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We define a theoretical framework for the experimental study of neuromechanical
control in animals, based on mathematical concepts from dynamical systems theory.
This approach allows experiments, results and theoretical models to be shared among
biologists, engineers and mathematicians, and is applicable to the study of control
in any system, biological, artificial or simulated, provided the system exhibits stable
rhythmic solutions. The basis of this framework is the notion that rhythmic systems
are best expressed as periodic functions of their phase. Using phase as a predictor, an
extrapolated prediction of future animal motions can be compared with the motions
that occur when a perturbation is applied. Phase also serves as a succinct summary of
the kinematic state, allowing the difference between the expected state as summarized
by phase and the phase found in the perturbed animal – a “residual phase”. In the
first chapter we introduce the key concepts and describe how the residual phase may
be used to identify the neuromechanical control architecture of an animal. In the
following two chapters we use residual phase to analyze running arthropods subjected
to perturbations. In the final chapter, we extend the kinematic phase based models to
the construction of a linearized approximation of animal dynamics based on Floquet
theory. The Floquet model allows us to directly test the “Templates and Anchors
Hypothesis” of motor control and to characterize a “template” – a low dimensional
model of the dynamics of the animal.

In chapter 2, our residual phase results from running cockroaches over a hurdle
show that kinematic phase was reset, while running frequency was closely maintained
to within ±5%. Kinematic phase changes were distributed bi-modally with modes one
step (half a cycle) apart, which corresponds to a left-right reflection of the kinematic
state of the body. The results decrease the plausibility of feedforward control and
support the use of neural feedback for this task. Based on the results, we propose a
controller that expresses the timing of the two leg tripods of the animals as two coupled
phase oscillators, which in turn, may also be coupled to a master clock.

In chapter 3, we analyze cockroaches which ran onto a movable cart that translated
laterally. The specific impulse imposed on animals was 50± 4 cm/s (mean,SD), nearly
twice their forward speed 25 ± 6 cm/s. Animals corrected for these perturbations by
decreasing stride frequency, thereby demonstrating neural feedback. Trials fell into two
classes, one class slowing down after a step (50 ms), the other after nearly three steps
(130 ms). Classes were predicted by the kinematic phase of the animal at onset of
perturbation. We hypothesize that the differences in response time is a consequence of
the mechanical posture of the animal during perturbation, as expressed by the phase,
and the coupling of neural and mechanical control.

In chapter 4 we attempted to use kinematic phase methods to reconstruct the lin-
earized (Floquet) structure of running cockroaches when viewed as nonlinear oscillators.
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The development of this approach required several innovations in applied mathemat-
ics and statistics. We analyzed foot and body positions of 34 animals running on a
treadmill. Results showed that cockroaches running at preferred speed possess a six
dimensional template with each dimension recovering by less than 50% in a stride
(P < 0.05, 11 animals, 24 trials, 532 strides).
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Neuromechanical Architectures
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1.1 Introduction

Our objective is to provide experimentalists with neuromechanical control hypothe-
ses that can be tested with kinematic data sets. To illustrate the approach, we select
legged animals responding to perturbations during running. In the following sections,
we briefly outline our dynamical systems approach, state our over-arching hypotheses,
define four neuromechanical control architectures (NCAs) and conclude by proposing a
series of perturbation experiments that can begin to identify the simplest architecture
that best represents an animal’s controller.

1.1.1 From description to prescription of motor control

Descriptive neuromechanical studies of the last decade have achieved a broad con-
sensus that Bernstein’s (Bernstein, 1967) “degrees of freedom” problem finds its res-
olution in a hierarchy of coordinated synergies. There is widespread biomechanical
evidence of kinematic reduction in a diversity of mammalian motor patterns such as
reaching (Lacquaniti et al., 1983), body segment coordination (Balasubramaniam and
Turvey, 2004), and walking (Ivanenko et al., 2002; Grasso et al., 2000). Similarly,
dynamical motor behaviors offer longstanding (Blickhan and Full, 1993) and accumu-
lating (Full and Farley, 2000) evidence for collapse of dimension in vertebrate and
invertebrate running and, more recently, climbing (Goldman et al., 2006). Discoveries
from vertebrate (Burke, 1999; Saltiel et al., 2001; Burke, 2002) and invertebrate
(Pearson, 1993) neuroscience suggest that neural activation results in precise, kine-
matically selective synergies of muscle activation. A consensus view has emerged for
a hierarchical description of animal motion control architecture in which a modular
(Mussa-Ivaldi, 1999) complex of motor functions combines distributed (Burke, 1999)
feedforward pattern generating units (Grillner, 1985) mediated by local feedback (Pear-
son, 1995) with influence from, rather than domination by conventionally posited
“higher” centers of function (Bizzi et al., 2000).

The next challenge in motor science is to move from this broad consensus regard-
ing description to the point of prescription. This latter term denotes computational
models that might tie the widely accepted accounts of biological structure to their
function in the production of empirical motor behavior, thereby producing testable
predictions of motor control architecture. Our use of the term “architecture” under-
scores our larger interest in how the components of motor control are put together
under various circumstances. The descriptive consensus supporting a modular hierar-
chy encourages the expectation that this should now be possible. Namely, prescriptive
computational models capable of accounting for a diverse variety of animal activity
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ought to incorporate some hierarchical decomposition into motor primitives (Schaal
and Schweighofer, 2005).

In the contemporary literature such models take divergent form and seem to vary
widely even concerning their scope. For example, several decades of advances in the
primate reaching and grasping literature have achieved the textbook (Shadmehr and
Wise, 2005) consensus that a kinematic task-oriented reference trajectory “leads”
the compliant musculoskeletal system through a representative motion around which
the necessary stabilizing torques and forces are generated at the joint level. However,
elements of controversy (Jaric and Latash, 2000) still surround the extent to which such
feedforward signals (Domen et al., 1999) are “pre-processed” by the nervous system
using learned internal models to compute the inverse dynamics (Kawato, 1999) as
would be required to insure asymptotically exact tracking in the equivalent rigid body
mechanism and as observed in humans (Hinder and Milner, 2003). Moreover, the very
question of how such a library of feedforward signals is constructed, deployed, and
potentially mediated by the animal’s immediate or longer term mechanical experience
remains uncertain.

In reaching tasks, the endpoints of the reference trajectory are presumably driven by
perception. Various optimality criteria have been proposed to explain how the resulting
interpolating curve is constructed (Todorov and Jordan, 1998; Nakano et al., 1999;
Biess et al., 2006). Within this framework, the tradeoffs between feedforward and
feedback influences can be determined by stochastic optimal control theory (Kuo, 2002;
Kording and Wolpert, 2006). Recent evidence (Schaal et al., 2004) suggests that such
discrete motor acts may be initiated and organized differently from rhythmic behaviors
such as steady running.

It is worth noting that notions of optimality do not always offer broad prescriptive
power. For example, the composition of optimal trajectories is typically not opti-
mal. The appeal to optimality may confound the development of more fundamental
compositional principles. For example, arguments for the “power law” (Todorov and
Jordan, 1998; Richardson and Flash, 2002), and, more particularly, that the observed
episodic power law trajectories constitute the alphabet of a “motor language” have
been shown to be equally well explained as artifacts of nonlinear kinematics (Sternad
and Schaal, 1999; Schaal and Sternad, 2001).

In contrast, we find the framework of dynamical systems particularly attractive
because it permits a malleable but precise means of exploring the composition of
modules respecting both their spatial arrangement and temporal sequencing. Dy-
namical representations of mechanical modules are familiar, and the utility of “col-
lapsed” abstractions of such models has a growing tradition in biomechanics (Full and
Koditschek, 1999; Blickhan, 1989) and robotics (Raibert, 1986; Koditschek and
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Bühler, 1991) – a bouncing spring mass system being one such model or template.
Physiologically meaningful dynamical models of neurons (Hodgkin and Huxley, 1952)
can be reduced to two (Morris and Lecar, 1981; Fitzhugh, 1961) or three (Ghigliazza
and Holmes, 2004b) dimensional dynamical systems in principled ways that retain the
salient physiological dependencies with very few lumped parameters. In turn, these
can be assembled as physiologically representative (Pearson, 1976) modules, in a net-
work of coupled oscillators that admits further mathematically principled reduction in
dimension via phase variables (Ghigliazza and Holmes, 2004a).

1.1.2 Dynamical systems approach to neuromechanics

  

Thoracic Ganglia

Animal

Neural 
Oscillators

(CPG 1st Order 
clocks)

Mechanical 
Oscillators

(Leg Springs 
2nd Order)

Template Anchor
A B C

Figure 1.1: Representation of animal locomotion as coupled oscillators. Systems are
modeled by using two different types of oscillators. The hypothesized thoracic ganglion
central pattern generators in arthropods are represented by first order clocks or oscilla-
tors (single circles). The musculo-skeletal system is represented by mass-spring systems
or second order oscillators. We represent this second order property of a mechanical
degree of freedom by means of the double circle icon. A Template. The model with
fewest parameters is termed the template. B Anchor. A model more representative of
the animal, the anchor, shows the coupling of three neural and mechanical oscillators.
C Animal. A modified form of this figure appeared in Koditschek et al. (2004)
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Adopting a dynamical systems approach to the study of steady state rhythmic
activities such as running has led to several general hypotheses regarding the structure
of neuromechanical control (Koditschek et al., 2004). For ease of exposition we state
these hypotheses within the framework of deterministic dynamical systems theory,
although it is clear that a far more subtle treatment of the inevitable variability in
real data, for example along the lines presented in Riley and Turvey (2002), would be
required to handle the results of physical experimentation.

Hypothesis H1 - Dynamic stability We have proposed that the primary require-
ment of an animal’s neuromechanical control strategy is to stabilize its motion around
orbits or limit cycles – periodic solutions to the equations of motion describing the
animal coupled to its environment in whose neighborhood there are no other periodic
solutions (Full et al., 2002). In a dynamical systems sense, stability can be defined as
the tendency of a system to return to a steady state even when perturbed. Perturba-
tions shift the state onto nearby trajectories that are either stable (lead back toward
the limit cycle) or unstable (lead away from it). For a locomotor behavior to be effec-
tive, the limit cycle must be stable and the motion must return to the limit cycle after
all sufficiently small perturbations. Typically, dynamical systems models predict that
perturbations to mechanical state variables (positions and velocities) will differ in rate
of recovery, be coupled, and will reveal systematic shifts in the relative timing of limb
coordination.

Hypothesis H2 - Collapse of dimensions We have proposed that multiple legs,
joints and muscles operate synergistically to reduce the number of dimensions permit-
ting the limit cycle to be represented by a simple, low dimensional template (Full and
Koditschek, 1999) dynamical system (see fig. 1.1). The relationship between the low
dimensional template and the higher dimensional anchor models that are more closely
tied to the animal’s morphology is via a posture principle. The posture principle
states that each behavior has a characteristic family of body postures associated with
it, and that through maintaining the body in these postures the animal forces the high
dimensional anchor dynamics to closely follow those of a lower dimensional template.
For example, many animals with diverse morphologies and varying number of legs run
in a way that moves the center of mass as though it is bouncing on a single elastic
pogo-stick (Blickhan and Full, 1993) (fig. 1.1).

Hypothesis H3 - Tunable coordination control architecture We have hypoth-
esized the presence of a tunable coordination control architecture that couples together
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an “internal” clock or central pattern generator (CPG), whose period is directly con-
trollable, and the rhythmically oscillating mechanical system of the animal’s body,
whose period is only controllable indirectly by adding or removing energy. Following
the example of Cohen et al. (1982), we represent the CPGs in animal’s nerve cord as
first order oscillators in phase coordinates on the circle. A first order system cannot os-
cillate without some switching controller unless its state lies on a circle (Winfree, 1980).
Because frequency is the control input to the system, we denote a first order oscilla-
tor by a single circle (blue circles with an arrow; fig. 1.1). We represent an animal’s
musculoskeletal system as a body mass atop a leg spring. These mechanical systems
function as second order oscillators that have a phase velocity (frequency) altered gen-
erally through the intermediary of a power input changing its energy. We represent
this second order property of a mechanical degree of freedom by means of the double
circle icon (double red circles with arrows; fig. 1.1).

The coupling of a neuro-oscillator with a mechanical oscillator substantially reduces
the number of feedforward signals required for motion. Paradigms such as Equilibrium
Point Trajectory and adaptive inverse dynamics internal models, are yet to explain
the construction and organization of the library of feedforward signals necessary for
each movement. In a coupled oscillator model, feedforward reference signals arise
as the output of a dynamical system – a neural pattern generator equivalent to an
explicitly parametrized “library” of trajectories – whose “entries” are parametrized by
the dynamical system’s state space or initial condition. Each different initial condition
gives rise to a different reference trajectory. Yet, no independent library of particular
trajectories is stored.

Even more importantly for our present purposes, a dynamical representation of the
driving signal or neural clock is not only amenable to hypotheses related to motor
“learning” but to the possibility of more immediate influences back from the muscu-
loskeletal system up to the internal clock. Whether modified more or less by feedback
a purely feedforward signal generator cannot readily change the timing of events. In
contrast, expressing our internal command generator as a clock allows the possibility
that the mechanical subsystem might retard or advance its phase. By embracing a dy-
namical representation of the internal reference signal generator, we will explore in this
chapter the extent to which relatively simple physical mechanical perturbations of an
animal’s gait can be used to probe the presence and nature of such feedback influences
upon an internal pattern generator by the physical experience of the musculoskeletal
system.
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1.1.3 The neuromechanical “operating point”

NEUROMECHANICAL CONTROL

ARCHITECTURES (NCA)
Goal: Develop Testable 

Centralized 

Neuromechanical Control 

Architectures Ranging 

from Feedforward to 

Feedback

Neuromechanical 

Control Architecture 

3

Neuromechanical 

Control Architecture 

2

Neuromechanical 

Control Architecture 

1
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Feedforward
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Local Control Signal
Control Signal

Control Signal
“Distributed” Control Signal

Mechanical System

Mechanical System
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Mechanical System

Figure 1.2: Neuromechanical control architectures (NCAs) can be classified by broad
properties that include the degree of centralization and the extent feedback information
can affect the feed-forward signals the controller produces. In this chapter we describe
three control architectures with a central pattern generator that utilize increasing levels
of feedback processing (as indicated by the white arrow) and compare them with an
architecture NCA0 that has no CPG

Within a coupled oscillator framework, we adopt the classification of Klavins et al.
(2002); Koditschek et al. (2004), organizing the range of variation of neuromechanical
control models into a plane of designs (fig. 1.2) available for selection by the animal’s
nervous system. We posit that the choice of operating point in this plane selects the
coordination coupling the dynamics of internal neural oscillator and musculoskeletal
force production. The axes of this plane can be characterized by the balance between
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feed-forward and feedback control, and the degree of centralization of the information
flow.

No single operating point in the plane seems to characterize exclusively the behav-
ior of any animal model. For example, at the more extreme “feedback, decentralized
quadrant” of the two axis design plane (fig. 1.2) lie decades of careful empirical study
on invertebrate walking (Cruse, 1990) that have yielded algorithmic prescriptions less
familiar to optimal control theory, but readily studied using the tools of dynamical
systems theory (Calvitti and Beer, 2000; Klavins et al., 2002) and demonstrably ca-
pable of coordinating complex multi-limbed locomotion in physical (Chiel et al., 1992)
models operating in the quasi-static regime. Yet recent experiments have identified
(Büschges and El-Manira, 1998) and simulation studies confirmed the important role
of feedforward pattern generators in the walking behavior of this animal model (Eke-
berg et al., 2004). In contrast, early models of rhythmic vertebrate behavior suggested
the prominence of a strongly centralized feedforward CPG signal (Grillner, 1985),
whereas recent studies (Guan et al., 2001) have revealed a more nuanced balance
between feedforward and feedback influences. It seems increasingly clear that animal
locomotion strategies span the entire neuromechanical architecture plane (fig. 1.2).

Surely, one contributing factor to the difficulty of prescribing motor behavior is that
the theoretical underpinnings of different regions in this design plane manifest different
levels of maturity. Whereas the theory and practice of adaptive inverse dynamics
reference tracking controllers for rigid body manipulators, was worked out two decades
ago (Whitcomb et al., 1993; Slotine and Weiping, 1986; Sadegh and Witz, 1987), the
dynamics of coupled nonlinear oscillators underlying the complete architectural design
space of interest remains an active area of mathematical research. Similarly, while
there is a three hundred year old literature on Lagrangian mechanics, neural models
admit no appeal to physical first principles at the comparable level of universality
and methods of abstraction. Nevertheless, the last two decade’s intense effort put
into both the mathematical formalism and the modeling applications of CPG theory
(Holmes et al., 2006) supply us with a two important concepts: the notions of phase
and phase response curves.

A large literature on locomotion oriented coupled-oscillators, following on the sem-
inal Cohen-Holmes-Rand Lamprey CPG model (Cohen et al., 1982), enjoys a ubiquity
guaranteed by isochron theory (Winfree, 1980; Guckenheimer, 1975). This model
of coupled first order oscillators has been successfully applied to numerous rhythmic
applications ranging from human hand manipulations (Sternad et al., 1992) to robotic
juggling (Klavins and Koditschek, 2002) and running (Weingarten et al., 2004a). One
subsequent effort toward integrated neuromechanical (in the sense of a second order
dynamical generator) modeling of the coupling between internal pattern generators and
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the mechanical body working in its environment, the Haken-Kelso-Bunz model (Haken
et al., 1985) has stimulated rhythmic studies in humans (Kelso et al., 2001) that sup-
port the predicted appearance of certain bifurcations. Moreover, recent efforts (Peper
et al., 2004) to ground this model in more detail seem to give the promise of further in-
sight into the mechanisms of human coordination. But the model hypothesizes a funda-
mentally fixed architecture, occupying a particular point in the feed-forward/feedback
and centralized/decentralized plane of motor coordination.

Still missing are broadly applicable behavioral assays such as perturbation ex-
periments that might help pin down at what operating point in this “design space”
(Koditschek et al., 2004; Klavins et al., 2002) any specific motor activity is main-
tained, much less a prescriptive view of how some specific environmental condition or
particular task might dictate (or at least constrain) that selection. This chapter places
particular emphasis on the feedforward/feedback axis of the design space for more cen-
tralized controllers (right side of fig. 1.2). We do so within the framework of coupled
oscillators where we couple a single neural pattern generator to a single mechanical
oscillator rather than focusing on the decentralized coupling of individual neural pat-
tern generators to each other (Golubitsky et al., 1999) or mechanical oscillators to one
another (Haken et al., 1985).

1.2 Neuromechanical control architectures

Here we compare four classes of neuromechanical control architectures (NCA0
through NCA3, illustrated in fig. 1.2). NCA1 through NCA3 embody increasing levels
of feedback influence on pattern generated by the nervous system, and NCA0 offers an
alternative with no CPG. These explore the operating points in the neuromechanical
control architectural space that go from more feedforward to greater feedback within a
centralized architecture (fig. 1.2). Our choice of architectures is strongly influenced by
the biological literature and by analogies to controllers of legged robots built by one of
the authors (Koditschek, Saranli et al. 2001) and robots built by other collaborators.

Our architectural classes sample a range of possible couplings between the sub-
systems of fig. 1.1. The simplest instance is one where only the mechanical state of
the animal is of importance and processing is minimal, whereas the most complex is
one where a neural controller uses feedback to stabilize the mechanics and internally
represents the phase of the mechanical system with bidirectional coupling to a CPG.
Two more architectures of intermediate complexity and processing ability are described.

In proposing these architectures we do not suggest that any one of them describes
the structure of the neuromechanical control system in any given animal, or corresponds
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Figure 1.3: Columns represent the control architectures NCA0 through NCA3. The
“Task Level Control” block generates a constant setting of parameters for the behavior
(e.g. “use tripod gait at 15 cm/sec”). “CPG” plays out a scheduled periodic signal
at the frequency selected by the task level control and possibly modulated by feed-
back. “Tracking” compares actual and reference trajectories in a time–invariant way
to generate a force activation. “Muscles and Skeleton” interact mechanically with the
“Environment” and also modify the representation of the environment returned by
“Sensing”

in a direct way to morphology. Rather, we propose these as parsimonious and testable
models for control used in specific behaviors. A conclusive experimental outcome – one
that rejects simpler feedback architectures in favor of more elaborate ones – enables us
to say that during a specific task or behavior a control architecture as simple as the
one we find is sufficient for explaining the outcome, and is functionally equivalent to
the animal’s controller within this restricted context. An animal may use controllers
from all of these classes in different behavioral contexts, or when dealing with extreme
perturbations in the same behavioral context.

The exact outcomes possible with models belonging to each architecture class are
sensitive to the details of the equations of motion. Nevertheless, some conclusions
can be drawn if we assume two properties: asymptotic stability of the periodic motion,
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and structural stability of the dynamical system. The former property implies that any
initial state sufficiently close to the periodic orbit governing the locomotor behavior
moves onto the orbit. The latter property implies that the dynamics remain unchanged
(in a topological sense) if the equations of motion are modified by small changes.

While both these assumptions may not hold for some models of locomotion, we feel
they are justified for practical reasons. Persistent locomotive behaviors seem to have
a periodic structure that animals revert to even when perturbed by the environment.
Asymptotic stability expresses this reversion in mathematical language. Structural
stability expresses the fact that properties of the animal’s body and environment are
variable, and to maintain a behavior, the equations of motion must be effectively
insensitive to this variability.

1.2.1 NCA0 – Spring Mass with no Clock

The simplest class of architectures we propose is outside the feedforward – feedback
axis of fig. 1.2, in that it contains no CPG at all and thus the extent of feedback to
CPG is immaterial. The behavior of NCA0 systems is governed almost entirely by
mechanical dynamics. As the block diagram in fig. 1.2 illustrates, once the task level
goals are set all dynamics are mediated by the mechanical interaction alone. The defin-
ing property of NCA0 systems is this lack of “internal” non-mechanical state, allowing
equations of motion to be written solely in terms of instantaneous mechanical state
variables. By observing the mechanical state of a NCA0 system one may predict its
future course, and so mechanically identical “snapshots” of a behavior should reliably
lead to similar motions over multiple cycles of motion. What little control there is
occurs at the transition between mechanical regimes. Like the lateral leg spring model
(LLS) (Schmitt and Holmes, 2000a,b) and the spring loaded inverted pendulum model
(SLIP) (Blickhan, 1989), running NCA0 systems stabilize by virtue of how the pos-
ture of the body evolves from ground contact to ground contact 1. For example, in the
simplest model presented in Schmitt and Holmes (2000a) it is shown that after a per-
turbation by a lateral impulse, the angle between the body heading and the direction
of motion becomes smaller from step to step by virtue of the leg force acting on the
body. The instantaneous mechanical state of the model is sufficient to make such an
argument, and predict future cycles of motion.

1The LLS and SLIP models would fall into the NCA0 category – except for the technicality that
they are not fully asymptotically stable and thus do not satisfy our H1 hypothesis
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1.2.2 NCA1 – Clock Driven Spring Mass

The second class of architectures is a family of driven mechanisms with variable
stiffness. These and all subsequent architecture classes we consider differ from the
previous class by the introduction of a clock that “keeps internal time” via its phase
θ. In this second architectural class, the clock is uncontrolled. It runs at a constant
frequency ω and sets the mechanism’s stiffness using a periodic function (a “schedule”)
ψ(θ). No reciprocal influence from the mechanical state modifies either the clock
frequency or the stiffness imposed at any particular phase (see second column of fig. 1.2
for a block diagram).

It is convenient to imagine NCA1 systems as compliant-legged clockwork toys. A
snapshot of the kinematic state of a clockwork toy does not tell us whether the internal
spring is wound-up or not, but after observing its motions for a few cycles – they are
completely predictable, and they do not vary except in so far as external forces directly
hinder or aid them. The motions themselves cannot be predicted directly from the
mechanical state, but they are predictable periodic functions of time, and changes to
these motions are accomplished only by mechanical means.

Many actual toys are built with NCA1 architectures, as are the fastest running
legged robots – the Sprawl robots (Bailey et al., 2001).

1.2.3 NCA2 – Tracking Leg Controller

The third class of architectures also contains a feed-forward (dynamically uncou-
pled) driving clock. The clock schedule interacts with the body mechanics by inducing
the generation of forces. These forces are not a scheduled pattern of activations –
instead they are infinitesimally generated 2 by comparing the actual trajectory of a leg
and a reference schedule driven by the clock. The comparison is carried out by a filter
3 which in robotics applications would be referred to as a “tracking controller” because
it would cause a leg to track any reference signal. In that sense, the filter realizes an
internal representation of the mechanical dynamics of a leg.

Reflecting this view, our depiction of the “Tracking” block in fig. 1.2 incorporates
a feedback channel that reaches “up” to a level mediating the clock output but not as
“high up” as to affect the internal dynamics of the clock itself.

We constrain the filter to be time invariant, so that the feedback it generates can

2We use the phrase “infinitesimally generated” to represent the fact the trajectories are defined in
terms of an ordinary differential equation, which is an equation relating infinitesimal quantities.

3The term “filter” refers to the feedback laws being specified by a function of the tracking error
and its derivatives rather than merely a function of instantaneous tracking error
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depend on the form of the reference trajectory and of the actual trajectory – but cannot
depend directly on time. The filter encodes the mechanical dynamics in the sense of
being able to anticipate what force is necessary as a function of tracking error and state
to drive this error to zero, thereby making the mechanical trajectory converge to the
reference.

Unlike NCA1 systems, NCA2 systems react to mechanical perturbations using non-
mechanical means that require some form of neural sensing. As forces are exerted by
the musceloskeletal system of the animal, the kinematic changes induced by these
forces are compared with the reference provided by the clock and forces are adjusted
according to discrepancy detected with the sensory information. The adjustment is
time-invariant – it does not depend on “when” in the cycle of motion a particular
kinematic discrepancy occurs, only on the difference between the actual and reference
trajectories. Like the stiffness of the clockwork NCA1 systems, the “desired” reference
trajectory is a predictable, periodic function of time, and by knowing this function, the
reaction to an external perturbation is predictable – but unlike NCA1 systems, this
prediction is not purely a mechanical outcome.

Examples of NCA2 systems include most commercially available robots, and the
first generation of controllers for the RHex robots (Saranli et al., 2001). In the RHex
robots, each leg has a “proportional-derivative (PD) controller” attached to its drive-
shaft motor. These PD controllers read the state of the driveshaft, compare it to the
desired reference angle for that leg and cause the motor to exert a force proportional to
the size of the error (“Proportional” gain) and the rate of change of that error (“Deriva-
tive gain”). In the sense of fig. 1.2, each leg has its own “Tracking” block that knows
nothing about the state of other legs, and brings that individual leg into conformance
with the clock signal.

The filter as set out here bears some correspondence to the classical notion of an
“Equilibrium Point Hypothesis” controller. The major distinction to be drawn here is
the origin and meaning of the reference signal itself. Proponents of the Equilibrium
Point Hypothesis (Jaric and Latash, 2000) and of the more detailed internal model
architecture (Kawato, 1999) and its associated optimization literature posit a kine-
matically (and, possibly, dynamically) particular reference signal that encodes in detail
space-time information sufficient for the specific motor act being indexed, presuming
the mediating feedback will correct the minor imperfections of the internal model as
well as the potentially major perturbations of the un-modeled external world.

In contrast, the reference signal issued by NCA2 works primarily as an infinitesi-
mally generated “clock” arising as the output of a (typically simple) dynamical system.
It may well have space-time detail grafted on — for example, as in Saranli et al. (2001);
Weingarten et al. (2004a,b), where the piecewise constant vector field is not simply a
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constant — but its primary purpose is to time the onset of the different repeated phases
of the rhythmic locomotion cycle.

1.2.4 NCA3 – Clock Feedback Controller

The fourth and final class of architectures extends the previous class by allowing
the clock dynamics to be affected by the mechanical state, rather than merely having
the clock output filtered. We restrict the NCA3 architecture to systems where the
clock feedback is “small” in the sense that the clock never stops or reverses direction.
We also require that the signal generated by the clock remains the same except for
changes in frequency, and that changes to the clock are slow with respect to the gait
cycle time and thus take a step or longer to become noticeable.

It is convenient to think of a NCA3 system as assessing overall “difficulty” and ad-
justing its desired frequency accordingly. Depending on the task and the perturbation,
the system might speed up or slow down, always “trying” to accomplish the goals set
by the task level control. NCA3 systems are similar to those with simpler architectures
in that they express a one-dimensional loop of “desired” states – the reference trajec-
tory – in a predictable cyclic order. The forces exerted are a time invariant function of
the difference between the reference and actual trajectories. Yet, unlike simpler archi-
tectures, the rate at which this sequence of “desires” is expressed depends on sensory
information.

An example of a NCA3 device is the RHex robot with the new generation controllers
described in Weingarten et al. (2004b).

The succession of architecture classes just introduced may reveal to the reader that
we do not posit the clock as the source of kinematic or dynamic “space-time” detail
(although it might be used for that purpose as well by appropriately detailing the
vector field or the feedforward component as exemplified by Weingarten et al. (2004b))
as much as viewing it as a time-keeper. Our point of view is so agnostic about the
“true function” of the internal reference signal that we may just as readily embrace the
interpretation that it is the body’s internal state estimator for the mechanical phase
and beyond, as suggested for example in Kuo (2002).

1.3 Kinematic phase – a window into a dynamical

system

The challenge of testing neuromechanical control architectures (fig. 1.2) and deter-
mining the operating point of an animal in an architectural design space (fig. 1.2) is
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considerable. Perturbations to a system and its subsequent response are necessary to
reject architectures. Recovery responses must be measurable. Ideally, the approach
taken should allow a window into the dynamical system. Both the global responses
at the level of the template or system as well as more local responses at the level of
the anchor (the detailed joint and appendage motions that result in a characteristic
posture) should be identifiable. Recovery of the center of mass to its original limit
cycle or to a new one should be detectible. It should be apparent whether and how
perturbations of joints collapse back to a representative posture.

Measuring the recovery of the center of mass from perturbations during running
has proved difficult. Support for the lateral leg spring model (most similar to NCA0)
has come from perturbations using a jetpack on running cockroaches (Jindrich and
Full, 2002). Cockroaches recover within a step using the intrinsic properties of their
tuned musculo-skeletal system. Evidence for spring-loaded, inverted pendulum behav-
ior has been found when helmeted guinea fowl recover from a step perturbation when
running along a track with a false top (Daley and Biewener, 2006) and when humans
run on surfaces of various compliance (Ferris and Farley, 1998). More common are
detailed kinematics responses to perturbations that add to our intuition about a con-
trol hypothesis, but do not reject a neuromechanical control architecture (Kohlsdorf
and Biewener, 2006).

Here, we propose a kinematic approach based on phase analysis that can be used
by experimentalists to test neuromechanical control architectures. Biomechanists have
long employed gait diagrams and phase response curves for the study of rhythmic lo-
comotor tasks. In the study of terrestrial locomotor gaits, the repetitive motions of
the limbs are partitioned into cycles based on foot landing and liftoff events. Phase
within a step is typically defined in terms of the fraction of time elapsed since the
last footfall relative to the interval ending with the next footfall. These techniques
have been used effectively in many studies, such as those characterizing inter-leg influ-
ences in stick insect walking using phase response curves (Cruse and Epstein, 1982;
Cruse, 1985a,b).

This standard approach is dependent on a distinguished footfall “event”. It is often
difficult, if not impossible, to define phase when perturbations significantly change or
even destroy the event altogether, such as when locomoting on a rough terrain where
footfalls can be missed entirely. Low time resolution makes it difficult to differentiate
both perturbations and recoveries. For example, a delay in the motion of a limb induced
in early swing may not be resolved from one induced in late swing. More generally,
in such classical methods, frequency is defined by the time elapsed between footfalls –
meaning that frequency is only “measured” once a step, and it is difficult to deduce at
what point in time frequency actually started changing.
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Figure 1.4: Relationship between foot or tarsal paths, their periodic coordinates and
phases for a running cockroach. A Paths of feet relative to the body in constant speed
running (experimental data); B Periodic fore-aft positions xi i = FL,ML, . . . of feet
in the body frame (model). The grey lines indicate extrapolated positions of the feet
consistent with motions before the perturbation; C Residual phase of the feet in B
(∆Φi) relative to a putative constant frequency model (Φ̂ext). The π phase difference
between the two tripods and the constant frequency are clearly apparent. Each tripod
comprises the front and hind legs on one side of the body together with the middle leg
of the other side, as illustrated by the color-coded circles on the right of the figure

Our kinematic phase method enables phase and frequency to be resolved “instanta-
neously”. In high-speed video-based kinematic measurements, a phase and frequency
can be reliably computed for each pair of consecutive video frames. For example,
movements of the feet of a running cockroach relative to its body (fig. 1.4-A) can be
plotted as near sinusoidal oscillations as a function of time (fig. 1.4-B). If a cockroach
was perturbed by an obstacle that altered the phase of all its legs, then a phase change
should be apparent in the sinusoidal oscillations when the oscillations before the per-
turbation are compared with those after (fig. 1.4-B). This can be seen by extrapolating
the oscillations before the perturbation into the time after the perturbation (fig. 1.4-B,
grey lines). Our method determines the change in relative phase at every instant in the
cycle (fig. 1.4-C). Cockroaches use an alternating tripod when running fast. The front
left, middle right and left hind leg are in phase, but move in anti-phase to the front
right, middle left and right hind leg. In our example (fig. 1.4-C), the relative phase of
legs within a tripod is the same. Before the perturbation, there is no change in the
phase of the legs. After the perturbation, a phase change has occurred in all legs and
both tripods. The phase change can be detected for any leg at any time, even within
a step, with readily available kinematic data.
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From a theoretical standpoint, our method to calculate instantaneous phase change
relies on a dynamical systems view. We assume that a locomoting animal is best repre-
sented by a high dimensional dynamical system. Its high dimensional state consists of
mechanical quantities such as positions, velocities, strains, etc., as well as myriad non-
mechanical quantities representing the state of the nervous system and the animal’s
physiology. In steady state, our hypothesis H1 asserts that its deterministic periodic
behavior is manifest as an isolated cycle embedded in this high dimensional state-space
and thus defining a global phase ΦG. The projection of global phase ΦG on any subset
of coordinates associated with some sub-system specifies a phase consistent with global
phase but expressed only in terms of that sub-system. As a consequence we can speak
of a “mechanical phase” ΦM defined in terms of the mechanical state variables alone;
“kinematic phase” ΦK defined in terms of the kinematic state variables alone and “leg
phases” ΦFR,ΦMR,ΦHR,ΦFL,ΦML,ΦHL for the individual legs (front-right, middle-right,
etc.) of a hexapedal animal.

A priori, the global phase ΦG is difficult to estimate, whereas the “kinematic phase”
ΦL of a sub-system such as a leg L can be estimated more easily by some phase esti-
mation function Φ̂L (we use the hat ·̂ to denote estimates of quantities) of its directly
observable kinematics. Such an estimate function is a smooth function of kinematic
observations of leg L and corresponds to the actual leg phase ΦL on the cycle itself.
For all states sufficiently near the limit cycle, the global phase ΦG is well defined. The
projected phase ΦL for a sub-system L may be multi-valued because it depends on
the state of other sub-systems outside of L. As a consequence, the phase estimate Φ̂L

for states off the limit cycle will be different from the actual phase of the sub-system
ΦL by a (linearly) small term. Nevertheless, we argue that by using a combination of
these estimates that includes all of the sub-systems that may move independently in
the behavior (e.g. all legs), we can obtain an estimate Φ̂K of the whole kinematic phase
ΦK. In a repetitive and persistent locomotor behavior such as constant velocity forward
running, the complete state of the animal is in correspondence with its kinematic state
– otherwise the behavior would not persist in a repetitive form – and so the kinematic
phase estimate Φ̂K is (a posteriori) a reasonable proxy for estimating global phase ΦG.

fig. 1.5 illustrates the relationship between a global kinematic phase estimate Φ̂K

and the kinematic phases of the legs Φ̂FR, Φ̂MR, Φ̂HR, Φ̂FL, Φ̂ML, Φ̂HL from the running
cockroach in fig. 1.4-A,B. We assume that our kinematic phase estimate Φ̂K (fig. 1.5-A)
represents the global phase ΦG. In this example, the kinematic phase estimate Φ̂K is
constructed from the positions and velocities of the animal’s six feet by treating the
centroids of the two tripods as “virtual legs”. We used the relative position of the tripod
centroids and its derivative (velocity) to generate a phase estimate by normalizing them
to mean 0 and variance 1, and taking them as the X and Y coordinates of a point. The
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phase estimate is the angle of the point, as plotted in fig. 1.5-A, relative to the X axis.
The cycles of individual feet can be viewed as projections into different sub-systems
(fig. 1.5-B) of our kinematic phase estimate Φ̂K.

We derived our estimate of the future motions of the animal (fig. 1.4-B,C) from
our kinematic phase estimate Φ̂K (fig. 1.5-A) which we also consider to be a reasonable
estimate for global phase Φ̂G. We used the fact that by construction, global phase
ΦG evolves linearly in time. We “unwrapped” the cycles in our phase estimates so
that phase is increasing rather than wrapping around from π to −π. These instanta-
neous unwrapped phases as a function of time – global and per-leg – are plotted in
fig. 1.5-C. Once we were confident that our global phase estimate Φ̂G evolved linearly
over extended periods of time when validated with unperturbed motion data, we took
pre-perturbation experimental data from a trial and extrapolated a model of the “un-
wrapped” data with some constant frequency ω and phase intercept φ0 using linear
regression:

Φ̂ext(t)
∆
= ωt+ φ0 = Φ̂G(t) + ρ(t)

ρ(t) regression residual (1.1)

The model predicts the future behavior that should have occurred without the
perturbation. Because of the high temporal resolution of the phase estimate Φ̂G, a
short pre-perturbation interval – potentially an interval as short as a step or two –
may be sufficient for extrapolating several strides into the future with Φ̂ext.

The “(global prediction) residual phase”, in the form of

∆Φ̂G(t)
∆
= Φ̂G(t) − Φ̂ext(t) (1.2)

and its sub-system analogs for any sub-system S

∆Φ̂S(t)
∆
= Φ̂S(t) − Φ̂ext(t) (1.3)

can be used to observe how the whole animal is perturbed in timing, and how differ-
ent sub-systems reestablish their relative phasing. In the present example, fig. 1.5-C
shows that the sub-systems in question – individual legs – exhibit characteristic phase
relationships, and that the three legs with similar relative phases are those functioning
as a tripod. Moreover, it illustrates that our estimate of global phase – the kinematic
phase estimate Φ̂K (fig. 1.5-A and grey line in fig. 1.5-C) also represents the phase and
frequency (i.e. slope of the line in fig. 1.5-C) of the leg sub-systems when no perturba-
tions are present. The lack of a change in instantaneous phase in fig. 1.4-C before the
perturbation is simply a consequence of a constant difference in phase between the leg
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phase and our global phase estimate (fig. 1.5-C). As shown in fig. 1.4-C, a perturba-
tion may alter the residual phase, i.e. the phase relationship between the extrapolated
phase estimate Φ̂ext and the actual phase.

The utility of a global phase estimate in the study of non-linear oscillators cannot be
over-emphasized. We expect that a global phase estimate will become an invaluable tool
for the experimentalist studying biological systems that are, in mathematical essence,
non-linear oscillators comprising a neural pattern generator, a musculoskeletal system
and their interactions with the environment. The most obvious use of a global phase
estimate is to allow the future motions of the animal to be predicted by linear regression
of the global phase using its recent motions. This prediction may be compared with
the outcome of the animal’s response to perturbations – forming an assay that can be
used to test neuromechanical control architectures (fig. 1.2).

1.4 Perturbation experiments

We examine several types of perturbations that can assist in revealing which control
architecture best represents periodic locomotor behaviors like running. It is important
to impress upon the reader that nonlinear hybrid systems, such as those governing
animal locomotion, are unlike linear systems used in engineering in that their behavior
cannot be fully characterized by their reactions to a standard set of stimuli. While
linear time-invariant systems can be fully described by their response to impulses,
chirps, and other textbook stimuli, our choices here are not governed by any such
hope.

Instead, we chose perturbations that modify some aspects of the dynamical system
while keeping other aspects fixed. We have tried to select perturbations that are “bi-
ological” in that one may expect such deviations from steady state horizontal running
in a natural environment. We have also tried to pick perturbations that are tractable
experimentally. These choices should not be seen by the reader as an exact recipe
for experiments in all studies of running. Rather, these are exemplars from different
classes of perturbations, applied to the study of running to provide the reader with
concrete instances. The exact choice of perturbation should be made in light of a spe-
cific locomotor behavior, the animal system and its experimental feasibility – but we
are confident that these broad classes of perturbations are generally useful.
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1.4.1 Types of outcomes

Many outcomes are possible as a result of a perturbation. The outcome may de-
pends on both the magnitude of the perturbation and that phase in which is was
applied. In the remainder of this section, we describe types of outcomes that can read-
ily be observed and quantified in kinematic phase measurements using an insect as our
animal runner. In the next section we go on to relate these outcomes to perturbation
type and control architecture class.

First, an insect may recover back to its original phase and frequency (fig. 1.6-A).
Second, the perturbation may cause all the legs of a tripod to change phase from the
original phase to settle back down to a phase different from the original phase (control
compared to phase shifted; fig. 1.6-B). Third, the perturbation may cause all the legs
of a tripod to change frequency (shown by a slope change in the phase plot; fig. 1.6-C).
Finally, the perturbation may cause an orbit shift changing both phase and frequency
from the original the shape of the trajectories in time and making phase comparisons
more challenging to interpret (fig. 1.6-D).
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Phase changes

Table 1.1: Expected outcome by perturbation and NCA class. The table summarizes
the changes we would expect to see in phase, frequency and orbit shape if running
animals using a controller architecture from a given class (column) are perturbed with
the given perturbation (row). By performing multiple experimental perturbations we
can obtain independent lines of evidence about the controller’s architectural class

NCA0 NCA1 NCA2 NCA3

Spring Mass Clocked Leg Clock
No Clock Spring-Mass Tracker Feedback

Bump P D = P

Step P D = P

Incline P,F

Mass P P P P,F

Substrate O(F) O = P,F

Impulse P D = P

O(F)N D,PN PN

= no asymptotic changes
P continuous phase resetting
D discrete phase resetting

F frequency change
O change of orbit
N no stable solutions

By definition, the phase of undisturbed locomotion is a linear function of time, with
a constant frequency as its slope. Phase change outcomes (P and D in Table 1.1) are
changes in which the animal remains near the same periodic orbit, and thus moving
with the same frequency, but at a constant offset relative to the phase’s expected value
at that time according to the motion prior to perturbation.

We separate two classes of phase change outcomes: discrete phase changes (D) and
continuous phase changes (P). Discrete phase changes have characteristic values that
depend only weakly on the magnitude of the applied perturbation such as the height
of a bump or the grade of an incline. Typically, the discrete phase change (D) appears
when the perturbation magnitude exceeds a threshold, and remains constant beyond
that threshold. Continuous phase changes (P) depend in a continuous way on the
magnitude of the perturbation and appear gradually as the perturbation magnitude
grows.
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Frequency changes

Frequency change outcomes (F in Table 1.1) are experimental outcomes where the
period of the motion changes. Frequency expresses itself as the slope of the trend-line
of phase as a function of time, and therefore frequency change outcomes correspond to
significant changes in this slope. In practice, it is convenient to examine the residual
phase, and statistically reject a slope of zero.

Mathematically speaking, a frequency change always requires a change of orbit –
but changes in orbit shape may be too small to detect directly even when the associated
frequency is different. Whenever frequency changes, the phases before and after the
perturbation are no longer directly comparable because the linear equations predicting
them have different slopes, causing the phase difference to be a function of time.

Orbit changes

Orbit change outcomes (O in Table 1.1) are outcomes where the limit cycle (the
closed curve in the high dimensional state space along which the oscillations repeat) is
sufficiently deformed that significant changes may be readily observable in the animal’s
kinematics. In such cases the coordinate transformation defining the phase of the
original orbit must break down, and phases can no longer be compared in a trivial way
before and after the perturbation. The breakdown of the old phase coordinate implies
a large increase in magnitude of the fitting error when fitting a linear model to phase
estimates applied to post-perturbation kinematic data. The large errors signify that the
old phase estimate is no longer as useful because it assumes different orbit kinematics
than those observed. A statistical hypothesis test of what constitutes a breakdown of
the phase estimate, and thus an O outcome, is the converse of establishing that a phase
estimate is useful: finding that the goodness of fit of a linear regression of the phase
estimate is below what the investigator considers to be the minimal acceptable quality.

While relating phases across orbit changes is challenging, frequencies remain com-
parable in as much as they tell us whether the period of the new pattern of motions is
different from the period of the old pattern. For some architecture and perturbation
combinations the new orbit is almost certainly expected to have a different frequency
(O(F) in Table 1.1).

Destabilization failures

Sometimes a given controller cannot handle a certain class of perturbation, leading
to a situation where no steady state periodic solution is possible (N in Table 1.1).
In such a case the kinematic patterns either do not approach any specific orbit and
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undergo continuous changes, or the motions lead to some failure like crashing into the
ground.

1.4.2 Perturbation types and their expected outcomes

Table 1.1 illustrates several perturbation types that are sufficient when considered
collectively for identifying the controller architecture class. Here we describe the per-
turbation types, the reasoning behind their selection, and the expected outcomes they
generate.

In repeated experiments with a given perturbation type, it is important to note
that outcome may well depend on both the magnitude and the phase at which the
perturbation was applied. Given the large variability in most biological data, proper
experimental design and a large number of replicates are paramount. A more detailed
treatment of these important topics is outside the scope of this chapter.

Bump perturbation

The simplest perturbation we consider is running over a bump. The bump provides
a transient change in terrain followed by an environment that is in all ways identical
to that preceding perturbation. We imagine that for each of the NCAs, a bump would
be manifest as a change in ground height restricted to a single stance period.

The NCA0 controllers are governed entirely by their mechanical state. A bump
modifies this state to a degree that depends continuously on the size of the bump. The
NCA0 system has no “memory” of its prior phase and frequency, but the similarity
between terrain before and after perturbation suggests that a return to the old limit
cycle would provide a stable solution – incurring a phase lag or lead related to the size
of the bump. Hence the expect outcome is P.

NCA1 controllers are governed by the inexorable nature of their driving clock. If
the clock is oblivious to the mechanical state, a well defined phase relationship between
the internal driving signal and the physical response can only occur if the mechanical
interactions with the environment bring the body into phase with the clock. In turn,
this implies that the mechanical orbit is partitioned into basins converging to different
phase offsets relative to the driving clock. Bump perturbations are thus likely to
generate discrete phase changes (D) when crossing basin boundaries and no changes if
these boundaries are not crossed.

Systems with effective tracking will tend to function the same way regardless of
external perturbation. Such is the case for the NCA2 class whose controller brings
the tracking error to zero for all transient perturbations in the mechanical state. This
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implies that the mechanical phase before and after a bump must follow the same linear
schedule (=), exactly as dictated by the CPG.

The NCA3 controllers allow feedback to affect the clock by changing its frequency.
The effect of these countervailing influences on clock rate by transient perturbations,
such as bumps, is to generate a phase change (P) – the integral of the induced frequency
change during the recovery period. The phase change is continuously dependent on
perturbation magnitude because the recovery time and frequency change also depend
on perturbation magnitude.

The reader may now already observe in Table 1.1 a general difficulty in distin-
guishing regulatory outcomes affected by algorithmic “internal” controllers from those
due to comparably tuned mechanical feedback systems. For example, the Table 1.1
summarizes our prediction of identical outcomes (no change) for NCA0 and NCA3
architectures (continuous phase shift) when perturbed by bumps. The difficulty sep-
arating NCA0 and NCA3 is due in no small part to the fact that purely mechanical
nonlinear systems can exhibit very complicated behaviors – as complicated as those
exhibited by systems with sophisticated feedback mechanisms. Nevertheless, some
general properties can separate NCA0 and NCA3 architectures with bump perturba-
tions. First, NCA0s have no hidden state variables so their mechanically observable
state should completely predict their behavior whereas one may imagine that differ-
ent “internal” conditions will yield different kinematically observable dynamics for the
NCA3 class. Second, because mechanical feedback can operate very quickly compared
to algorithmic or neuromuscular feedback, it is reasonable to assume that very fast
responses are purely mechanical as in NCA0. For responses to span times on the order
of a stride period with no obvious mechanical conservation law maintaining them, a
neural representation that persists over time is required, and thus implicates a NCA3
controller.

Step perturbation

Idealized mechanical models are often posited as manifesting conserved quantities,
such as total energy and components of linear and angular momenta. While true
physical systems cannot be entirely lossless, it is frequently the case that strongly under-
damped mechanical components can yield behavior manifesting a reasonable facsimile
of the idealized conservation properties. For these types of systems, a slightly more
obtrusive terrain perturbation for running would be a step – a sudden and enduring
change in ground height. The kinematic and dynamic changes are still localized in
space and time, but the regime after the perturbation differs in one of the key integrals
of motion – the potential energy. In such a case the controller is required to compensate
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for the energy imbalance, which is never necessary in level running.
Because it is encountered by the legs as a transient, a step perturbation has similar

outcomes to those of a bump perturbation for controllers of the NCA1, NCA2 and
NCA3 classes. All these classes of controllers can and do stabilize the total energy of
the system. Several purely mechanical NCA0 controller models have been proposed
whose elements are tuned to closely approximate an energy conserving system – for
example, the “passively stabilized” SLIP models in Ghigliazza et al. (2005). A step
forces such a simple system to shift orbits, thereby likely changing the frequency. A
sufficiently large step would cause the runner to halt by not being able to transition into
flight, or to crash into the ground by having too much kinetic energy for the leg spring
to absorb and return. Accordingly, for this kind of NCA0 variant the step recovery
would be summarized by the symbol F or N.

However, some systems in the NCA0 class may regulate energy without neural
feedback, for example by having positive force feedback (Geyer et al., 2003). In such
cases the hybrid system’s limit cycle is regulated with respect to energy. Since the floor
remains level after its initial shift, any initial excess or deficit of energy will be bled
out after a number of strides. The same limit cycle will reappear on a new isochron,
so there will be a permanent change in the recovered phase relative to the old one.
Magnitude of the phase changes is expected to be continuous in the magnitude and
direction of perturbation. We have entered this outcome in the summary Table 1.1 as
P, rather than the F or N consequences of the simpler “passively” stabilized mechanical
variants described in the previous paragraph.

As the step perturbation to these architectures illustrates, roughly conserved me-
chanical quantities can readily reveal architectural differences, because they preclude
full asymptotic stability in the absence of concerted neuromuscular feedback. They
offer apt targets of the experiments we propose, because results reveal a specific non-
mechanical regulatory mechanism. For example, the outcomes plotted along the cor-
responding row of Table 1.1 show the difference between NCA1, NCA2 and NCA3
controllers when encountering a step. The first would typically have kinematic phase
lagging the clock, whereas in the second the tracking controller would correct the kine-
matic phase offset back to zero. In contrast, in the third, the transient errors would
have temporarily altered the internal clock frequency to allow the kinematics time to
“catch up” with the result of an overall phase resetting.

Finally, the reader should observe that the same difficulties as in the case of the
bump perturbation are encountered here in distinguishing purely mechanical from neu-
rally generated implementations of the same style of control. Similar outcomes of NCA0
with NCA3 suggest the desirability of adding some internal perturbations, such as dis-
rupting neural feedback, to the complement of purely mechanical perturbations we
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consider in this chapter.

Incline perturbation

In both bumps and steps the post-perturbation regime is geometrically similar to the
pre-perturbation regime, with respect to the animal’s body. The same body kinematics
could, in principle, work equally well before and after the perturbation event. However,
if an animal were to use the exact same kinematics (relative to gravity) running up
an incline as it does running horizontally, it would introduce a systematic error in
all foot placements and center of mass forces. Thus, an incline would challenge the
controller to adjust to a new, slightly modified kinematic regime. For our posited
physical models, an“incline” should be construed as a regular, linear change in ground
height as a function of distance traveled.

Our NCA0 system will alter its frequency (F) or fail entirely when confronted by
inclines. If feedback only at the transitions allows energy to be injected in this pre-
dominately mechanical architecture, then touchdown events will repeatedly occur “too
early”. Each time the controller will compensate for a wrong “neutral point.” For small
slopes there will be a net change in steady state cycle period resulting in a permanent
frequency shift relative to the original. As the slope increases, the qualitative kine-
matic features of the steady state behavior will begin to depart significantly from the
level ground periodic orbit. The combination of orbit and frequency change we denote
symbolically by O(F). For larger slopes, no stabilization may be possible and critical
failure may result. Thus in the end, the NCA0 system manifests disrupted orbits and
gait instability that we mark with the symbol N in Table 1.1. This is illustrated in
fig. 1.6-D by showing a phase plot of a system whose orbit is losing its similarity to the
initial steady state orbit.

The oblivious clock of NCA1 systems would also encounter difficulties with inclines,
although the approach to instability with increasing incline would likely take a different
course. An incline perturbation would change the frequency of steady state solutions.
For small inclines, this may well be within the basin of convergence for correctable
phase differences and would express itself as a consistent phase error proportional
to the incline. Namely, these intermediate inclines (significant but prior to failure)
might induce significant enough postural changes in the body (in consequence of the
passive compliant response to shifted gravitational loading) as to be dynamically viable
and measureable as phase changes (P, D). At inclines sufficient to exceed the phase
convergence basin of zero phase change, no steady state solutions are likely to exist
(N).

NCA2 controllers deal with persistent kinematic challenges such as inclines by ap-
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plying a constant correction each cycle. This leads initially to a phase change that is
continuously dependent on the incline magnitude (P), and the existence of steady state
solutions over a small range of incline gradients. The persistently corrective controller
effort could be viewed a “penalty” for the mismatch between the CPG driving fre-
quency tuned to flat ground and the changed frequency necessary for “optimal” incline
running. Eventually, the frequency mismatch and inappropriate kinematic posture
would disrupt the attracting cycle entirely (N).

Both NCA1 and NCA2 architectures have a driving clock that runs oblivious to the
environment. With sufficiently large slopes, we might expect such a mismatch between
stride frequency and ground contact mechanics to incur sub-harmonic oscillations. If
these occur, systematic differences will appear between the kinematics of even and odd
steps, causing the phase estimation function to degrade. The gradual deterioration of
the orbit (O) will have a systematic structure, where the linear phase model residuals
in even cycles have one characteristic form and the residuals in odd cycles have another
form. In both NCA1 and NCA2 the clock frequency cannot change, almost entirely
precluding the possibility of frequency change outcomes.

The NCA3 controllers have the capability to avoid the frequency mismatch penalty
by changing their CPG frequency to accommodate the incline. The nominal gait
will be retuned for the slope just as in the case of NCA2. However, now there is
a chance if the feedback to the clock has sufficient influence at time constants well
within the stride period, then the “early” (or “late”) touchdowns may be corrected by
advancing (retarding) the clock phase and then retarding (advancing) it to correct for
wrongly anticipated stance phase duration. In this case, we would expect a distorted
version of the original limit cycle. The cycle may have the same frequency albeit
shifted phase, since the system would settle down on a new isochron (P). The system
also may operate at a different frequency, since the internal clock advance and retard
effects might not necessarily balance. The change in frequency means that the phase
evolution controller governing the system before the incline is no longer meaningful. In
the new limit cycle’s phase coordinate, corresponding orbit events such as touchdown
will be phase shifted relative to their positions in the previous orbit by a magnitude
that is continuously dependent on the grade of the incline. fig. 1.6-C illustrates a NCA3
system compensating for an incline by changing frequency (F).

Dynamical perturbation

The last three rows of the table in Table 1.1 address perturbations that have already
appeared in the empirical animal motor literature and we include their consideration
in this chapter for the sake of continuity. Adding mass and changing the moment
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of inertia of human runners has been studied for its own sake and as a model for
dinosaurs (Lee et al., 2001; Carrier et al., 2001). Humans (Ferris and Farley, 1998)
have been run on substrates of variable compliance. Jindrich and Full have reported
the response of intact cockroach runners to sudden impulse perturbations (Jindrich
and Full, 2002). In none of these previous studies has the relative kinematic phase
explicitly been measured. We now briefly review what the expected phase responses
would be to each of these distinct dynamical perturbations and include the outcomes
in Table 1.

For NCA0 systems, a center of mass shift (either magnitude or position) or change
in moments will again change the steady state posture, incurring a small but likely mea-
surable offset (in proportion to leg compliance) in phase (P) that varies continuously
with the shift. A small change in substrate mechanics (e.g. damping or compliance)
may likely incur changes in individual leg transients at touchdown and liftoff and thus
alter the kinematic phase (P) by shifting the ground-contact-feedback-triggered sched-
ule for application of energy during leg stance. More dramatic substrate changes might
lead to a sever deformation in the steady state kinematics, causing the original phase
estimation function to have little power (O). A transient impulse applied to the center
of mass carries kinetic energy and momentum that need to be bled off, entailing a
change in phase that depends continuously on the magnitude of the impulse (P).

For the NCA1 system, a center of mass shift or change in moments will once again
change the steady state posture, incurring a small but likely measurable offset in phase
(P) that varies continuously with the shift. A change in substrate mechanics may once
again incur changes in individual leg transients at touchdown and liftoff, but should not
have a measurable effect on steady state phase (=) until the ground becomes so much
more compliant that the kinematic shape of the limit cycle is altered (O). A transient
impulse applied to the center of mass should yield no change for small impulses, but
may switch the system to a new stable CPG-body phase relationship when larger. The
phase change is thus a discrete function of impulse magnitude (D).

For the leg tracking controller of NCA2, a COM shift (either magnitude or position)
or change in moments will once again change the steady state posture, incurring a
small but likely measurable offset (in proportion to leg compliance) in phase that
varies continuously with the shift. A change in substrate mechanics (e.g. damping or
compliance) may once again incur changes in individual leg transients at touchdown
and liftoff but should not have a measurable effect on steady state phase. A transient
impulse applied to the mass center should yield no change in phase.

Finally, for the NCA3 systems, center of mass shifts, changes in moments and
changes in substrate compliance may all be compensated for by the controller in two
ways. One form of feedback stabilization would be for forces to change so as to maintain
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a close semblance of the original kinematics, by way of the tracking controller. This type
of stabilization would tend to induce a continuous phase change (P). The other form
of stabilization would change the frequency of the motion, also leaving the kinematics
essentially the same, and adapting the rate of motion to the change in environment.
Due to the dependency of this interplay on the specific feedback gains, it is difficult
to predict a general outcome. One may reasonably assume that NCA3 controllers are
exceptionally good at maintaining the shape of kinematic trajectories, suggesting that
changes in orbit shape (O) are very unlikely.

A transient impulse applied to the mass center might well introduce a lagging
change in frequency (transient) and thus a likely phase shift (P) in rough proportion
to the magnitude of perturbation.

1.5 Conclusions

In an effort to create testable hypotheses for the control of running, we introduce
a progression of neuromechanical control architectures. Within a dynamical systems
framework, we explore the coupling of an internal “neural” pattern generator with
an “external” mechanical body and legs. We progress from strongly feedforward con-
trollers dominated by the mechanical system viewed as a hybrid oscillator to a con-
troller with feedback signals driven by mechanical perturbations that influence the
feedforward command signal emanating from the neural pattern generator (fig. 1.2 and
fig. 1.2).

To begin to define these architectures, we use a series of legged physical models
(robots) that offer the most direct exposition of our central argument that “external’
body-limb kinematics can offer a window into “internal” architecture. Specifically, we
propose that kinematically derived measurements of mechanical phase manifest the
internal neural clock phase and hence can be used to capture aspects of the coupled
motor system’s phase response curve during rhythmic behavior.

By reasoning about the likely properties of the phase response curve for each archi-
tecture in the progression, we conclude that an appropriately diverse battery of distinct
mechanical perturbations must elicit an observable pattern of phase and frequencies
changes that distinguish each individual architecture. Thus, we hypothesize that ap-
plying such a battery of perturbations to an intact runner – robot or animal – may
shed significant light on the nature of its seemingly inaccessible feedforward/feedback
internal architecture. Mathematically succinct exemplars of this architectural plane
are straightforward to design and their analysis should be of considerable interest.

In particular, it is interesting to speculate on the extent to which our informal rea-
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soning about the likely empirical phase response of complicated mechanisms to pertur-
bations might be shown to be mathematically necessary. Because we take advantage of
the ubiquity of isochrons (Guckenheimer and Holmes, 1983; Winfree, 1980) in coupled
oscillators (Cohen et al., 1982), such mathematical prescriptions might likely extend to
the far more elaborate kinematics of runners. If so, such perturbation batteries attain
the character of an empirical assay with the power to characterize important aspects
of an intact runner’s motor control operating point.

1.6 Overview of the sequel

The following two chapters describe experiments conducted within the framework
of perturbation assays suggested here.

The first experiment studies the response of running Blaberus discoidalis cock-
roaches to traversing a hurdle. The results are developed into a mathematical control
model that suggests that bilaterally symmetric perturbations such as a hurdle excite
fundamentally different aspects of the controller from bilaterally asymmetric pertur-
bations.

The second experiment introduces such an asymmetric perturbation in the form of
a large lateral impulse. Lateral impulses have been studied with respect to stability of
the lateral leg spring (LLS) model. It is particularly interesting to study LLS dynamics
on an animal whose non-dimensional moment of inertia was manipulated, as quantative
predictions of the ensuing instablity can be tested.

The fourth and final chapter introduces tools for the study of stability using kine-
matic data, and specifically address the question of finding a structural signature of
a Template. The analyses used in the first three chapters examine phase, whereas
the fourth chapter extends the quantitative analysis of dynamics off the limit cycle,
showing how the Floquet multipliers that govern stability can be recovered. Such an
analysis forms the first step of recovering the Floquet structure of the dynamics directly
from data. This coordinate-invariant structure expresses the intrinsic properties of the
neuromechanical controller in mathematical form.
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O Ekeberg, M Blümel, and A Büschges. Dynamic simluation of insect walking. Arthro-
pod Struct Dev, 33:287 – 300, 2004. doi: 10.1016/j.asd.2004.05.002.

D P Ferris and M Louieand C T Farley. Running in the real world: adjusting leg
stiffness for different surfaces. Proc R Soc Lond , Ser B: Biol Sci, 265(1400):989–
994, June 1998.

R Fitzhugh. Impulses and physiological states in theoretical models of nerve membrane.
Biophysics Journal, 1:445–466., 1961.

R J Full and C T Farley. Musculoskeletal dynamics in rhythmic systems - a comparative
approach to legged locomotion. In J M Winters and P E Crago, editors, Biomechanics
and Neural Control of Movement, pages 192–202. Springer-Verlag, New York, 2000.
ISBN-10: 0-387-94974-7, ISBN-13: 978-0-387-94974-1.



34

R J Full and D E Koditschek. Templates and anchors: Neuromechanical hypotheses
of legged locomotion on land. J Exp Biol, 202(23):3325–3332, 1999.

R J Full, T Kubow, J Schmitt, P Holmes, and D Koditschek. Quantifying dynamic
stability and maneuverability in legged locomotion. Integr Comp Biol, 42(1):149–
157, FEB 2002. ISSN 1540-7063.

H. Geyer, A. Seyfarth, and R. Blickhan. Positive force feedback in bouncing gaits?
Proc R Soc Lond , Ser B: Biol Sci, 270(1529):2173–2183, October 2003.

R M Ghigliazza and P Holmes. A minimal model of a central pattern generator and
motoneurons for insect locomotion. SIAM journal of applied dynamical systems, 3
(4):671–700, 2004a.

R M Ghigliazza and P Holmes. Minimal models of bursting neurons: How multiple
currents, conductances, and timescales affect bifurcation diagrams*. SIAM journal
of applied dynamical systems, 3(4):636–670, 2004b.

R M Ghigliazza, R Altendorfer, P Holmes, and D E Koditschek. A simply stabilized
running model. Siam Review, 47(3):519–549, sep 2005.

D I Goldman, T S Chen, D M Dudek, and R J Full. Dynamics of rapid vertical climbing
in cockroaches reveals a template. J Exp Biol, 209:2990–3000, 2006.

M Golubitsky, I Stewart, P L Buono, and J J Collins. Symmetry in locomotor central
pattern generators and animal gaits. Nature, 401(6754):693–695, 1999.

R Grasso, M Zago, and F Lacquaniti. Interactions between posture and locomotion:
motor patterns in humans walking with bent posture versus erect posture. J Neuro-
physiol, 83(1):288–300, 2000. PMID: 10634872.

S Grillner. Neurobiological bases of rhythmic motor acts in vertebrates. Science, 228:
143–149, 1985.

L Guan, T Kiemel, and A H Cohen. Impact of movement and movement-related
feedback on the lamprey central pattern generator for locomotion. J Exp Biol, 204
(Pt 13):2361–2370, 2001.

J Guckenheimer. Isochrons and phaseless sets. J Math Biol, 1:259–273, 1975.

J Guckenheimer and P Holmes. Nonlinear Oscillations, Dynamical Systems, and Bi-
furcations of Vector Fields. Springer-Verlag, 1983.



35

H Haken, J A Kelso, and H Bunz. A theoretical model of phase transitions in human
hand movements. Biol Cybern, 51(5):347–356, 1985.

M R Hinder and T E Milner. The case for an internal dynamics model versus equilib-
rium point control in human movement. J Physiol (Lond ), 549(3):953–963, 2003.
doi: 10.1113/jphysiol.2002.033845.

A L Hodgkin and A F Huxley. A quantitative description of membrane current and its
application to conduction and excitation in nerves. J Physiol, 117:500–544, 1952.

P Holmes, R J Full, D E Koditschek, and J Guckenheimer. The dynamics of legged
locomotion: Models, analyses, and challenges. SIAM Reviews, 48(2):207–304, 2006.

Y P Ivanenko, R Grasso, V Macellari, and F Lacquaniti. Control of foot trajectory in
human locomotion: Role of ground contact forces in simulated reduced gravity. J
Neurophysiol, 87(6):3070–3089, 2002.

S Jaric and M L Latash. The equilibrium-point hypothesis is still doing fine. Hum
Movement Sci, 19(6):933–938, 2000.

D L Jindrich and R J Full. Dynamic stabilization of rapid hexapedal locomotion. J
Exp Biol, 205(18):2803–2823, Sep 2002. ISSN 0022-0949.

M Kawato. Internal models for motor control and trajectory planning. Curr Opin
Neurobiol, 9:718–727, 1999.

J A Kelso, P W Fink, C R DeLaplain, and R G Carson. Haptic information stabilizes
and destabilizes coordination dynamics. Proc R Soc Lond , Ser B: Biol Sci, 268
(1472):1207–1213, 2001.

E Klavins and D E Koditschek. Phase regulation of decentralized cyclic robotic systems.
The International Journal of Robotics Research, 21(3):257–275, 2002.

E Klavins, H Komsuoglu, R J Full, and D E Koditschek. The role of reflexes versus
central pattern generators in dynamical legged locomotion. In J Ayers, J Davis, and
A Rudolph, editors, Neurotechnology for Biomimetic Robots, pages 351–382. MIT
Press, Boston, MA, 2002.

D E Koditschek and M Bühler. Analysis of a simplified hopping robot. Int J Rob Res,
10(6):587–605, 1991.



36

D E Koditschek, R J Full, and M Bühler. Mechanical aspects of legged locomotion
control. Arthropod Struct Dev, 33(3):251–272, July 2004.

T Kohlsdorf and A A Biewener. Negotiating obstacles: running kinematics of the lizard
sceloporus malachiticus. J Zool, 270(2):359–371, oct 2006.

K P Kording and D M Wolpert. Bayesian decision theory in sensorimotor control.
Trends Cognitive Sciences, 10(7):319–326, 2006.

A D Kuo. The relative roles of feedforward and feedback in the control of rhythmic
movements. Motor Control, 6(2):129–145, 2002.

F Lacquaniti, C Terzuolo, and P Viviani. The law relating the kinematic and figural
aspects of drawing movements. Acta psychologica (Amst), 54(1-3):115–130, 1983.
PMID: 6666647.

D V Lee, R M Walter, S M Deban, and D R Carrier. Influence of increased rota-
tional inertia on the turning performance of humans. J Exp Biol, 204(22):3927–3934,
November 2001.

C Morris and H Lecar. Voltage oscillations in the barnacle giant muscle. Biophysics
Journal, 35:193–213, 1981.

F A Mussa-Ivaldi. Modular features of motor control and learning. Curr Opin Neuro-
biol, 9:713–717, 1999.

E Nakano, H Imamizu, R Osu, Y Uno, H Gomi, T Yoshioka, and M Kawato. Quantita-
tive examinations of internal representations for arm trajectory planning: minimum
commanded torque change model. J Neurophysiol, 81:2140–2155, 1999.

K G Pearson. Common principles of motor control in vertebrates and invertebrates.
Annual Reviews Neuroscience, 16:265–297, 1993.

K G Pearson. Proprioceptive regulation of locomotion. Curr Opin Neurobiol, 5:786–
791, 1995.

K G Pearson. The control of walking,. Sci Am, 464:72–86, 1976.

C Peper, E Liekeand A Ridderikhoff, A Dafferthör, and P J Beek. Explanatory lim-
itations of the hkb model: Incentives for a two-tiered model of rhythmic interlimb
coordination. Hum Movement Sci, 23:673–697, 2004.



37

M H Raibert. Legged robots. Commun ACM, 29(6):499–514, 1986.

M J E Richardson and T Flash. Comparing smooth arm movements with the two-
thirds power law and the related segmented-control hypothesis. J Neurosci, 22(18):
8201–8211, 2002.

M A Riley and M T Turvey. Variability and determinism in motor behavior. Journal
of Motor Behavior, 34:99–125, 2002.

N Sadegh and R Witz. Stability analysis of an adaptive controller for robotic manipu-
lators. In Proceedings IEEE International Conference on Robotics and Automation,
Raleigh, NC, Apr 1987.

P Saltiel, K Wyler-Duda, A d’Avella, M C Tresch, and E Bizzi. Muscle synergies
encoded within the spinal cord: evidence from focal intraspinal nmda iontophoresis
in the frog. J Neurophysiol, 85(2):605–619, 2001.

U Saranli, M Buehler, and D E Koditschek. Rhex: a simple and highly mobile
hexapedal robot. Int J Rob Res, 20(7):616–631, 2001.

S Schaal and N Schweighofer. computational motor control in humans and robots.
Current Opinions Neurobiology, 6:675–682, 2005. URL http://www-clmc.usc.edu/

publications/S/schaal-CON2005.pdf.

S Schaal and D Sternad. Origins and violations of the 2/3 power law in rhythmic
three-dimensional arm movements. Exp Brain Res, 136(1):60–72, 2001.

S Schaal, D Sternad, R Osu, and M Kawato. Rhythmic arm movement is not discrete.
Nat Neurosci, 7(10):1136–1143, 2004.

J Schmitt and P Holmes. Mechanical models for insect locomotion: dynamics and
stability in the horizontal plane - i. theory. Biol Cybern, 83(6):501–515, December
2000a.

J Schmitt and P Holmes. Mechanical models for insect locomotion: dynamics and
stability in the horizontal plane - ii. application. Biol Cybern, 83(6):517–527, 2000b.

R Shadmehr and S P Wise. Computational Neurobiology of Reaching and Pointing: A
Foundation for Motor Learning. MIT Press, 2005.

J J E Slotine and L Weiping. On the adaptive control of robot manipulators. In
Proceedings of the ASME Winter Annual Meeting, Anaheim, CA., Dec 1986.

http://www-clmc.usc.edu/publications/S/schaal-CON2005.pdf
http://www-clmc.usc.edu/publications/S/schaal-CON2005.pdf


38

D Sternad and S Schaal. Segmentation of endpoint trajectories does not imply seg-
mented control. Exp Brain Res, 124(1):118–136, 1999.

D Sternad, M T Turvey, and R C Schmidt. Average phase difference theory and 1:1
phase entrainment in interlimb coordination. Biol Cybern, 67(3):223–231, 1992. doi:
10.1007/BF00204395.

E Todorov and M I Jordan. Smoothness maximization along a predefined path accu-
rately predicts the speed profiles of complex arm movements. J Neurophysiol, 80(2):
696–714, 1998.

J D Weingarten, R E Groff, and D E Koditschek. Coordination for legged robots.
In IEEE Conference on Robotics, Automation and Mechatronics, page (to appear),
Singapore, 2004a.

J D Weingarten, G A D Lopes, M Buehler, R E Groff, and D E Koditschek. Automated
gait adaptation for legged robots. In IEEE International Conference on Robotics and
Automation, page (to appear), 2004b.

L L Whitcomb, A A Rizzi, and D E Koditschek. Comparative experiments with a new
adaptive contoller for robot arms. IEEE Trans Robot Autom, 9(1):59–70, Feb 1993.

A T Winfree. The Geometry of Biological Time. Springer-Verlag, New York, 1980.



39

B

position (normalized)

ve
lo

ci
ty

 (
no

rm
al

iz
ed

) Hind-Left (HL)

Combined position
 (normalized)

C
o
m

b
in

e
d
 v

e
lo

c
it
y
 

(n
o
rm

a
liz

e
d
)

Kinematic Phase Estimate (K)

0 100 200 300 400 500 600
-5

0

5

10

15

20

25

30

35

40

45

P
ha

se
  (

ra
di

an
s)

Time (ms)

ΦFR

ΦMR

ΦHR

ΦHL

ΦML

ΦFL

ΦK

A

C

ve
lo

ci
ty

 (
no

rm
al

iz
ed

) Hind-Right (HR)

position (normalized)

position (normalized)

Middle-Left (ML)

ve
lo

ci
ty

 (
no

rm
al

iz
ed

)

position (normalized)

Front-Left (FL)

ve
lo

ci
ty

 (
no

rm
al

iz
ed

)

Middle-Right (MR)

position (normalized)

ve
lo

ci
ty

 (
no

rm
al

iz
ed

)

Front-Right (FR)

position (normalized)

ve
lo

ci
ty

 (
no

rm
al

iz
ed

)

High Dimensional Cycle
(provides Φ

K
; derived from fore-aft 

motions of tripod centroids)

Projection on 
Sub-Systems Φ

S

(provide Φ
FR

, Φ
MR

... 

etc.; projections give 
position and velocity of 

foot)

Unwrapping the Cycles
instantaneous phase over 

multiple cycles 
Slope = frequency

Second Cycle

First Cycle

Residual
Phase

Figure 1.5: Determining instantaneous phase change in a running insect using a dy-
namical systems approach. A Plot of kinematic phase estimate Φ̂K. Kinematic phase
estimate represents the global high dimensional dynamical system of a locomoting
animal. Kinematic phase estimate Φ̂K is constructed from the positions and veloc-
ities of the animal’s six feet by treating each tripod as a viritual leg at its cen-
troid. By taking the difference in fore-aft position of the centroids and its derivative
we obtain plot of A. B Plots of sub-system phase estimates Φ̂S for individual feet
S = FL,ML,HL, FR,MR,HR, which may be viewed as projections of our overall
kinematic phase estimate Φ̂K. C Instantaneous phase as a function of time for both
(global) kinematic phase and leg phases of individual legs. Leg phases fall into two
groups, each set representing a tripod of support. The slope of the lines represents
cycle frequency. The instantaneous difference of a phase from the trend-line of the
kinematic phase estimate Φ̂K is used to calculate any phase changes that result from a
perturbation as in fig. 1.4



40

re
s
id

u
a

l 
p

h
a

s
e

re
s
id

u
a

l 
p

h
a

s
e

re
s
id

u
a

l 
p

h
a

s
e

re
s
id

u
a

l 
p

h
a

s
e

p
o

s
it
io

n
p

o
s
it
io

n
p

o
s
it
io

n
p

o
s
it
io

n

P
e
rt

u
rb

a
ti
o

n
P

e
rt

u
rb

a
ti
o

n
P

e
rt

u
rb

a
ti
o

n
P

e
rt

u
rb

a
ti
o

n

P
e

rt
u
rb

a
ti
o
n

P
e

rt
u
rb

a
ti
o
n

phase 
change

frequency 
change

time

P
e

rt
u
rb

a
ti
o
n

P
e

rt
u
rb

a
ti
o
n

Foot Positions Residual Phases of Feet

time

orbit
change

no change

A

B

C

D

Figure 1.6: Types of outcomes from a transient perturbation, such as a bump, ex-
pressed in terms of fore-aft foot position and residual phases as a function of time.
The left column shows the fore-aft position of each foot as in fig. 1.4, and the right
column shows the residual kinematic phase based on an extrapolation of the phase
before perturbation. Each cycle in the left column represents a single stride. A phase
and frequency recovery (no change).B a phase change outcome, where frequency is
recovered but phase is not. The gray lines extrapolate foot motions prior to perturba-
tion to illustrate how phase shifted movements differ from un-shifted movements. C a
frequency change outcome. D a gradual breakdown of the periodic orbit’s shape



41

Chapter 2

Hurdle Traversal



42

2.1 Summary

Using hypotheses derived from a dynamical system approach, we tested whether
the control of running uses neural feedback to recover from a perturbation. If feed-
forward neural signals are unmodified by the perturbation, then the timing (phase) of
tarsal (foot) kinematics should remain phase-locked to the pre-perturbation rhythm.
We video recorded Blaberus discoidalis cockroaches traversing a hurdle and processed
the kinematic data from the fore-aft excursions of all tarsi to produce a single kinematic
phase variable. Kinematic phase may be used to reliably predict future leg motions
based on the preceding strides. The time derivative of kinematic phase provides a
frequency which must remain unchanged if neural patterns are unaffected by sensory
feedback. Results of forty trials showed that the kinematic phase was reset, while run-
ning frequency was closely maintained to within ±5%. Kinematic phase changes were
distributed bi-modally with modes 180◦ or half a stride apart (in an axial distribution)-
a difference of one step, which corresponds to a left-right reflection of the kinematic
state of the body. Neither mode had significant weight at zero phase change, decreasing
the likelihood of feedforward control and supporting the use of neural feedback for this
task. Phase changes did not depend on visual or antennal sensory ability. We propose
a controller that expresses the timing of the two tripods as two coupled phase oscilla-
tors, which in turn, may also be coupled to a master clock. Our controller informs and
is informed by controllers operating in legged robots.

2.2 Introduction

Both mechanical and neural feedback play a role in the control of animal locomotion
(Dickinson et al., 2000). We propose an approach grounded in dynamical systems
theory that allows questions of control to be studied using readily obtained kinematic
data. We test hypotheses developed by Revzen et al. (2008) that consider what parts of
the neuromechanical control architecture for a given locomotor behavior are modulated
by feedback when locomotion is perturbed.

The most developed neural control architecture for legged locomotion comes from
the study of slow quasi-static locomotion in stick insects has emphasized the importance
of neural reflexes. This controller, known as WalkNet, is expressed as a distributed
artificial neural net (Cruse et al., 1998, 2007) that effectively models the kinematics of
leg movements in general and the inter-leg influences during slow walking in particular.
WalkNet was extended (Schilling et al., 2007) to ensure that it correctly models how
stick insects walk with amputated legs and under more dynamic conditions. WalkNet
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is a kinematic controller in the sense that it governs the positions of leg joints over time,
rather than the torques that drive them. It provides first order differential equations
for joints, wherein momentum plays no role (Schilling et al., 2007). Recent experi-
mental results from stick insects (Akay et al., 2004; Bueschges, 2005; Bueschges and
Gruhn, 2007) suggest that the function of neural circuitry is critically dependent on
mechano-sensory feedback, without which the central pattern generators (CPGs) that
control different joints would not synchronize properly.

By contrast, there is ample evidence that the control of rapid running in cockroaches
has a significant feedforward component that is governed primarily by what Pearson
et al. (2006) called the “phase dependent part” of motor control. Kubow and Full
(1999) simulated a mechanical model of a running cockroach with leg forces played out
from recordings of force plate data, and noted its surprising stability when perturbed.
Jindrich and Full (2002) showed that running cockroaches begin to recover from an
impulse within 14 milliseconds – a response time that challenges the fastest of reflexes.
Sponberg and Full (2008) ran cockroaches over a rough terrain while recording muscle
action potentials from a set of putative control muscles, and found no differences with
running on flat ground. Ridgel and Ritzmann (2005) showed that cockroaches with
a circumoesophageal lesion tend to run continuously with a stereotyped gait. Taken
together with Noah et al. (2004) demonstrating that distal leg denervation does not
interfere with rapid running although it disrupts walking gait, one may conclude that
mechanical feedback appears to play a greater role in rapidly running cockroaches.
These discoveries support the development of mass-spring models emphasizing the
mechanical system’s role in control (Holmes et al., 2006). The virtual springs of both
the Spring Loaded Inverted Pendulum (SLIP) and the Lateral Leg Spring model (LLS)
represent the summed mechanical behavior of legs. Both models show self-stabilization
to perturbations primarily through mechanical feedback.

In the present manuscript, we examine the coupling of both neural and mechanical
feedback by testing neuromechanical control architectures at intermediate speeds.

2.2.1 Dynamical Systems are the natural choice of language

Because neural feedback, mechanical properties of the body and the dynamics of
the task all play a role in legged locomotion, it is only by treating the moving animal
in its environment as a single combined system that we can begin to obtain insight into
control. To allow us to study animal-in-environment systems such as these, we must
adopt an appropriate mathematical language that allows us to generate quantitative
hypotheses.

A natural choice of language for expressing the dynamics of legged locomotion is
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that of hybrid dynamical systems (Back et al., 1993; Holmes et al., 2006). Within
this mathematical framework, an animal running in its environment with a regular
gait is represented with respect to body-centered coordinates as a non-linear oscillator.
The hybrid transitions provide a representation for the discontinuities that occur in
the equations of motion when the number of legs contacting the ground changes.

One of the insights offered by Dynamical Systems Theory and its sister discipline
Control Theory is the fundamentally different nature of control in slow, quasi-static
locomotion versus highly dynamic locomotion. By definition, quasi-static mechanical
systems are referred to by control theorists as driftless – the state of the system does
not change if the controller does nothing. In contrast, in rapidly moving animals far
from static equilibrium, inaction would result in significant changes in state corre-
sponding to motions continuing with the momentum of the animal. The importance
of momentum implies that the state-space descriptions of fast-moving animals require
both configuration variables (positions) and their conjugate momenta – effectively dou-
bling the dimension of the state space of slow-moving animals of similar morphology.
It is thus expected that control of rapid, dynamic locomotion may be fundamentally
different from control of slow locomotion (Holmes et al., 2006). Here, we test control
architectures where both are likely to play a role.

Approaches using stochastic optimal control (Todorov and Jordan, 2002) can lead
to predictions similar to those of dynamical systems. In the optimal control framework,
much attention is given to the goal function (or functional) with respect to which opti-
mality of the control strategy is sought. We believe that the behavior itself, expressed
as a low-dimensional attracting sub-manifold of the state space, should be the object
of primary interest. A putative goal functional for which this behavioral sub-manifold
may be optimal can be difficult to ascertain, and is only of secondary concern. Instead,
we focus on testing competing hypotheses about the architecture of the neuromechan-
ical controller (see section 2.2.3), irrespective of whether or not those architectures are
compatible with any particular notion of optimality.

We approached the classification of controller architectures acting in a given be-
havior from first principles, by proposing a framework for partitioning the dynamical
system into clearly identifiable sub-system blocks based on the form information they
store and the self-excitation properties they possess. This partition into blocks gives
rise to a set of nested feedback loops that could contribute to control of the behavior we
wish to study. We formulate hypotheses of control architecture to represent the choice
of feedback loops that do in fact play a role, and test these against their expected
kinematic consequences as expressed in phase (timing) of leg motions.

By focusing on fundamental structures such as phase, whose existence is guaranteed
by dynamical systems theory for all stable oscillators, we may design experimental tests
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for control hypotheses representing alternative feedback regimes. These tests can be
broadly applied to many organisms and even robots.

2.2.2 Oscillators examined using Kinematic Phase

The theory of dynamical systems often describes stable nonlinear oscillators in
terms of their phase variables and the entrainment effects that tie their phases together
(Guckenheimer and Holmes, 1983; Abraham and Marsden, 1978). Every state in the
stability basin of a stable periodic orbit is associated with a phase defined by the
dynamics of convergence back to that stable orbit. The response of this global phase
(Revzen et al., 2008) to various experimental manipulations can reveal important
properties (Guckenheimer, 1975; Glass and Winfree, 1984; Winfree, 1980) of the
underlying system.

Modeling and controlling motions with coupled phase oscillators has met with some
success in the robotics community (Schaal, 2006). Thus both mathematical theory and
engineering practice allow that the entire animal in its environment can be represented
as a non-linear phase oscillator. This choice can be effective because we avoid the pit-
falls of “piecemeal analysis of the different system components” (Pearson et al., 2006)
by offering a simple model with few parameters. We are carrying the reduction of
complexity to the point of leaving only the phase response dynamics1. We contend
that these dynamics are often sufficient for deciding among the alternative structural
hypotheses for the animal’s control architecture (Revzen et al., 2008).

When a system oscillates periodically, all the subsystems involved in producing the
behavior and all observable quantities s describing those subsystems must also oscillate
periodically. The implication for experimental biomechanics is that the kinematics
of the body and its subsystems must reflect the underlying periodic dynamics. As
described in Revzen et al. (2008), kinematic measurements may be combined to provide
an estimate of the phase of the underlying nonlinear oscillator. We refer to such an
estimate as a kinematic phase of the system, and argue for its utility in the investigation
of neuromechanical control of rhythmic behaviors.

Dynamical systems theory supports the contention that once phase is estimated
reliably, the average state of the system (animal) as a function of phase is a repre-
sentative model of its dynamics in the future. Because it is a linear function of time,
extrapolating phase into the future is a simple task, and after doing so we obtain an
extrapolated phase prediction of the state of the animal. In Revzen et al. (2008) we

1By phase response dynamics we mean the entire nonlinear gamut of phase responses – not merely
the phase response curve (PRC) which is their linearization on the stable cycle.



46

suggested the use of the difference between the predicted and the actual phase of an
animal’s motion after experiencing a perturbation, referring to this difference as resid-
ual phase. We offered an assay of perturbation tests that can be used as a means
of characterizing controller architecture based on the asymptotic (long-term) changes
in residual phase. Here, we will also describe some use for features of the transient
residual phase response in this classification.

Animals that conveniently expose their phase through kinematics would be most
amenable to study by using the residual phase approach. The best candidates would be
animals using rhythmic motions with many appendages and a simple nervous system.
These animals would expose a great deal of phase information through the kinematics of
their appendages, while maintaining a relatively simple neural state. For such animals,
kinematic phase would provide a reliable estimate of their global phase.

To test neuromechanical control hypotheses using kinematic phase, we chose a six-
legged arthropod, the cockroach, Blaberus discoidalis, running on a treadmill. We
measured the change in leg phase (i.e. the residual phase) by comparing phase before
and after a perturbation caused a small hurdle. We selected cockroaches because of the
well developed characterization of their neuromechanical control architectures (fig. 2.1).
Their kinematics and dynamics have been measured at a range of speeds on both tracks
and treadmills (Kram et al., 1997; Full et al., 1991; Full and Tu, 1991; Watson and
Ritzmann, 1998a,b; Kubow and Full, 1999; Jindrich and Full, 1999). Both simple and
more representative neuromechanical models have been proposed and tested (Schmitt
et al., 2002; Schmitt and Holmes, 2000a,b; Seipel et al., 2004; Ghigliazza et al., 2005;
Kubow and Full, 1999; Jindrich and Full, 1999). Knowledge of the musculoskeletal
mechanics (Ahn and Full, 2002; Ahn et al., 2006) and the sensory mechanisms (Zill
et al., 1981, 2004; Ridgel et al., 2000) defines the components of the architectures.
More specifically, our choice of hurdle height (3 mm) was informed by previous studies
of obstacle traversal (Watson et al., 2002a,b), showing that 5.5 mm obstacles did not
induce cockroaches to pitch upward and shift to a climbing behavior.
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2.2.3 Neuromechanical Control Architectures provide testable
control hypotheses
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Description of fig. 2.1

Neuromechanical control architectures (NCAs): Reflex Cascade (NCA0), Clocked Spring
Mass (NCA1), Clock Tracker (NCA2) and Clock Adapting Tracker (NCA3). We partitioned
an animal’s neuromechancal system into blocks based on the kind of state they contain and
the information processing that they perform.

The “Task Level Control” block encapsulated settings of parameters for the behavior (e.g.
desired stride frequency) as expressed in descending neural signals and physiological state.
We assumed the outputs of Task Level Control are held constant throughout a behav-
ior. A “Central Pattern Generator” (CPG) circle contains neural circuitry that endoge-
nously produced the rhythmic pattern of the behavior (Delcomyn, 1980; Grillner, 1985;
MacKay-Lyons, 2002). We relegated all reflex based neural modulation of the CPG signal
(Ijspeert, 2008; Ritzmann and Bueschges, 2007) to the “Tracking” block. Mathematically,
we assumed Tracking was time-invariant, stateless and functioned by comparing the state
of the limbs (relative to the body) and the reference provided by the CPG to generate force
activation in muscles. Tracking contained no persistent state and was not self-exciting. The
“Muscles and Skeleton” double circles contain the mechanical state of the body, which is
subject to manipulation by forces from the environment. The body interacted mechanically
with the “Environment” and also modified the representation of the environment returned
by “Sensing”.

The control architectures include progressively more internal state that is influenced by
feedback. Reflex Cascade (NCA0) has no internal state, and environmentally induced events
trigger reflexive responses that generate the cyclical behavior. Clocked Spring Mass (NCA1)
has a CPG, but neither the CPG nor the muscle activations are influenced by feedback.
Clock Tracker (NCA2) uses Tracking reflexes to modulate the muscle activations, but the
CPG remains oblivious to the environment. Clock Adapting Tracker (NCA3) expresses the
most general case: all blocks other than Task Level Control (which is assumed constant)
can be influenced by feedback. After Revzen et al. (2008) where a detailed discussion of
the outcomes to perturbations we list below each NCA is found.

In Revzen et al. (2008), we proposed several plausible Neuromechanical Control
Architectures (NCA) shown in fig. 2.1. When subjected to a collection of perturbation
experiments, the predicted phase and frequency responses of systems belonging to each
NCA provide related, testable hypotheses that may be verified or refuted experimen-
tally - allowing us to reject some NCAs in favor of others.

Our experimental approach separates the architectures based on instantaneous
phase and its slope, the instantaneous frequency, before versus after the perturba-
tion. For constant frequency rhythmic behaviors, phase is a linear function of time.
When frequencies pre- and post-perturbation are equal, the differences in intercepts of
the pre- and post-perturbation linear models of phase becomes well defined2 and we

2The intercepts are not well defined when frequencies are not equal because phases are cyclic
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refer to this value as the phase outcome of the perturbation experiment. A zero phase
outcome defined by no change in the residual phase before versus after the perturbation
indicates that the pre-perturbation rhythm continues without modification.

A permanent change in frequency implies that the animal system is no longer
following the pre-perturbation rhythm. Frequency changes reject the possibility of
Clocked Spring Mass (NCA1) and the Clock Tracker (NCA2) because feed-forward
neural control requires that the CPG output maintain a constant frequency unaffected
by perturbation.

Changes in phase can occur in feedforward architectures such as Clocked Spring
Mass (NCA1) and the Clock Tracker (NCA2), where they express the possibility that
the musculoskeletal system oscillation may have different relative phases to the neu-
ral CPG. For example, the difference between a front leading trot (front legs landing
first) and a back leading trot (hind legs landing first) in a quadruped need not require
any changes in the outgoing signals from the nervous system. These two trots, when
viewed through the lens of kinematic phase, are phase-shifted relative to each other.
Changes in phase in a Clock Adapting Tracker (NCA3) can also be the result of a
feedback induced frequency change integrated over the duration of the perturbation.
The key difference between the feedforward phase change mechanism and the feedback
phase change mechanism is that in the feedback phase change mechanism integrated
frequency change depends smoothly on the perturbation history, whereas the avail-
able phase changes in feedforward architectures are a property of the gait itself and
independent of the perturbation.

Very abrupt phase changes immediately following a perturbation imply that there
is effectively no internal sense of time that the animal maintains, rejecting the Clock
Adapting Tracker (NCA3) in favor a Reflex Cascade (NCA0). Phase changes are rapid
(possibly discontinuous) for Reflex Cascades whereas they are gradual and require
multiple strides in Clock Adapting Trackers.

History dependence in the phase outcome for perturbations ending in similar kine-
matic states, such as dependence on the duration of perturbation, is impossible for
a Reflex Cascade (NCA0) architecture. Reflex Cascade states are entirely described
by their kinematic variables implying that phase, which is a function of state, cannot
depend on the path taken to reach that kinematic state. Clock Adapting Trackers
(NCA3) change frequencies gradually as they are being perturbed and it is the time in-
tegrated frequency change that gives their phase outcomes. With end-of-perturbation
conditions similar, a strong correlation between perturbation duration and the phase

(defined modulo 2π). When frequencies differ, any choice of intercept is equally valid, depending only
on our arbitrary choice of initial time for the model.
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or frequency change it induces rejects Reflex Cascades in favor of Clock Adapting
Trackers.

2.3 Materials and Methods

We ran cockroaches across a three mm high hurdle at the animal’s preferred running
speed. We video recorded the animals from below with a high-speed camera and
digitized their body and tarsal (foot) motions in the image (horizontal) plane. We used
motions of the tarsi in the body frame of reference to produce a phase estimate based
on an animal’s kinematics. We used linear regression to fit and then extrapolate from
our kinematic phase estimates, providing projections of an animal’s expected motions
were they not perturbed by hurdle traversal. Using the difference between observed
and extrapolated phase, the residual phase in Revzen et al. (2008), we examined the
changes in timing of leg motions induced by hurdle traversal to discover the structure
of the neuromechanical architecture.

We used thirty three adult Blaberus discoidalis (Serville 1839) cockroaches (mass
3.3 ± 0.34 gram (mean,SD)). Animals were raised in a cage with unlimited food and
water and tested at room temperature 25 ± 3 ◦C.

2.3.1 Treadmill and hurdle

We ran the animals in a Plexiglas cage suspended on top of a treadmill with a
transparent belt. Treadmill speeds ranged uniformly (failed to reject Kolmogorov-
Smirnov test against a uniform distribution with α = 0.05) between 17 cm/s and
29 cm/s. In each trial, we manually adjusted the belt speed to match the animal’s
preferred running speed.
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Figure 2.2: Treadmill hurdle. Illustration of our experimental apparatus from A diago-
nal, B frontal and B lateral views. We suspended a box shaped Plexiglas cage (dotted
surface) above a transparent treadmill (thick dotted lines) whose direction of motion is
indicated by arrows. Using a computer, we triggered the motion of a carriage (carriage
mechanism as thin-lined box) that ran on a rail parallel to the treadmill (rail marked
by thick arrows) and carried a hurdle constructed from a square bronze tube (thick
black line). The hurdle moved across the cage at the speed of the belt allowing the
animal to run over it. The hurdle then stopped, and returned slowly to its starting po-
sition. The computer detected start and stop positions using optosensors whose beam
was interrupted by the carriage. The software that controlled the hurdle also triggered
a high-speed camera that video recorded the animal through the treadmill belt from
below (camera indicated schematically in frontal and lateral view; cylinder in diagonal
view). (Note: for clarity, animals drawn larger than scale.).
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We attached the cage (fig. 2.2) to a rail we salvaged from a dot-matrix printer
(Epson 9pin dot matrix, Epson America, Inc., Long Beach, CA 90806, USA). We used
the printer’s stepper motor to move the print-head carriage on which we attached a
bronze hurdle of 3 mm × 3 mm square cross-section, shaped so that it would extend
down to the bottom of the cage. We used four screws underneath the corners of the
frame carrying both cage and rail to allow us to adjust the hurdle motion until it was
parallel to the treadmill belt and in contact with it throughout the range of motion.

Previous work on obstacle traversal in Blaberus discoidalis shows little change in
running kinematics for hurdles of 5.5 mm height, as front legs typically rise 6 mm
during swing (Watson et al., 2002b). The height of 3 mm proved sufficient to elicit
changes in timing, while reliably allowing animals to continue running.

We controlled the stepper motor from a PC (Pentium II generic) running Linux
(Knoppix 3.2 booting from CD) using a commercial micro-stepping controller (R208,
RMS Technologies, Carson City, NV 89706, USA). We set the speed via the frequency
of a square wave emitted from the audio output of the computer, and controlled stepper
direction via the computer’s parallel port outputs. We used parallel port inputs to read
optical sensors that detected the carriage end-of-travel positions. We used additional
parallel port outputs to trigger the high-speed camera (Kodak Ektapro 1000; Eastman
Kodak Company, Rochester, NY, USA) recording the trials. At higher speeds, it
became impossible to bring the carriage to full speed from a standing start as it would
cause the motor to stall. To circumvent the stall conditions, we provided an acceleration
profile to bring the carriage up to the desired speed. We wrote the control software
in Python (Python Software Foundation, Hampton, NH 03843, USA) using extension
libraries pyParallel and ossaudiodev). The control software allowed the operator to
specify a desired carriage speed and acceleration.

The carriage moved the hurdle at a speed that was stationary in the belt frame
of reference. We calibrated the carriage speed commands by fitting a third order
polynomial to multiple frequency and speed pairs measured with an oscilloscope and
the high-speed camera.

We computed the treadmill belt velocities by tracking particles carried with the belt
over 100 frames. In each trial, we manually digitized the positions of a particle at 10
points in 10 frame intervals to provide an estimate of both velocity and its precision.
Velocities were known to within 0.5 cm/s, consistent with particle positions being
resolved to within 2 pixels.
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2.3.2 Protocol

We prodded the animals with a probe to guide them to run in the centre of the
cage. We manually adjusted the treadmill speed before each trial to match the running
speed preferred by the cockroach.

We selected trials so as to ensure that the animal ran for at least three strides
before and after contact with the hurdle; that the animal did not contact the walls of
the cage or vertical parts of the hurdle with body, legs or antennae; that the animal did
not obviously get snagged in the crack between the hurdle and the treadmill belt; that
animal ran straight ahead, in the sense that the maximal absolute difference between
instantaneous body orientation and median body orientation was less than 0.7 radian.
We only kept trials where the animal’s gait appeared to be regular before contact with
the hurdle. The criteria we used for regularity was that the root-mean-square of the
residual for the linear regression 0 is less than 0.5 radian.

2.3.3 Video processing

We recorded high-speed video at 500 frame/s using a color camera (Kodak Ektapro
1000; Eastman Kodak Company, Rochester, NY, USA). We placed the camera to
record the animals through the belt (see fig. 2.2) with a diffuse reflector panel providing
uniform background lighting from above the cage. We configured the camera to record
two seconds of video before and after the hurdle movement, allowing for a maximum
of 2048 frames per trial. We downloaded the captured videos to a host computer as a
sequence of TIFF frames with resolution of 512 × 384 pixels.

We tracked an animals’ position and heading using an automated body tracking
algorithm written in MatLab (The MathWorks, Inc., Natick, MA, USA). After it
corrected for lighting gradients and converted the images to gray-scale, the tracker
located and removed the image of the hurdle, if present. It then located the axis of
symmetry of the cockroach’s silhouette. It used the posterior most pixel on the axis as
its base position, and the angle of the silhouette axis as its orientation. We then rotated,
scaled and clipped animals’ images to generate a registered video sequence that contains
the animal in a standard position, orientation and size. We verified the quality of body
tracking in two control experiments, one tracking a cockroach carcass attached to a
positioning stage with ground truth positions taken from the stage, another tracking an
animal with markers on its abdomen and comparing with traditional marker tracking
position data. Our auto-tracker code produced results comparable in accuracy and
noise distribution to those obtained by more traditional marker based tracking methods
without the requirement for prior marking of the animals.
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Using a second tracking tool (also developed in MatLab for this purpose) we tracked
the positions of all six tarsi in the registered animal videos. The tarsus tracking tool
tracked the most distal point in the silhouette of each leg, which is typically a point
between the tarsal claws of that leg. The operator could interactively correct tracking
errors caused by occlusions, motion blurring and other sources by clicking on the desired
points.

In each trial, we computed a length scale for converting pixel coordinates to lengths
using the dimensions of a fixed length piece of Plexiglas that was next to the cage in
all frames. We treated pixels as if they were square and of equal size. We found such
a simplistic camera model to be justified because animals move within a small region
near the camera’s optical centre, and cannot move in and out along the viewing axis.

Additionally, we noted the first and last frames of each video sequence in which the
animals were in contact with the hurdle. Contact was defined as having any part of
the body other than antennae having a pixel adjacent to the hurdle in the image.

The output of this process was a dataset containing: absolute position and heading
of the body, tarsal positions in the body frame, relative to centre of mass (xk(t), yk(t)), k ∈
{1 . . . 6}, absolute position and angle of the hurdle in each frame where it is present
and times of first physical contact (start) t0, and last physical contact (end) t1 between
the animal and the hurdle.

2.3.4 Statistics

Our dataset consists of forty trials conducted with thirty three animals. Of these
animals, three were used for three trials each, and one was used for two trials. The
phase outcomes of animals used for multiple trials were not significantly different from
the statistical model fitted to the remaining animals (two way Kolmogorov-Smirnov
test α = 0.05). We therefore treat all trials as independent and identical for statistical
purposes.

To control for the possibility that tactile or visual sensing was affecting the out-
comes, we tested ten of the thrity three animals with clipped antennae and eyes blinded
with white-out. The distributions of phase and frequency change were indistinguish-
able from those of the remaining wild type animal tests (two way Kolmogorov-Smirnov
test α = 0.05), and thus all results we report are pooled from both groups.

2.3.5 Signal processing

We began the data processing of the tarsus (foot) positions (xk(t), yk(t)), k ∈ 1 . . . 6
by linearly interpolating any missing measurements. We chose linear interpolation after
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comparing with alternative interpolation schemes. We found this technique to predict
missing measurements at comparable residual error rates to other methods we tested.
A total of 1.0 × 104 samples out of the 1.8 × 105 that comprise our data were missing
(5.7%), mostly due to tarsi being occluded by the body, by other legs or by the hurdle
itself.

The tarsus tracking code provided position in units of a pixel. Tarsi move nearly
parallel to the body axis for significant periods of time, causing the lateral coordinates
xk(t) to take one of only a few possible values for many consecutive frames each cy-
cle. The yk(t) were also obtained as integer pixel numbers. The noise introduced by
expressing these continuous positions as integer pixel values is a form of quantization
noise, which is a spectrally white broadband noise. Much of this noise was removed
with an order 1 Butterworth smoother filter at a 0.25 cycle cut-off (MatLab butter,
and filtfilt).

We extended the resulting twelve dimensional positional dataset (xk, yk) of six legs
to twenty four dimensions by adding the velocities (ẋk, ẏk) as computed by sample
differencing of the Butterworth filtered positions. We tried several other filtering and
differencing methods on synthesized data with known phase and additive noise compa-
rable in magnitude to that in our raw measurements. Methods tested included Kalman
filters and windowed FIR derivatives. For purposes of phase computation, these meth-
ods offered no advantages compared with the naive sample differencing method. Veloc-
ities were included in the state as a representation of momentum, which is a required
part of the state for mechanical systems that are not quasi-static.

Finally, we rescaled all twenty four dimensions and translated them to obtain a
mean of zero and a standard deviation of one. We subjected the renormalized dataset to
principal component analysis and represented it in the coordinate system thus obtained.
The projection of the data on the first and second principal components was distributed
in an annulus around the origin and moved around the origin as the animal ran. We
chose the sign of the second principal component so that the state moved counter-
clockwise around the origin.

We took the angle of the polar representation of the state’s projection onto the
plane defined by the first two principal components as our kinematic phase estimate
ΦK . We split each phase time series into three time segments: before (indicated by the
subscript 0), during (D) and after (1) contact with the hurdle. We fitted a linear model
to each time segment by applying iteratively re-weighted least squares linear regression
(MatLab function robustfit) to ΦK .

The three models are represented by the equations of table 2.1, with times com-
prising each segment given in milliseconds relative to first contact time (t0) and last
contact time (t1) of the animal with the hurdle. From here forward, we make reference
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to the “on” and “off” transitions – the transition “on” occurring between the segment
pre-contact and the segment during contact with the hurdle, and the transition “off”
occurring between the segment during contact and the segment post-contact. We offset
the before and after segments from the “during contact” segments by a gap of 50 ms.
We did this to ensure that the high leverage endpoints of those time segments in which
the animals are not touching the hurdle. We required the before and after segments to
contain at least three strides, which are approximately 300 ms long, and allowed them
to be no more than 350 ms. Thus we used similar amounts of data in all trials for the
0 and 1 regressions.

Table 2.1: Regression models representing time segment before, during and after hurdle
contact.

Times (ms)
Regression Start End

Φ̂0(t) = f0t+ φ0 t0 − 400 t0 − 50

Φ̂D(t) = fDt+ φD t0 t1
Φ̂1(t) = f1t+ φ1 t1 + 50 t1 + 400

2.3.6 Kinematic Phase estimation

Following the seminal Cohen-Holmes-Rand Lamprey CPG model (Cohen et al., 1982),
many investigators have treated questions of neural control of locomotion from the per-
spective of oscillator coupling. The approach enjoys a coherent theoretical framework
for reduction of the modeled neural activation patterns to a mathematically simpler
form (Winfree, 1980; Guckenheimer, 1975). While somewhat more difficult to analyze,
the same ideas have been applied to coupling mechanical (second order) oscillators rep-
resenting the body mechanics in the environment to internal pattern generators. The
controller model we propose here is somewhat similar to the Haken-Kelso-Bunz model
(Haken et al., 1985) for motor coordination, in that it too is formulated in terms of
phase oscillators rather than physically explicit models of oscillators, and it too exhibits
multiple stable solutions.

The theory of nonlinear oscillators guarantees that under appropriate generic con-
ditions an asymptotically stable oscillator possesses a phase coordinate that is well-
defined not only on the orbit itself, but in the entirety of its stability basin. The
phase partitions the stability basin into isochrons, each of which is a surface consisting
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of states with equal phase (Guckenheimer and Holmes, 1983; Abraham and Mars-
den, 1978; Winfree, 1980; Glass and Winfree, 1984).

We proposed (Revzen et al., 2008) that kinematic measurements may provide an
effective way of estimating an animal’s phase along the purported asymptotically stable
locomotor orbit, and that such an estimate would extend to a neighborhood of the orbit.
We refer to the phase as expressed by purely kinematic variables as kinematic phase
(ΦK). Kinematic phase corresponds to the global phase (ΦG) guaranteed by theory on
the periodic orbit itself. Thus an estimated3 global kinematic phase (Φ̂K) may also be
used as an estimated global phase (Φ̂G), provided the global phase is not too sensitive
to non-kinematic changes of state near the orbit.

By definition, the canonical phase of an oscillator evolves linearly in time. Thus,
given the phase estimates from a few cycles of kinematic data, the investigator may use
linear regression to construct a model providing an extrapolated phase – an expected
phase projected into past and future. We may now define the global residual phase as
the difference between the extrapolated phase Φext and the actual phase ΦG:

∆ΦG(t)
∆
= ΦG(t) − Φext(t) (2.1)

3We follow the convention of denoting the estimate of a quantity x with a “hat” x̂.
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Figure 2.3: Example of estimating kinematic phase in a perturbation experiment. We
tracked the tarsi in a registered video (colored tracks in A, numbered 1 through 6
counter-clockwise from the head) providing time series of positions. We used the fore-
aft positions (B, plotted against time) to compute the difference in tripod fore-aft

centroids c(t). We plotted this combined position against its derivative ˙c(t), the com-
bined velocity in C. The annular shape showed that this 2D time series provided a useful
global kinematic phase estimate by taking the angular part of its polar decomposition.
We used this estimate and computed global residual phase after a perturbation (in D).
The result exhibited a phase change outcome following the perturbation. (Note: data
in D comes from a different trial than data in A, B and C). We showed the equations
for regression lines of φD and φ1 (see table 2.1) in the legend, and demonstrated that
frequency changed by 0.1 Hz, together with a phase change of −1.67radian. The thick
lines represent the time segments for which we performed the linear regressions.

fig. 2.3 illustrates how we applied these ideas to running cockroaches. After con-
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verting the videos to the animals’ frame of reference by rotation and translation (the
registered videos), we tracked the tips of the animals’ tarsi (fig. 2.3-A (xk(t), yk(t)), k ∈
{1 . . . 6}). We took the fore-aft coordinate (fig. 2.3-B plotting yk(t) versus t), and com-
puted the difference between the centroids of the two tripods in the fore-aft direction:

c(t)
∆
=
y1(t) + y3(t) + y5(t)

3
− y6(t) + y2(t) + y4(t)

3
(2.2)

Our choice of formula for the tripod-centroid coordinate c(t) arose from observation
of the gait being studied. In the alternating tripod running gait, legs 1, 3 and 5 move
approximately in phase with each other and anti-phase to legs 2, 4 and 6. All legs
move primarily in the fore-aft direction; thus the linear combination chosen provided
an averaged coordinate the reliably reflected the state of the animal within the gait
cycle. We plotted the tripod centroid coordinate c(t) and its time derivative ċ(t) against
each other in fig. 2.3-C, after subtracting the mean and rescaling to standard deviation
of 1. We estimated phase by expressing the resulting 2D time series in polar coordinates
and taking the polar angle to be our kinematically derived global phase estimate G:

Φ̂G
∆
= atan2

(

c− 〈c〉
std(c)

,
ċ− 〈ċ〉
std(ċ)

)

(2.3)

The ΦG estimate can be used to model the pre-perturbation behaviour, extrapo-
late it into the future and compare with the outcome of the perturbation experiment
(see fig. 2.3-D). Using linear regression, we fitted the Φ0 model to the time segment
preceding contact with the hurdle. This regression line was extrapolated to future and
past to give Φext, which was used as a baseline model. The offset from this baseline
is ∆ΦG, the residual phase. We used similar regressions to provide the ΦD and Φ1

models during and after interaction with the hurdle. The plot in fig. 2.3-D shows these
regression lines in a typical trial.

The constant frequency model of phase evolution (which corresponds to nearly
linear segments on the ∆ΦG plot) is a reasonable one for periods of time far in excess
of the duration of physical contact with the hurdle (region between two vertical lines
in plot). We may therefore use the deviations from the extrapolated linear trends
as a means for estimating changes from behaviour that would have occurred but for
the perturbation. The plot in fig. 2.3-D also demonstrates that when linear regression
was applied to consecutive segments in time, the regression lines need not match on
the boundaries connecting the segments. At each boundary, the regression model
changed to a new slope, indicating a frequency change, and an intercept that was
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potentially incompatible with the current segment’s predicted value, indicating a phase
discontinuity.

Stated more precisely, one observes that the phase outcomes is a sum of several
contributions, most obvious among them the difference in frequency fD −f0 multiplied
by the duration of contact t1 − t0. Additionally, the phase regression models Φ0(t) and
ΦD(t) may not agree in their predictions for phase at time t0. We refer to this as the
On discontinuity . Similarly ΦD(t) and Φ1(t) may not agree regarding time t1, giving
an Off discontinuity . The plot in fig. 2.3-D illustrates how the three linear models of
table 2.1 related to each other in one trial. In this case ΦD(t0) and Φ0(t0) differed by
more than 0.5radian.

2.4 Results

Animals ran at a stride frequency of 9.84±2.81 Hz (mean,SD) and speed of 23.0±
4.6 cm/s (N = 40). Trial durations were 1.26 ± 0.41 s with the duration of hurdle
contact equal to 0.27 ± 0.051 s.

2.4.1 Instantaneous frequency

A strength of using kinematic phase is an enhanced ability to detect frequency
changes. By definition, frequency is the time derivative of phase. From the frame-by-
frame phase estimate, we obtained a frequency estimate for every frame, in contrast
to a single frequency estimate for each stride – as is typically the case when stride
durations are used to define frequency. For example, if some event were to make the
animal stop for four milliseconds (two frames) and start moving again at the same
speed as before, the kinematic phase method would detect the full frequency change
down to 0 Hz and back toward the initial value, whereas methods based on stride
duration would detect almost no change at all.

The distribution of frequency changes which occurred when animals began contact
and ended contact with the hurdle is shown in fig. 2.4 using a Tukey box-plot. These
changes are differences between the frequencies (phase regression line slopes) f0, fD

and f1 specified in table table 2.1. The total change in frequency f1 − f0 was normally
distributed (Lilliefors α = 0.05) with a value of 0.034± 0.43 Hz. This mean change in
frequency was small when compared with the 10 ± 0.7 Hz stride frequency, implying
that frequency of the animals was unchanged.
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Frequency Change (Hz)

Figure 2.4: Frequency derived from kinematic phase on and off hurdle. “On” represents
the frequency change distribution when animals contact with the hurdle, fD − f0 =
−0.35 ± 0.49 Hz, represented by the difference in slope of the gray line and red line
in fig. 2.3-D. ; “Off” represents the distribution when animals lose contact with the
hurdle, f1 − fD = 0.38 ± 0.40 Hz, represented by the difference in slope of the light
blue line and red line in fig. 2.3-D; “Total” represents the frequency distribution of total
frequency change, f1 − f0 = 0.034 ± 0.43 Hz, represented by the difference in slope of
the gray line and the light blue line in fig. 2.3-D. Boxes show median with surrounding
notch indicating its 95% confidence interval, and extend from the 25th percentile to the
75th. Whiskers extend to full range of data. The notch in Total includes 0, showing
that the total frequency change is not statistically different from 0.

The frequency changes we observed when contact with the hurdle begins and ends
(fig. 2.4-D “On”, “Off”) were both normally distributed (Lilliefors alpha=0.05).

We explored our data for correlations between the following quantities: pre-perturbation
frequency f0, the frequency changes in the “On” transition fD−f0 and “Off” transition
f1 − fD, duration of contact t1 − t0, total phase change Φ0(t1) − Φ1(t1) and the phase
changes in the transitions “On” ΦD(t0)−Φ0(t0), and “Off” Φ1(t1)−ΦD(t1) the hurdle.
Correlations of angular quantities (phases) were computed by taking correlation with
sine and cosine (Fisher, 1993).

The “On” transition fD − f0 and “Off” transition f1 − fD frequency changes were
negatively correlated (R = −0.563, p < 2 × 10−4), expressing the fact that not
only does frequency remain unchanged on average, but individual animals return close
to their original frequency after being perturbed. This correlation accounts for the
variance of the “Total” frequency change fig. 2.4 being similar to that of “On” and
“Off”, while at the same time being their sum. No significant correlation was found
among any of the phase differences “On”, “Off” and “Total”, suggesting that transient
phase changes in the “On” and “Off” transitions were not linearly related. Taken
together these results suggested that when animals were on the hurdle they attempted
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to regulate frequency – how fast the gait cycle must advance – rather than regulating
phase – where in the gait cycle their limbs must now be.

The frequency decrease during contact with the hurdle was not a constant offset
below the pre-contact frequency. Instead, this frequency change fD −f0 was correlated
to the duration of contact with the hurdle t1 − t0 (R = −0.479, p < 2 × 10−3). This
suggested a history dependence in the frequency change. The longer the animal was
in contact with the hurdle, the more its frequency was decreased.

The “Off” phase discontinuity Φ1(t1) − ΦD(t1) was correlated to the duration of
contact t1 − t0 (R = 0.461, p < 3 × 10−3), and was the only correlate we found for
any of the phase differences examined. Taken together with frequency dependence on
duration of contact which implied larger phase changes for longer contact times, this
correlation suggests some tendency on the part of the animals to recover phase, and
not only frequency, when contact with the hurdle ends.

2.4.2 Phase

Total phase change

Total phase change Φ1(t1)−Φ0(t1) is the difference in phase between the predicted
phase based on pre-perturbation motions Φ0(t and the observed post-perturbation mo-
tions given by the model Φ1(t). Were it the case that frequency was exactly maintained
throughout the perturbation, then this difference would be the same at any all time
(t). However, because in any given trial frequency was not the same before and after
the hurdle, we had to select a time at which to compare the phases. We chose t1 – the
time at which the animal last touched the hurdle (i.e. in fig. 2.3 comparing the residual
phase at t0 between the gray and red lines with the residual phase at t1 between the
red and light blues lines). The distribution of Total phase change is plotted in fig. 2.5.



63

Phase Change

Left Stance
Lagging

Left Stance
Leading

Right Stance
Leading

Right Stance
Lagging

No
Change

Anti-
Phase

Figure 2.5: Rose plot of total phase change



64

Description of fig. 2.5

Rose plot of total phase change. Phase change is indicated as an angle, with illustrations
of cockroach at various angles showing left mid-stance as phase zero (gray), and the phase
shifted state (blue). Quadrants show whether a phase-shifted animal at that phase would
be leading or lagging the unperturbed animal at left mid-stance at phase zero (blue for left
stances; magenta for right stances). Total phase change results are presented in a rose plot
(circular histogram; thick red lines.) For clarity, we plotted an alternative non-parametric
representation of the same data. It represents the kernel smoothed density estimate (dashed
blue line). The smoothing kernel we used was a Gaussian kernel with width equal to the
rose plot bin size. We also plotted the parametric statistical model we fitted to the data
(axial wrapped Gaussian distribution; dotted green line).

The bi-modal distribution of phase outcomes seen in fig. 2.5 showed an unexpected
result. Given the pre-hurdle motions of the animal used for extrapolating a prediction
from unperturbed motions, animals traversing the hurdle differ from the prediction by
lagging by either 1.33 radian or by 1.33+π radian. Rather than having a single typical
phase outcome, perturbed animals exhibited an axial phase outcome distribution. This
implies that animals lagged by fraction of a cycle equal to 1.33 radian, or 1.33 radian
which represents an extra step.

Following Fisher (1993), we described the circular statistics of the phase outcome
distribution. The first moment of the distribution was ρ = 0.135, µ = −1.92 radian
and was not a statistically significant first moment (as is typical of axial distributions).
Testing the distribution for axiality, we doubled the phase angles, computed the mean,
and converted back to obtain ρ2 = 0.291, µ = 1.33 radian, a statistically significant
result at p < 0.05. Parametrically, the results can be described by an axial wrapped
Gaussian distribution with variance σ = 0.812 radian, mean µ = 1.33 radian and mass
of 0.56 on the lobe at the mean.

Discontinuities in phase changes

The discontinuity in phase between the “before” and “during” segment regression
models was ΦD(t0) − Φ0(t0) = 0.19(0.48) radian; between the “during” and “after”
models Φ1(t1) − ΦD(t1) = 0.15(0.60) radian. These phase change distributions were
both normally distributed (Lilliefors test with α = 0.05). The variances of these
distributions were not small in comparison with the maximal possible variance of pi
radians. However, the model fitting residuals themselves have a typical root-mean-
square magnitude on the order of 0.2 radian, and it is typical for fitting residuals to
be larger at the ends of the segment when using a robust linear fitting algorithm.
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2.5 Discussion

The use of kinematic phase with an instantaneous estimation of frequency (fig. 2.3)
revealed structure of the neuromechanical control architectures (fig. 2.1) previously
unknown. The frequency (fig. 2.4) and phase (fig. 2.5) response to our perturbation led
us to propose a novel biological controller sufficiently general that it can be applied to
legged robots.

2.5.1 Axial phase outcomes – a new coupled oscillator model

The axial phase distribution shown in fig. 2.5 suggests that the dynamical system
governing cockroach running possesses an internal symmetry related to delays of half a
stride cycle. A delay of half a stride corresponds to a step, and the pose of the animal
after a step is on average a mirror image of its pose before the step. Thus, these
preferred phase shift modes are related in a natural way to the bilateral symmetry of
the animal. Phasing of motion after perturbation maintains a preferred relationship to
the phase before perturbation, but this preference seems nearly indifferent to reflection
across the left-right axis of the animal.

Regardless of whether we interpret our results with the assumption of a feedfor-
ward architecture such as the Clocked Spring Mass (NCA1) or Clock Tracker (NCA2)
or within the broader class of Clock Adaptive Trackers (NCA3), the analysis of resid-
ual phase responses provides insight into the controller. For feedforward architectures
the CPG governs the long-term properties of the kinematics, causing the mechanical
system – the animal’s body – to entrain to its signal. The long term trends of the
kinematic phase thus provide a model for the neural CPG, and the excursions from
these trends, as expressed in the residual phase, indicate the various ways the mechan-
ical system can stably entrain to the CPG signal. Seen in this light, the axial phase
response distribution indicates that the mechanical system has at least three stable
phase relationships to the CPG phase – the two modes seen in the results, and the
additional stable solution of zero phase change. For the results we observed to have
been generated by a Clocked Spring Mass or Clock Tracker, the initial population of
pre-hurdle animals must have all been in an identical phase-locked state relative to their
CPG. Interaction with the hurdle moved these animals into one of the two other stable
phases relative to the CPG, but the perturbation had to have been regular enough
to consistently depopulate that stability basin of zero phase change. Such a scenario
seems rather unlikely, although technically possible.

History dependence in the phase outcome for perturbations ending in similar kine-
matic states, such as dependence on the duration of perturbation, is impossible for
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a Reflex Cascade (NCA0) architecture. Reflex Cascade states are entirely described
by their kinematic variables implying that phase, which is a function of state, can-
not depend on the path taken to reach that kinematic state. We found a significant
correlation between perturbation duration and the frequency change it induces, and
therefore rejected the Reflex Cascade architectures.

Given that the three other proposed neuromechanical control architectures (fig. 2.1)
are less likely to represent the present results, we consider the Clock Adaptive Tracker
(NCA3) because it can also generate phase changes without a change in frequency.
Because this class of architectures is extremely broad, we used the residual phase results
to generate new hypotheses of control architecture that are compatible with our results
and may be refuted by future experiments. The key insight we used to generate these
new controllers is that the axial symmetry of phase outcomes can be the outcome of
a master clock which maintains a “step clock” by generating a signal every step. The
tripods vie with each other as to which entrains to the “even” tics and which to the
“odd” tics of this central clock. The encounter with the hurdle may perturb posture
sufficiently to knock the animal from one of these states to the other, causing a phase
change of half a stride. Such dynamics are similar to that of the Haken-Kelso-Bunz
(Haken et al., 1985) model. We can use their notion of a coupling potential to relate
three clocks: a master clock coupled to two other clocks each representing a tripod of
legs (fig. 2.6-A).

2.5.2 Phase responses in simulated Clock Adapting Trackers

Although they can account for the axial phase responses, the models we propose
do not fully account for the frequency changes we observed.

Clock Adapting Trackers (NCA3) with and without a master clock

To investigate whether our experimental results support the notion of a Clock
Adapting Tracker with a master clock (fig. 2.6-A) versus an alternative Clock Adapting
Tracker design without one (fig. 2.6-B), we simulated the dynamics of two models
– a Entrained Coordination controller with a master clock facilitating coordination,
and a Decentralized Coordination controller where coordination emerges through a
distributed interaction.

Both the Decentralized Coordination and the Entrained Coordination controller
drive all three legs of each of the two tripods of cockroach legs from a single phase
oscillator (circles with labels “Left” and “Right” in fig. 2.6) by emitting a single phase
variable: φL for the left tripod, and φR for the right (labeled arrows in fig. 2.6). The
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construction was similar to that of an adaptive controller developed for the RHex
robots (Weingarten et al., 2004), and reduced the animal to a virtual biped. The
dynamics of this bipedal model were governed by a differential equation that admitted
kinematically identical, stable left-right antisymmetric periodic solutions representing
the animals’ alternating tripod running gait.
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Figure 2.6: Structure of two Clock Adapting Tracker (NCA3) models. Both models
have left and right tripod phase oscillators (circles with labels “Left” and “Right”)
coupled to independent “Tracking” blocks (gray boxes) representing the propriocep-
tive reflexes that make each tripod of legs track its designated phases (thick arrows
labelled φL and φR). Perturbation of each tripod is assumed to feed back up to that
tripod’s oscillator (thick arrows in opposite direction from φL and φR). All oscillators
are exposed to the global “template deviation” (thin arrow). In the Decentralized
Coordination model, the anti-phase coupling of the tripod oscillators is strong (bidi-
rectional thick arrow). In the Entrained Coordination model an additional master
oscillator (circle with label “Master”) facilitates coordination of left and right oscilla-
tors through a descending signal (thick arrows to “Left” and “Right” oscillators) that
interacts with the distributed influence of anti-phase coupling (thin bidirectional arrow
labeled anti-phase).

In Decentralized Coordination, the phases of the two tripods were pushed sym-
metrically into an anti-phase relationship, through dynamics that can be reduced to
a simplified form of the Haken-Kelso-Bunz model (Haken et al., 1985). In Entrained
Coordination, the same coordinating interaction between the tripods still exists, but it
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vies with an entrainment effect introduced via a descending master clock signal. This
descending coordination influence is symmetric with respect to the bilateral symmetry
of the animal, allowing either tripod to phase lock at phase zero, provided the other
tripod locks in anti-phase.

Template deviation feedback aside, despite possessing an autonomous clock oblivi-
ous to environmental influences the Entrained Coordination model does not fall in the
simpler Clock Tracker architecture class. The distinction between Entrained Coordi-
nation and a Clock Tracker lies in the fact that we postulated the Tracking blocks to
have no internal state. Requiring such a postulate of the tracking reflexes is not unrea-
sonable. Such context-independent tracking was found in the intra-leg coordination of
stick insects, where local avoidance reflexes are composed of context-independent joint
actions (Duerr and Ebeling, 2005). The addition of an internal state corresponding
the phase of the tripod implies that the influence of the master clock on the actual
kinematics may become indirect, and incongruence between the pose and clock can
by mediated through dynamics of that internal state. We conceive of the Entrained
Coordination architecture as one where the descending clock provides a “hint” to the
decentralized coordination mechanisms in how they should coordinate with each other.

Decentralized Coordination model

The simpler of the two models we examined is reproduced directly from Weingarten
et al. (2004), where it governs the “model clocks”. The system equations are defined
in terms of a potential function U2:

U2 = a (1 + cos(φL − φR)) (2.4)

d

dt

[

φL

φR

]

= ω(1 − bU2)

[

1
1

]

−∇U2 (2.5)

The equations have one stable solution, given by the minimum of U2:

φL = φR + π = ωt+ φL(0) (2.6)

The stability is governed by the two parameters a and b. a sets the recovery rate
from small disturbances. b sets the degree to which the animal speeds up or slows down
when recovering from large perturbations – the coefficient governing the magnitude of
confusion induced slow-down. Through b we model our observation that animals slow
down when challenged with a small hurdle.
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From a dynamical perspective, scaling a and b together scales the right hand side of
the differential equation, and is therefore equivalent to rescaling time. For this reason,
we restricted our parameter studies to a = 1.

Entrained Coordination model

The Entrained Coordination model adds a term extending the potential function
of the Decentralized Coordination to couples the average phase of the two tripods to
a master clock φC . By coupling to a symmetric combination of the tripod phases we
express the indifference of the coupling to which of the two possible mirror image poses
the animal adopts at a particular phase. It should be noted that this symmetry is
inherent in the dynamics, as the sagittal plane dynamics of running in many animals
seem to follow the Spring Loaded Inverted Pendulum model (Ghigliazza et al., 2005;
Blickhan, 1989; Dickinson et al., 2000) whose cycles are one step long. For a bilaterally
symmetric animal, either of two mirror image poses is equivalent with respect to the
influence exerted by spring loaded inverted pendulum dynamics.

U3 = a (1 + cos(φL − φR)) + c (1 + cos(2φC − φL − φR)) (2.7)

d

dt





φL

φR

φC



 = ω(1 − bU3)





1
1
1



 −∇U3 (2.8)

The relative magnitude of the new parameter c to a and b of U2 governs the trade-
off between the entrainment to the master clock and inter-tripod influence. These
equations have two stable solutions that are mirror images of each other:

φC = φL = φR + π = ωt+ φC(0) (2.9)

φC = φL + π = φR = ωt+ φC(0) (2.10)

Both these solutions overlap in their projections on the φL × φR plane, meaning
that they produce kinematically identical gaits, which are also identical to the gait
produced by the Decentralized Coordination model.

General properties of the Coordination models

Both tripod coordination models we present exhibit the same stable cycles of leg
motions. The period of these cycles is identical and equal to 2π/ω.
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Our models are particularly simple in that dynamics have a phase invariance sym-
metry: given any solution [φL(t), φR(t), φC(t)] of Entrained Coordination (and similarly
for Distributed Coordination), the phase shifted version [θ+φL(t), θ+φR(t), θ+φC(t)]
is also a solution, for any choice of θ. Although this may seem like an extremely strong
assumption to make about an animal’s dynamics, the converse is true. The phase
invariance symmetry always exists when dynamics are written with respect to the
Floquet coordinates of the system, and thus requires us to make no additional assump-
tions about the animal. To derive direct computational benefit from this symmetry
one requires an opportune choice of coordinates (Guckenheimer and Holmes, 1983;
Floquet, 1883) which as designers of the simulation we have indeed made.

Thanks to phase invariance, we could model perturbations at only one phase, and
draw conclusions valid for all phases. Our perturbations were generated by taking an
initial point on a periodic solution and adding a randomly generated offset to the first
two coordinates, as if physical leg feedback were to perturb the putative clock variable
of the left or right phase reference (φL or φR). The phase offsets were taken from a 2D
Gaussian which was elongated in the direction corresponding to fore-aft motions of the
body with respect to the legs.

Starting with the perturbed initial condition, we integrated the system using an
ODE integrator (dopri5 integrator code Hairer et al. (1993) ported by the authors to
Python SciPy; SciPy is an open source platform supported by Enthought, Inc. Austin,
TX 78701, USA) and determined the phase change in the outcome when compared with
the initial, unperturbed state.
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Phase shift outcomes of both models are similar
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Figure 2.7: Simulated perturbation recovery trajectories for an Entrained versus De-
centralized Coordination controller
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Description of fig. 2.7

Simulated perturbation recovery trajectories for an Entrained versus Decentralized Coordi-
nation controller.

Simulations of both controllers lead to similar results. In our models we represented each
tripod of the cockroach by a single angular phase variable. We illustrate each such tripod
phase as the pose of a single (virtual) leg of a biped sweeping back and forth. A shows
a cockroach with tripods and corresponding virtual legs highlighted; superposed on the
cockroach are schematic representations of the equivalent virtual biped. The body of the
schematic biped is shown as a blue circle with thick red lines which represent legs. All
bipeds are moving left to right. Legs which are in stance end in a circular marker. The legs
sweep through a quarter-circle, as indicated above and below the body. The left tripod (A
top) is marked by a blue triangle and was nearing the end of stance. Its biped equivalent
has its left leg (thick red line) near the rear of its sweep area, with circular end marker to
indicate stance. The right tripod (A bottom) is marked by a green triangle and is nearing
the end of swing. The superposed biped right leg is near the front of its range. The two
tripod-equivalent legs are combined to give a complete biped (A right, following arrows).

B shows the limit cycle in terms of biped poses, and maps out the two-dimensional space of
biped states. Bipeds with both legs and quarter-circles gray and dotted represent the pose
at that point of the space. Bipeds with one leg omitted and an arrow intersecting the body
correspond to the axis label they are adjacent to and graphically represent the pose of the
leg which is shown (left leg on horizontal axis, right leg on vertical axis). The limit cycle,
indicated by a thick dark line with arrowheads, is a single loop wrapping around right-to-left
and top-to-bottom as the axes are angles. On the limit cycle lie bipeds whose legs are in
anti-phase. We have also indicated the diagonal (dashed yellow line) upon which lie bipeds
whose legs are in phase.

In C and D we show simulation results for our two proposed controllers. We simulated
perturbation recovery trajectories by first choosing a base-point (indicated by the yellow
hexagon) on the limit cycle (indicated by the dark lines with arrowheads, which lie behind
the colored lines representing simulated trajectories). We then generated random perturba-
tions as offsets from the base point. The perturbations represent a mechanical disturbance
that moves the legs to a new position, and correspondingly changes the phases via the
proprioceptive sensing in the Tracking blocks fig. 2.6.

An animal hitting a hurdle had its body pushed back, which caused the swing legs to move
ahead of their expected points in the cycle (relative to body), and the stance legs to be
retarded. Hitting a hurdle is expected to move the animal from the limit cycle in the
[1,−1] direction towards the diagonal. We used the perturbed state giving initial conditions
(small circles) for integration of the controller dynamics, showing how animals would move
their legs while at the same time recovering their coordination according to the two models
(thin lines in C and D; each simulated run in a different shade of blue-green). Integration
was terminated when state returned close to the limit cycle, indicating that coordinated
movement was recovered.

In C we show the Entrained Coordination simulation and in D the Decentralized Coordination
simulation. Animals encountered the hurdle head-on, guiding us to use a distribution of
perturbations elongated in the direction corresponding to fore-aft motion of the body, which
is represented by anti-symmetric changes in the phases (ellipsoids in C and D; 1 SD surface
red line; 2 SD surface green line). We computed both simulations with b = 0.45. We
selected the mean value of perturbations (center of ellipsoid) to lie over the diagonal of the
torus, ensuring that all phase change outcome distributions were bi-modal.
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The phase outcomes of the Decentralized Coordination model are presented in
fig. 2.8 with an example of some simulated trajectories in fig. 2.7-B. Changes to the b
parameter introduce phase shifts and broaden the outcome distribution.

Entrained Coordination Decentralized CoordinationBA

Figure 2.8: Phase responses of the A Entrained Coordination and B Decentralized
Coordination models to the perturbation distribution shown in fig. 2.7-A and fig. 2.7-
B respectively for various values of b – the coefficient of template deviation feedback
(eqn. 2.5, eqn. 2.8) – each represented in the legend by a different color line. We simu-
lated each perturbation distribution 1000 times. The lines in the plot were smoothed
with a 0.1 radian Gaussian kernel.

The Entrained Coordination results of fig. 2.8-A are quite similar to the Decentral-
ized Coordination results presented in fig. 2.8-B. Axial outcomes appear in both models
in direct relation to having the perturbation distribution cross over the φL = φR diag-
onal, with the mass of the two modes proportional to the fraction of the perturbations
on either side.

The two models differed under correlated perturbations: perturbations that change
both phases by the same amount (the [1, 1] direction on the φL × φR torus). Such
perturbations correspond to motions that mimic the limit cycle poses, but make them
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appear either too early or too late with respect to pre-perturbation motions. Decen-
tralized Coordination, having no internal sense of phase other than φL and φR, incurred
a permanent phase change under such a perturbation regime. Entrained Coordination
incurred a small phase change associated with the template deviation introduced by
the perturbation and otherwise recovered its old phase. It may also switch over to a
mirror-image gait for sufficiently large perturbations.

Decentralized Coordination is arguably the more parsimonious of the two mod-
els, and we therefore conclude that cockroaches running over a hurdle exhibit phase
changes consistent with the controller proposed in Weingarten et al. (2004). Most prac-
ticing robotics engineers design robots with Clock Tracking architectures, or, at best,
Entrained Coordination. The observation that the cockroach, an animal in use by sev-
eral groups as a model organism for bio-inspired robots (Bachmann et al., 2009; Kim
et al., 2006; Altendorfer et al., 2001; Yumaryanto et al., 2006; Spenko et al., 2008),
exhibits a controller different from these initial designs may serve to stimulate further
investigation into the trade-offs inherent in such control architectures.

Future investigation may present experimental treatments that can further differen-
tiate the Decentralized Coordination from the Entrained Coordination (fig. 2.6). If the
sensitivity of Decentralized Coordination to correlated perturbations proves to limit
performance of robots under realistic conditions, the extension of such a controller
toward the Entrained Coordination model by tuning the c parameter may provide a
natural avenue for improvement. One may interpret the c parameter as expressing the
trade-off between centralized and decentralized coordination of legs, and the impor-
tance of this trade-off was previously pointed out in hypothesis H3 of Koditschek et al.
(2004).

2.5.3 Rejecting alternative interpretations of phase change
distribution

Multimodal outcomes beg representation as mixtures of simpler uni-modal out-
comes, and despite the appeal of the controllers introduced in the previous sub-section,
we must consider the alternative interpretation of our axial phase distribution results
as a mixture of two outcome modes. A mixture of two wrapped normal distributions is
specified by five parameters (two means, two variances and a relative weight), whereas
an axial distribution as obtained in our results requires only three (a mean, a variance
and a relative weight). If additional knowledge of the system at hand suggests, as in
our case, a plausible model for generating the axial outcome distribution, it is certainly
the simpler explanation for the results.
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Multimodal outcomes can also be the result of a mixed population consisting of
animals each of which contributes to only one of the two modes. All three animals for
which we had three trials exhibited total phase change outcomes in both modes of the
axial distribution, allowing us to obtain an upper bound on the bias of animals towards
a preferred mode. If we assume that each animal has a preferred mode occurring
independently with probability p, the probability of the outcomes we observed is given
by:

(

1 − p3 − (1 − p)3
)3

= 27(1 − p)3p3 (2.11)

For our axial distribution, this probability is 0.41, showing that mode outcomes
we observed are compatible with the model we chose. Setting the probability of our
observation to 0.05 and solving for p we find that if p > 0.86 our results would con-
stitute statistically significant evidence (0.14 < p < 0.86). We can therefore refute the
hypothesis of a mixed population whose members have an individually preferred mode
occurring more than 86% of the time.

If we wish to directly test the possibility that our axial distribution results were a
consequence of what happened to be a πradian phase difference between phase response
modes in a mixture that could have had other phase differences between the modes, we
would subject cockroaches to an alternative bilaterally symmetric perturbation. One
such possibility could be applying an impulse in the direction of motion, using a system
like that used in Jindrich and Full (2002), or Revzen et al. (2007).

A mixture model would be unlikely to predict an identical πradian phase difference
for the outcomes in vastly different perturbation regimes, whereas a symmetry-breaking
argument of the sort we suggest inevitably requires an axial outcome.

If bi-modality appears, but the modes are closer together or significantly different
in width, the model we propose may be rejected in favour of a mixture model. If an
axial distribution appears, the results would provide further support for our model.

2.6 Summary and future work

Our analysis of the phase changes in leg motions of running cockroaches traversing
a hurdle has shown us that these motions are most likely controlled using a control
architecture along the lines of the fig. 2.2 Clock Adapting Tracker (NCA3).

Our results and the analytical approach that underlies them were developed for the
study of sufficiently rapid behaviors in which dynamics of the body play a role. As
Cruse et al. (2007) point out, in rapid behaviors such as running in cockroaches an
estimate of state derived from phase of an internal oscillator may well be more reliable
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than any that can be obtained from proprioceptive senses within the available time. If
that were so, one would expect a shift towards Clock Tracker (NCA2) architectures and
finally Clocked Spring Mass (NCA1) architectures as speed increases. The architec-
ture we identified, which consists of a Clock Adapting Tracker (NCA3) with template
deviation feedback to the clock may be a point on such a continuum. We predict that
Blaberus discoidalis cockroaches will exhibit less feedback when running at maximal
speeds, and that such simplification will be even more pronounced in faster species
whose stride frequencies challenge sensory capabilities even more, such as Periplaneta
americana.

The WalkNet model provides accurate predictions for the walking motions of stick
insects under a variety of circumstances (Cruse et al., 2007). Early work leading to
WalkNet (Cruse, 1985; Cruse and Epstein, 1982) relied heavily on phase response
curves as a means of teasing apart inter-leg influences. Our analysis of residual phase
allows phase responses to be tested against predictive models adapted to recent strides
rather than expressing concurrent interactions between legs. The behavior of stick
insects subjected to our residual phase analysis may expose additional details worthy
of inclusion in WalkNet.

In its structure, WalkNet seems to be a Reflex Cascade architecture (NCA0). Our
predictions for Reflex Cascade architecture residual phase outcomes (Revzen et al., 2008)
should hold for simulated perturbations to WalkNet. A WalkNet driving a mechanical
simulation of a stick insect is by far the most elaborate arthropod walking model avail-
able, and as such would provide excellent evidence of the generality of the methods we
proposed. In the current publication we argue that axial outcomes are unlikely for Re-
flex Cascade (NCA0) systems. With its complexity and sophistication, WalkNet would
be an excellent candidate for refuting our claim by generating bi-modal phase outcomes
when presented with a bilaterally symmetric ensemble of perturbations similar to the
hurdle experiment described herein.

Daley et al. (2006) conducted a study of how guinea fowl recover from a large and
unexpected change in substrate height. Like cockroaches, guinea fowl are rapid and
capable runners that use running primarily to escape predators. Unlike cockroaches,
guinea fowl are bipedal, possess excellent vision, and run at stride durations far less
likely to be pushing the limits of sensory input or motor output in terms of temporal
resolution. Although Daley et al. (2006) report on the timing of various recovery
strategies they observed, their analysis was not conducted from a perspective that
considered the animals as oscillators, and they do not present the effects of perturbation
on phase. A parsimonious approach would predict that even guinea fowl, who might
have more time for computation and sensing due to their slower strides, would use a
simple Clock Adapting Tracker (NCA3) architecture like the one we propose for the



78

cockroach. Their sagittal pose and the intrinsic muscle properties of their spring-like
legs (Biewener and Daley, 2007) may even allow them to benefit more fully of the
dynamic stability offered by Spring Loaded Inverted Pendulum running, placing them
in a simpler architectural class such as Clocked Tracker (NCA2) or Clocked Spring
Mass (NCA1). A refutation of these hypotheses would require evidence for a more
complicated architecture than the ones we have described; such evidence may provide
insight into the potential benefits of improved sensing and computation available to
vertebrates.

Given the possible of our control models, we suspect that they can provide biological
inspiration for the design of new controllers in legged robots. Several groups have in-
vestigated coupling clock-like stimulation to a legged robot, thereby exploring the same
space of control architectures we have proposed for animals. Komsuoglu (2004) consid-
ered formal analysis of open-loop control of a hopping robot, which has more recently
been treated from the hybrid control perspective by (Howley and Cutkosky, 2009).
Although both consider feedback architectures that tie together the mechanical body
and the driving oscillator, neither publication considers phase responses to different
classes of perturbation, nor what they may provide for identification of the controller
architecture.

The coupling of clocks to underactuated elastic robots has met with some success,
as can be deduced from the numerous devices of this nature being developed. Most
directly related to controller architectures we have considered for the cockroach are
the Tekken2 robot (Kimura et al., 2007) and the control of the PUPPY II robot with
frequency adaptive hopf oscillators (Buchli and Ijspeert, 2008). In both cases the
investigators were able to obtain efficient and robust locomotor behaviors using Clock
Adapting Tracker architectures similar to the Entrained Coordination controller we
proposed here.

A far more elaborate adaptive clock, yet one which may well be amenable to formal
reduction to a simple phase oscillator, was used in the “salamandra robotica” robot
(Ijspeert et al., 2007), which aimed to simulate spinal feedback architectures control-
ling the transition between swimming and walking in Caudata. Ijspeert (2008) reviews
the pros and cons of using CPG with robots. We believe that the experimental method-
ology used in our publication is a useful addition to the engineers’ tool-chest. Rather
than relying on the controller design to achieve the expected close-loop behaviors,
the investigation of residual phase provides the means to experimentally verify which
closed-loop architecture is governing the robot in practice when the robot is operating
in its actual environment. As robots and the environments in which they function
become more complex, the emerging field of experimental robotics will grow closer
and closer to comparative biomechanics, and similar methodologies may be effective in
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both.
An intriguing alternative hypothesis for the appearance of the axial distribution of

phase outcomes is that these arise through symmetry properties of weakly unstable
intermediate gaits of a hexpedal mathematical model similar to Kukillaya and Holmes
(2007). If that proves to be the case, then symmetry (Golubitsky et al., 1999) and dy-
namical noise could provide a bridge between morphologically detailed neural network
models and the reduced phase oscillator approach we have used here.

Empirical investigations based on kinematic phase can tie in phase oscillator models,
animal locomotion and robot controller design. This combined approach allows us to
generalize biomechanical control principles in a class of models that is both testable in
animal experiments and feasible to implement in human-made physical devices.
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Lateral Perturbation
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3.1 Summary

Animals running at intermediate speeds likely depend on both neural and mechan-
ical feedback to maintain stability. When perturbed, changes in the kinematic phase
and frequency of rhythmic appendage movements can provide evidence for neural feed-
back. To induce a perturbation, we ran cockroaches (Blaberus discoidalis) at their
preferred speed onto a movable cart that was accelerated laterally with respect to the
animals’ motion. The specific impulse imposed on animals was 50±4 cm/s (mean,SD),
nearly twice the forward speed 25±6 cm/s of the animals. Animals corrected for these
perturbations by decreasing stride frequency, thereby demonstrating neural feedback
to their central pattern generator. Trials fell into two classes in terms of response time,
one class responding after a step (50 ms), whereas the other after nearly three steps
130 ms. The class of a trial could be predicted based on the pose of the body at onset
of perturbation. Trials where the animals had front and hind feet in stance on the side
from which the animals were pulled away by the impulse were in a more stable pose and
fell in the class that showed the delay in frequency change. Trials where the animals
had only a middle foot in stance on the side from which the animals were pulled were
in a less stable pose and changed frequency more rapidly. These results are consistent
with previous research on fast running showing that the recovery begins with rapid me-
chanical feedback promoting self-stabilization. Here, at intermediate speeds, we found
that mechanical stabilization is followed by neural feedback modulation of a central
pattern generator at delays comparable to the duration of a step. We hypothesize that
the increased delay in trials where the animals were more stably positioned is due to
recovery being initiated by event based feedback with a threshold. We suggest these
hypotheses have ties to perceptual choice processes and the recently developed theory
of self-triggered control.

3.2 Introduction

Using the rhythmic motion of diverse body structures and appendages, animals
adopt a wide variety of locomotion behaviours to move through every variety of nat-
ural environment. As they move, animals must respond to unexpected perturbations
such as changes in terrain, injury to limbs, and the behaviour of predators, prey and
conspecifics. We propose that within the kinematic responses to these perturbations
reside patterns revealing the interplay between the neural and mechanical systems
producing stabilization. To test hypotheses regarding the interplay of neural feedback
and mechanical self-stabilization that govern the recovery from perturbation in cou-
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pled neuromechanical systems, we must find experimental means to distinguish neural
from mechanical feedback. Using the instantaneous phase and frequency of rhythmic
limb movements, Revzen et al. (2008) offer a general framework for identifying which
candidate feedback pathways within neuromechanical control architectures play the
dominant role in coordinating neuro-mechanical oscillations (see fig. 3.1).
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Figure 3.1: The “Task Level” control block represented descending neural signals and
physiological state. We assumed its outputs to held constant throughout a behaviour.
A Central Pattern Generator (“CPG”; blue circle) contained the self-exciting neural
circuitry that generated the rhythmic pattern for the behaviour. All reflex based neural
modulation of the CPG signal lay in the “Tracking” blocks. Tracking contained no
persistent state and was not self-exciting. The “Muscles and Skeleton” (nested circles)
contained the mechanical state of the body, which is subject to manipulation by forces
from the environment. The body interacted mechanically with the “Environment”
block and also modified the representation of the environment returned by “Sensing”
block. Information flow is indicated by arrows. We considered three forms of feedback
(thick arrows): A mechanical feedback, wherein muscle activation remains unchanged
and recovery from perturbation is mediated by properties of the mechanical interaction
with the environment; B tracking feedback, wherein recovery is the result of reflexes
bringing the motions of the body into line with the reference motions indicated by
the pattern produced from the CPG; C clock or pattern feedback, wherein feedback
changes the pattern of activation produced by the CPG.

Using the simplest neuromechanical control architectures possible, at least three
types of feedback pathways contribute to stabilization. fig. 3.1-A corresponds to a
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hypothesis based primarily on mechanical stabilization, fig. 3.1-B on time-invariant
(classical) reflex feedback and fig. 3.1-C on feedback modulation of the entire gait pat-
tern. The overall framework of neuromechanical control in which we ground these hy-
potheses assumes that motions are driven by endogenously produced rhythmic pattern
oscillations emitted from a central pattern generator (Delcomyn, 1980; Grillner, 1985;
MacKay-Lyons, 2002). The CPG is coupled to an oscillating mechanical system com-
posed of appendages, skeletons and the muscles that connect them. In turn, this
mechanical system is coupled to the environment.

At the most rapid speeds, mechanical systems dominate control because they pro-
vide an immediate response to perturbations (fig. 3.1-A), while neural feedback may
be limited by bandwidth and computation ability. When a mechanical system is tuned
to its environment, mechanical feedback can be remarkably effective. Kubow and Full
(1999) showed that when biologically realistic ground reaction forces are simulated,
a hexapedal morphology could mechanically self-stabilize. This discovery was corrob-
orated by finding that running cockroaches begin to recover from a lateral impulse
within 14 milliseconds – a response time that challenges the fastest of reflexes (Jin-
drich and Full, 2002), and would barely provide sufficient time for neural feedback
from their tibial campaniform sensilla (Ridgel et al., 2001). When running on rough
terrain, muscle action potentials of a set of putative control muscles show no differences
with running on flat ground (Sponberg and Full, 2008). Neither circumoesophageal
lesion (disconnecting the brain from the thoracic nerve cord) nor distal leg denervation
prevent rapid running in cockroaches (Ridgel and Ritzmann, 2005; Noah et al., 2004),
demonstrating that large portions of the nervous system are not necessary for effective
running. Spiders and cockroaches show no change in the limb kinematics when running
rapidly over a mesh that removes ninety percent of the ground contact area (Spagna
et al., 2007). Instead of relying on precise stepping informed by neural feedback, these
arthropods use mechanical feedback distributed along their legs and enhanced by the
passive mechanics of leg hairs.

There is a sound theoretical basis supporting mechanical self-stabilization in run-
ning. Mathematical analysis of models of running show self stabilization in both the
Spring Loaded Inverted Pendulum (SLIP) model (Altendorfer et al., 2004; Ghigliazza
et al., 2005; Seyfarth et al., 2003) that governs sagittal plane running dynamics and
the Lateral Leg Spring (LLS) model (Schmitt and Holmes, 2000a,b) that describes hor-
izontal running in sprawl postured animals. The simple LLS model of the cockroach
and more morphologically grounded models exhibit robust stability to lateral impulse
perturbations, despite using little or no sensory feedback (Schmitt et al., 2002; Schmitt
and Holmes, 2003, 2001; Kukillaya et al., 2009; Proctor and Holmes, 2008). Taken
together, the combination of theoretical plausibility and empirical evidence provides a
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strong case for self stabilization in high speed running.
At slower speeds and for more precise movements, neural feedback from sensors

dominates fig. 3.1-B. The important role of neural reflexes in locomotion is particularly
well defined in insects. For the slow, quasi-static locomotion of stick insects, an arti-
ficial neural net model termed WalkNet provides an effective representation of control
(Cruse et al., 1998, 2007; Schilling et al., 2007). The model is largely kinematic in
nature because inertia and momentum play no role in slow walking. Even during slow
running, sensors associated with neural reflexes respond to environmental perturba-
tions by feeding back on the patterns emitted by a CPG (Ijspeert, 2008; Ritzmann
and Bueschges, 2007) fig. 3.1-B symbolized by the “Tracking” block). A large body
of research has shown that the neural reflexes controlling locomotion are far richer
in behavior than our typical view of a stereotyped, negative feedback loop. For ex-
ample, load compensating reactions in land mammals and arthropods depend on the
type of sensor (sensing self versus environment), the preparation studied (intact versus
isolated), the task (immobile, walking versus running), the intensity of muscle contrac-
tion, the phase in the gait (swing versus stance) and the relative importance of passive
versus reflexive stiffness (Duysens et al., 2000; Zehr and Stein, 1999). Reflexes in
mammal that provide negative force feedback under most circumstances, provide pos-
itive feedback during locomotion resulting in a greater and greater force production
during stance (Prochazka et al., 1997b,a; Pearson and Collins, 1993).

Here, we place locomotor neural reflexes into two broad categories – one that affects
the output of the CPG (Tracking; fig. 3.1-B) and the other that alters the rhythm
of the CPG itself (fig. 3.1-C). One may envision tracking feedback to be a means of
matching a limb’s motion to a reference motion generated by the CPG and can be
characterized as following an equilibrium point trajectory (Jaric and Latash, 2000).
Mathematically, tracking is time-invariant, stateless and functions by comparing the
actual state of the body and the reference provided by the CPG to generate force
activation in muscles. Tracking contains no persistent state and is not self-exciting.
Feedback via such tracking reflexes does not modulate the actual rhythm emitted by
the CPG. In a second category, we define neural feedback that does alter the rhythm
from the CPG (fig. 3.1-C). Neural feedback in this category could result in change in
the frequency sent by the CPG.

3.2.1 Kinematic Phase exposes feedback to the CPG

In Revzen et al. (2008) we proposed methods for identifying the interplay of neural
and mechanical feedback by probing rhythmic behaviours through computing phase
estimates derived from kinematic observations – a kinematic phase. Examination of
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kinematic phase can illuminate the coupling between the mechanical oscillator – the
body, muscle and skeleton – and the neural oscillator (CPG) that drives it (fig. 3.1).
When an animal is engaged in a periodic behaviour all the subsystems involved in pro-
ducing that behaviour and all observable quantities describing those subsystems will
oscillate periodically. The implication for experimental biomechanics is that the kine-
matics of the body and its subsystems must reflect the underlying periodic dynamics.

The advantage of the kinematic phase methods lies in that for animal locomotion
with a stable oscillator template, phase provides a quantitative and predictive model
of movement. When given the readily measured kinematic state of the animal in as
little as two consecutive frames of video, one can compute the phase and frequency,
extrapolate the linear relationship of phase to time, and predict the kinematic states
at all future times. In practice, because animals are continuously perturbed from the
idealized dynamics of the template, the accuracy of prediction diminishes over time and
requires frequency estimates over more than just a pair of frames. Nevertheless, the
ability to take a dataset only fraction of a step long and project anticipated kinemat-
ics several strides into the future provides a powerful means for testing perturbation
recovery.

For constant frequency locomotion such as running, the animal’s motions will over
time settle to a constant phase relative to the timing of the signal emitted by the CPG.
This phenomenon is known as phase locking or entrainment . We may thus assume that
the pre-perturbation animal is an entrained neural-and-mechanical oscillator. Relative
to time, the kinematic phase of such an animal would follow a linear model with
running frequency being the slope of a phase versus time plot. Due to phase locking,
the kinematic phase is at a constant phase offset relative to the phase of the CPG.

When the animal is perturbed, some transient response appears and decays, and the
animal resumes running at a constant, but possibly different, frequency. We propose to
detect changes in phase by fitting a linear regression model to pre-perturbation phase
data and extrapolating an expected phase past the perturbation and into the recovery
phase. Subtracting that estimate from the post-perturbation kinematic phase, we will
provide a residual phase expressing in succinct form any changes in the animal’s rhythm
and timing of movement.
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Figure 3.2: On the left we plot (simulated) fore-aft leg positions over time, next to
the corresponding residual phase plot on the right. In A we show an animal that
slowed down during perturbation, but fully recovered to motions matching the motions
extrapolated from pre-perturbation motion (fitting region for regression model solid
red; extrapolated model dashed red line; post perturbation regression solid green);
this can be interpreted as the perturbation having broken the entrainment of body
to neural CPG, and that entrainment re-establishing itself post-perturbation. It is
compatible with both fig. 3.1-A and fig. 3.1-B feedback alternatives. In B we show an
animal that recovers the same frequency at a phase offset; this can be interpreted as
the re-entrainment locking on to a different stable relationship between the neural and
mechanical oscillations, and is similarly compatible with fig. 3.1-A and fig. 3.1-B. In C
we show an animal whose frequency changes, as expressed by the non-zero slope of the
residual phase trend-line; such a change requires the CPG to change frequency, and is
therefore only compatible with the fig. 3.1-C feedback to the CPG.

fig. 3.2 shows possible outcomes of a perturbation experiment applied to hexapedal
running expressed as simulated kinematic data (left) and residual phase (right). The
position data represent the fore-aft leg motions relative to the body as a function
of time. We show the linear model extrapolations for position and residual phase
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after perturbation (fig. 3.2 gray lines). Differences in the slope of the linear models
express changes in running frequency, and can only persist if the neural signal driv-
ing the muscles changes frequency as well. Thus, if we see no residual phase change
after a perturbation (fig. 3.2-A), we hypothesize that the most parsimonious neural
control architecture characterizing the response is one that involves mechanical feed-
back (fig. 3.1-A). If the perturbation causes a change in the CPG frequency, as seen
in fig. 3.2-C, we reject the possibility of mechanical feedback fig. 3.1-A and tracking
neural feedback fig. 3.1-B pathways in favour of the control architecture sending neural
feedback to the CPG fig. 3.1-C.

The best candidates to test neurmechanical control hypotheses using kinemaitc
phase are animals whose anchored morphology expresses the rhythmic motions of the
simple architecture or template with many easy to measure appendages. These ani-
mals would expose a great deal of phase information through their kinematics, making
kinematic phase a reliable estimate of their overall phase. Here, we test these hypothe-
ses using a hexapedal runner, the cockroach, Blaberus discoidalis, not only because
of the phase data offered by six oscillating legs, but because few species have as ex-
tensive a biomechanical (Kram et al., 1997; Full et al., 1991; Full and Tu, 1990;
Ting et al., 1994; Jindrich and Full, 1999; Ahn and Full, 2002; Ahn et al., 2006)
and neurophysiological (Watson and Ritzmann, 1998a,b; Watson et al., 2002a,b; Zill
et al., 1981, 2004, 2009) characterization.

In the present study, we used kinematic phase to investigate the time-course of
cockroach recovery from a lateral impulse perturbation when the animal was running
at intermediate speeds where the likelihood of viewing the interplay between neural
and mechanical feedback was the greatest. By comparing instantaneous residual phase
before and after the perturbation (fig. 3.2), we could begin to characterize when me-
chanical feedback was sufficient, neural feedback used or a sensory signal sent to mod-
ulate the CPG (fig. 3.1). Because we measured leg kinematics, we could explore the
relationship of an animal’s posture and its mechanical response to its control strategy.

3.3 Materials and Methods

We ran cockroaches onto a perturbation device consisting of a rail-mounted cart that
was accelerated horizontally by a manually keyed mechanism. In the reference frame
of the cart, the cockroach centre-of-mass received a large lateral impulse perpendicular
to its heading. We recorded the trials using an overhead high-speed video camera and
digitized the motions of the cockroach feet (tarsi). By applying methods developed
in Revzen et al. (2008) and used in chapter 2, we used the tarsal trajectories in the
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body frame of reference to estimate the kinematic phase of the animals, then fitted a
constant frequency model to the pre-perturbation phase data using linear regression.
We used these the residual phases derived from these regression models to test our
neuromechanical hypotheses.

3.3.1 Experimental setup

Animals

We obtained the 15 Blaberus discoidalis cockroaches used in this study from a
commercial supplier (Carolina Biological Supply Co.,Gladstone, OR, USA) and kept
them in large, open containers in a room with elevated moisture and temperature.
They had access to dried dog food, fruit, vegetables, and water. We conducted trials
at an ambient temperature of 27± 2◦C (mean,SD). Before each trial, we examined the
cockroach for damage to its tarsi and carapace. Each animal was used in multiple trials.
While downloading the videos between one trial and the next (typically 2 minutes in
duration), we allowed the animals to rest by covering them with a dark cup.

Moving cart as a perturbation device

We induced lateral perturbations by having the animals run onto a cart that we
then accelerated at right angles to the direction of motion using a pre-loaded elastic
pulley held fast by a magnetic lock (fig. 3.3). When released, the cart translated with
acceleration of up to 1.5±0.2 g over a duration of 100ms and continued with a constant
velocity until it hit breaking pads at the end of its track. The acceleration generated a
specific impulse of 50±4 cm/s in the lateral direction. Cart travel distance was nearly
1 m – sufficiently long so that no trial included the final breaking deceleration.
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Description of fig. 3.3

Schematic of moving cart apparatus from lateral A, oblique B and frontal C viewing direc-
tions (not drawn to scale). We placed the cart as the final section of a trackway (white
rectangles). It ran on a rail orthogonal to the trackway direction (light gray strip). On one
side, we held the cart fast with a magnetic lock (shown in B,C next to cart). On the other
side of the cart, we tied it to a steel cable (black line running from cart to ground) that
we ran through a pulley (dark gray oval in B,C, rectangle in A) and pulled taught using an
adjustable elastic (collection of rubber bands, indicated schematically by zigzag on cable)
and a mass (white box on cable below pulley). When the operator released the magnetic
lock, the elastic accelerated the cart until it fully contracted to rest length. The cart con-
tinued to move at uniform speed, as we chose the mass to compensate for friction between
rail and cart. The direction of motion of the animals was along the trackway (thick arrow
labelled “animal motion” in A, B) and orthogonal to cart motion (thick arrow labelled “cart
motion” in B, C).

We filmed the motion with a high-speed video camera (camera seen in A,B; viewing animal
along dot-dashed lines) that we mounted at a fixed position looking down on the trackway
through a mirror (rectangle with thick dashed lines). We illuminated the trackway by
bouncing a spotlight off a diffuser plate surrounding the camera lens (thin-lined rectangle
with rectangular hole shown in all views), so that scene was illuminated from direction of
camera, preventing shadows from appearing under the animal. D Photograph of an animal
running on the moving cart. The cart had high contrast markers near the corners on its
surface. We constructed the cart from foam-core plates attached on top of a metal plate.
The vertical metal plate on the left of the cart locked on to the magnetic lock, whereas the
cart itself ran on a rail (metal strip running across the photograph and under the animal with
dark top and bottom edges). A steel cable pulled the cart, providing the lateral accelerations.
In the position shown, the cart has nearly moved an entire trackway-width to the right from
its starting position. The edge of the trackway is visible at the bottom left of the image.

We marked the top of the cart with high-contrast circular markers (see fig. 3.3-D;
circles of black paper with retro-reflective stickers in their centres) at known locations
bracketing the area occupied by the running animals, and level with the surface on
which they ran. We used these markers for tracking the cart, computing its acceler-
ation using a Kalman smoother with a constant acceleration model (also known as a
Rauch-Tung-Striebel smoother; Kalman (1960); Rauch et al. (1965)). We also used
the markers to compute a projective transformation which corrected for the changes in
animal image due to changes in viewing angle and distance as the cart moves, giving
what was effectively the view from a camera translating in parallel with the cart.
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3.3.2 Protocol

We prodded the animals to run along the trackway shown in fig. 3.3 and onto the
cart. Careful adjustment insured that the gap between the top of the cart and the
trackway was only a few millimeters wide. We spanned this gap with a paper flap
that was pushed aside when the cart moved, so the animals experienced neither any
noticeable step nor break in the ground. We examined the animals’ running for speed
changes when crossing the trackway-cart gap, but found none.

The operator released the cart by breaking the circuit powering the magnetic lock
holding it in place as soon as the animal was perceived to be on the cart. Taking into
account human reaction times, animals were at least a body length from the cart edge
by the time the cart started moving laterally.

We ended trials when the cockroach touched any wall of the cart, or the cart moved
out of view. We rejected trials if the cockroach did not adopt a tripod gait for at
least three strides prior to perturbation and three strides post perturbation, or if the
cockroach contacted the side walls with antennae or feet at any point within these
requisite six strides. If the platform acceleration showed signs of vibration or non-zero
post perturbation acceleration, we discarded the trial. We defined non-zero acceleration
post perturbation as being outside ±0.3 g 200ms after onset of cart motion. We defined
vibration to be a secondary acceleration peak greater than 33% of the primary peak.

3.3.3 Processing video data into residual phases

After we tracked the cart markers in each video frame, we projectively transformed
the frames to a standard reference position, thereby cancelling any warping and size
changes due to changes in viewing angle. We then analyzed the corrected videos using
a custom built MatLab video processing tool described more fully in section 2 and
briefly described below.

First, we auto-tracked the bodies of the animals by finding the axis of symmetry of
their body silhouettes, thereby obtaining their position and orientation over time. We
rotated the translated images to a registered position and orientation. We tracked the
positions of the animals’ tarsal claws (tips of the feet) on the registered videos using
an additional custom tool (written in MatLab 6.5, The MathWorks, Inc., Natick, MA,
USA).

We converted these 12 dimensional positions (two dimensions of six feet) into 24
dimensional positions and velocities using a Kalman smoother (Kalman, 1960; Rauch
et al., 1965). We rescaled the unit of time measurement so that the variance of
position values (taken for all coordinates together) equalled the variance of velocity
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values. We subjected this rescaled collection of 24 dimensional vectors to principal
components analysis to obtain the first two principal components. We used the angle
of the projection of the 24D state on these first two principal components as an estimate
of phase, with zero phase taken to be the surface where the mean fore-aft positions
of the left and right tripods are equal (“midstance”) and the right tripod is moving
forward. This method produced phase estimates of slightly better quality in terms of
fitting residuals than the Hilbert transform based method used in section 2.

We marked the start and end of the perturbation manually by clicking on graphs of
the acceleration. We used a window starting 250 ms and ending 100 ms prior to start
of perturbation to regress a trend-line for kinematic phase. This operation corresponds
to fitting a constant frequency model to the animal based on a window of close to
three strides. We used the residual phase given by subtracting this model from the
kinematic phase test our neuromechanical control hypotheses. If the residual phase
was a horizontal line (slope of zero) with an intercept of zero (fig. 3.2-A), it represented
animals that continued running at the same frequency and phase as they did prior to
perturbation. A horizontal line with non-zero intercept (fig. 3.2-B) implied a phase
change, and any non-zero slope (fig. 3.2-C) represented a frequency change.

3.3.4 Classifying phase histories

Residual phases responses to lateral perturbation fell into two classes. Animals
perturbed in one half-cycle of the stride responded differently from animals perturbed
in the other half-cycle. From a physical standpoint, this is reasonable, because the
same lateral force applied to an animal with two legs of a tripod down on one side may
not necessarily respond in the same manner as an animal with one middle leg down.

A statistical test for significance of outcomes classes

We constructed a statistical test for dependence of outcome on a predictor phase
φ0 taken before onset of perturbation. The prediction classified trials into one of two
classes based on sign(sin(φ0−Φ)) for some Φ, thereby partitioning the circle of possible
phase values into halves with the transition between classes occurring at phases Φ and
Φ + π.

We assessed the quality of a classification of trials into C0 and C1 using the average
relative margin clustering quality measure (Ackerman, 2007). The relative margin
associated with a given data point (time series in our case) is its distance to the nearest
cluster centroid divided by its distance to the second nearest cluster centroid. The best
classification has relative margin zero: each data point is exactly at the cluster centroid.
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The worst classification has relative margin one: each data point is no nearer to its
nearest cluster centroid than it is to the second nearest. To compute a relative margin,
we needed to choose a means for measuring distance between phases, and by extension,
phase time series. We took the distance of two phases φ and θ to be 1 − cos(φ − θ),
and the distance of two time series of phase to be the total distance between the
corresponding phases (also known as the L1 norm). We computed centroids of the
C0 and C1 classes by point-wise circular averaging of the residual phase time series
(Fisher, 1993).

Our algorithm selected the Φ producing the best classification with respect to our
chosen quality measure. We wished to test this classification for statistical signifi-
cance. We formulated such a test by comparing the classification quality measure of
the real data with the classification quality measure of surrogate (randomized) data1

for which the relationship between the predictor (phase at perturbation) and the out-
come (residual phase time series) destroyed by adding uniformly distributed random
phase offsets. We calculated the fraction of surrogate datasets that produced a classifi-
cation of comparable quality to that of the animal data; this fraction is the probability
of a false positive under the null hypothesis of no predictive ability. The approach
is also known as using “percentile confidence intervals generated from a bootstrap”
(Politis, 1998b,a).

We examined the distribution of relative margins obtainable by choosing Φ where
this selection was applied to ensembles of trials generated from the following processes:

H1 animal data : N2 times Bootstrap samples of the actual experimental trials.

H0(a) simple surrogates : N2 times, generate bootstrap samples that also add a
(uniformly distributed) random offset to the phases in each trial. This randomizes
φ0 in each sample, while maintaining all internal correlations within each trial.

H0(b) bootstrapped surrogates : N times, randomize trials as per H0(a), but in-
stead of using each collection of trials once, compute best relative margins for N
bootstraps of the surrogate data.

Whenever the best relative margin results generated by the H1 process fall well
outside the distributions generated in the two H0 processes, we concluded that the re-
lationship of the predictor phases φ0 of the trials to our selected Φ did find a statistically
significant partition into classes C0 and C1.

1In formal terms, we used a bootstrap computation to establish the probability distribution of our
quality measure under the null hypothesis of uniformly random relationship between perturbation
phase and residual outcome.



102

3.3.5 Controlling for individual variation in the predictor phases

One potential cause for the appearance of classes in the residual phase time-series
could be individual variation in predictor phases. We tested the hypothesis that the
classes C0 and C1 were an outcome of inter-individual variation: having some individ-
uals biased toward being in C0 and other individuals biased toward being in C1.

If an individual falls preferentially in any one class, this implies that the φ0 values
for this individual’s trials are biased toward appearing in this class. We developed a test
for comparing the hypotheses: H0(φ) - the φ0 angles of individual animals are drawn
from uniform distributions; H1(φ) - each animal has a (possibly different) preferred
phase angle θ such that φ0 values for trials of this animal are more likely close to θ
than far from θ.

For each collection of phase angles from an animal we used the C̄ statistic – the
mean of the cosine of differences of angles, taken for some random pairing of those
angle. This statistic is invariant to the unknown value of preferred phase angle θ2, and
will always take on a larger expected value when animals have a preferred class (H1(φ))
than when their classes are uniformly random (H0(φ)).

For each number of trials n that an individual provided, we computed the distribu-
tion C̄[n] of C̄ for n trials under H0(phi). If an animal truly had uniformly distributed φ0

values over n trials (follows H0(phi)), the inverse cumulative distribution function of C̄[n]
applied to the C̄ of this individual’s trials would have given a uniformly distributed
variable in the range 0 to 1. We used the Kolmogorov-Smirnov statistic comparing the
transformed values to a uniform distribution as our test for H1(φ).

3.4 Results

We used a total of 15 animals and collected 47 trials. The animals ran at 25±6 cm/s
(mean,SD) at a frequency of 11.1±0.2 Hz. This implies that the lateral perturbations
of 50 ± 4 cm/s were typically of a magnitude double that of the forward velocity.

3.4.1 Residual phase change reflects frequency change

Starting with onset of perturbation (time = 0), animals showed no noticeable re-
sponses in kinematic phase for 50 ms – the duration of an entire step. After that time,
frequency decreased (see fig. 3.4-A mean). Forward velocity remained unchanged for

2If we assume for H0(c) that the distributions for different animals differ only in theta, C̄ is a
“pivotal statistic”.
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50 ms, then slightly increased for a step and then decreased for a step, settling to a
new, lower value (fig. 3.4-C). The linear decrease in residual phase reflected a decrease
in the frequency of the animal’s leg movements (P < 0.05).

3.4.2 Two classes of residual phase outcomes

The residual phases differed at 80 ms after onset of perturbation (see fig. 3.4-A).
The across-trial inter-quartile ranges of residual phases increased more than 5-fold
when compared with pre-perturbation spread. This increased variability was not due
to random outcomes. We found that the population of trials can be partitioned into
two classes based on the animals’ phase at onset of perturbation φ0. We computed φ0

as the (circular) average of the phases in a 54 ms (step long) window centred on the
onset time of perturbation. We chose our reference phase of 0 so that the trials with
0 < φ0 < π form class C0, and the trials with −π < φ0 < 0 form class C1 (red and blue
colours in fig. 3.4). C0 represented a stance of what we designated as a left tripod (left
front, right middle, left hind), whereas class C1 represented a stance of a right tripod
(right front, left middle, right hind),
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Figure 3.4: Response of residual phase and forward velocity to a lateral perturbation
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Description of fig. 3.4

Response of residual phase and forward velocity to a lateral perturbation.

We plotted (A) residual phases obtained by subtracting from the phase estimate a linear
regression model fitted to the phase at times −250 ms to −100 ms. Time 0 (thick vertical
line) indicates onset of perturbation, as can be seen from the cart acceleration plot (B, thick
line is mean; thin dashed lines one standard deviation above and below). We found that
trials fall into two classes of residual phase outcome: C0 (A, thick densely dashed blue line
showing mean; dot-dashed thin blue line showing quartiles) and C1 (A, thick red line show
showing mean; dashed thin line showing quartiles) that fall on either side of the population
mean (A, thick black line).

Trials were classified into C0 or C1 based on their mean absolute phase in the window
|t| < 27 ms (window was one step long). We indicated pose schematically using horizontal
bars (A, green) that demarcate stance of left tripod (left front, right middle, left hind) in the
class C0 and stance of right tripod in the class C1. We plotted the mean velocity along the
trackway axis for classes C0 (C, thick densely dashed blue line), C1 (C, thick red line) and
all trials (C thick black line). The standard deviation of velocity was ±6 cm/s, therefore
these velocity means were not significantly different.

We tested the statistical significance of the classification based on phi0 values by
examining the distribution of the mean, relative margin clustering quality measure it
induced. We compared this quality to quality distributions generated by randomized
(surrogate) null models. We estimated the quality distributions by executing 2500
bootstrap replications each of surrogate and unmodified data. The distributions of the
results are in fig. 3.5. The P-values we found were 8×10−3 for bootstrapped surrogates
H0(b) and 6 × 10−3 for simple surrogates H0(a), clearly rejecting both null hypotheses.
These results show that the separation computed for our dataset was typical of the
bootstraps of the data (i.e. it is a robust outcome), and highly atypical (p < 0.01) of
both H0(a) and H0(b) null hypotheses.
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Figure 3.5: Bootstrap results testing for significance of outcome classification. Each of
the three Tukey box-plots showed a distribution containing 2500 bootstrap replicates.
The H1 plot represents a distribution created by simple bootstrapping – trials re-
sampled with replacement. H0(a) is similar, except the we added a (i.i.d uniform)
random phase offset to each trial in each replication creating surrogate data. H0(b)

consisted of 50 bootstraps, each of which we randomized in phase similarly to H0(a)

and then bootstrapped to create 50 samples from each randomization instead of just
one as in H0(a). Each Tukey box-plot shows a box for the inter-quartile range, with a
narrow neck indicating the 95 percent confidence interval of the median. Wicks go out
to the first data point outside the 10-th and 90-th percentiles, with points outside that
range marked as dots. In our P-value estimates, we used the mean relative margin of
the entire dataset (thick black line; p-values shown in left edge of plot). The results
showed that classes C0 and C1 were a statistically significant feature of the data.

Individual variation

The classes C0 and C1 were divided with 26 trials in C0 and to 21 trials in C1,
giving a χ2 = 0.53 with P = 0.47. The trials thus fall into classes with probabilities
indistinguishable from random.

By using our transformation of the C̄ statistic, we tested the 11 C̄ values ob-
tained from animals with more than one trial against the uniform distribution. The
Kolmogorov-Smirnov statistic obtained has a P-value of 0.56. It is thus reasonable to
conclude that animals did not express any individual preferences for φ0 values.

We conclude that our classification was not an artifact of individual variation in
animal responses, or in other words that no individual experienced the perturbation in
any class more often than expected at random.
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3.4.3 Class dependent delay in frequency change

Class C0, the left tripod, did not change phase until 130ms post onset – nearly three
steps worth of delay, while class C1 responded within slightly more than a step, and
incurred a phase lag of 0.25 radian relative to C0. The residual phases of both classes
gradually converged to similar slopes, and thus exhibited similar changes with respect
to the initial frequency. On average, the new frequency was lower than the original
frequency by 0.4 Hz. The phase separation between the classes remained unchanged
5 steps after onset of perturbation.

We conclude that kinematic evidence for neural feedback appeared in the recovery
of cockroaches from lateral perturbation. Kinematic changes appeared at a delay, and
the delay was a function of the animal’s pose (i.e., C0 vs C1) when it was perturbed.

3.5 Discussion

3.5.1 Neural feedback appears at a multi-step delay

Instantaneous estimates of kinematic phase and frequency allowed the testing of
neuromechanical control hypotheses that would otherwise have been impossible. The
lack of change in kinematic phase early in recovery (fig. 3.4-A) can be most parsimo-
niously explained by mechanical self-stabilization (fig. 3.1-A). Between one and three
steps later, a change in kinematic phase supports neural feedback to the CPG (fig. 3.1-
C).

For the first 50 ms from onset of lateral perturbation to well beyond its peak,
running cockroaches followed the pre-perturbation feed-forward motion model. Neither
the residual phase (thick dark line, fig. 3.4-A) nor the running speed (thick dark line,
fig. 3.4-C) were changed relative to their pre-perturbation ranges. The most likely
interpretation of these results is a reliance on mechanical feedback fig. 3.1-A. Schmitt
and Holmes (2000a,b) found that a horizontal plane mass-spring model that moves
forward by bouncing side to side can self-stabilize to lateral perturbations with little
or no neural feedback. By using momentum trading, this Lateral Leg Spring (LLS)
model of sprawled posture running animals could recovery rapidly in body orientation
and rotational velocity (Schmitt et al., 2002). More detailed studies of hexapedal
models with various forms of simulated proprioceptive feedback and heading control
(Kukillaya and Holmes, 2007; Kukillaya et al., 2009; Kukillaya and Holmes, 2009)
affirm that feedforward neural activation patterns can provide recovery from lateral
impulses such as the perturbation we applied here.

Experimental perturbations of running arthropods support the notion that the
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mechanical system can assist in stabilization provided that the perturbation is not so
large that pushes the animal out of its passive stability basin. Jindrich and Full (2002)
induced lateral perturbation to running cockroaches using a jet-pack and found that
recovery began within 10-15 ms, challenging the fastest reflexes responses (Holtje and
Hustert, 2003; Wilson, 1965; Ridgel et al., 2001) and occurring within the time frame
where we observed no change in kinematic phase (fig. 3.4-A). Sponberg and Full (2008)
showed that two important control muscles do not change their activation pattern when
animals negotiate rough terrain that contains obstacles up to three times their “hip”
height. Spagna et al. (2007) did not find any change in gait for spiders and cockroaches
running over a wire mesh with 90% of its contact area removed. This finding could only
be explained with a more anchored model that included the legs and their position or
pose. Animals took advantage of the distributed mechanical feedback offered by passive
contacts along legs driven by a pre-programmed CPG.

After a step, the mean residual phase established a new trend (thick dark line,
fig. 3.4-A) with its slope corresponding to an average decrease in frequency by 0.4 Hz
from the pre-perturbation values of 11.1±0.2 Hz. The frequency change corresponded
to an outcome of the form shown in fig. 3.2-C, and rejected both purely mechanical
feedback (fig. 3.1-A) and tracking feedback (fig. 3.1-B) in favour of feedback to the
CPG (fig. 3.1-C).

Neural and mechanical control share the task of recovery from perturbations at
intermediate speeds. Cockroaches appear to apply neural control as delayed feedback,
acting well after any mechanical self-stabilization. Experimental support from the same
species is found in six of the 150 steps analyzed for rough terrain running (Sponberg
and Full, 2008). In these few steps, the animal failed to make contact during its normal
gait cycle, resulting in very large perturbations that presumably drove the animal out
of its passive basin of stability. Despite the lack of stance initiation, the rhythmic
activation of control muscles persisted for one step, suggesting a continuation of the
feedforward, CPG signal (Sponberg and Full, 2008, see fig. 7B,C). Examination of
the the next step showed that neural feedback acted to delay stance initiation. During
these very large perturbations, the dorsal/ventral femoral extensors did not use sensory
information to adjust within a step, but acted to shift the phase of the CPGs clock-
like signal in the subsequent stride. More anchored horizontal plane models of the
cockroach that include neural feedback find that “the feedforward CPG-driven system
is marginally stable, with a weakly stable mode and a neutral mode, making it act as a
low pass filter that yields fairly easily correctable and steerable dynamics.” Kukillaya
et al. (2009). We suggest that the passive mechanical system is sufficiently stable
to recovery from small perturbations, but not so passively stable as to limit neural
feedbacks contribution to maneuvers.
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3.5.2 Classes of frequency change outcome

The time delays from perturbation to onset of change in frequency fell into two
classes (fig. 3.4-A blue vs. red). The two classes represented significantly different
residual phase outcomes (fig. 3.5). The fact that phase outcomes fall into distinct
classes while classical kinematic measures such as velocity (fig. 3.4-C) do not, points
at the utility of residual phase as a means for detecting kinematic changes and the
power of kinematic phase as a succinct representation of animal state and thus a
predictor of future outcomes. Understanding phase and its relation to the experimental
outcomes on the one hand, and the mapping from phase into animal pose on the
other hand, allows one to relate posture, and with it morphology, to perturbation
outcome. From a dynamical systems perspective, the success of phase at predicting
future outcomes comes with little surprise – any stable nonlinear oscillator (such as our
animals) can be modelled to first order as a periodic function of phase using Floquet
theory (Floquet, 1883; Guckenheimer and Holmes, 1983), a fact that may make
kinematic phase based methods invaluable to future biomechanical studies.

We found that the delay to onset of frequency change differed in the two outcome
classes by more than 50 ms. (fig. 3.4-A C0 mean vs C1 mean lines). The shorter of
these delays lagged more than 50 ms from onset of perturbation, and more than 15
ms from peak perturbation. While 15 ms bound is similar to the 10-15 ms lag from
impulse to onset of centre of mass recovery reported in Jindrich and Full (2002), in our
case the perturbation itself is not as brief and thus could be detected by the animal
well before reaching its peak acceleration.

We hypothesize that the difference in delay before frequency change between the
two outcome classes is the consequence of differences in passive mechanical stability
with respect to the perturbation. As the cart accelerated to the animals’ left, animals
experienced a virtual force to their right. In C1 trials, animals were mostly in a left
tripod stance with the front left, middle right and hind left legs on the cart (fig. 3.5,
red). In C0 trials, animals were in right stance with the front right, middle left and
hind right on the cart (fig. 3.5, blue). As the animal began to be pulled laterally, the
claws of the feet on its left side could engage the substrate to exert considerable lateral
force. For C0 trials, only the middle leg claws were available. When these engage the
animal also experienced a torque, as the middle leg is typically in front of the centre of
mass. For C1 trials, two sets of claws were available bracketing the centre of mass front
and back. This could allow for a larger lateral force and for the forces to be paired to
minimize the torque, allowing recovery while better preserving orientation and heading.
Thus animals in the trials C1 could rely on the mechanical feedback pathway (fig. 3.1-
A) for longer than those in the C0 trials, correcting their gait two or three steps after
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perturbation instead of in the step immediately following perturbation.

C0: RIGHT LEADING STANCE
Only middle leg claws engage 

less stable in heading
frequency changes quickly

top frontal top frontal

Front and Hind leg claws engage
more stable in heading

frequency change delayed

C1: LEFT LEADING STANCE

Figure 3.6: The mechanical differences between classes C0 and C1. Animals in C0 trials
(left; red) experienced the brunt of the perturbation while in stance on the right tripod.
As the cart accelerated to the left, the animals’ inertia pulled their bodies to the right
(green arrows). In this posture only one foot has claws that can engage to exert a
counter-force (circles around middle leg foot). Animals were drawn schematically from
top and frontal view with only the stance legs shown. In contrast to C0, in C1 trials
(right; blue) animals have two legs whose claws can engage, providing more corrective
force, and the ability to correct torque independently from force by trading off front
and hind leg lateral forces.

Kinematic phase allows the reduction of pose to a univariate time series, so we were
able to attribute the difference in perturbation recovery of class C0 vs. class C1 trials to
a specific animal morphology (fig. 4.5-). While it is commonly assumed that hexpedal
designs are the most stable of legged runners because of their ability to maintain a static
stability margin throughout the gait cycle or dynamically move the center of mass into
the next tripod of support (Ting et al., 1994), our results from lateral perturbations
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expose a weakness of the hexapods’ alternating tripod gait. As illustrated in fig. 4.5-,
the C0 class (red) is constrained in its ability to exert restorative forces and torques,
because only one leg is available on that side of the animal’s body. We hypothesize
that sprawled morphologies with at least two legs in stance on each side of the body
will have a significant advantage in recovering from lateral perturbations.

3.5.3 Dynamical systems bridge bio-inspired simulation and
robotics

We found that the delay in appearance of neurally mediated kinematic response
in our system was comparable to a step duration. One interpretation of this result is
that neural modulation of gait is applied at step intervals rather than as continuous
feedback, expressing a limitation of control ability. Recent developments in control
theory suggest that replacing high rate periodic feedback (which emulates continuous
feedback) with control decisions applied at an opportune moment, can be an effective
strategy which also decreases the computational load on the controller (Tabuada, 2007;
Mazo et al., 2009). We hypothesize that such approaches are particularly beneficial
when applied to self-stabilizing systems such as those that govern cockroach running
dynamics, and that the theory of “Self Triggered Control” may prove of value for the
study of gait generation in animals.

In addition, new types of biologically inspired controllers may lead to more effective
terrain awareness in legged robots (Spenko et al., 2008; Kim et al., 2006; Webb, 2002;
Quinn and Ritzmann, 1998; Altendorfer et al., 2001; Bachmann et al., 2009). Kine-
matic phase-based studies are equally applicable to animals, robots and simulated
models. These and other approaches that build on the shared mathematical language
of dynamical systems allow for parallel paths of investigation in animal research, robot
design and applied mathematics, to the benefit of all three fields.
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Chapter 4

Data Driven Floquet Analysis
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4.1 Summary

We attempted data driven estimation of a dimensionally reduced dynamical model
known as a template by using dynamical systems theory to analyze movement. We
chose to model the motions of cockroaches (Blaberus discoidalis) in the body frame of
reference as a (isolated, periodic) limit cycle and applied a new approach to dimensional
reduction using Floquet theory. Floquet theory provides for a change of coordinates
approximating motions near the cycle as a time invariant linear system with decaying
modes. The modes can be grouped into quickly decaying modes and slowly decaying
modes. By comparing the results with a random matrix null model, we determined
how many of the slowest modes were attributed to the presence of a lower dimensional,
systematic, deterministic model of interest (a template). We investigated the control
affordance offered by the template modes using the fact that modes interrelate changes
in posture and maneuvers of the center of mass.

We analyzed 34 animals running on a treadmill for 532 strides of foot and body
positions. We developed a multiple imputation technique that combined data from
multiple trials while controlling for individual variation. Results showed that cock-
roaches running at preferred speed possess a six dimensional template with each di-
mension recovering by less than 50% in a stride (P < 0.05, 11 animals, 24 trials,
532 strides). The local linear approximation (tangent subspace) to this template was
clearly resolved (P < 0.0001) allowing us to construct a data-driven model of the lo-
cal dynamical structure that governs its patterns of recovery from perturbation. Our
discoveries lend support to the notion of a template (Full and Koditschek, 1999) and
suggest extensions in terms of Floquet structure. We hypothesize that the slowest
Floquet mode is not tied to maneuver and that the next three slowest modes provide
a unicycle-like template, compatible with spring-mass templates that recover slowly or
not at all in heading and speed. Our techniques for data driven Floquet analysis are
generally applicable in comparative biomechanics, bio-inspired robotics and even other
physical sciences.

4.2 Introduction

Simple quantitative models of motion allow comparison of behaviors across taxa
and at vastly different physical scales. Higher dimensional, more detailed models allow
testing of hypotheses unique to particular morphologies and physiologies. Full and
Koditschek (1999) proposed a hypothesis, termed the Template and Anchor Hypoth-
esis, where a defined relationship between reduced and more representative models
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can lead to a greater mechanistic understanding of control. A template is a simple
model with a small number of variables and parameters that exhibits the behavior of
interest. Finding a template for the motions of a detailed high-dimensional anchor
– a mathematical model of a specific species’ musculoskeletal structure – reveals a
low-dimensional subset within its high-dimensional space of possible motions that in-
stantiates a more parsimonious representation of the behavior. Templates are anchored
within the high dimensional space by the adoption of a preferred posture for each tem-
plate state. A putative template motivates questions concerning the mechanism of
anchoring that accounts for the anchor’s collapse of dimension to this template. Hy-
potheses regarding the similarity in mechanisms of control of motor tasks (locomotion
among them) can be directly verified or refuted across many kinds of organisms and
behavioral contexts by using the template as a basis for comparison.

Templates and their anchors have a long history in terrestrial locomotion from
sagittal plane inverted pendulum and spring-mass templates (Alexander, 1988, 1990,
1992, 1995; Blickhan, 1989; Cavagna et al., 1977; McGeer, 1990; McMahon and
Cheng, 1990) and horizontal plane spring-mass templates (Schmitt and Holmes, 2000a,b;
Holmes et al., 2006). These templates have been shown to describe and predict the
center of mass motion and ground reaction forces of 2-, 4-, 6- and 8-legged animals
during steady-state running (Blickhan and Full, 1993; Farley et al., 1993) and in
response to perturbations (Jindrich and Full, 2002; Daley et al., 2006).

In all these cases the template is a model produced by an investigator based on
physical intuition for the underlying dynamics. The templates were proposed on the
basis of mechanical reasoning and seen to be compatible with the data at hand. They
were created as models having a specified low dimension, rather than having the choice
of dimension emerge as the outcome of some empirical test.

Most of the prevailing evidence for templates in legged locomotion comes from
averaged data, whereby the template derived kinematics and kinetics were shown to
match some averaged stride formed by data pooled from an ensemble of strides. The
fact that an ensemble average of trajectories matches a deterministic model does not
imply that the proposed model has any predictive ability for trajectories in that en-
semble. Counter-examples can easily be constructed where the ensemble average bears
little relationship to the dynamics governing the trajectories themselves. In the current
publication, not only are we aiming to characterize the template numerically, but also
to determine the template in a fashion that ensures it represents a causal prediction of
future motions based on past states within the individual trajectories.

We offer a method based on Floquet theory (Floquet, 1883; Guckenheimer and
Holmes, 1983) for establishing the presence of a template directly from data with
no intervening modeling step. The method applies to periodic systems, and may be
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used not only with animal behaviors, but also with engineered systems and dynamical
systems in general. The method allows dimensions and numerical approximations of
putative templates to be computed from data, thus suggesting dimensions and, in set-
tings where structure can be adequately resolved from noise, local dynamical features
of reduced models as well. Using Floquet theory provides a more complete representa-
tion of the system being investigated than previous work in biomechanics (Hurmuzlu
and Basdogan, 1994; Dingwell and Kang, 2007) by virtue of incorporating not merely
tests for dimension but also estimates of dynamical structure. Our objective in the
current publication is to describe a process starting with data collection, proceeding
through identification of the template if one is present, and ending with an analysis
of the local perturbational control affordance that this putative empirically derived
template provides over state variables of interest – variables such as center of mass
coordinates, in the case of locomotion.

4.2.1 Operational definition of a numerical template

From a mathematical perspective, templates may be defined as slow stable invari-
ant manifolds of an animal’s dynamics (fig. 4.1). While this is well defined mathemat-
ically and conceptually, it is not obvious how to test for and identify such a template.
Furthermore, any stable oscillator is expected to have some slow stable manifold cor-
responding to the perturbations from which it recovers most slowly, thus existence of
such (relatively) slow stable structures is tautological.



122

Limit Cycle

Templatewith
Slow recovery

Posture error,
Fast recovery

State 
space

Figure 4.1: Illustrating the dynamics of a periodic behavior governed by a template.
The periodic limit cycle (thick dark loop with arrow) represents a kinematic trajectory.
The template is shown as a grey oval band representing a family of trajectories and is
the target for all perturbed states. Perturbations (shown by a light gray vertical wall
perpendicular to the template band) that generate states which are not part of the
template are posture errors with respect to the behavior, and collapse quickly (double
arrows, dashed line) to the template. Perturbations that generate valid template states
collapse back to the cycle much more slowly (thin spiral arrow on oval template band).

We define a statistically significant template to be a slow stable manifold which
is slower and of lower dimension than could plausibly be generated by an alternative
random model of the same dimension. Our characterization is defined with respect to
a Poincare section, at which we construct an approximate return map matrix1. We
split the section into two complementary sub-spaces: a noise dynamics sub-space in

1The interested reader is directed to Full et al. (2002) for a tutorial exposition of return map
analysis and stability for a biology audience.
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which the return map dynamics could plausibly be explained by measurement noise or
other sources of indeterminism, and its complement, a significant dynamics sub-space
in which the dynamics cannot be accounted for by this random model. We identify as
noise such sub-matrices of the return map as our analysis procedure would construct
if it were given trajectories without any causal cycle-to-cycle structure (i.e. random
trajectories which cross the section at independently and identically distributed (i.i.d.)
Gaussian random points). Numerically, such trajectories give rise to a return map
whose eigenvalues are similar to those of a random matrix2. We consider a template
statistically significant when a splitting procedure that tries to maximize the dimension
of the noise dynamics space determines that the significant dynamics space is non-
empty and governed by some of the larger (slower) eigenvalues. We then conclude
that the template manifold is tangent to the significant dynamics sub-space, and its
dynamics may be locally approximated by the corresponding sub-matrix of the return
map.

Unlike the templates provided in analytic form, those we hypothesize are not ex-
pressed in terms of equations of motion. Instead, they are expressed as an approxi-
mation computed numerically, where the first order terms are given by Floquet modes
associated with the template expressed as offsets from the limit cycle of the behavior.
The starting point for our template models, and indeed the base-point from which we
form a local linear approximation of the template manifold, is a data-driven model of
the limit cycle characterizing a putative unperturbed behavior. It is for this reason
that our method, as described, applies only to motions that are periodic and stable. It
is of critical importance for the quality of the subsequent Floquet model to construct
an accurate model of this limit cycle and accurately estimate its phase variable.

Concepts from Floquet Theory

Floquet theory provides a canonical, intrinsically determined form for the local dy-
namics of a stable nonlinear oscillator (Floquet, 1883; Guckenheimer and Holmes, 1983).
In its most familiar form it shows that the Floquet multipliers , which are the eigenval-
ues of the linear approximation to the return map, govern the stability of the oscillator
under perturbation. Although less well known, Floquet theory also establishes the
existence and special properties of the Floquet frame – a frame of coordinate axes that
is periodic in the phase with its origin on the limit cycle (thick dark line in fig. 4.2).
One of the axes of the Floquet frame is always tangent to (i.e., locally lined up with)

2We aware of no proofs relating the distributions of noisy trajectories intersecting a Poincare
section and the distribution of eigenvalues of the empirically determined return maps thus obtained;
our conclusions result from numerical experimentation.
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the limit cycle, leaving in a d-dimensional state space d-1 coordinates transverse to the
cycle. Each of the Floquet axes that comprise the Floquet frame is a periodic vector
valued function of phase (see p1(φ) and p2(φ) in fig. 4.2) which takes as its value at
every phase an eigenvector of the return map from that phase to itself (red and blue
arrows on both φ and θ sections in fig. 4.2). Eigenvalues (Floquet multipliers) are the
same at all phases. Each of the Floquet axes threads together eigenvectors at different
phases that share the same eigenvalue. Collectively, the Floquet axes (p1(φ) and p2(φ)
in fig. 4.2) comprise the phase-varying Floquet frame that travels around the cycle,
defining the directions of decoupled collapse down to the cycle.

We use the term Floquet mode to refer to a trajectory that has a continuously phase-
varying component along only a single Floquet axis3. Because of the role these play in
our study, we will refer to these components as activations of Floquet modes instead
of the traditional mathematical name of Floquet coordinates . Expressed in these local
coordinate axes, a vector of activations is subject to the constant linear dynamics in
the neighborhood of the cycle. Namely, if λ is the eigenvalue associated with a Floquet
axis (and thus its mode), T the period and f(0) the initial value of the activation at
t = 0, then the activation will evolve with the functional form f(t) = f(0)λ

t

T . Thus,
the Floquet modes f(t) enjoy a special mathematical role akin to that of eigenvectors
in linear dynamics such that for all times t, f(t) satisfies f(t+ T ) = λf(t).

4.2.2 Analogy of Floquet activations to synergy activations

To best relate our approach to previous advances, we have found it convenient to
use the terminology employed in other dimensionally reduced representations of motor
control. The notion of “activation” of a synergy (Ting, 2007; Ting and Macpher-
son, 2005a) refers to the correlated electrical activation of motor units. The activation
coordinates of synergies are a reduced dimensional representation of the set of motor
unit activations the animal uses, expressed with respect to the basis vectors that show
individual synergies. In a similar vein, we used the term activation to describe the
representation of animal trajectories with regards to our chosen basis – the basis of
Floquet modes4.

3or pair of axes associated with a complex conjugate pair of eigenvalues. Our exposition here we
will gloss over details, and treats precisely only the case of distinct positive real Floquet multipliers.

4The basis for trajectories starting at some phase φ is the collection of Floquet modes scaled so
that they have unit magnitudes with respect to the corresponding Floquet axes at phase φ.
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Figure 4.2: Illustration of Floquet structure.
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Description of fig. 4.2

Illustration of Floquet structure.

When an animal runs its trajectory describes a periodic cycle in the state space (thick dark
looping arrow; corresponding to the same in fig. 4.1). At any phase φ in that cycle, if
the animal is perturbed in certain directions the perturbation recovery may have a special
property similar to that of an eigenvector. For example, on the section representing states
with the phase φ (yellow square), a perturbation in the direction of the blue arrow (marked
with λ1, representing an eigenvector) will leave the animal’s state within the blue surface
whose direction tangent to the cycle is swept by the Floquet axis p1(·) associated with λ1.
The perturbed state will return to phase φ a cycle later with its distance from the periodic
cycle changed by a factor of λ1 (the eigenvalue, termed a Floquet multiplier , of the φ return
map). A similar property holds for the red arrow, with respect to the red surface and λ2.

At another phase, for example θ (section represented by gray square), each of the Floquet
axes maintains the same eigenvalues (λ1 for blue; λ2 for red) but intersects the phase section
at a different set of eigenvectors (i.e. the Floquet threads through related eigenvectors at all
phases). The phase dependent coordinate frame comprised of all Floquet axes is the Floquet
frame, and we refer to the state in these coordinates as expressed in terms of activations.
Each axis defines a different, independent invariant surface tangent to the cycle. An animal
recovering from a perturbation and reestablishing its movement on the periodic cycle via a
trajectory contained in one of these surfaces has a single non-zero activation and is recovering
along a single Floquet mode.

The scale of the axis vectors p1(·), p2(·), etc. is chosen such that when expressed in

activations, a Floquet mode with multiplier λ1 would have the form f1(t) = f1(0)λ
t

T

1 . Any
trajectory of the (unperturbed) system can be expressed as a sum of Floquet modes, each of
which takes this simple exponential form in activations (Floquet coordinates). To find the
Floquet axes, we must compute the matrices (M[φ, θ]) that map the Floquet frame, whose
axes are unit-length eigenvectors of an initial section (φ) to the corresponding Floquet frame
of unit eigenvectors at a final section (θ). Of particular importance are maps that describe
the changes wrought by an entire cycle (the return maps M[φ, φ + 2π]). We computed the
necessary matrices by taking many trajectories of animals (one example being q(t), dashed
green arrow), determining their values at the required phases (q(φ), q(θ)), and computing
a linear regression.

Floquet modes by their very definition exhibit decoupled dynamics (i.e., the time
derivative of a given mode at each instant is a linear function of only that mode at that
instant) and thus provide a natural decomposition of any other motion in terms of a
phase-varying, linearly independent basis. By viewing a perturbation as a resetting of
the initial conditions and expressing it as a linear combination of activations, Floquet
theory predicts the subsequent response as taking the form of a linear combination
of the temporally decaying Floquet modes whose coefficients are specified by those of
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the initial activation. In particular, the future contribution of every Floquet mode is
determined and is independent of the contributions of the others.

No interaction occurs between activations – that is, no activation contributes to a
change in state along any other than its own Floquet axis. Because of this indepen-
dence, Floquet modes afford a decomposition of causal relationships between events
that occur at one part of a cycle and those that appear at other phases of the same or
in future cycles. Expressed as Floquet mode activations, the periodic nonlinear dynam-
ics become a constant coefficient linear system, similar to that encountered in station
keeping tasks. All the power of established methods (Tresch et al., 2006), such as Prin-
cipal Component Analysis (PCA) (Daffertshofer et al., 2004; Moore, 1981; Ivanenko
et al., 2004), Independent Component Analysis (ICA) (Hyvärinen and Oja, 2000) and
Nonnegative Matrix Factorization (NMF) (Lee and Seung, 1999; Berry et al., 2007;
Ting and Macpherson, 2005b; d’Avella and Bizzi, 2005), which have hitherto been
applied to motor control in stationary contexts can be brought to bear on periodic
tasks once the data has been represented in terms of its Floquet mode activations.

When compared to methods such as PCA, ICA and NMF in use in biomechan-
ics, whose mathematical properties are compatible with data generated by memoryless
transformations, the strength of Floquet theory (which is predicated upon the ap-
pearance of attracting periodic cycles and their perturbations) in a dynamical setting
becomes evident. Unlike most other methods, Floquet theory hypothesizes, and if
not refuted must expose, a dynamical structure intrinsic to the system under analysis.
Dimensionality reduction of the system’s long-term behavior can then be achieved by
truncating the activation vectors and leaving active only the slowest modes to represent
the state. The independent evolution of the activations ensures that such a truncation
is a valid approximation of the animal’s state in the neighborhood of the cycle , in
the sense that errors, both relative to the fully activated linearized approximation and
also with respect to the actual nonlinear trajectory decay exponentially, at rates easily
computable from the Floquet multipliers.

Impact of Floquet modes: an approach to the study of maneuvers

Whenever the animal is perturbed away from the limit cycle, center of mass (COM)
velocities differ from their typical, steady state cyclical values. Integrated over all future
time, their pattern of recovery back to the steady state in relative body coordinates is
associated with an unrecoverable shift in absolute world coordinates of the perturbed
animal compared with an unperturbed animal starting at the same phase, position,
and heading. Because the appearance and decay of each Floquet mode contributes
independently and additively to the motions of the center of mass, the shift induced by
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a unit activation of that mode at any given phase can be computed by integrating the
center of mass coordinates from the onset of activation to infinity. We refer to this shift
as the impact of the Floquet mode at that phase5. The impact provides a convenient,
direct mathematical means to relate modulation of the periodic motion of the body’s
posture to alteration of its trajectory in the center of mass frame without recourse to
any kinematic model. The consequent alteration might be construed as either the non-
volitional consequence of an unexpected perturbation or, alternatively, as the animal’s
ability to maneuver via volitional adjustment of posture or force relative to its nominal
steady state periodic behavior.

The validity, and even the very existence of Floquet mode impact as we defined
it, deserves some attention. It is natural to assume that the only way an investigator
can relate changes of body pose to changes in COM motions is via a mechanical model
that reconstructs the forces and torques on the COM and integrates them. Floquet
analysis provides an alternative means, predicated upon the persistence in a cycle’s
neighborhood of the numerically recorded structural “memory” of the actual physical
forces and their integrated contributions to mass center position arising from the local
dynamical features the analysis reveals. The independence of Floquet mode activations
from each other implies causal independence (at least for deterministic systems), which
in turn ensures that the COM velocity fluctuations associated with activation along
one Floquet axis are causally independent of all other activation coordinates. The
impact of a Floquet mode is a correlate of its activation as expressed in terms of COM
positions. Determining a mode’s impacts summarizes in a computationally explicit
manner the linkage between specific, but not explicitly modeled kinematic changes of
posture recorded in body-relative coordinates and consequent changes in position (and
orientation) of the animal with respect to world coordinates, the absent mechanical
model notwithstanding.

By its very definition, impact represents an integrated result. For example, the
impact of a mode corresponding to increased forward velocity is an advancement of
position. The size of this advancement is the time integral of the (phase dependent)
increase in velocity that has a decaying exponential envelope governed by the eigenvalue
magnitude. In the case of Floquet modes that decay quickly (compared to a cycle),
the impact of the mode may depend strongly on the phase of onset.

For slowly decaying modes, impact can take one of two forms. In the first form,
it averages to nearly zero in a cycle and is potentially sensitive to phase of onset

5In a formal sense, the impact is an operator taking the standard basis of Floquet mode activations
at every phase to the shift it induces in long-term animal state. Linearity of the integration operations
ensures that the impact is locally a linear operator that can be represented as a matrix. Details of
the computation are given in section 4.7.
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of activation. In the second form, it averages to a non-zero value in a cycle, and
cannot be sensitive to the phase of onset. To see this, note that even if some modes
“orbited around” along the cycle in a very lopsided manner, the fact that their influence
persists over long stretches of phase implies that no “lopsided” epoch will fail to be
visited during a recovery. In consequence, its local influences on the impacts will be
integrated into the eventual final result, even by perturbations starting in phases at
which the mode is situated very differently relative to the more typical excursions of
that epoch. This insensitivity of the impact of slow Floquet modes to activation time
makes them of particular interest as targets of control.The sense in which we propose
to explore maneuvers empirically through Floquet analysis complements the approach
proposed in Proctor and Holmes (2008). Cast in the language of Floquet analysis,
the “steering by transient destabilization” that Proctor and Holmes (2008) proposed
is a volitional injection of a perturbation which then proceeds to evolve according
to the intrinsic dynamics of the unperturbed system, as governed by the unperturbed
system’s Floquet structure. Our contribution relative to this hypothesized architecture
of maneuvers is twofold. First, theoretically we observe that transient destabilization
takes its simplest form when introduced via a single Floquet mode Second, our methods
provide the means to experimentally examine actual animals for evidence of a control
strategy based on transient destabilization.

4.2.3 Floquet analysis applied to running insects

Terrestrial locomotion in insects offers an exceptional model system for testing hy-
potheses of data driven templates. Data on the kinematics and kinetics for steady-state
running exist (Full et al., 1991; Full and Tu, 1991, 1990; Kram et al., 1997) along with
dynamic responses to perturbations (Jindrich and Full, 2002; Kubow and Full, 1999;
Spagna et al., 2007; Sponberg and Full, 2008; Ting et al., 1994). The dynamics of
center of mass in insects are consistent with the general pattern observed for all legged
runners (Blickhan and Full, 1993). Several investigator-created, analytical templates
match the measured dynamics. These include sagittal plane spring-mass models (Blick-
han and Full, 1993; Full and Tu, 1990), horizontal plane spring-mass models (Schmitt
and Holmes, 2000a,b) and unicycle models used to capture tactile navigation dynam-
ics (Cowan et al., 2006; Lee et al., 2008). Horizontal plane templates have been
effectively anchored by elaborations of appendages (Seipel et al., 2004; Kukillaya and
Holmes, 2007), muscles (Kukillaya et al., 2009; Ghigliazza and Holmes, 2005; Proctor
and Holmes, 2008) and sensors (Kukillaya et al., 2009; Lee et al., 2008). Moreover
these templates and anchors have been analyzed using dynamical systems approaches
(Seipel et al., 2004; Holmes et al., 2006, and references therein). Full et al. (2002)
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wrote a tutorial for biologists of the terminology and concepts used in dynamical sys-
tems such as limit cycles, return maps, eigenvalues and eigenvectors as they relate to
quantifying stability.

Here, we hypothesize that running cockroaches follow a low dimensional template,
and report on our tests of this hypothesis with data-driven methods of Floquet analysis
we developed for this purpose. To determine if a template can be derived from data,
we collected and analyzed kinematic data of animals running – a periodic task in terms
of limb motions. Given this ensemble of an approximately periodic time-series of the
system’s state, we computed phase as accurately as we could. The phase we refer to is
an intrinsically defined coordinate of any periodic system, rather than merely a time
variable interpolated between some distinguished events (Winfree, 1980; Guckenheimer
and Holmes, 1983; Revzen and Guckenheimer, 2008). Using the phase associated with
each sample, we averaged the time-series, now taken as a function of that phase (rather
than time), to find the limit cycle of the periodic task. Moreover, because we knew
the phase, we partitioned the entire set of stride data into phase sections – subsets of
common phase that geometrically define surfaces transverse to the limit cycle curve
at that phase. Using multiple imputation (Efron, 1994; Harel and Zhou, 2007),
a statistical technique related to the bootstrap, we estimated a section return map
(whose linearized approximation we represent as a matrix) and examined it for the
statistical signature of a template. Finally, considering in a similar manner the section
maps between all pairs of phase sections, we extended the eigenvectors of the return
maps to compute the Floquet modes and axes.

Here, we propose several immediate applications of the Floquet mode estimation
procedure. First, we can verify the presence of a template and identify its dimension.
Second, we can integrate Floquet modes activated at various phases to compute their
impacts on the center of mass motion. Third, we can examine previously hypothesized
template models for steady state level ground running and test to see whether their
local linearized structure is compatible with the Floquet multipliers we found and if so
then what (local) properties of the posture would be required to produce the Floquet
modes that emerge from the empirical analysis. This manuscript present results of the
first two and discusses the next step for the third.

4.3 Materials and Methods

To conduct the Floquet analysis, we used kinematic data of cockroaches running
on a treadmill. The treadmill data we collected were also used in a previous study
examining phase changes in the kinematics of cockroaches traversing a hurdle (Revzen
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et al., 2006). In the current analysis, we only used segments of free-running on the
treadmill, removed from interaction with the hurdle. To explore whether our results on
the treadmill were general, we developed an alternative apparatus allowing animals to
run freely in an arena for an extended duration. Our preliminary analysis did not find a
difference between the treadmill and arena experimental setups in either leg kinematics
or eigenvalue analysis, so we did not pursue a more complete, direct comparison.

4.3.1 Animals

Adult Blaberus discoidalis cockroaches were raised in a cage with unlimited food
and water and tested at room temperature 25 ± 3 ◦C (mean,SD).

We used 34 cockroaches of both sexes (mass 3.3 ± 0.34 gram; body length 49 ±
2.6 mm) in the treadmill experiment. The dataset consists of 45,132 frames of 500
fps video, each with body position and orientation, and tarsal claw (tip of the foot)
position for all six legs. We used three adult cockroaches (mass 3.1± 0.12 gram; body
length 47 ± 0.8 mm) for the arena experiment.

Treadmill data collection and protocol

Details of the methods used to collect treadmill kinematic data are in Revzen (2009)
chapter 2. That study examined how the kinematic phase (Revzen et al., 2008; Revzen
and Guckenheimer, 2008) of cockroach motions responds to hurdle traversal. Each trial
consisted of running a cockroach across a 3 mm high hurdle at the animal’s preferred
running speed. For the Floquet model construction in the present study, we discarded
all data proximal to contact with the hurdle. We also included several trials where
animals ran on the treadmill without traversing the hurdle.

The animals ran within a plastic enclosure placed on a treadmill with a transparent
belt. We manually adjusted treadmill speed to match the animal’s preferred running
speed in that trial. Speeds ranged uniformly between 17 and 29cmsec−1. We recorded
video of the animals from below with a high-speed camera (Kodak Ektapro 1000;
Eastman Kodak Company, Rochester, NY, USA) and digitized their body and tarsal
(i.e. foot) motions in the image (horizontal) plane, along with the front and rear of
the body axis.

Prior to splitting the kinematic data into pre- and post-hurdle segments, we selected
trials based on two requirements. Animals must not contact the walls of the cage or
vertical parts of the hurdle with body, legs or antennae. Animals must not trip by
stepping on their own feet, or get a leg caught in the crack between the enclosure and
the treadmill belt.
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One of the methodological problems in conducting our study was that the matrices
we wish to reconstruct can only be derived from a large number of data points –
requiring far more data than available in any single trial. This poses special challenges
in controlling for trial-to-trial and individual biases, because of the importance of using
all available data. Additionally, the Flqouet structure itself expresses the differences in
the motions of an animal at different strides, preventing us from constructing averaged
strides for a trial or an animal as a means for balancing our experimental design. We
address these issues with a multiple imputation (Harel and Zhou, 2007; Efron, 1994)
technique developed for this purpose. Our method combines multiple imputation and
bootstrap, bolstering the low statistical weight of short trials through imputation, and
limiting the weight of long trials and data prolific individuals by a randomized sub-
sampling bootstrap step. Details of this method are provided in the next sub-section.

The treadmill kinematic data comprised 49 trials collected from 34 adults in an
unbalanced experimental design. These trials became 67 segments of uninterrupted
running after we split trials where the animal traversed the hurdle into two segments,
discarding data one stride before and one and a half strides after contact with hurdle.
From hereon, we refer to each such segment as a trial. Based on the trial length distri-
bution, we found the optimal cutoff for number of strides per trial so as to maximize
usable data to be 14. Trials with 3 to 14 strides were only used for phase estimator
training and limit cycle models, but discarded from the Floquet analysis because they
would cause the experimental design to become too unbalanced. The remaining 24
trials had lengths 14 to 36 strides, for a total of 532 strides of data from 11 animals.
Each imputation re-sampled trials (with replacement) to a length of 28 strides. The
animal providing the most data contributed 5 trials for a total of 149 strides. Five
animals provided the least data contributing one trial each for a total of 121 strides
combined.

A nonparametric multiple imputation approach

Imputation is a statistical procedure by which stratified data with missing measure-
ments is augmented with /conceptimputed data filling in the missing measurements,
typically by constructing a parametric model of each stratum and generating imputed
data points at random from this parametric model; each such stratum can be referred
to as an imputed sample from that stratum. When this procedure is carried out multi-
ple times, taking many alternative random choices of imputed data into account, it is
referred to as a multiple imputation method (Harel and Zhou, 2007; Efron, 1994).

The multiple imputation procedure we developed takes a highly unbalanced de-



133

sign where some trials may be much longer than others, and creates multiple imputed
samples with a balanced design to feed into the next steps of our computation. The
procedure is a non-parametric extension of existing multiple imputation methods and
potentially applicable to a broad range of estimation problems. It generates the sam-
ples by discarding very short trials and bootstrap (re-)sampling the remaining trials to
the same length. We selected the trial length cutoff for discarding short trials through
an optimization procedure. First, we selected a parameter we termed leverage – the
maximal ratio between the length of the shortest allowable trial and the size of a re-
sampled trial. The leverage must clearly be larger than 1, and leverages larger than e
(the natural base, about 2.7) imply that short trials are almost certainly duplicated6.
We selected the leverage to be 2, so as to allow a fairly broad range of trial lengths
while at the same time avoiding the near-certain duplication of data points inherent
in larger leverages. Armed with the choice of leverage and knowing the length distri-
bution of our trials, we computed the number of strides that would remain usable for
each choice of length cutoff, and selected the length that would admit the maximal
number of strides into the dataset, while still obeying the leverage limit. We used the
imputed samples generated from the admitted trials to estimate section maps, thereby
avoiding statistical biases introduced by the differences in trial lengths. Whereas clas-
sical imputation methods (Harel and Zhou, 2007; Efron, 1994) use parametric models
to fill in the missing measurements, we use the nonparametric method of resampling,
thereby using the empirical distribution of the sample itself as our model.

6A note on duplication of points: in a standard bootstrap procedure, N data points are re-sampled
with replacement. In such a process, about e−1 = 37%(e the natural base) of the points will appear
more than once in any given bootstrap sample. When creating an N × L sized bootstrap sample for
some leverage L, the expected number of appearances of a data point is L.
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4.3.2 Arena design and protocol for control

webcam 
(30 fps)

high-speed camera
with zoom lens (250fps)

pan-tilt
unit

mirror

transparent arena
with 5cm grid of dots


camera recording


camtracker computer

Figure 4.3: Experimental arena design. We used a low resolution, wide-angle webcam
to visually servo a mirror that followed the cockroach around the arena by closing a
control loop via custom written camtracker software. Simultaneously, we recorded a
high resolution, high frame rate video of the animal using a high-speed camera with a
zoom lens. We used dots on the arena to recover the mirror motions and correct for
perspective errors.

The arena apparatus utilized two cameras working in tandem to solve two separate
tasks. We used a low cost FireWire webcam (Unibrain Fire-i; Unibrain, Inc., San
Ramon, CA, USA; 640x480 pixels at 30fps) to continuously watch the animal and
visually servo a mirror so as to keep the image of the animal in the centre of its
field of view. A second camera (AOS X-PRI; AOS Technologies AG, Baden Daettwil,
Switzerland; 1280x1024 pixels at 250fps) recorded high-speed video

We used the freely available OpenCV library to track visual features indicating
the position of the animal in real-time. We then Kalman filtered these positions to
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obtain position and velocity in camera image plane coordinates. We converted the
position and velocity errors with respect to the centre of the camera’s field of view into
commands for a pan tilt unit (PTU-46-17.5; Directed Perception, Burlingame, CA,
USA) carrying a mirror by multiplying them with a conversion matrix. Our software
automatically computed this matrix using a calibration procedure based on letting the
camera watch a fixed target while moving the mirror through the pan tilt unit.

The entire real-time video tracking program supporting target tracking, PTU con-
trol and real-time transmission of target position over a network is encapsulated in
a C program called camtracker. Source code is available through the corresponding
author’s web site. The software (camtracker) runs on most modern variants of the
Linux operating system.

While the tracker was running, it kept the animal’s image close to the centre of the
field of view of the webcam. Thus the animal remained within the narrow field of view
of the high-speed camera’s zoom lens, allowing high-resolution, high-speed video to be
collected from animals running freely a distance that is many times their body length
(body lengths were 49 ± 2.5 mm (mean,s.d.), ranging from 44 to 55 mm).

By prodding them with a probe, we induced the animals to run on a transparent
arena (80 cm× 200 cm) marked with a square grid of points 5 cm apart. We selected
the zoom lens viewing angle so that at least three grid steps, i.e. 15 cm, were within the
field of view. We developed custom video analysis software (written in MatLab version
6.5; The MathWorks, Inc., Natick, MA, USA) to identify the grid coordinates of grid
points as they came into view. With the multiple grid points visible in each frame we
computed a projective transformation that corrects both perspective and viewing angle
errors in the image and converts it to a reference orthographic view. This produced a
video that looks as if it was taken by a camera that translates along with the animal,
while viewing the arena in the normal direction to its surface.

The naive approach of computing independent projective transformations for every
frame of the video turned out to be too sensitive to the appearance of new grid points
in the field of view. Such new points always appeared at the boundaries of the image
and thus had a large leverage on the estimated transformation causing discontinuities.
Instead, we estimated the camera’s intrinsic parameters (Heikkila and Silven, 1997)
by taking the first middle and last frames of each trial. We then solved for the pan and
tilt angles needed to produce the correct projective transformation for every frame.

We discarded trials unless animals ran at least half the length of the arena and did
not contact the sides of the arena. We trimmed recordings so that the depth of field
limits did not render the images too blurry to analyze. During a recording, tracking
would sometimes lag enough to allow the animal to slip outside the field of view of
the high-speed camera. We split such recordings into multiple segments, and each was
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used as a separate trial. In each such trial the animal was in full view continuously.

4.3.3 Comparing arena and treadmill data

To determine whether the arena and treadmill kinematic data were similar, we
selected a contiguous 740 ms segment of video from each treadmill trial and a randomly
selected trial from each arena animal. For each segment, we constructed a Fourier series
model (order 7; order select based on diminishing return) for the foot position data as
a function of phase. We used this model as an exemplar of the motions in that trial
when comparing them with other trials. We computed an average model (mean taken
in Fourier coefficient domain) of all exemplars of the treadmill data. We then computed
the variation of each trial by taking the RMS difference between its exemplar and the
average model. The variation of each treadmill animal was taken to be the mean of its
variation in all trials, thereby under-estimating the variation among treadmill animals.

Using the distribution of variations in the treadmill data, we assessed the location of
the arena animals. All arena animals fell within one standard deviation from the mean
of the treadmill animal’s data. We conclude that the kinematic data from the arena
control was not different from the treadmill data. We also found that the arena trials
were not significantly different from one another and therefore selected the arena animal
with the most available data to analyze. We found 19 trials meeting our operational
definition of a successful run in the arena. We used these trials to construct our
phase estimation and limit cycle models. Our multiple imputation algorithm selected
a minimal trial length of 19 strides, leaving 7 trials of lengths 19 to 39 strides in the
Floquet analysis dataset for a total of 204 strides.

We found no major differences between the primary treadmill data and the prelim-
inary arena data. Given that our main objective was not to compare treadmill versus
arena running, we did not find sufficient justification to conduct a more comprehensive
comparison at this time.

4.3.4 Estimating the Floquet structure from kinematic data

Because the estimation of the Floquet structure from data is a novel method, it
required several new mathematical procedures, and exposed open problems in applied
mathematics and statistics. We provide the mathematical details, and a more complete
discussion of the statistical issues in the appendices and future publications. For clarity
and ease of exposition, our exposition of the mathematics only treats the case of distinct
positive real eigenvalues in the range 0 to 1. Correct treatment of complex conjugate
and negative eigenvalues is necessary for a working implementation.
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In the current publication, we demonstrate the feasibility of using data driven
Floquet analysis to directly establish the presence of the low dimensional template
embedded within the dynamics of a moving animal, and to obtain a mathematically
salient description relating changes in body pose to center of mass maneuvers.

Evaluating the dimension of the template

For analytically defined template models, the dimension of the template is obvi-
ously specified by the dimension of the state space used for writing the equations of
motion. For example, the classical lateral leg spring (LLS) template (Schmitt and
Holmes, 2000a) has a single rigid body whose configuration has 3 DOF and the equa-
tions governing this configuration are second order equations which specify the con-
figuration and its time-derivative in terms of higher order terms. Therefore LLS is a
6-dimensional dynamical system, and any collection of measurements we take of an
LLS system will fall on a 6-dimensional (but not necessarily flat) surface. For numer-
ically derived templates such as ours, the dimension of the template is inferred from
the number of its linearly independent modes. In the absence of a priori theoretical
preference for one or another dimension, parsimony dictates that observable structure
should be construed as representing all the structure present. Thus to evaluate its
dimension, we must identify how many of the slowest (largest) eigenvalues should be
attributed to the template and cannot be attributable to noise.

Dynamical systems theory shows that for deterministic systems the eigenvalues
computed at all Poincare sections must be the same. However, in our experience, sim-
ilar to that reported by other biologists (Arellano et al., 2009), numerically computed
eigenvalues can vary considerably from one section to another (see section 4.6 for fur-
ther details). Instead of using the eigenvalues themselves, we chose to use only the
eigenvalue magnitudes which correspond to the rate of decay – the time constant of
the envelope – associated with each mode. Our numerical investigations consistently
suggested that eigenvalue magnitudes (but not complex argument / polar angle) of the
larger eigenvalues remain stable despite noise in the data.

To decide which eigenvalues can be ascribed to the presence of a determinis-
tic template, we proceeded to model them as arising from a purely random process
parametrized by dimension with the subsequent step of retaining as deterministic only
those which could not plausibly fit that model. Specifically, we compared the distribu-
tion of the eigenvalues we obtained from imputed samples of experimental data with
that of two null hypotheses. The first null hypothesis H0(a) corresponds to random
measurements: input-output pairs distributed with a Gaussian distribution on the pu-
tative initial and final phase sections (with the Gaussian centered on the intersection
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of the section with the limit cycle). Such measurements lead to an eigenvalue distribu-
tion seemingly governed by the Circular Law (Edelman 1997)(Edelman, 1997), which
can be approximated numerically by generating random matrices and computing their
eigenvalues (see fig. 4.10 in section 4.6, also 7).

The second null hypothesis H0(b) corresponds to breaking the causal relationship
which the Floquet analysis aims to recover. We use our phase estimate to segregate
data by phase section and compute the eigenvalue distribution of matrices derived from
surrogate data (Schreiber and Schmitz, 2000) generated by randomly pairing output
data points with input data points. Output data points were selected at random,
without replacement, from the final section and paired with input points taken from
the initial section in order.

If a template is in fact present, we expect the magnitude of the associated eigen-
values to be larger than those that derived from a circular law eigenvalue distribution
expressing the H0(a) null hypothesis. In addition, we expect those slow eigenvalues to
be outside the distribution of eigenvalues one may obtain from randomized surrogate
H0(b) time-series. The latter criterion establishes that these eigenvalues correspond to
causal relationships within the data, while the former criterion establishes that the
dynamics that these eigenvalues represent are indeed slower and of lower dimension
than one would expect to observe in random time-series (noise).

Floquet analysis algorithm

Here, we outline the process of Floquet analysis. Additional details are provided in
the appendices and will be defined in future publications.

We estimated phase for every sample in our data and constructed a model of the
limit cycle as a function of phase. We then converted the data collected into input-
output pairs associated with maps between every possible pair of phase sections (all
210 pairs possible between 20 sections, including return maps from a section to itself).
We intersected the trial trajectories with the sections using linear interpolation, and
applied linear regression to multiple imputed samples of these intersections to obtain
a reliable estimate of the section maps M[·, ·]. By using a model selection process, we
identified the dimension of the template from eigenvalues and tested for the significance
of the sub-spaces tangent to it obtained from their associated eigenvectors, to ensure
that posture error directions (see fig. 4.1) could be clearly distinguished from directions

7H0(a) matrices are not stochastic matrices, and therefore their eigenvalues do not fall within the
unit disc. In general, these matrices have a scale parameter that decides the radius of the disc
containing their eigenvalues. Asymptotically in d for matrices of large dimension d whose entries are
distributed as independent standard Gaussians, this disc is of radius

√
d.
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tangent to the template – otherwise a local linear approximation of the template dy-
namics was not well defined. Finally, we used the section maps to recover the Floquet
structure of the underlying dynamics and computed the impact of template Floquet
modes on the center of mass.

To obtain a reliable estimate of phase from these multivariate time series, we ap-
plied the algorithm of Revzen and Guckenheimer (2008) to the six dimensional fore-aft
position coordinate data. In preparation for phase estimation, we first detrended the
data by subtracting a baseline produced by low pass filtering (Butterworth smoother,
cutoff at 4 strides), as the phase estimator requires time series with a stationary mean.
The phase estimation algorithm uses phase estimates generated by the Hilbert trans-
form method (Huang et al., 1998) from each leg position, corrects systematic biases
and combines them so as to optimize the overall quality of the phase estimate pro-
duced measured in terms of expected signal-to-noise ratio and linearity of the phase
in time. The algorithm gives all trials equal statistical weight when constructing the
phase estimator, irrespective of the trial length. Its output is a time-series of phase for
all frames of all trials.

Given a value of phase for each data point, we constructed a periodic model of the
state as a function of phase (fig. 4.4-A,B) in each trial by fitting a Fourier series (order
11, chosen based on observing diminished returns for further increase) to the data.
We constructed a global model of the cycle by averaging corresponding coefficients of
each of the Fourier series of all trials. We adapted this global model to each trial by
adjusting the mean and variance of each component of the Fourier series.
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Figure 4.4: From kinematic data to Poincare sections, transition maps and the M[·, ·]
matrices.
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Description of fig. 4.4

From kinematic data to Poincare sections, Transition Maps and the M[·, ·] matrices.

To illustrate our approach, we present kinematic data of fore-aft leg positions for two legs
(A and B; red with dot markers) belonging to the same tripod of one trial as a function of
phase. We compared kinematic data from an animal with a Fourier series model (derived
from the phase estimates in a manner outlined in the text) of the cycle (A,B; green line)
evaluated at the same phase. The actual computation used all 27 dimensions of the data
(foot positions; foot and COM velocities).

The Floquet structure governs how changes from the limit cycle evolve in time. To fit a
linear transformation to such changes from the cycle we used linear regression applied to
offsets relative to an origin on the limit cycle at each phase. This origin was taken to be
the Fourier model prediction. We computed the offset of the trial from the model at the
same phase in consecutive cycles (A,B: horizontal red and green marks on blue vertical lines
indicating the section phase; C,D: red line with dot markers) and constructed a vector from
the offset values at each cycle index. The “(1)” labels in the plot denote components of the
offset vector in the first crossing of the phase section. The “(2)” labels denote the second
crossing, etc.

For the return map computation, we computed a least-squares (scipy.linalg.lstsq) regres-
sion of all (n+1) vectors against the corresponding (n) vectors; the mapping this matrix
approximates takes the numbered crossing points along the dashed magenta arrows. The
graphs C, D correspond to components of trajectory arrows in fig. 4.5-C expressed relative
to the orbit position on the section, whereas A, B show these same trajectories of fig. 4.5 in
absolute coordinates. For other, non-return map section map matrices M[·, ·], we computed
the sectioning for each section, and we regressed (n) vectors of the second section against
the (n) vectors of the first.

There is a fundamental trade-off in selecting how closely a limit cycle model should
be adapted to an individual trial. If the cycle were too generic by not taking into
account differences in animal body sizes or average pose differences due to a different
average speed, the systematic offsets of the individual trial with respect to the limit
cycle model might dominate the regression and obscure the stride-to-stride dynamics we
hoped to draw out. If the cycle were too specific to a given trial, it might “over-fit” the
time series for that trial, and thereby would have reduced the very offsets away from the
limit cycle model that we used to conduct our analysis. We tried several alternative
model choices, ranging from the least specific global model, through adapted global
models, trial specific models and even the section-specific choice of using section data
mean as origin. Eigenvalue distributions were similar in all but the first of these. We
therefore chose to adapt mean and scale – two parameters – for each of the components
of the global Fourier series model. Each 11th order Fourier series model of a component
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consisted of 23 parameters – a mean value, and 11 coefficients each for sine and cosine
terms.
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Figure 4.5: Preparing the data for linear regression
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Description of fig. 4.5

Preparing the data for linear regression.

We show how data from multiple trials, sectioned as described in fig. 4.4, can be combined
into balanced imputed samples. Periodic time-series data from trials (A) can vary greatly
in length (three examples shown). For each trial, we recovered a phase and computed the
Fourier series model of its stable limit cycle (oval with black arrow) in the manner described
above (B). We then sectioned all trials at the selected phase by computing the intersections
of trial time series with the phase section hyperplane at the phase we chose. (C, yellow
planes) illustrate the section surfaces.

The putative limit cycle itself (thick dark arrow on yellow plane, C right) goes through
a section arriving and departing in the same point every stride, whereas actual trajectories
(thin gray arrows, C right), subject as they are to various perturbations that keep them from
exact steady state, both leave the section at some point offset from the cycle (arrows below
section) and return one stride later to some other point (arrows above section). Each such
pair, showing section offset before and after a stride (dashed magenta arrows, corresponding
to the same in fig. 4.4), provides one input-output pair for our regression estimate of the
return map for that phase.

Some trials have too little data to be useful and must be discarded at this stage (D,
“removed”). All other trials are used to generate multiple imputed sets of input-output
pairs of identical size (4 pairs in figure). Longer trials such as trial #1, with a greater
number of strides and thus of crossings through the phase section, provide ample pairs
at the selected phase from which the goal number of pairs are randomly selected (with
replacement) in each imputation. Shorter trials such as trial #3, having fewer than the
goal number of pairs, will have more duplication of points Statistical validity is assessed
by constraining what we have termed leverage: the ratio of shortest trial length to size of
imputed sample.

fig. 4.4 shows how data from a single trial was processed into sections. We computed
the difference between the animal’s foot trajectory and the adapted cycle model (differ-
ence between dotted red “trial” plot and unmarked green “limit cycle” plot fig. 4.4-A,B
as shown in dotted red “trial” plot of fig. 4.4-C,D). Since we required the value of this
difference at our chosen phase sections, which were typically not equal to the phase
associated with the data points, we linearly interpolated the trajectory from the two
samples before and after each phase section to obtain its value on the section hyper-
plane. Applying this procedure to a trial, we computed the sequence of crossings of the
desired phase section (numbered points connected by straight blue lines in fig. 4.4-C,D).

The processing of section points is further illustrated in fig. 4.5 which shows how
data from multiple trials were combined. The steps of fig. 4.4 correspond to the process
in fig. 4.5-A,B,C for a single trial: finding a model and sectioning the offset from that



144

model. Pairs of points with consecutive numbering in fig. 4.4-C,D form the input-
output pairs, as is indicated by the dashed magenta arrows in fig. 4.4-C,D and in
fig. 4.5-C on the enlarged phase sections. The metrics for our data – trial lengths,
imputation sample sizes, etc. are given in section 4.3.1 above.

Use of non-dimensional units

When we computed a least-squares regression of input-output pairs, the compu-
tation involved quantities with different physical units – some were positions, some
velocities and some angular velocities. If left in these dimensional units, the choice of
units would dictate the numbers in the components of the input-output pairs. The
least-squares regression treats errors of equal numerical magnitude as equally signifi-
cant. Thus, if the choice of units remained arbitrary, it would both dictate the metric
with respect to which errors are measured and may cause the matrices produced to
have poor numeric conditioning.

All the data we used for regression came from residuals with respect to a limit-
cycle model. We chose new units of measurement by taking all our trajectories and
subtracting the limit-cycle model from each. We grouped the residuals thus obtained
into collections partitioned according to their physical units: positions, velocities and
time (angular velocity). We used the standard deviation of each collection of numbers
as the unit of measurement for that collection. This ensured that all computations use
numbers of the order of magnitude of 1, and that at least to the extent that all variables
in the regression come from the same position-scale family of probability distributions,
errors of equal magnitude in any coordinate correspond to equal likelihood. We refer
to these renormalized and dimensionless units as SD units .

Multiple imputation used for regressing section maps

The typical stride duration of the animals was 55 samples on the treadmill and 22 in
the preliminary arena data. We chose twenty evenly spaced sections of constant phase
for examination as Poincare sections (fig. 4.4-C) and sectioned the state trajectories at
these phases giving input-output pairs for the section mappings M[·, ·]. The number
20 was chosen because of our use of linear interpolation to section the trajectories –
each section point derived from two adjacent data points. Had we used more than 20
sections, section points in adjacent sections would become similar due to the interpola-
tion mechanism itself having used shared data. We discarded very short trials (shorter
than 14 on treadmill and 19 in the arena) and imputed the mapping data from the
remaining trials to be a constant size across all trials of each setup (28 on treadmill and
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38 in arena). We kept unused input-output pairs for testing the predictive ability of
the estimated maps (see section 4.6 for use of these prediction metrics). We combined
the imputed samples and performed a linear regression step to estimate a single matrix
for the input-output mapping of the combined trials. We repeated this imputation
(“bootstrap”) step multiple times, obtaining a collection of M[θ, φ] matrices for each
pair of section phases θ and φ. We performed NS = 2187 (= 27× 27× 3) imputations
for section maps and NR = 7290 (= 27 × 27 × 10) imputations for return maps8.

We then chose a section to use for estimating template dimension. We collected
the eigenvalues of the return map matrices of this section (the M[φ+ 2π, φ] obtained
from the regression) and plotted the distribution of their magnitudes. We compared
these to the distribution of magnitudes obtained from both null hypotheses to find an
estimate of the template dimension. We repeated this step for multiple sections to
ensure a consistent result. The section 4.6 contains a more detailed presentation of the
eigenvalue distributions we found and their interpretation.

Even when there is statistically significant evidence for a distinct set of “slow”
eigenvalues, the associated eigenvectors may be very poorly known. When eigenvalues
have multiplicity (that is, when there are multiple identical eigenvalues) the associated
invariant subspaces have the dimension of the multiple rather than being distinct one
dimensional invariant subspaces. When distinct eigenvalues are numerically close in
value it may be very hard to distinguish them (and their unique associated one di-
mensional invariant subspaces characterized by a single eigenvector) from the case of
multiplicity. In such situations, significant, multiple eigenvectors with similar eigenval-
ues may vary randomly from imputation to imputation within a neighborhood of the
higher dimensional subspace that they jointly span across all imputations, making it
difficult to individually identify them by comparing the outputs of multiple imputed
estimates of the return map.

These common instances of apparent multiplicity require the estimation of their
jointly spanned subspace of dimension p > 1 (this p = 1 for simple eigenvectors). The
investigation leads to a consideration of the space of all subspaces of dimension p of a
real vector space of dimension n (in our case, n = 27), which is the so-called Grassman
Manifold GR(n, p).

As an example, GR(3, 2) – the space of all two dimensional planes in three dimen-
sional space – can have each of its elements (the planes) represented by picking unit
normal basis vectors for some x, y coordinates of that plane. This representation is non-

8We were estimating a 27 × 27 matrix. At least 27 × 27 + 1 estimates are required to bound a
volume in the space of such matrices; we therefore imputed N × 27 × 27 times with N > 1 for each
matrix being estimated.
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unique just as the choice of directions for x and y is arbitrary. Similar representation
of points by p basis vectors is possible for any GR(n, p).

We developed a method analogous to circular statistics for establishing the statisti-
cal significance of a collection of subspaces represented by unit normal basis vectors. By
looking at the distance in GR(n, p) between an approximate centroid of the collection
and the subspaces, we can establish whether subspaces are far from being randomly dis-
tributed or are tightly concentrated around some typical subspace. Previous research
(Khatri and Mardia, 1977; Jupp and Mardia, 1979) defined parametric non-uniformity
tests on GR(n, p) against a multidimensional Von Mises-Fisher or Bingham alternative.

Averaging used to obtain unique map estimates

For each of the 190 = (20 × 19)/2 possible pairs of different section phases θ
and φ, we obtained a single M[θ, φ] matrix by averaging the NS = 2187 matrices
produced in the regressions of multiply imputed (bootstrapped) input-output pairs for
that choice of sections. Similarly, we averaged the NR = 7290 imputed estimates of
each return map. Simple element-by-element averaging may corrupt the geometric
structure that distinguishes the slow eigenvalues, their associated eigenvectors, and
the resulting invariant subspaces of the underlying dynamics. This would be almost
certain to happen whenever the subspaces spanned by putatively slow eigenvectors are
not concentrated very near some centroid on GR(n, p) and are therefore not sharply
concentrated in the space of all possible subspaces.

Prior to averaging, we tested each collection of matrices to ensure that averag-
ing would not corrupt the results by comparing element-by-element averages of a
sub-sample with a geometrically computed average of that sub-sample. Several al-
gorithms could be used for subspace averaging when element-by-element averaging
fails (Absil et al., 2004). We adopted a simple approach using a gradient solver
(SciPy.optimize.fmin) in a local coordinate chart of GR(n, p) at an approximate cen-
troid.

Floquet structure reconstructed from eigenvectors using section maps

By using accurately determined section maps, we propagated eigenvectors of a
return map to all phases, thereby providing a numerical description of Floquet modes.
We computed the Floquet axes P (φ) by multiplying these modes with an increasing
matrix exponential that canceled the contraction associated with the eigenvalues9. The

9Negative real eigenvalues in the return map and complex conjugate pairs raise particular difficulties
here.
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result is the Floquet frame: a periodic matrix of eigenvectors given as a function of
phase.

Setting a given activation to unity represents a unit perturbation in the direction
of the related Floquet axis at every phase. We computed the impact of this unit
perturbation on the centre of mass position by integrating its effect from onset through
its exponential decay to time infinity (see section 4.7.2 for details). For a deterministic
system, Floquet theory guarantees that this impact on centre of mass motions will act
independently and additively with the impact of other activations.

4.4 Results

We first report on the template dimension revealed by the data, then reconstruct
its local representation from the data, and finally use that representation to explore
the impact – that is, the effective body maneuver – associated with some of its degrees
of freedom.

Summarized in brief, we discovered that the dimension of the template in hori-
zontally running cockroaches on a treadmill was six. The direction of phase (whose
eigenvalue is 1) and five Floquet modes which decay at a rate of 0.5 or slower per stride.
We found the same dimension in a set of control experiments in which animals were
allowed to run freely in an arena. We found that the direction of the five dimensional
Floquet frame axes was very sharply concentrated in the space of all possible five dimen-
sional directions, allowing directions tangent to and transverse to the template to be
clearly distinguished. In fig. 4.1 this corresponds to having found that the surface of the
template (dark gray ring) is very flat (has consistent tangent directions) next to the or-
bit, making the differentiation between template and posture error (light gray surface)
directions possible. Having conclusively distinguished the template in terms of both
its dimension and the directions tangent to its surface, we proceeded to compute the
Floquet axes and the impacts associated with the Floquet modes. The slowest mode in
the template, decaying at 0.8 per stride, had little effect on center of mass motion. We
offer some speculative comments on its possible “utility” in the Conclusion. All three
of the next slowest modes had eigenvalues close to 0.63 (0.66,0.61+0.06i,0.61− 0.06i).
Equality in eigenvalue – the case of multiplicity described above – implies that these
comprise a single three dimensional subspace which cannot be further decomposed into
a span of uniquely selected lower dimensional subspaces and must be treated as a unit
by means of the Grassman manifold estimation procedure outlined above. We suggest,
via computing mode impacts, that the estimated subspace is associated with changes
in fore-aft speed, and with two mechanisms for body heading that differ in the overall
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lateral motion they produce. The fifth Floquet mode in the template, with decay rate
0.48 per stride, is again associated with changes in fore-aft speed.

4.4.1 Eigenvalue magnitudes and the dimension of a template

For each imputed return map, we computed eigenvalue magnitudes and sorted them
in increasing order, thereby giving every eigenvalue an ordinal number relative to the
magnitudes of the other eigenvalues in the same return map estimate. We then plotted
(see fig. 4.6) the one-sided P = 0.05 confidence interval for each ordinal of eigenvalue
magnitude by taking the value of the 95th percentile of the distribution we obtained
from multiple imputation. This simple method of confidence interval estimation is
often called a “bootstrap confidence interval” (Politis, 1998).
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Figure 4.6: Statistics of eigenvalue magnitudes. Abscissa represents eigenvalue ordinal
when sorted by magnitude. Ordinate represents eigenvalue magnitude. All colored
lines plot magnitudes such that 95% of the eigenvalues with that ordinal are smaller.
We conducted analysis at three phase sections π/4, π/2, π (represented by line color
and marker) for both datasets (Treadmill in A and Arena in B). Thick gray line shows
the H0(a) null hypothesis model that most closely fit to the eigenvalue magnitudes from
the experiment. The model was a Circular Law distribution derived numerically from
eigenvalues of random matrices of dimension 20. Gray band with green centerline show
a one standard deviation range around the null model values (Note: model does not
include smallest eigenvalue). Unmarked colored lines show H0(b) surrogate based null
hypothesis eigenvalue magnitudes, which were considerably smaller than those from
experimental results. The top five eigenvalues are larger than can be accounted for
using a H0(a) null model (see also fig. 4.7). Also note that the initial zero eigenvalue
is an inevitable feature of our computation – a reflection of the return along the cycle
direction (normal to the section) - and does not refute either null hypothesis.

Let us provide an example to facilitate the interpretation Fig. 6. The point at
ordinal 20, eigenvalue magnitude 0.6 of the arena data in fig. 4.6-B implies that when
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sorted by magnitude, 95% of the 20th eigenvalues are smaller than 0.6. This implies,
in turn, that at least as many of all eigenvalues smaller than the 20th are also less than
0.6, because in each imputed return map all eigenvalues with ordinals below 20 must
have magnitude no larger than that of the 20th eigenvalue. Thus the point at (20,0.6)
means it is only in at most 5% of the imputed return maps that we find more than 6 of
the 27 return map eigenvalues larger than 0.6. This means that the point at (20,0.6)
can be read as “the dimension of a template slower than 0.6 is seven at most with
confidence P < 0.05”. The template dimension implied in this example is seven and
not six because six dimensions come from the return map directions we include in the
template, and one dimension comes from phase. In the eigenvalue magnitude plots,
the subspace associated with phase shows up as a zero eigenvalue, but in the dynamics
it has an eigenvalue of exactly 1. The direction of the cycle, which is associated with
the phase coordinate, is always part of the template.

Referring to fig. 4.1, when we distinguish the template surface from the posture error
surface based on rate of recovery, the more of the dynamics we choose to associate with
the template, the faster the fastest recovery rates in the template will be. The graphs in
fig. 4.6 directly represent the trade-off between the dimension of a purported template
and the fastest rate of recovery allowed for modes in that template, as computed from
return maps at the sections π/4, π/2 and π.

The null hypothesis H0(b) tests the effect of breaking down the causal association
between return map initial states and final states. Instead of taking the state of an
animal in a particular trajectory as an initial state, and mapping it to the state this
same animal had a stride later, an H0(b) surrogate maps that initial state to some
state of an animal at the same phase as the original final state. The H0(b) surrogates
break down the causal input-output relationships in the data, but otherwise uses data
with the same statistical properties. The change in fig. 4.6 in eigenvalue magnitude
between the unmodified (marked colored lines) and H0(b) surrogate (unmarked colored
lines) is considerable – H0(b) eigenvalue 95th percentiles are at less than 1/2 of the
corresponding eigenvalue percentile in the unmodified treadmill data (fig. 4.6-A) and
similarly at 2/3 of the corresponding eigenvalue percentile in the unmodified arena
data (fig. 4.6-B). This gives evidence that eigenvalues are strongly tied to the causal
relationship between the animals’ states in consecutive cycles.

We decided the dimension of the template by solving a model selection problem.
First, we found the dimension N of H0(a) derived eigenvalues which best fits the ob-
served eigenvalue magnitudes. Second, we took a(k;φ) to be the magnitude of the
k-th eigenvalue (skipping the lowest eigenvalue of 0) of the return map at φ (one of
colored lines in fig. 4.6-A or B), and c(k;N) to be the magnitude of the k-th eigen-
value in a Circular Law distribution for matrices of dimension N . One should not
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simply find the least-squares error between c(k;N) and the corresponding a(k;φ) for
two reasons. One, we expect some unknown scale factor s(N) to be necessary, i.e.
s(N)c(k;N) ≈ a(k;φ).Two, because a(k;φ) are sorted, a(k;φ) is not statistically inde-
pendent from a(j;φ) for j 6= k.

In our procedure, we first transformed our observations and the models to a form
that was independent of the unknown scale10 and removed the statistical dependence
between a(k;φ) values (bringing them close to being i.i.d). We transformed:

a′(k;φ) = ln a(k + 1;φ) − ln a(k;φ), k = 1 . . . 25 (4.1)

c′(k;N) = ln c(k + 1;N) − ln c(k;N), k = 1 . . . N − 1 (4.2)

thereby making a′(k;φ) independent of each other11 and of the unknown scale s(N).
We computed a(k;φ) for all 20 sections, taking the sum of squares error in all:

err(N) =
∑

φ

N−1
∑

k=1

(a′(k;φ) − c′(k;N))
2

(4.3)

In terms of fig. 4.6, the model selection criterion we used consisted of taking the
best H0(a) model at each order (gray band width green line) and examining the sum
squared error between it and the animal data (lines with markers). Typically, such
a naive model selection criterion is insufficient because as models are fit to more and
more data (increasing N) the error grows, leaving the investigator to decide on some
rational means of penalizing models with more free parameters (in our case, 25−N is
the number of free parameters, because we make no assumptions about the eigenvalues
of significant dynamics except for their lower bound). Fortunately, in our case the larger
N models fit the data so much better than those with small N that total squared error
decreased with the increase in N (see fig. 4.7), only to sharply increase when the noise
subspace dimension grew beyond 21. We did not find such an increase in the eigenvalue
magnitude distribution of the surrogates (testing the H0(b) null hypotheses) for which
the fitting error continued to decrease until the dimension reached its maximal value12.

10“pivotal” in statistical terms, i.e. independent of those unknown parameters of the probability
distribution that we are not interested in.

11The statistically astute reader no doubt realizes that the lower and upper bounds 0 < a(k;φ) < 1
imply that some dependence still remains among the largest and among the smallest k values. However,
this dependence is much weaker than that induced by sorting.

12Note that in our model selection process we identify the template with the significant dynamics
sub-space, and conflate the template’s complement with the noise sub-space.
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We therefore conclude that the animal data has a 21 dimensional subspace in which
the dynamics are noise-like, and the remaining 6 dimensions , unaccounted for by the
null model, must be attributed to the template. Such a separation is not evident in
the H0(b) surrogates, implying that the separation is due to the stride-to-stride causal
structure in the animal data.
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Figure 4.7: Sum of squared differences between random matrix (null hypothesis H0(a))
eigenvalue magnitudes and corresponding eigenvalue magnitudes from animal data. We
computed the 95th percentile of eigenvalue magnitudes by ordinal (as plots in fig. 4.6),
symbolized by a(k;φ), and converted these sequences of numbers to the form a′(k;φ)
as described in eqn. 4.1. This form is suitable for comparing Circular Law distribu-
tions c(k;N), which were similarly transformed to c′(k;N) for this purpose. Graphs
show the fitting errors err(N) of eqn. 4.3 for animal data (blue line with circle mark-
ers) and surrogate data with input-output pairing randomized (as per null hypothesis
H0(b); green line with diamond markers). Results show the best fit noise dynamics
dimension is 21, implying a template contained in the complementary subspace to the
noise has dimension is 6 (= 27− 21).See section 4.6 for further discussion of eigenvalue
distributions.
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We concluded that the dimension of the significant dynamics was six, with one
dimension tangent to the limit cycle and five dimensions transverse to the cycle and
associated with the five largest eigenvalues of the return maps. We have found that
the template surface (dark gray ring; fig. 4.1) is six-dimensional. One dimension is
along the axis of the ring (tangent to the cycle), and five other linearly independent
directions spanning the ring width. The remaining 21 linearly independent directions
point outside the template (ring) surface and are thus posture error directions.

From fig. 4.6, we obtained an estimated lower bound on the magnitude of the eigen-
values of the template. Rounding to one decimal place, the largest five eigenvalues
are larger than 0.5 in 95% of the imputed return maps. The dimension of the noise
subspace in surrogate data (randomizing input-output pairing to test the H0(b) alter-
native) was that of the full space. We therefore concluded that the six-dimensional
dynamics we found truly represent a causal effect allowing the animals’ state to be
predicted stride to stride.

We observed the same excursion towards larger eigenvalues in the five slowest modes
of the arena control data fig. 4.6-B as we did in the treadmill data fig. 4.6-A. We pro-
duced the arena data from a single animal which ran freely (7 trials, n = 204 strides).
The similarity between the eigenvalue magnitude distribution found in a single animal
(fig. 4.6-B) and that found from data combined from multiple animals (fig. 4.6-A) sup-
ported the notion that our main results in fig. 4.6-A are a consequence of individual
animals having such an eigenvalue structure, rather than the observed structure being
a computational artifact of inter-animal variability.

All subsequent results reported were computed from treadmill data alone.

4.4.2 Template subspace of the Poincare section

Our analysis of the eigenvalue magnitudes lead us to deduce the presence of a
six dimensional template with five of those dimensions being transverse to the cycle.
Before proceeding to attempt reconstruction of Floquet modes, we tested whether
the template itself is clearly distinguished statistically. In fig. 4.1, we set out to test
whether the directions tangent to the template surface are clearly identified, and thus
distinguishable from their complement, the directions of the posture error surfaces. It
is entirely possible to have obtained template eigenvalues that are significant by our
previous tests, but have eigenvectors that are so inconsistent that no partition of space
into template and non-template directions would have been statistically justified13.

13For example, every 90◦ rotation matrix in three dimensions will have an identical set of eigenvalues:
1, i and −i. Consider the collection of such matrices whose axes of rotation are uniformly distributed on
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The problem of identifying whether a collection of subspaces has a distinguished
direction is a multidimensional generalization of directional statistics (Khatri and Mar-
dia, 1977; Jupp and Mardia, 1979). For example, testing whether a collection of
animal velocities align along a statistically significant 3D direction is a test of whether
a collection of 1D subspaces – the lines parallel to these velocities – have a preferred di-
rection. The subspaces, whose directionality we wished to confirm, were those spanned
by the eigenvectors associated with eigenvalues that we attributed to the template.
Each imputed return map provided us with five such eigenvectors.

We used a test based on measuring distance between directions of subspaces as
points on the Grassman manifold GR(26, 5). The measure of distance we used is the
arc-length distance, also known as the geodesic distance (Edelman et al., 1998, section
4.3). First, we found an approximate centroid from our collection of sub-spaces using a
method inspired by Eppstein and Wang (2001) and implemented by iteratively selecting
for high centrality points by finding the most central point with respect to randomly
selected partners. Then, we measured the distances between the approximate centroid
and the other subspaces found from our data and compared to distances between the
centroid and randomly chosen subspaces. The distances from the centroid in our data
subspaces were 1.44±0.26 (mean,SD), whereas the distances to random subspaces were
2.70± 0.26 and distances between orthogonal subspaces are 3.51. In 100,000 randomly
generated subspaces, the closest we came to the centroid was 2.17, suggesting that the
directions of subspaces found in animal data occupy less than the 10−5 fraction of the
space of all possible 5 dimensional directions in 26 dimensional space. We conclude
that template directions are sharply concentrated.

Reconstruction of Floquet modes

We averaged the matrices created by multiple imputation to obtain a unique esti-
mate of the section map between each of the 190 = 20 × 19/2 pairs of the 20 phase
sections. We then used the eigenvectors of the 10 largest eigenvalues of each return
map to generate 10 of the 27 axes of the Floquet frame. The choice of ten eigenvalues
was motivated by the observation that as eigenvalues grew smaller, resulting Floquet
axes became less and less consistent. We wished to examine all modes of the putative
template, and a few modes beyond. The 10th largest eigenvalue was approximately of
magnitude 0.4, thus associated with modes that decay by a factor of 2 in less than a

the sphere. Although each matrix has distinct invariant sub-spaces of dimensions 2 and 1 representing
the plane of the rotation and its axis, no such splitting makes sense for the the entire collection of
matrices, which is a maximally inconsistent outcome for matrices with identical eigenvalues in a three
dimensional (as opposed to 27 dimensional) ambient space.
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Figure 4.8: Floquet axis associated with the largest eigenvalue as a function of phase
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Description of fig. 4.8

Floquet axis associated with the largest eigenvalue as a function of phase.

We plotted two consecutive strides to make the periodic nature of the components of the
Floquet axis vector more obvious. The horizontal range of the plots spans 0 to 2 in units
of a cycle (stride). Each panel presents the plot of one of the 27 state variables we used.
With respect to fig. 4.2 these plots show the breakdown of the vector p1(φ) – the axis of
the phase-dependent Floquet frame tied to the largest return-map eigenvalue – with one
element of the vector plotted against phase in each panel. The panels refer to positions and
velocities of all six tarsi, ground velocity of the center of mass, and yaw rate (time derivative
of body orientation). Plots of tarsi data are arranged in a grid: columns correspond to legs
(label at head of column) and rows are X and Y positions and their velocities Vx and Vy

(axes shown on cockroach schematic). Plots of COM data are individually labeled. The
ordinates are in SD units (non-dimensional units; see section 4.3.4 above).

The plots show, for example, that an increase in left-hind leg lateral motion peaking at
phase 0.5 cycle is associated with fore-aft velocity changes in the right-front leg at phase
0.9 cycle. different phases. The three different lines in each plot correspond to Floquet axis
estimates constructed by starting with return maps at three arbitrarily selected phases: 1.7
(green), 3.6 (blue) and 5.3 (red). If these three estimates were overlapping and smooth (as
is the case for noiseless simulation data), we would have near certainty that the Floquet axis
was correctly resolved from the data; if they were very dissimilar, we would conclude that
the Floquet analysis procedure failed to recover the axis. Our results lie in between these
extremes.

We plotted the phase varying physical (kinematic) axis of the Floquet mode asso-
ciated with the largest (non-unity) eigenvalue, computed from three different starting
sections (fig. 4.8). In an ideal noiseless system, the choice of phase section used for
starting the construction of the Floquet axes would not matter, and the resulting axis
vectors would be smooth functions of phase at all phases for which the system itself is
smooth.

The plots in fig. 4.8 demonstrate that neither property holds, even for the axis
associated with the largest (non-unity) eigenvalue and is thus expected to be the most
robust with respect to measurement noise. The resulting axis changes as a function
of starting section (difference between line colors), and is not entirely smooth. We
found that Floquet modes with nearby eigenvalues that we computed by starting at
different sections were more correlated to each other than to modes with very different
eigenvalues, leading us to conclude that the expected self-consistency of the Floquet
axis estimation was not lost. Details of the numerical test used are relegated a future
publication. We conclude that the Floquet axes we recovered do represent an actual
feature of the dynamics of the animal, but their detailed structure should not be
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considered reliable.

Impact of template modes on the center of mass

We restricted our analysis of Floquet mode impact to the slowest five modes -
those which putatively belong to the template. We computed all five independent
modes starting from the same base section. Although the Floquet axes we obtained
starting from other sections were differed as functions of phase, we arrived at similar
conclusions with regards to the control capabilities the template as a whole provides.

We hypothesized that the slowest Floquet modes make up the “target of control”
(Full and Koditschek, 1999), and therefore computed the effects that activating a
mode and letting it decay naturally would have on the center of mass motions. fig. 4.8
shows that the Floquet mode it presents is associated with changes to the centre of
mass velocities (seen in the last three coordinates). This particular mode is associated
with a slight increase in forward velocity that is localized to phases near 0.4 of a cycle.
Whenever this Floquet mode is active, the animals are running faster than average for
our data, with this speed change being apparent in only that fraction of the cycle in
which the COM Vx plot in fig. 4.8 is significantly removed from zero.

The overall impact such a change induces on the center of mass can be computed
by integrating the Floquet mode, i.e. by integrating the decaying exponential that
represents its effect on the COM (see detail in section 4.7). Because of the increased
variability in our estimates of Floquet modes with smaller eigenvalues, we have chosen
to compute the impact of each Floquet mode averaged over a quarter cycle centred
around four key phases: landing, mid-stance, liftoff, and mid-swing, where these names
are taken with respect to the animals’ right tripod.

The results are summarized in table 4.5.3. The table shows the integrated impact
of each mode, together with the eigenvalue of that mode14. To further simplify the
interpretation of the table, we have marked magnitudes larger than 1.0 in boldface,
and struck out magnitudes smaller than 0.3.

The modes 2, 3, and 4 had very similar eigenvalues. As a consequence, our analysis
procedure would have selected a random basis for the three-dimensional space these
modes jointly spanned. We, therefore, analyzed the modes together, and searched for
a basis for this subspace that would make interpretation easier. Taking the modes in
the table to be M2, M3 and M4, we changed coordinates to Q11 = 0.54M2 − 0.44M3;
Q2 = 0.96M2 + 0.79M3, and Q3 = 1.17M2 − 0.81M4. The impacts of modes Q1, Q2

14Note that without reconstruction of the Floquet modes as a function of phase, the impact cannot
be computed. It is not a consequence of any single eigenvalue or eigenvector, but rather a result of
how the Floquet axes project into the COM velocities as a function of phase.
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and Q3 is given in table 4.5.3. The change of coordinates within the three-dimensional
space spanned by these Floquet axes allows it to be expressed in terms of a new set
of modes Q1, Q2 and Q3 that have a simple interpretation: Q1 acts only on the COM
fore-aft position and represents a speed change; Q2 and Q3 act primarily on heading
and represent steering. Q2 and Q3 differ in the associated magnitude of lateral motion
for a given heading change.

4.5 Discussion

4.5.1 Signature of a Template with six dimensions

Floquet analysis revealed a numerical simple model or template representing the
animal’s natural dynamics derived from kinematic data, not created by an investiga-
tor based on physical intuition. The template had six dimensions or modes. When
activated these six modes recovered slowly and are likely to be actively controlled by
neural feedback (Full et al., 2002). By contrast, when the other twenty one modes were
activated, recovery was rapid. Identification of rapid recovering modes could lead to
a better understanding of the mechanical system’s response to perturbations, because
recovery may rely more on passive, dynamic self-stabilization.

More specifically, our results showed that the eigenvalue magnitude distribution of
the return map matrices generated from cockroaches running on a treadmill can be most
parsimoniously attributed to a random matrix H0(a) model for 21 of the 26 smallest
eigenvalues of the return map at all sections tested (fig. 4.6; fig. 4.7). In contrast, no
higher dimensional random matrix model can extend to fit the final 5 largest eigenvalues
(fig. 4.6-A). We interpret this excursion towards larger eigenvalues as indicating the
presence of a regular, deterministic dynamical structure of state variation and recovery
in the steady-running regime. Such a dynamical structure comprised the signature for
a template in the kinematic data.

We found a similar excursion in the eigenvalues of a single, typical individual run-
ning in an arena (fig. 4.6-B). We collected arena kinematics using a vastly different
measurement system from that used for the treadmill data. We interpret the pres-
ence of a similar signature in the data of an individual animal as indicating that this
signature is neither an artifact of any particular aspect of the treadmill measurement
apparatus, nor an artifact of the multiple imputation procedure we used to combine the
data from multiple treadmill trials. We are left with the conclusion that the template
signature we discovered is a feature of the dynamical processes of individual running
animals, as a template is expected to be.
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The surrogate H0(b) data formed by randomly scrambling the input-output associ-
ation between pairs of state measurements tagged with the same phase produced an
eigenvalue distribution that can in its entirety be most parsimoniously attributed to a
random matrix. This contrast with the deterministic structure exhibited by the prop-
erly associated input-output pairs increased our confidence that the top 5 eigenvalues
should indeed be attributed to the presence of a template revealed by the return map
data. We thus conclude that a template of dimension 6 was present in the 27 dimen-
sional dynamics of the tarsi and center of mass. Our conclusion is consistent with the
Templates and Anchors Hypotheses proposed by Full and Koditschek (1999), specifi-
cally by asserting the existence of 5 independent modes of perturbation transverse to
the cycle that persist longer (decay more slowly) than one would expect at random.
With confidence of 95 percent, we assert that these modes decayed more slowly than
0.5 per cycle, and as a computational fact, we point out that this decay rate was more
than two standard deviations slower than could be produced by a random stochastic
process of the kind posited as the H0(a) null hypothesis.

4.5.2 Template direction distinguished from posture error di-
rections

The presence of a clear template signature in the distribution of eigenvalue mag-
nitudes does not in itself guarantee that our data must distinguish the associated
directions of slower recovery to the limit cycle, as would be required to reconstruct the
template’s dynamics near the limit cycle. However, we established that these directions
– the collection of candidates for the linearized approximating surface arising from the
local recovery patterns associated with the template – are very sharply concentrated,
filling up a volume of less than one thousandth of a percent of the total volume in
the space of possible directions. For example, on a sphere this would be equivalent to
a cone of directions 0.72 degrees wide. We conclude that the template subspace we
found in the tangent space over the limit cycle was statistically significant, and that
it may therefore be feasible to try and reconstruct the local template dynamics over
the associated low dimensional surface. We know not only that the dimension of this
template surface is 6 but that, statistically speaking, we can separate the directions
tangent to that surface from those that correspond to posture errors (fig. 4.1; thick
dark loop with arrow versus the light gray vertical wall perpendicular to the template
band).
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4.5.3 Slowest Floquet axes found to limited precision

Having discovered the template subspace in a return map is equivalent to find-
ing the red and blue arrows on the φ section of fig. 4.2. The plots of fig. 4.8 depict,
coordinate-by-coordinate in the physical kinematic coordinate system of tarsi positions
and velocities and body orientation and translational velocities, the phase-varying en-
tries of the (first of five) p1(φ) Floquet modes. In each plot, the abscissa represents the
phase (the fraction of completion along a o(φ) cycle; plots are two cycles long) at which
the vector to p1(·) is plotted in the normalized SD units (introduced in the methods
section). The three distinctly colored curves correspond to p1 trajectories initiated at
three different sections (i.e. computing the chain of M[φ, θ] eigenvectors starting at
different initial φ values) as may be envisioned geometrically by trying to obtain the
blue surface starting with the blue arrow at some section, say θ1, and comparing it
to the surface obtained starting with the arrow at sections θ1 and θ3. In this case,
the three distinct values of initial phase correspond to: 1.7 (green), 3.6 (blue) and 5.3
(red).

The imperfect correspondence between these three traces of the putative first Flo-
quet axis components suggests that in computing them, we are reaching some limit
precluding our further ability to resolve their structure. Numerical experimentation
with simulated Floquet systems of comparable dimension suggests that our method-
ology requires further improvements in dealing with measurement noise. We have
already presented successful application of the same algorithm to simulated systems of
dimension 4 (Revzen et al., 2009) in which such inconsistencies were not found.

We caution against attempting to draw any conclusions from the shapes of the
Floquet axes unless the results are more consistent by at least two metrics. First,
Floquet modes of a smooth system are expected to be smooth. Second, Floquet axes
should be similar irrespective of the section from which they were constructed. This
latter property is associated with the accuracy with which the M[·, ·] matrices do indeed
satisfy the expected conjugacy relationships (see section 4.7 for further details). The
development of estimation methods that enforce and utilize the required self consistency
may be fruitful subject for further mathematical research.

In our results, Floquet axes computed starting from different base sections showed
cleart similarity. The process of computing the impact of a Floquet mode averages the
effects of that mode over the duration of its decay, and is therefore less sensitive to noise
as function of phase than the computation of the Floquet axes themselves. We have
also averaged these impacts over quarter-cycles of onset phases, thereby decreasing
such sensitivity further. Although the results obtained in table 4.5.3 and table 4.5.3
are suggestive, they do not arise from statistical methods as well established as do the
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results establishing template dimension and tangent directions. Further development
of data driven Floquet analysis would benefit from a detailed statistical treatment of
the question of impact variability and reliability.

Our preliminary development of the methods can no doubt be superseded by more
capable means of studying these same datasets. At this time, we know of no theoretical
treatment that provides a statement of the fundamental limitations of the Floquet
analysis procedures we have used. It is unclear whether the greatest benefits will come
from methodological improvements in data collection or from improvements in the
analysis procedures themselves.

Table 4.1: Maneuvers induced by the Floquet modes of the template

Mode# 1 2 3 4 5
Decay rate 0.78 0.66 0.61 0.61 0.48

fore-aft Lift — 1.55 -1.96 2.28 -1.66
Swing — 1.50 -1.95 2.16 -1.55
Land — 1.61 -1.91 2.30 -1.59
Stand — 1.70 -1.91 2.41 -1.67

lateral Lift — — 0.48 -0.74 —
Swing — — 0.47 -0.67 —
Land — — 0.49 -0.80 —
Stand — — 0.51 -0.86 —

heading Lift — 0.88 0.88 -0.60 —
Swing — 0.72 0.59 -0.57 —
Land — 1.03 1.00 -0.59 —
Stand 0.41 1.18 1.27 -0.64 —

The detectable presence of a template – a deterministic, low dimensional, slow
dynamics whose structure emerges above the noise floor – implies the presence of a
low dimensional set of slowly decaying Floquet modes. The activations of these modes
persist for a relatively long time, and can therefore have potentially large impacts.
Because these modes are slow, their impact integrals average the phase dependent
effects of the Floquet mode over a long period of time, and are thus rather insensitive
to noise in the estimate of the Floquet axes at any given section phase. Nevertheless, the
results depend on the onset phase at which the perturbation was induced in a manner
that generalizes the way in which the familiar “phase response curve” (Winfree, 1980;
Glass and Winfree, 1984) varies with phase. In table 4.5.3 and table 4.5.3 we reported
the impacts of the slow modes averaged over biomechanically meaningful quarter cycles.
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These impacts should be interpreted with care, as the underlying Floquet axes do not
clearly meet some self-consistency checks. We consider the following impact analysis
as interpreting a hypothesis of the shape of the Floquet axes, its consequent impacts
of various modes and its implications for their role in control, rather than drawing
conclusions from conclusively proven estimates of the Floquet axes.

The greatest surprise in our Floquet mode results was that the slowest mode seems
unrelated to maneuver, and its impact has little to no discernible magnitude effect
on the COM. There is some anecdotal evidence that Blaberus discoidalis cockroaches
sometimes run in a reared up posture (e.g. when anticipating an obstacle (Watson
et al., 2002)), and sometimes run more parallel to the ground. Such a pair of related
gaits could account for the existence of a slow Floquet mode that is unrelated to
maneuver; this remains a topic for future investigation.

The next three slowest modes must be construed as representative of a multiplicity-
3 invariant subspace – that is, the subspace in the tangent space over the limit cycle
spanned by those modes is “irreducible” algebraically and introduces impacts that
operate at the same timescale. With a change of basis to this sub-space, these three
modes achieve the impacts summarized in table 4.5.3.

Table 4.2: Second, third and fourth modes, after coordinate change

Mode# Q1 Q2 Q3

fore-aft Lift 1.70 — —
Swing 1.67 — —
Land 1.71 — —
Stand 1.76 — —

lateral Lift — 0.38 0.60
Swing — 0.37 0.54
Land — 0.39 0.65
Stand — 0.40 0.70

heading Lift — 1.54 1.52
Swing — 1.16 1.30
Land — 1.78 1.68
Stand — 2.14 1.90
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4.5.4 Template mode impacts suggest a unicycle-style of mo-
bility affordance

Empirical estimates of eigenvalues from trajectories of systems with unit eigenval-
ues, estimated by least squares regression as we have done, are not expected to have
unit magnitude. A contraction of unit eigenvalues into the unit disc (decreasing their
magnitude) is an inevitable consequence of trial selection. Any quantity governed by
a unit eigenvalue maintains its state indefinitely, and as a consequence evolves as a
random walk in a system subjected to noise. For systems whose states are perturbed
with Gaussian noise, this implies a growth proportional to t0.5, and is therefore un-
bounded. In truncating experiments (e.g. by discarding experiments where animals
contact the sides of their cages) experimentalists prevent such unbounded growth and
inadvertently scale down the magnitudes of unit eigenvalues.

The combined effects of the three Floquet modes 1, 2 and 3 allowed the animals
to change speed and heading, producing similar changes in these variables irrespective
of the phase of activation. Considering the impacts of these modes as representing an
animal’s potential affordance via template adjustment over its absolute world-frame
state, the resulting perturbed motions resemble the changing fore-aft speed and head-
ing angle characteristic of a unicycle. Such a “unicycle-like” affordance is consistent
with the expectations one would derive from the lateral leg spring (LLS) template of
horizontal running (Schmitt and Holmes, 2001), which has both velocity and heading
associated with unit eigenvalues. Our results support that some of the slowest modes
obtained through numerical Floquet analysis (modes 2, 3 and 4) provide the same
function as the unit eigenvalue modes of the lateral leg spring template. The change
from magnitude 1 eigenvalues in the theoretical model to magnitude 0.66 eigenvalues in
our results may be attributed, at least in part, to our choice of methods for eigenvalue
estimation.

Characterizing the cockroach’s horizontal plane mobility as unicycle, with fore-aft
speed and heading control inputs, has already been successful in generating useful bio-
logical predictions. Specifically, the requirement for phasic feedback when cockroaches
perform a wall following behaviour, in which they run along a wall while dragging an
antenna on its surface and use the tactile sense this affords to maintain their distance.
Cowan et al. (2006) and Lee et al. (2008) use a unicycle model for cockroach running
to derive their predictions.
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4.5.5 Phase independence of Floquet mode impact simplifies
control

We consider the implication of interpreting the activations of modes 2, 3 and 4
as control inputs for a unicycle. These inputs produce a consistent offset in the cen-
tre of mass motions irrespective of the phase of activation. Sponberg et al. (2009)
showed that the combined phasic and tonic response from cockroach antennae closely
matches the requisite controller output of the wall following controller predicted in
Cowan et al. (2006). We propose that the signals from the antennae could be con-
verted directly to a positive or negative activation of the relevant Floquet mode, i.e.
that the Floquet modes function as the target of control for wall following, with the
proportional-derivative control implemented in the antennae themselves.

More generally, we put forth the hypothesis that control in rapid behaviors takes
a particularly simple form. We propose that control requires changes in the activation
of only a few Floquet modes, these modes being among the slowest modes, and having
impacts indifferent to activation phase. This hypothesis is an experimentally testable
elaboration of the statement that “templates are a target of control” from Full and
Koditschek (1999).

We further suggest the possibility that templates are a desirable target of control not
only because of the simplification inherent in reducing the dimension of the problem.
Slower modes associated with the template will often possess the property of having
less sensitivity to onset phase in their long-term impact. Thus controlling the dynamics
in terms of activation of slow modes may simplify the control by requiring less context,
and less neural computation, for production of a predictable outcome.

4.5.6 Future directions for data driven Floquet analysis

A natural language for rhythmic movements

Floquet modes express in local linearized form the stride-to-stride integrated dy-
namics of the underlying nonlinear musculo-skeletal system on the body’s absolute
world-frame state. As such, they describe to first order the native toolbox of inde-
pendent maneuvers that these dynamics offer. By using methods such as we have
applied herein, investigators can present a moving animal in terms of the intrinsically
defined Floquet mode activations which express the natural dynamics as a locally linear
superposition of independent effects.

The hypothesis that similar locomotor templates recur in multiple animal taxa
(Dickinson et al., 2000) may be further refined into the statement that animals present
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a similar set of useful Floquet modes with large eigenvalues, and that from a dynamical
perspective these form the basic channels of mobility affordance through which control
is exercised. We propose to explore whether individual Floquet modes persist with
little modification across functionally and morphologically related behaviors, or persist
across morphologically similar taxa. As animals learn to execute locomotor behaviors
with underlying templates, the Floquet modes may form building blocks from which
templates are constructed: their causal independence recommends them as natural
targets for motor learning.

Active motor control

We would like to encourage the interpretation of the Floquet structure not merely
as an alphabet of independent pathways of perturbation recovery. If, through some
mechanism outside the dynamics used for reconstructing the Floquet structure (e.g.
volitional changes), the activation of a mode is held constant instead of being allowed
to decay back to zero at its eigenvalue defined rate, this activated state can be seen to
be a new limit cycle, shifted from the original cycle along the Floquet axis of that mode.
As a consequence of linearity, the convergence of the remaining modes is unaffected
(activations decay independently of each other), except that the limit cycle itself has
changed.

Seen in this light, it is mathematically straightforward to interpret persistent activa-
tion of Floquet modes as a means of modulating an equilibrium point control trajectory
(Jaric and Latash, 2000). The closer the eigenvalue magnitude of the mode is to unity,
the smaller the change required to keep the Floquet mode activation from decaying.
This suggests that the slow Floquet modes comprising the template prescribe the space
of equilibrium point trajectories the animal can adopt with only small changes to its
dynamics.

The relationship between the Floquet analysis approach and optimal control theory
(Todorov and Jordan, 2002) is far from obvious despite the vast amount of related
mathematical tools in both fields. Data driven Floquet analysis allows motions of
animals to be re-written as simple, independently decaying activations. Optimal tra-
jectories would remain optimal even when written in terms of Floquet mode activations.
The causal independence of Floquet modes requires that individual modes be solutions
of the optimal control problem – otherwise the optimal controller would mix the Flo-
quet activations. A study of optimal control along the lines of Nagengast et al. (2009),
but applied to a rhythmic task, may reveal whether Floquet modes are indeed optimal
with respect to some well-defined cost functional.
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Revealing mechanisms of maneuver

The most obvious utility of Floquet analysis is in its ability to relate changes of
posture and excursions within the template to changes in center of mass motions at
a later part of the same or later cycles. This begs its application to datasets of those
animals whose means of control is unclear, in hopes of producing candidate maneuvers.
Our experience suggests that long trials and high signal to noise ratios are particularly
important for this analysis.

There is no fundamental reason to restrict the data subjected to Floquet analysis
to kinematic variables. Our reasons for making this choice were of expedience, consid-
ering the difficulty of collecting large volumes of data. If similar methods are applied
to data including muscle activation, kinematic and dynamic information, the process
may reveal some of the causal relationships between changes in muscle activation and
maneuver that have so far been very difficult to substantiate.

Opening new behaviors to investigation

The promise of Floquet analysis for biomechanics is to study control in terms of
the natural dynamics of the animal rather than in terms of some theoretically im-
posed model, however enlightened it may be. It is attractive in that it identifies the
interactions between events that occur at one phase and outcomes that occur at an-
other phase, and brings our attention back to the question of how long term outcomes
are controlled. It also opens the possibility of identifying not merely the local tem-
plate dynamics of a given species but, through comparisons of its embedding in varied
morphologies, advancing hypotheses concerning the role of postures in anchoring it.

Perhaps the greatest strength and promise of Floquet analysis is that the change
of coordinates from native measurement coordinates to the Floquet mode activations
converts the problem of control in periodic tasks that stabilize a cycle (such as locomo-
tion) to an equivalent linear fixed point task that stabilizes a point. The point being
stabilized is the zero level of Floquet mode activation, i.e. the stable limit cycle itself.

Once the periodic relationships tying together perturbations at different phases have
been factored out by data driven Floquet analysis, the linear representation of system
dynamics expressed in activations is identical in setting to fixed point tasks such as
standing in place. This conversion may allow the same methods that have been used
successfully for fixed point tasks (e.g. muscle synergy discovery through non-negative
matrix factorization; Ting and Macpherson 2005b) to be applied to locomotion.
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Applications outside of functional biomechanics

Another potential application of Floquet analysis is to allow the slowest Floquet
modes to be compared across species and through ontogeny. This can even be extended
to bio-inspired robots: mimicking modes of a model animal in bio-inspired robots
modeled on that animal may improve our ability to reproduce animal-like locomotor
performance.

Data driven quantitative analysis of Floquet modes may also find application in the
design and tuning of robots unrelated to any bio-inspired motivation by allowing for
better empirical understanding of their intrinsic dynamics, and in clinical applications
of gait analysis and prosthetic design for similar reasons. It is an approach broadly
applicable to oscillating physical systems.

Further improvements to the statistical tools

Significant challenges remain in the development and validation of the mathematical
and statistical tools, especially when applied animals whose dynamical state requires
high dimensional description. Of particular importance are tools that will allow for a
valid inference of section maps based on data taken from multiple trials from multiple
individuals. While we have made some progress in developing such tools, many of these
steps were validated by simulation and would greatly benefit from careful consideration
by expert statisticians

4.6 Appendix: examination of eigenvalue distribu-

tions

In this addendum we describe our approach towards interpretation and analysis of
eigenvalue distributions obtained through our multiple imputation estimation proce-
dure. We hope to convince the reader that examining the distribution of eigenvalues
under the prevailing measurement noise conditions provides deeper and more reliable
insight than producing a single estimate of eigenvalues. Our treatment will in many
ways mirror the treatment in the remainder of the publication, except that we will
discuss eigenvalue distributions on the complex plane instead of eigenvalue magnitude
distributions on the non-negative reals.
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4.6.1 What eigenvalues tell us about dynamics

The eigenvalues of an iterated map15, such as the return map in a periodic behavior,
govern its stability at fixed points. In general, eigenvalues of a real-valued map can be
complex numbers. Eigenvalues which are real numbers may appear alone; eigenvalues
which have a non-zero imaginary part always appear in pairs with an equal and opposite
imaginary part.

The importance of eigenvalues stems from two properties: they govern the rate
of return to equilibrium and they enable a partitioning of the dynamics into linearly
independent invariant subspaces. The former property has received much attention in
the experimental biomechanics community (Hurmuzlu and Basdogan, 1994; Dingwell
and Kang, 2007; Arellano et al., 2009) and is treated in tutorial form in Full et al.
(2002). However it is the latter property that is of interest from the perspective of
further Floquet analysis.

An animal perturbed in a direction belonging to some invariant subspace will con-
tinue to remain in that subspace throughout its return to equilibrium. Any pertur-
bation can be expressed as having components in multiple invariant subspaces; its
recovery will appear as if each component evolves separately in time within its own
sub-space, oblivious to all others. The rate of recovery within each invariant subspace
is given by the magnitude of the eigenvalues associated with that subspace, with the
magnitude of the eigenvalue giving the fraction of the perturbation remaining after a
cycle. It is for this reason that eigenvalues with different magnitudes are always asso-
ciated with different invariant subspaces. A corollary of these properties is that if we
observe dynamics with multiple eigenvalues, we can always conceive of these as being
(to first order approximation) separate processes operating in parallel.

The eigenvectors produces by standard numerical packages are basis vectors for the
invariant subspaces of the corresponding eigenvalues. As such, the are not uniquely
determined. For single real eigenvalues, the eigenvectors are usually normalized, and
thus determined up to sign. For complex conjugate pairs, the eigenvectors produced
by different calculations need only span the same 2-dimensional subspace. This in-
determinacy in the numerical representation raises many practical difficulties in the
implementation of Floquet analysis methods.

15Formally speaking, we mean eigenvalues of the Jacobian of the return map, which is a linear
approximation to the map near a fixed point.
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4.6.2 Eigenvalues and noise

A

B

C

Figure 4.9: Study of return map: eigenvalue distribution on the complex plane A shows
a distinct lobe on the positive real axis. Distribution on the real axis C shows both
individual eigenvalues (sorted by real part) and the total density for all eigenvalues.
The lobe comprises six or seven eigenvalues, with real parts ranging from 0.4 to 0.9.
Tukey box-plots in B show the reduction in variance (ratio of variance with prediction
to variance with no prediction) that was achieved in each coordinate by using the return
map as a predictor. A value of 0 is perfect prediction; a value of 1 means no appreciable
improvement. When predicting random data, value is larger than one (prediction does
worse than doing guessing a constant).
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Little is known about eigenvalue estimates from least squares regression of noisy
data. In general, with a source of noise corrupting our measurements we would expect
to see some eigenvalues from the noise and some eigenvalues from the system being
examined (e.g. compare fig. 4.9-A with fig. 4.10). Noise will tend to move eigenval-
ues around. If an experiment is repeated, one may expect to obtain distributions of
eigenvalues surrounding the true values. If eigenvalues are estimated from noisy data,
some notion of confidence interval must be entertained to decide when eigenvalues are
different enough to provide prima faci evidence for distinct invariant subspaces.

Multiple imputation by bootstrap mechanisms provides a means to produce many
re-sampling replications of the return map estimate, and thus allows us to reproduce the
distribution of eigenvalues we would expect to obtain from replicated experiments. Our
experience with multiple imputation in our system has been that noise is sufficiently
large to make it impossible to track “individual” eigenvalues and match them across
imputations.

For “pure noise”, it seems (by numerical experimentation; we know of no proof
of this) that regressing Gaussian noise against itself generates random matrices with
Gaussian random entries. The eigenvalues of random matrices whose entries are i.i.d.
standard Gaussian follow a known distribution called the Circular Law. In fig. 4.10 we
present a contour plot of an approximation to this distribution for the dimension of
interest to us. It should be noted that the radius of the disc scales with variance of the
Gaussian used for the matrix entries, and with the square root of the dimension of the
matrix (Edelman, 1997).
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Figure 4.10: Numerically derived distribution of eigenvalues for random 27×27 matrices
with independent gaussian entries. The eigenvalues fall in a disc, with an emphasis on
the real line. Radius of the disc is near

√
27. This distribution, at various dimensions,

is used as our H0(a) null hypothesis when determining the dimension of a template.

4.6.3 Statistically significant return map structures

The distribution obtained in fig. 4.9-A can be interpreted as a superposition of a
circular law disc of radius near 0.3 on a collection of real positive eigenvalues, with
only a few complex conjugate pairs unrelated to the disc.

Such a disc of radius 0.3 in can arise from 27 dimensional matrices with entries
whose variance is 0.3/

√
27 = 0.06, but can also arise from having matrices be random

on a small subspace, but with larger variance.
In fig. 4.9-C we plotted the distribution of individual eigenvalues, identified by their

ordinal when sorted by their real part. For example, the third bell curve from the
right gives the distribution of the real part of the eigenvalue with the third largest
real part. This curve reveals that the largest eigenvalue is isolated, and is followed in
magnitude by a clump of six eigenvalues that still protrude well outside the disc of
small eigenvalues. These observations are suggestive of our results in that the largest
eigenvalue seemed to play a different role than the remaining template eigenvalues.
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A more dynamically meaningful way of matching eigenvalues from different imputed
estimates may be of value.

4.6.4 Return map eigenvalues vary with section, contrary to
deterministic models
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Figure 4.11: Eigenvalue density visualizations for sections at three phases π/4; π/2;
π in columns 2,3,4 for both datasets (in rows). Leftmost column shows eigenvalues
for surrogate based control: outputs of the return map were permuted relative to
the inputs prior to regression, eliminating any causal relationship between input and
output. While controls seem similar to a Circular Law distribution fig. 4.10, animal
data shows distinct structures with large real eigenvalues. Despite these superficial
similarities, the eigenvalue distributions at different phases are distinct.

For a deterministic system, the return map eigenvalues must be the same for all
Poincare sections. This is immediate obvious from the fact that the section map M[φ, θ]
induces a matrix similarity transformation between the return map at φ M[φ, φ+ 2π]
and the return map at θ M[θ, θ + 2π].
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The estimated eigenvalue distribution varies from section to section, mostly in the
eigenvalues of intermediate magnitude.

We believe that this variability is due to different errors introduced by noise at
different phases. Noise distributions vary greatly with phase. As the Floquet axes vary
the angles between them change, implying that the effects of noise are correlated among
them to a different degree. This may introduce phase dependent systematic errors in
the eigenvalue estimates. This is one of many mechanisms that could contribute to
the corruption of eigenvalue estimates from noisy data. The authors would like to
encourage further examination of this broadly applicable issue.

Despite the variability seen in fig. 4.11, we observe that the eigenvalue distributions
of both arena and treadmill datasets are similar in their general shape. The disc of
“noise eigenvalues” is larger in the arena data, which contained only half as many data
points as the treadmill data and was generated from an entirely different measurement
apparatus. This strengthens our confidence in the interpretation of the disc as being
a property of the measurement instrument (such as measurement noise) rather than a
property of the animals.

On the left of fig. 4.11 we plot the eigenvalue distribution obtained from H0(b) sur-
rogate data (Schreiber and Schmitz, 2000). The surrogates were created by taking the
imputed input-output pairs used for linear regression and permuting the outputs with
respect to the inputs. This preserves the statistical distributions of outputs and inputs
while breaking the causal relationships constituting the return map. The resulting
eigenvalue distributions bear strong resemblance to the Circular Law distribution of
fig. 4.10, lending support to the notion that eigenvalues outside these discs are due to
having captured some deterministic causal structures of the dynamics.

4.7 Appendix: Mathematical overview

In this addendum we provide an informal mathematical definition of our system
model and describe some of the computational steps in greater detail.

4.7.1 Definition of the dynamical system

We assume that the animals’ motions are governed by a stochastically perturbed
ordinary differential equation, expressible in terms of state evolution with additive
noise.
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x′ = F (x) + ν (4.4)

ν ∼ N(0, σν) (4.5)

The animals perform a periodic locomotor behaviour. This periodic behaviour is
assumed to arise from a stable limit cycle o(·) which is a solution of the deterministic
part of the ODE.

o′(t) = F (o(t)) (4.6)

o(t+ τ) = o(t) (4.7)

‖x(t) − o(t)‖ → 0 (4.8)

As is true of any periodic system with a stable limit cycle, the limit cycle describing
the animals’ gait introduces an intrinsic phase coordinate φ, with respect to which
unperturbed trajectories of the deterministic system evolve at a constant rate.

∇ϕ · F =
2π

τ
(4.9)

x′(ϕ) =
2π

τ
(4.10)

o(ϕ+ 2π) = o(ϕ) (4.11)

For deterministic systems satisfying the definitions above, Floquet’s Theorem (Flo-
quet, 1883) provides for the existence of a coordinate change that considerably sim-
plifies the representation of the dynamics.

Defining the “perturbation” to be q(t) = x(t) − o(t), Floquet proved there exists a
periodic change of coordinates P (·) and a return map matrix eΛ that satisfy16:

q(θ) = P (θ)e
θ

2π
ΛP †(ϕ)q(ϕ) (4.12)

P (ϕ) = P (ϕ+ 2π) (4.13)

The Floquet modes are solutions ξk for q of the form:

ξk(t) = e
t

τ
λkpk(ϕ) (4.14)

16Because we must work over the real numbers, Lambda can only be brought to real Jordan form.
Since there is noise in the system, degenerate Jordan blocks cannot appear, and the matrix is block
2 × 2 diagonal. We omit details relating to work with non-real eigenvalues.
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4.7.2 Impact of a Floquet mode

The equations of motion that govern the animals cannot depend on absolute posi-
tion and heading, as these arise from the arbitrary choice of a laboratory coordinate
frame. Consequently only the derivatives of the centre of mass coordinates appear in
our state. When an animal is perturbed from the limit cycle motions, these derivatives
may change from their limit cycle values.

Letting ΠCOM be a projection onto the centre of mass coordinates, and ξk(t) denote
the linear combination of floquet modes under study, we define its impact to be:

Ξk(t0) =

∫ ∞

t=t0

ΠCOMξk(t) dt (4.15)

4.8 Chapter Glossary

For each term we offer both a technical, mathematical definition of our usage of
the term and a non-technical description. The definitions we provide are not general
definitions of the terms; they are specific to way each of these technical terms is used
in preceding text.

Eigenvalue (of a return map) a value associated with a return map R[φ] at some
phase section φ. The number c is an eigenvalue of R[φ] if there exists an eigen-
vector vector x such that for the limit cycle o(·): R[φ](o(φ) + x) = o(φ) + cx.

Eigenvalues represent rates of decay of perturbations. An eigenvalue of c
implies that after a stride only c of the perturbation remains. Eigenvalues
don’t exists for all perturbations; when they do, those perturbations are said
to lie on an eigenvector.

Eigenvector (of a return map) a vector associated with a return map R[φ] at some
phase section φ. The vector x is an eigevector of R[φ] if there exists a vector x
for the limit cycle o(·) such that R[φ](o(φ) + x) = o(φ) + cx.

Eigenvectors are perturbations for which there exist eigenvalues.

Floquet mode A trajectory x(·) with the property that x(t+ T ) − o(t+ T ) = x(t+
T )− o(t) = c(x(t)− o(t)) for o(·) the limit cycle, T the period and c a scalar (the
Floquet multiplier).
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Floquet modes are “pure” modes of perturbation recovery, with only one
non-zero activation. They are the trajectories of animals who were per-
turbed along only one eigenvector and then left to recover.

Floquet multiplier an eigenvalue of a return map.

Floquet coordinates: the numbers representing the state of an animal with re-
spect to the Floquet frame associated with its current phase; also the real valued
functions of state that return these numbers.

Numbers that represent how far along each Floquet axis the animal’s state
projects. As the animal’s state evolves in time, these numbers follow a
simple exponential relationship. Coordinate k will evolve by a factor of
e(ckt/T ) for ck the k-th Floquet multiplier.

Floquet frame A Floquet frame is a periodic and smooth function of phase, taking
phase φ into the eigenvectors of the return map at phase φ. This creates a
coordinate frame with respect to which solutions of the equations of motion take
a diagonal form.

Floquet axis a single axis of a Floquet frame; a continuous function mapping phase
into eigenvectors. This is the periodic part of a Floquet mode. Each Floquet
mode x(t) with Floquet multiplier c can be expressed as f(tmodT ) exp(ct/T )

A function of phase showing related eigenvectors at different phases, scaled
in a consistent way.

Phase for deterministic dynamical systems– the equivalence class of states that col-
lapse to same point on the limit cycle; also a scalar function of state whose level
sets represent these classes, and whose derivative along trajectories is the con-
stant 2π/T . For systems with noise perturbing the state– the phase of the same
state assuming noiseless evolution from this time on.

A function of state indicating where on the limit cycle the animal will end
up, once it returns to the limit cycle.

Phase section The linear approximation to an isochron near the limit cycle. A do-
main in a hyperplane that intersects the limit cycle and is normal to the gradient
of phase on the limit cycle. Phase is constant to first order on a section.

The hyper-plane of constant phase intersecting the limit cycle at a given
phase
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Section map a mapping from one phase section to another induced by the trajectories
of the system; also the linear approximation thereof, denoted by M[φ, θ], and
written with respect to coordinate origins at the limit cycle points o(φ) and o(θ)
for the domain and co-domain.

The matrix that maps the state of animals starting at phase φ to where
they end up at phase θ.

Return map a section map from a phase section to itself one cycle later; the return
map R[φ] is equal to the section map M[φ, φ+ 2pi]. Return maps have equal
domain and co-domain, and are therefore amenable to eigenvalue decomposition;
we use the term for both the nonlinear map and its linear approximation with
respect to an origin placed at the limit cycle point o(φ).

The matrix that maps where animal starting at phase φ end up one cycle
later.

Input-Output Pair a pair of points from the same experimentally obtained trajec-
tory, the “input” x on section φ and the “output” y on section θ, such that we
expect (in a least squares sense): y = M[φ, θ]x

The pairs of data points that go into the regression of section maps.

Imputation a statistical procedure for filling in missing measurement with model-
derived data so as to provide an appropriately structured sample for the next
steps in the analysis. In the context of “multiple imputation” one iteration
of imputing missing measurements. We use imputation for balancing out the
experimental design for input-output pairs used for section map regression.

Multiple Imputation performing many imputations (see Imputation) using a ran-
domization procedure to not only estimate the statistics of interest, but also the
effects of the imputation procedure itself on the results.

The process that balances out samples so that long trials don’t have greater
leverage on the results than short trials do.

Rhythmic a system is “rhythmic” if the deterministic part of its dynamics is periodic.
Since we consider systems whose dynamics are being influenced by external noise
sources, they are not periodic in the usual formal sense.

Characteristic cycle the characteristic cycle of a system is the expected value of
its state as a function of phase, with respect to the ensemble from which the
experimental data is a sample. For deterministic systems, this is the limit cycle.
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The average stride when binning state by phase.

Circular Law letting X be a matrix over the reals, of dimension d, with entries being
independently and identically distributed gaussian random variables with mean
zero and standard deviation sigma. The probability distribution of a randomly
chosen eigenvalue of X is a circular law distribution. Trivially, sigma scales all
eigenvalues, and therefore one usually refers to the circular law distributions by a
dimension and no scale. Scaling by d−frac12 and taking the limit of d to infinity,
this is a uniform distribution on the unit disc; hence the name.

The probability law governing distribution of eigenvalues for random matri-
ces.
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List of Symbols

∆Φi residual phase

M[θ, φ] Linearized section map from phase section φ to phase section θ

ΦG global phase

ΦK kinematic phase

ΦM mechanical phase

Φ̂ext extrapolated phase model

φL phase of left leg or tripod

φR phase of left leg or tripod

H1 Dynamic Stability One of the “Templates and Anchors” hypotheses

H2 Collapse of dimensions One of the “Templates and Anchors” hypotheses

H3 Tunable coordination One of the “Templates and Anchors” hypotheses

o(·) limit cycle for rhythmic motions

p1(φ), p2(φ) Floquet axes as vector functions of phase φ

Q1, Q2, Q3 second to fourth Floquet modes, after a coordinate change

R[θ] Linearized return map for phase section θ, also equal to M[θ, θ + 2π]

C0 one of two classes of lateral perturbation trials, based on phase at perturbation

C1 one of two classes of lateral perturbation trials, based on phase at perturbation
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H0(φ) Statistical hypothesis that animal classes and φ0 values are uniformly distributed

H0(a) Null hypothesis - random measurements on sections

H0(a) simple surrogates relative margins of simple boostrap of surrogate data

H0(b) Null hypothesis - surrogate data without causal structure

H0(b) bootstrapped surrogates relative margins of nested boostrap of surrogate data

H1(φ) Statistical hypothesis that animal have preferred trials classes due to a perferred
φ0 value

H1 animal data relative margins of animal data

GR(n,p) Grassman Manifold of p dimensional subspaces of n dimensional space

NCA0 Reflex-cascade architecture or Spring Mass with No Clock

NCA1 Clocked spring mass architecture with only mechanical feedback

NCA2 Clock or Leg Tracker architecture with time invariant tracking error feedback

NCA3 Clock Adapting architecture allowing pattern to be modulated

outcome D phase changes, discrete with respect to perturbation

outcome F frequency changes

outcome N animal / system fails

outcome O orbit changes qualitatively

outcome P phase changes, continuous with respect to perturbation
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