarks 1–5),

though, the errors tend to be consistently less than 4% of the over-

all length. When considering the meandering dendrites, however,

the length estimation errors are generally much larger, sometimes

up to 20% of the overall length, which is much less acceptable and

would have a very significant effect on simulation if left uncor-

rected. Such large errors, as explained previously in relation to

x/y tracking, result from the routing taking shortcuts over tight

curves. However, this tracing algorithm is part of a semi-automatic

method, and errors of this magnitude are trivial to spot visually

and account for when performing the tracing. Thus, smaller values

are still preferable as they mean less user intervention.

4. CONCLUSION

Neuromantic is a freeware application for producing three dimen-

sional reconstruction of neurons. Its performance was demon-

strated in manual and semi-automated reconstructions from non-

deconvolved Transmitted Light Brightfield (TLB) image stacks. In

these cases, lighting intensity varies across the image, making the

data unsuitable for global thresholding to segregate dendrites from

background. Also, the numerous out-of-focus artifacts mean that

the data is not a true 3D voxel representation of the neuron. Signif-

icantly more image processing is thus required than for confocal

stacks to extract accurate neuronal morphology.

Non-deconvolved stacks were considered, as effective deconvo-

lution is often difficult on Golgi stained or Biocytin labeled and

stained stacks. However, Neuromantic may be applied equally well

to the reconstruction of dendrites from deconvolved image stacks.

The application was compared to a similar freeware system,

Neuron_Morpho, and a commercially available package, Neurolu-

cida, indicating comparable speed of use and inter-user variation

consistent with that reported for other comparable studies.

Our informal survey of Neuromantic users indicates apprecia-

tion of its lightweight feel and simple interface for basic visualiza-

tion and editing. The ability of dynamic image loading offers possi-

bility to work smoothly with very large image stacks with moderate

and widely available computer platforms. Semi-automated recon-

struction from any given point requires simply clicking on an

existing point and tracing the branch without the need, common

in other systems, to open context menus to label points. Similarly,

the diverse and user-friendly options of automated point selection,

offer a quick way of investigating alternative reconstructions which

often require modification of already completed reconstructions.

For example, Neuromantic enables easy connectivity changes and

immediate visual edits. Both operations require cvapp (Cannon

et al., 1998) when working with Neuron_Morpho. Such features,

over long usage term, may save hundreds of labor hours. Although

other systems offer 3D visualization of the underlying image stack

(Rodriguez et al., 2003), Neuromantic efficient memory manage-

ment yields smoother manipulation of large stacks, whereas more

sophisticated programs may struggle on computers with standard

graphics card.

Frontiers in Neuroinformatics www.frontiersin.org March 2012 | Volume 6 | Article 4 | 12

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Myatt et al. Neuromantic

Table 7 |The percentage length errors over the benchmarks as a result of varying the cost function associated with the routing algorithm.

Cost Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 Trace 6 Trace 7 Trace 8 Trace 9 Trace 10

N −1.96 0.41 −3.61 −0.74 −0.56 −11.05 −0.80 −22.65 −17.32 −27.70

N +V −2.30 0.28 −3.31 −1.53 −1.35 −11.43 −1.01 −23.20 −16.73 −23.53

N2 +V −2.46 0.30 −3.15 −0.68 −1.29 −9.23 −0.56 −16.79 −15.51 −21.52

N +V 2 −1.46 0.27 −3.48 −1.52 −1.31 −11.44 −1.00 −22.65 −16.44 −27.70

N2 +V 2 −2.70 −0.11 −3.06 −0.55 −1.32 −10.21 −0.51 −15.98 −15.53 −22.75

N3 +V −2.05 −0.02 −3.05 −0.83 −1.40 −10.71 −0.96 −10.86 −8.96 −21.81

N +V 3 −2.30 0.43 −3.28 −1.54 −1.38 −11.26 −1.11 −22.67 −16.73 −27.76

N3 +V 3 −1.83 −0.52 −2.83 −0.83 −1.39 −8.54 −0.48 −6.30 −8.84 −21.94

N4 +V −2.12 −0.33 −3.05 −0.82 −1.33 −9.93 0.62 −11.09 −4.20 −23.30

The perceived optimal trade-off between utility and ease of

learning was also a factor that motivated the selection of Neu-

romantic as the official editing tool in the DIADEM challenge

(diademchallenge.org). Neuromantic was also adopted by the

DIADEM organizers to prepare the challenge data (Brown et al.,

2011) and test the scoring metric (Gillette et al., 2011a). The

results of DIADEM highlighted a need for a user-friendly edit-

ing and visualization platform, which Neuromantic fills in this

regard (Peng et al., 2011). Moreover, the open source release of

Neuromantic allows developers to combine this interface and

algorithm with the advances that resulted from DIADEM com-

petition and other recent developments (Donohue and Ascoli,

2011).

To address the known problems with inter-user variance on

semi-manual reconstructions, the Neuromantic 3D image stacks

extension to semi-automatic tracing (Meijering et al., 2004) was

introduced. In order to mitigate the computational effort and

memory requirements when tracing dendrites through large stacks

of high-resolution images, the semi-automated tracing employs

patchwork representation of the image, processing, routing, and

allocating data dynamically during the user interaction.

The method was evaluated in terms of reconstruction consis-

tency, examining the effect of the routing algorithm’s cost function

form on the accuracy of dendrite midlines over a range of bench-

marks. Increasing the exponents of the cost function two terms

significantly improved tracing quality. The term relating to the

likelihood of a given pixel belonging to a dendrite was significantly

more important than the term relating to directional flow.

The modification to the Dijkstra cost function, suggested by

these results, produced a consistent improvement in tracing accu-

racy, allowing the application to automatically deal with more

complex cases such as meandering dendrites. Furthermore, it also

reduced required user interaction, thus decreasing the overall time

needed to generate accurate 3D neuronal models.

The semi-automatic mode uses just three parameters of which

only one (the standard deviation of the steerable Gaussian)

requires adjustment based on the widths of reconstructed den-

drites, with minimal effect on reconstruction quality, while default

value of the remaining two parameters provide overall accu-

rate reconstructions. The small number of parameters and ease

of their setting is consistent with recently recommended good

practice in neurite reconstruction algorithm design (Meijering,

2010). Although other systems (e.g., those presented at the DIA-

DEM competition) offer higher levels of automation, the semi-

automatic capability of Neuromantic certainly enhance its user

friendliness.

To conclude, Neuromantic is suggested as a useful open source

tool for reconstructing dendritic trees. It provides great flexibil-

ity and a good balance between speed of operation and resultant

quality. Neuromantic thus is a useful addition to the repertoire of

available tools for neuronal reconstruction that might appeal to

some researchers.

ACKNOWLEDGMENTS

This work was supported by EPSRC Grant GR/S55897/01 and

EP/F033036/1 to Slawomir J. Nasuto. Giorgio A. Ascoli acknowl-

edges support from NIH R01 NS39600. We thank Kerry Brown for

providing the tlb image stack used in this paper as a benchmark,

as well as the Neurolucida and Neuron_Morpho reconstructions.

Furthermore, we thank Nancy Desmond for providing the sample

containing the rat hippocampal sample, and Andy Constanti for

donating the guinea pig piriform cortex sample.

REFERENCES

Ascoli, G. A. (2006). Mobilizing the

base of neuroscience data: the case

of neuronal morphologies. Nat. Rev.

Neurosci. 7, 318–324.

Ascoli, G. A., Donohue, D., and

Halavi, M. (2007). NeuroMor-

pho.Org – A central resource for

neuronal morphologies. J. Neurosci.

27, 9247–9251.

Ascoli, G. A., Krichmar, J., Scorcioni,

R., Nasuto, S. J., and Senft, S.

(2001). Computer generation and

quantitative morphometric analysis

of virtual neurons. Anat. Embryol.

204, 283–301.

Barrett, W. A., and Mortensen, E. N.

(1997). Interactive live-wire bound-

ary extraction. Med. Image Anal. 1,

331–341.

Bas, E., and Erdogmus, D. (2011).

Principal curves as skeletons

of tubular objects: locally

characterizing the structures

of axons. Neuroinformatics 9,

181–191.

Brown, K. M., Barrionuevo, G., Canty,

A. J., De Paola, V., Hirsch, J. A., Jef-

feris, G. S., Lu, J., Snippe, M., Sugi-

hara, I., and Ascoli, G. A. (2011). The

DIADEM data sets: representative

light microscopy images of neuronal

morphology to advance automation

of digital reconstructions. Neuroin-

formatics 9, 143–157.

Brown, K. M., Donohue, D. E.,

D’Alessandro, G., and Ascoli, G. A.

(2005). A cross-platform freeware

tool for digital reconstruction

of neuronal arborizations from

image stacks. Neuroinformatics 3,

343–359.

Cannon, R. C., Turner, D. A., Pyapali,

G. K., and Wheal, H. V. (1998).

An on-line archive of reconstructed

hippocampal neurons. J. Neurosci.

Methods 84, 49–54.

Chothani, P., Mehta, V., and Stepa-

nyants, A. (2011). Automated

tracing of neurites from light

microscopy stacks of images.

Neuroinformatics 9, 263–278.

Frontiers in Neuroinformatics www.frontiersin.org March 2012 | Volume 6 | Article 4 | 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Myatt et al. Neuromantic

Denk, W., Strickler, J. H., and Webb, W.

W. (1990). Two-photon laser scan-

ning fluorescence microscopy. Sci-

ence 248, 73–76.

Desmond, N. L., Heydenreich, M. S.,

and Levy, W. B. (1990). Quantitative

characterization of the hippocampal

CA1 pyramidal cell dendritic field in

stratum moleculare. Anat. Rec. 226,

26A.

Desmond, N. L., and Levy, W. B. (1982).

A quantitative anatomical study of

the granule cell dendritic fields of the

rat dentate gyrus using a novel prob-

abilistic method. J. Comp. Neurol.

212, 131–145.

Dijkstra, E. (1959). A note on two

problems in connexion with graphs.

Numer. Math. 1, 269–270.

Donohue, D., and Ascoli, G. A. (2011).

Automated reconstruction of neu-

ronal morphology: an overview.

Brain Res. Rev. 67, 94–102.

Falcao, A. X., Udupa, J. K., Samarasek-

era, S., and Sharma, S. (1998). User-

steered image segmentation para-

digms: live wire and live lane. Graph.

Models 60, 233–260.

Freeman, W. T., and Adelson, E. H.

(1991). The design and use of steer-

able filters. IEEE Trans. Pattern Anal.

Mach. Intell. 13, 891–906.

Gillette, T. A., Brown, K. M., and Ascoli,

G. A. (2011a). The DIADEM metric:

comparing multiple reconstructions

of the same neuron. Neuroinformat-

ics 9, 233–245.

Gillette, T. A., Brown, K. M., Svo-

boda, K., Liu, Y., and Ascoli, G.

A. (2011b). DIADEMchallenge.Org:

a compendium of resources foster-

ing the continuous development of

automated neuronal reconstruction.

Neuroinformatics 9, 303–304.

Jaeger, D. (2000). “Accurate reconstruc-

tion of neuronal morphology,” in

Computational Neuroscience: Realis-

tic Modeling for Experimentalists, ed.

E. De Schutter (Boca Raton: Lewis

Publishers, Inc.), 159–178.

Kaspirzhny, A. V., Gogan, P., Horcholle-

Bossavit, G., and Tyc-Dumont, S.

(2002). Neuronal morphology data

bases: morphological noise and

assessment of data quality. Network

13, 357–380.

Kaufmann, E. W., and Moser, W. H.

(2000). Dendritic anomalies in dis-

orders associated with mental retar-

dation. Cereb. Cortex 10, 981–991.

Libri, V., Constanti, A., Calaminici, M.,

and Nistic, G. (1994). A compari-

son of the muscarinic response and

morphological properties of iden-

tified cells in the guinea-pig olfac-

tory cortex in vitro. Neuroscience 59,

331–347.

Liu, Y. (2011). The DIADEM and

beyond. Neuroinformatics 9, 99–102.

Lu, J. (2011). Neuronal tracing for con-

nectomic studies. Neuroinformatics

9, 159–166.

Meijering, E. (2010). Neuron tracing in

perspective, cytometry part A. 77A,

693–704.

Meijering, E., Jacob, M., Sarria, J. C. F.,

Steiner, P., Hirling, H., and Unser, M.

(2004). Design and validation of a

tool for neurite tracing and analysis

in fluorescence microscopy images.

Cytometry 58A, 167–176.

Miller, R. G. Jr. (1991). Simultane-

ous Statistical Inference. New York:

Springer-Verlag.

Myatt, D. R., Nasuto, S. J., and May-

bank, S. J. (2006).“Towards the auto-

matic reconstruction of dendritic

trees using particle filters,” in Pro-

ceedings of Nonlinear Statistical Sig-

nal Processing Workshop 2006 (on

CD-ROM), Cambridge.

Narayanaswamy, A., Wang, Y., and

Roysam, B. (2011). 3-D image pre-

processing algorithms for improved

automated tracing of neuronal

arbors. Neuroinformatics 9,219–231.

Nasuto, S. J., Knape, R., Krichmar, J.

L., and Ascoli, G. A. (2001). Rela-

tion between neuronal morphol-

ogy and electrophysiology in the

Kainate lesion model of Alzheimer’s

Disease. Neurocomputing 38–40,

1477–1487.

Peng, H., Long, F., Zhao, T., and Myers,

E. (2011). Proof-editing is the bottle-

neck of 3D neuron reconstruction:

the problem and solutions. Neuroin-

formatics 9, 103–105.

Rodriguez, A., Ehlenberger, D., Kelli-

her, K., Einstein, M., Henderson, S.

C., Morrison, J. H., Hof, P. R., and

Wearne, S. L. (2003). Automated

reconstruction of three-dimensional

neuronal morphology from laser

scanning microscopy images. Meth-

ods 30, 94–105.

Ropireddy, D., Scorcioni, R., Lasher,

B., Buzsáki, G., and Ascoli, G.

(2011). Axonal morphometry of

hippocampal pyramidal neurons

semi-automatically reconstructed

after in-vivo labeling in different

CA3 locations. Brain Struct. Funct.

216, 1–15.

Scorcioni, R., Lazarewicz, M. T., and

Ascoli, G. A. (2004). Quantita-

tive morphometry of hippocampal

pyramidal cells: differences between

anatomical classes and reconstruct-

ing laboratories. J. Comp. Neurol.

473, 177–193.

Scorcioni, R., Polavaram, S., and

Ascoli, G. A. (2008). L-Measure: a

web-accessible tool for the analy-

sis, comparison and search of

digital reconstructions of neu-

ronal morphologies. Nat. Protoc. 3,

866–876.

Senft, S. L. (2011). A brief history of

neuronal reconstruction. Neuroin-

formatics 9, 119–128.

Svoboda, K. (2011). The past, present

and future of single neuron recon-

struction. Neuroinformatics 9,

97–98.

Türetken, E., González, G., Blum, C.,

and Fua, P. (2011). Automated

reconstruction of dendritic and

axonal trees by global optimization

with geometric priors. Neuroinfor-

matics 9, 279–302.

van Elburg, R. A. J., and van Ooyen,

A. (2010). Impact of dendritic size

and dendritic topology on burst fir-

ing in pyramidal cells. PLoS Comput.

Biol. 6, e1000781. doi:10.1371/jour-

nal.pcbi.1000781

Wang, Y., Narayanaswamy, A., Tsai,

C. L., and Roysam, B. (2011). A

broadly applicable 3-D neuron trac-

ing method based on open-curve

snake. Neuroinformatics 9, 193–217.

Whalley, B. J., Postlethwaite, M., and

Constanti, A. (2005). Further char-

acterization of muscarinic agonist-

induced epileptiform bursting activ-

ity in immature rat piriform cor-

tex, in vitro. Neuroscience 134,

549–566.

Wilcoxon, F. (1945). Individual compar-

isons by ranking methods. Biomet-

rics 1, 80–83.

Zhang, Y., Zhou, X., Degterev, A., Lip-

inski, M., Adjeroh, D., Yuan, J., and

Wong, S. T. C. (2007). Automated

neurite extraction using dynamic

programming for high-throughput

screening of neuron-based assays.

Neuroimage 35, 1502–1515.

Zhao, T., Xie, J., Amat, F., Clack, N.,

Ahammad, P., Peng, H., Long, F.,

and Myers, E. (2011). Automated

reconstruction of neuronal mor-

phology based on local geometri-

cal and global structural models.

Neuroinformatics 9, 247–261.

Conflict of Interest Statement: The

authors declare that the research was

conducted in the absence of any com-

mercial or financial relationships that

could be construed as a potential con-

flict of interest.

Received: 06 June 2011; accepted: 20 Feb-

ruary 2012; published online: 16 March

2012.

Citation: Myatt DR, Hadlington T,

Ascoli GA and Nasuto SJ (2012) Neu-

romantic – from semi-manual to semi-

automatic reconstruction of neuron mor-

phology. Front. Neuroinform. 6:4. doi:

10.3389/fninf.2012.00004

Copyright © 2012 Myatt , Hadlington,

Ascoli and Nasuto. This is an open-access

article distributed under the terms of

the Creative Commons Attribution Non

Commercial License, which permits non-

commercial use, distribution, and repro-

duction in other forums, provided the

original authors and source are credited.

Frontiers in Neuroinformatics www.frontiersin.org March 2012 | Volume 6 | Article 4 | 14

http://dx.doi.org/10.1371/journal.pcbi.1000781
http://dx.doi.org/10.3389/fninf.2012.00004
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Neuromantic – from semi-manual to semi-automatic reconstruction of neuron morphology
	Introduction
	Materials and Methods
	Neuromantic
	Tracing algorithm
	Image processing
	Dijkstra routing algorithm

	Patchwork approach

	Manual reconstruction
	Semi-automatic reconstruction
	Error metrics
	Experiments varying cost function
	Significance testing

	Data

	Results
	Morphological Comparison of Reconstructions
	Statistical Analysis of Reconstructions
	Gross neuron statistics
	Branch statistics

	The effect of cost function on tracing accuracy

	Conclusion
	Acknowledgments
	References

