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INTRODUCTION

Neuromorphic systems emulate the organization and function of nervous sys-

tems. They are usually composed of analogue electronic circuits that are

fabricated in the complementary metal-oxide-semiconductor (CMOS) medium

using very large-scale integration (VLSI) technology. However, these neu-

romorphic systems are not another kind of digital computer in which abstract

neural networks are simulated symbolically in terms of their mathematical

behavior. Instead, they directly embody, in the physics of their CMOS circuits,

analogues of the physical processes that underlie the computations of neural

systems. The significance of neuromorphic systems is that they offer a method

of exploring neural computation in a medium whose physical behavior is

analogous to that of biological nervous systems and that operates in real time

irrespective of size. The implications of this approach are both scientific and

practical. The study of neuromorphic systems provides a bridge between levels

of understanding. For example, it provides a link between the physical pro-

cesses of neurons and their computational significance. In addition, the syn-

thesis of neuromorphic systems transposes our knowledge of neuroscience into

practical devices that can interact directly with the real world in the same way

that biological nervous systems do.

NEURAL COMPUTATION

The enormous success of general purpose digital computation has led to the

application of digital design principles to the explanation of neural computa-
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256 DOUGLAS, MAHOWALD & MEAD

tion. Direct comparisons of operations at the hardware (Koch & Poggio 1987,

McCulloch & Pitts 1943, von Neumann 1958) and algorithmic (Mart 1982)

levels have encouraged the belief that the behavior of nervous systems will,

finally, be adequately described within the paradigm of digital computation.

That view is changing. There is growing recognition that the principles of

neural computation are fundamentally different from those of general purpose

digital computers (Hertz et al 1991, Hopfield 1982, Rumelhart & McClelland

1986). They resemble cooperative phemomena (Haken 1978, Julesz 1971,

Marr & Poggio 1976) more closely than theorem proving (McCulloch & Pitts

1943, Newell et al 1958, Winston & Shellard 1990). The differences between

the two kinds of computation are most apparent when their performance is

compared in the real world, rather than in a purely symbolic one. General

purpose digital approaches excel in a symbolic world, where the algorithms

can be specified absolutely and the symbols of the computation can be assigned

unambiguously. The real world is much less rigid. There the solution must

emerge from a complex network of factors all operating simultaneously with

various strengths, and the symbols must be extracted from input data that are

unreliable in any particular but meaningful overall. Under these fluid condi-

tions neural computations are vastly more effective than general purpose digital

methods.

The reasons for the superior performance of nervous systems in the real

world are not completely understood. One possibility rests in their different

strategies for obtaining precision in the face of the noise inherent in their own

components. Digital systems eliminate noise at the lowest level, by fully

restoring each bit to a value of zero or one at every step of the computation.

This representation is the foundation of Boolean logic. Consistent with this

approach, digital architectures rely on each bit in the computation to be correct,

and a fault in a single transistor can bring the entire computation to a halt. In

contrast, neural systems use unrestored analogue quantities at the base level

of their computations, which proceed according to elementary physical laws.

Noise is eliminated from these analogue signals by feedback from the next

level in the computation, where many signals have had an opportunity to

combine and achieve precision at a collective rather than individual level. This

collective signal is then used to optimize the performance of individual com-

ponents by adaptation. The same architectures and adaptive processes that

neural systems use to generate coherent action in the presence of imperfect

components may also enable them to extract precise information from a noisy

and ambiguous environment.

The fundamental difference in these computational primitives is reflected

in the way that general purpose digital computers simulate neural models

(Figure 1). The binary representation requires that logical functions form the

foundation of the symbols and operations needed to model the biological
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Figure 1 Comparison of the organization of a model on an analogue and on a general purpose
digital simulator. (a) The analogue in this example represents five state variable nodes (black filled

circles) of the modeled system. The variables at these nodes are continuous and can encode many
bits of information. The variables interact along the paths indicated by arrows. The operations (gray

filled circles) that occur along the paths are physical processes analogous to those of the modeled
system (see Figure 5). The computations of all the state variables proceed in parallel, synchronized

by their interactions and mutual dependence on time. (b) The digital system comprises many isolated
nodes (black filled circles), each of which has a binary state, which represents only one bit. The

multibit state variables of the modeled system are encoded on group nodes shown to the right of
each variable (V1-VS). The connectivity of the modeled system is similarly encoded, as are

numerical abstractions of the operations (op 1-opn) performed along each path. This binary encoding
scheme requires many more nodes than does the analogue implementation. In the digital system the
interaction between nodes is not continuous but sampled. At each simulated time step, the digital

processor evaluates the operations along each of the paths and updates the variables at each node.
In the digital case, time is not a physical characteristic of the computation. Instead, it is an abstract

variable similar to V1-V5 and must be updated by the processor after the completion of each time

step.
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258 DOUGLAS, MAHOWALD & MEAD

system. It follows that the modeled system must be translated explicitly into

a mathematical form. This representation is not efficient in terms of the time

and number of devices required to perform the computation. First, the state

variables and parameters of the model are encoded as abstract binary numbers,

which occupy a large area on the surface of a chip relative to a single analogue

variable. Even time must be abstracted so that the natural temporal relation-

ships between processes are not guaranteed. Because the primitives are not

natural physical processes, every relationship between the system variables

must be explicitly defined. Even the most natural properties, such as statistical

variation and noise, must be specified.

The efficiency of neuromorphic analogue VLSI (aVLSI) rests in the power

of analogy, the isomorphism between physical processes occurring in different

media (Figure 1). In general, neural computational primitives such as conser-

vation of charge, amplification, exponentiation, thresholding, compression,

and integration arise naturally out of the physical processes of aVLSI circuits.

Calculation of these functions using digital methods would require many

amplifiers for storage and many digital clock cycles to execute the algorithms

that generate the functions (Hopfield 1990). Thus, the computational advantage

of aVLSI and neural systems is due to the spatially dense, essentially parallel

and real-time nature of analogue circuits (Hopfield 1990, Mead 1989). 

course, only a small number of functions can be generated directly by the

physics of the analogue circuits. The analogue approach scores where those

functions are the ones required, and where only modest precision (1:10-1:103)

is necessary. Fortunately, the functions and precision of aVLSI circuits have

proven effective for emulating neural phenomena.

At present, both digital and analogue technologies are orders of magnitude

less powerful than is necessary to embody the complete nervous system of any

animal, even if we knew how. The problem at this time is not one of complete

understanding but of how best to embody the principles of simpler neural

subsystems. The choice between digital simulation and analogue emulation

depends on a number of factors, such as ease of implementation and the goal

of the experiment. Digital simulation is precise, the results are easily stored

and displayed, and the configuration of the simulation is as easy as recompiling

a program. Digital simulation is effective in many applications where the size

of the machine, its power consumption, and its time of response are not

important. Analogue emulation is an attractive alternative to simulation if the

performance of the system in simulation would be so slow that it is impractical,

and as in the case of prosthetic devices, the size and power-consumption of

the device are critical. Analogue VLSI emulations at present require special-

ized skills on the part of the designer. This requirement may be less of an

obstacle in the future as the potential of aVLSI systems is developed.
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EARLY SENSORY PROCESSING

The extraction of behaviorally relevant signals from sensory data is a natural

starting point for neuromorphic aVLSI design. Sensory systems have many

similar elements laid out in regular spatial arrays of one or two dimensions,

with a high proportion of local interactions between elements. They must

provide noise-resistant, alias-free operation over a wide range of stimulus

intensities by using physical elements of finite dynamic range. The aVLSI

medium is well suited to the synthesis of such systems. By creating neu-

romorphic sensory systems, we build a concrete ground that can be used to

explore the interaction of medium and computation in both biological and

silicon systems. We also create processors that can provide input to behavior-

ally functional neuromorphic systems and that could be developed as prosthetic

input devices for humans.

Sensors are the critical link to the world. If the source data about the world

are not properly captured and transmitted to later processing stages, no amount

of computation can recover them. One approach to this problem is to collect

and transmit as much raw data as possible. This strategy, which is adopted in

traditional artificial sensors such as charge-coupled device (CCD) cameras,

makes strong demands on the dynamic range of the sensors and the commu-

nication bandwidth of the transmission channel to the later processing stages.

For example, many natural visual scenes have dynamic ranges of three orders

of magnitude during steady illumination, and the dynamic range of the same

scene viewed from sunny afternoon to dusk may vary by seven orders of

magnitude. Not only do these ranges exceed the limits of current digital

imaging technology, but the torrent of low-level data generated by simple

gray-level imagers cannot be analyzed in real-time even by multi-processor

general purpose computers (Scribner et al 1993).

Biological systems have evolved an alternative approach to sensing. Rather

than transmitting all possible information to the brain, they extract only that

which is salient to the later processing stages. One of the advantages of

computing high-order invariants close to the sensors is that the bandwith of

communication to subsequent processors is reduced to a minimum. Only

salient data are transmitted to the next stage of processing. The degree of

invariance achieved by early sensory processing is a compromise that is made

differently by various modalities and species. For example, the space available

for additional circuitry restricts the sophistication of signal processing that can

be accomplished near to an array of sensors such as the retina. Also, invariance

of response implies that sensory information has been discarded. The question

of what to discard cannot be context sensitive if invariants are hard wired into

early sensory processing. Understanding the trade-offs made by biological
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260 DOUGLAS, MAHOWALD & MEAD

sensors requires a knowledge of a broad range of constraining factors, from

the bandwidth of the individual computational elements to the behavior of the

organism as a whole.

Vision

Early visual processing is a popular topic for research, and a number of

algorithms have been described for detecting various features of the visual

scene. The huge flux of information in algorithmic visual processing has, until

recently, restricted these computations to high-performance digital computers.

But mass-market applications are now driving the search for implementations

of these algorithms on compact, low-power chips (Koch & Li 1994). In general,

these VLSI circuits aim to capture the mathematics of vision, rather than

emulate the biological methods of visual processing.

One of the earliest attempts to use aVLSI technology to emulate the prin-

ciples of biological sensory processing outlined above was an electronic retina

that emulates the outer plexiform layer of the mud puppy (Mahowald & Mead

1989, Mead & Mahowald 1988). This silicon retina includes components that

represent the photoreceptor, horizontal cell, and bipolar cell layers of the retina.

The photoreceptor transduces light into a voltage that is logarithmic in the

intensity of the stimulus. The synaptic interactions between the cell types are

implemented in analogue circuits. The photoreceptors drive the horizontal cells

(a noninverting synapse) via a transconductance (Figure 2a). A resistive 

work emulates the gap junction connections between horizontal cells (Figure

2b). Thus, the voltage at each node of the horizontal cell network represents

a spatially weighted average of the photoreceptor inputs to the network. As in

the biological retina, the electrotonic properties give rise to an exponentially

decreasing spatial receptive field in the horizontal cell network. The antago-

nistic center-surround receptive field of the bipolar cell is implemented with

a differential amplifier that is driven positively by the photoreceptors but

inhibited by the horizontal cell output.

The silicon retina performs like a video camera in that the image is trans-

duced directly on the chip and the output is displayed on a monitor screen

continuously in time. However, unlike the CCD camera, the silicon retina

reports contrast rather than absolute brightness and so it is able to see compa-

rable detail in shaded and bright areas of the same scene. This contrast encoding

emulates an essential property of retinae and is due to the center-surround

receptive field of the bipolar cell, which computes the difference of the loga-

rithmic photoreceptor and horizontal cell outputs. By using the local average

of the horizontal cells as a reference signal, the redundant features of the image

are suppressed while novel features are enhanced. This occurs because large

areas of uniform luminance produce only weak visual signals. In these regions

the output from any single photoreceptor is canceled by the spatial average
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Figure 2 The silicon retina is a two-dimensional hexagonal array of pixels on a chip, The retina
transduces a light image focussed directly on its surface, processing the stimulus by principles found
in the outer plexiform layer of the vertebrate retina. Various versions of silicon retinae contain from
2304 (Mahowald & Mead 1989) to 8250 pixels (Boahen & Andreou 1992) on a 6.8 mm x 6.9 
square of silicon using a 2-1am fabrication process. (a) A pixel from the silicon retina produced 
Mahowald (1991) contains an analogue of a photoreceptor, P, a bipolar cell, B, and a node of the
horizontal cell network (filled circle). (b) A hexagonal resistive network emulates the horizontal
cells of the retina. The horizontal cells extend parallel to the surface of the retina and are resistively
coupled to each other by gap junctions. The values of these resistors is controlled by applying an
analogue voltage to the chip, so the degree of connectivity between horizontal cells can be varied
after the chip is fabricated. In addition to the retinal array, the retina chips also have instrument
circuits that monitor the outputs of the pixels. The pixels can be monitored individually or scanned
out sequentially to a video monitor.

signal from the horizontal cell network. Novel luminance features, such as

edges, evoke strong retinal signals because the receptors on either side of the

edge receive significantly different luminance. A similar principle applies in

the time domain, where the relatively slow temporal response of the horizontal

cell network enhances the visual system’s response to moving images. In fact,

as in the physiology of biological retinal cells, the spatial and temporal char-

acteristics of the retinal processing are simultaneously expressed, as can be

seen in the response of the silicon retina to flashed lights of varying spatial

extent illustrated in Figure 3.

The silicon retina encourages a functional interpretation of retinal process-

ing. From an engineering point of view, the purpose of the outer-plexiform
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Figure 3 Comparison of the response of bipolar cells in a vertebrate and a silicon retina to a flashing
light stimulus of varying spatial extent. (a) Response of a bipolar cell in the mud puppy, Necturus
maculosus (data from Werblin 1974). (b) Output of a pixel in the silicon retina. Test flashes of 
same intensity but of different diameters are centered on the receptive field of the unit. Larger flashes
increase the excitation of the surround. The surround response takes time to build up to the
capacitance of the resistive network. Because the surround level is subtracted from the center
response, the output shows a decrease for long times. This decrease is larger for larger flashes. The
overshoot at stimulus offset decays as the surround returns to its resting level. The peak response
diminishes as the test flash becomes larger spatially. The larger test flash charges the network to a
higher value. The charging of the network works against the finite response time of the receptor to
produce the observed decrease in peak response at the bipolar cell level.

layer is to keep the output of retina from saturating over several orders of

magnitude change in background illumination while allowing it to report the

small contrast differences in a typical scene reliably. The encoded retinal output

still contains sufficient information to fully support general visual processing

in the brain, but it can be transmitted at a much lower bandwidth than can a

gray-scale image. The efficient encoding of visual information is necessitated

by a simple physical constraint, the finite range of retinal cell outputs. The

hypothesis underlying the early silicon retina architecture was that lateral

inhibition was sufficient to deal with the problem of dynamic range in retinal

processing (Barlow 1981). Lateral inhibition removes redundant information

caused by correlation of luminance across the image. However, lateral inhibi-

tion exacerbates another form of image redundancy, noise. Noise is a form of

redundancy because it does not supply additional information about the world,

so bandwidth is wasted by transmitting it (Atick & Redlich 1990, 1992). 

the retina, noise arises from photon fluctuations at low light levels. But, it can

also arise from the photoreceptors themselves, as dynamic thermal noise and

as static miscalibration of photoreceptors’ gains and operating points. The early

silicon retinae were plagued by static mismatches between transistors, which
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caused each photoreceptor to give a different response to identical inputs. The

solution to this problem was to incorporate more of the features of outer

plexiform processing that had been observed in biological systems.

New generations of silicon retinae remove the intrinsic sources of noise by

using adaptive elements (Mead 1989, Mahowald 1994) and resistive coupling

between the receptors (Boahen & Andreou 1992). These retinae include feed-

back from the horizontal cells to the photoreceptors. This feedback allows the

photoreceptor to respond over a large input range with higher gain than the

photoreceptors in the earlier feedforward retinae. The feedback between the

photoreceptors and the horizontal cells affects the time constants of the cells

and the electrotonic spread of signals in the restive networks.

The inner-plexiform layer of the retina is more poorly understood than the

outer one. It is believed to play a role in motion processing, and in lower

vertebrates, such as the frog, it has complex synaptic interactions that give rise

to invariant feature detectors. This complex processing is desirable when the

output of the retina is used directly to mediate a specialized behavior (Horiuchi

et al 1991, 1992). The cost of incorporating more complex processing in the

retinal array is that the photodetectors are spread farther apart to make room

for additional circuitry. An example of a complex silicon retina is the veloc-

ity-tuned retina of Delbrtick (1993). This retina contains analogue delay ele-

ments that correlate the spatio-temporally distributed signals that arise from

moving targets. At each pixel location, the retina generates three independent

outputs that are tuned to a particular speed and direction of motion, irrespective

of stimulus contrast. This retina contains 676 pixels on a 6.8 mm x 6.9 mm

die fabricated in a 2 I.tm process. The computation is energy efficient. The

analogue processing in the retina (not including video display) consumes 1.5

mW in the dark to 8 mW in the light, which is less than 5 ].tW per pixel,

compared with 10 ktW per pixel for a typical CCD pixel that does no compu-

tation.

Audition

Auditory processing is another interesting example of nonlinear sensory trans-

duction. Here too, insights have been gained by the development of neu-
romorphic auditory processors. Early efforts focussed on emulating the cochlea

(Lyon & Mead 1988, Mead 1989), the fluid-mechanical traveling wave struc-

ture that encodes sound into spatio-temporal patterns of discharge in the

auditory neurons.

The sound pressure in the outer ear is coupled mechanically into vibrations

of the cochlea’s basilar membrane by the ossicles of the middle ear. The

membrane behaves like a spatially distributed low-pass filter with a resonant

peak. The resonant frequency of the filter decreases exponentially along the
basilar membrane from the oval window toward the apex of the cochlea, so
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the optimal response of the membrane is spread in space according to fre-

quency. This response can be modified by the outer hair cells, which are motile

and able to apply forces to the basilar membrane at frequencies throughout the

auditory spectrum. Hair cells provide mechanical feedback that modifies the

damping of the basilar membrane, so changing its resonance. The cochlea can

use this mechanism to preferentially amplify low-amplitude traveling waves.

Thus, the cochlea acts as an automatic gain control mechanism for sound,

analogous to the gain control for luminance in the outer-plexiform layer of the

retina.

The silicon cochlea of Lyon & Mead (1988) uses a unidirectional cascade

of second-order sections with exponentially scaled time constants to approxi-

mate the traveling wave behavior of the basilar membrane. Because the sec-

tions can be tuned to generate a gain greater than one over a range of fre-

quencies, they can approximate the resonance behavior caused by the outer

hair cells. The behavior of this silicon cochlea is remarkably similar to its

biological counterpart. However, the degree of resonance of each stage of the

filter cascade is quite sensitive to device mismatches. To investigate this

problem, a more detailed aVLSI cochlea has been made that uses a resistive

network to model the cochlea fluid, and a special purpose circuit to model

regions of the basilar membrane (Watts 1993). The collective nature of resistive

grid makes this cochlea less sensitive to device mismatch than the filter cascade

design. The price of this robustness is an increase in circuit complexity and

size.

This chip highlights an interesting methodological point--because neu-

romorphic models are constrained by what can be implemented in a physical

medium, they can provide insight into biological design. The response of the

basilar membrane scales--that is, the spatial pattern of the response is invariant

with frequency except for a displacement along the membrane. There are two

physical models that give rise to scaling. In the first--constant mass scaling--

the mass of the membrane and the density of the fluid are constant, but their

stiffness changes exponentially along its length. In the second model--increas-

ing mass scaling--all three change exponentially along the length of the

membrane. Although the behavior of these two models is indistinguishable,

their implications for physical implementation are radically different. The

constant mass model requires that membrane stiffness change by a factor of

about one million. Such a range of variation can be simulated on a digital

computer, but it cannot be implemented easily in a physical device. This

suggests that the increasing mass model, in which the range of variation can

be absorbed by three parameters rather than one, should be adopted. In this

case no single parameter need change by a factor of more than 100-1000,

which is feasible in real devices such as neurons and chips. Moreover, each

of the three parameters could be controlled by just one independent parameter,
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the width of the basilar membrane, which increases linearly with displacement

along its length (Watts 1993). Watts’ (1993) resistive network silicon cochlea

follows this idea. The exponentially varying membrane stiffness, membrane

mass, and participatory fluid mass are all controlled by a single control line

whose voltage increases linearly with membrane length, as does width. This

chip emulates well the basilar membrane performance predicted by numerical

and analytical methods.

The resistive network cochlea does not yet contain active elements that could

emulate the outer hair cells. But, a simple circuit that models the sensory

transduction and motor feedback required to do this has been designed and

tested separately (Watts 1993). Basically, the outer hair cell circuit is a feed-

back system containing a saturating nonlinear element in its feedback loop

(Watts 1993, Yates 1990). The circuit senses the local basilar membrane

displacement and applies motor feedback there. These circuits preferentially

amplify low-amplitude waves, because under these conditions the feedback

gain is high. As the wave becomes amplified, the feedback element is driven

into saturation, and the gain becomes smaller.

The transduction of cochlea signals into the early stages of neural processing

has also been investigated by using neuromorphic methods. In the biological

cochlea the spatial patterns of vibrations of the basilar membrane are sensed

by the inner hair cells, which transduce the mechanical displacement into the

release of neurotransmitter and thereby affect the rate of action potential

generation by their associated auditory neurons. Consequently, each neuron

has a bandpass tuning for frequency whose optimal response depends on the

position of the inner hair cell on the basilar membrane. Thus, the combined

pattern of mean rate responses in auditory neurons could represent the spectral

shape of the input signal. But this explanation is not sufficient to explain

auditory perception, because the bandpass of the neurons is not amplitude

invariant even at the moderate amplitudes occurring during normal speech.

The temporal structure of action potential discharge offers an alternative

representation of frequencies below about -5 kHz. Auditory neurons operating

in this range tend to discharge on one polarity of an input waveform, so their

probability density function for spike generation is a half-wave rectified ver-

sion of the analogue signal of their hair cell. This phase encoding persists even

during fully saturated discharge (Evans 1982). Since individual auditory neu-

rons rarely fire above 300 Hz, the phase-dependent spikes cannot occur on

every cycle. Instead, the outputs of several neurons driven by the same hair

cell must be combined to provide a reliable signal. For example, the outputs

could be combined by a postsynaptic neuron that acts as a matched filter for

spike repetition rate (Carr 1993, Lazzaro 1991, Suga 1988).

The matched filter is an autocorrelator that receives the unmodified auditory

fiber action potentials as input and the same signal delayed by the match
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interval. In principle, the output of this correlator could have strong peaks not

only at the match frequency but also at its harmonics. This problem is resolved

by the basilar membrane filter, which attenuates the harmonics leaving a single

peak at the match frequency. Thus, the timerdelay matched-filter hypothesis

is attractive but leaves open the questions of how the various time delays could

arise in biological circuits and how precise these delays need be.

By building a silicon auditory processor that uses the time-delay correlation,

Lazzaro & Mead (Lazzaro 1991, Lazzaro & Mead 1989, Lyon & Mead 1988)

have shown that this approach can work robustly despite component variability

(Figure 4). Their chip is composed of the filter cascade cochlea and circuitry

that emulates the auditory neurons and their postsynaptic matched filters. The

filter sections of the cochlea have exponentially scaled time constants and span

a frequency range of 0.4 Hz to 4 kHz. Each section drives a circuit that models

inner hair cell transduction. Each silicon hair cell, in turn, excites a group of

simple neurons. The action potentials of all the groups are led both directly

and via time delays to an array of correlators. The time delays of the correlators

in the array increase exponentially and are roughly matched to the time con-

stants of the silicon basilar membrane.

The auditory processor correctly identifies the frequency of a test signal in

real time, which suggests that time-delay correlation is a feasible explanation

for the operation of the early stages of auditory perception. The chip also offers

interesting prospects for prostheses and auditory processing for computers

(Lazzaro et al 1993).

RECONFIGURABLE NETWORKS

The sensory aVLSI systems described above have specialized neurons with

hard-wired connections. Fortunately, sensory subsystems have a very regular

structure that is dominated by local connectivity. In these cases it is possible

to satisfy the connections of many thousands of neural nodes on a single chip.

But beyond the sensory processing stage, the connectivity quickly becomes

more complex, as do the characteristics of the neurons, which receive thou-

sands of inputs along their branching dendritic trees. Such highly connected

networks can only be constructed by distributing the network across multiple

chips. There are many strategies for dividing the network among chips. These

strategies typically recognize three different elements: the synapses onto the

neurons, the input-output relation of the neurons, and the communication

pathways of the axons.

Whatever the strategy employed, it is desirable to reuse the same hardware

for exploring various neural architectures. This task requires the development

of general silicon neurons, whose biophysical properties and connectivity can

be reconfigured to match a range of neuronal types, and a communication
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Figure 4 Response of a silicon auditory processor that emulates a cochlea, auditory neurons, and

proposed postsynapfic neurons that act as correlators. (a) Average discharge rate of the auditory
neurons in response to sinusoidal stimuli (2, 5, and 20 mV peak amplitude, bottom to top) applied

to the cochlea. Notice that the bandwidth of the response is sensitive to input amplitude. (b) Output
from a correlator postsynaptic to the auditory fibers shown in a, with cochlea filtering disabled. The
correlator responds at its optimal frequency (about 1.5 kHz) with narrow bandwidth, but it also

responds at higher harmonics. (c) Output of the correlator to the stimuli described in a, with cochlea
filtering enabled. The response is logarithmic over the stimulus range 2-20 mV. There are no
harmonics. The bandwidth is insensitive to stimulus amplitude. The auditory processor responds to

frequencies over a range of approximately 0.3-3 kHz (data not shown). Modified from Lazzaro

1991.
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strategy that can handle the huge convergence and divergence of general

neuronal systems.

Neurons

There have been a number of reports of electronic neurons built of discrete

components that emulate real neurons with various degrees of accuracy (Hop-

pensteadt 1986, Keener 1983) and that could be wired together to form small

networks. In recent years the development of VLSI technology has made it

possible to envisage very large networks of realistic CMOS neurons that could

operate in real time and interact directly with the world via sensors.

VLSI designers have taken a wide range of approaches to the design of

neurons for artificial neural networks. Examples of recent work in the field

can be found in Murray & Tarassenko (1994), Ramacher & Ruckert (1991),

Zaghloul et al (1994), IEEE Transactions on Neural Networks, and the Ad-

vances in Neural Information Processing Systems series. Many of these designs

use pulse-based encoding, similar to the action potential output encoding of

real neurons (Murray et al 1989, 1991; Murray & Tarrasenko 1994). However,

in most of these cases, the connectivity between neurons is the focus of effort.

The responses of the individual neurons are simplified to fixed input-output

relations that conform to the models used in artificial neural network research.

Less effort is devoted to the study of the complex biophysical mechanisms

that underly neuronal discharge, and what their significance might be.1

Neurons act as elaborate spatio-temporal filters that map the state of their

approximately 104 input synapses into an appropriate pattern of output action

potentials. This mapping is dynamic and arises out of the interaction of the

many species of active and passive conductances that populate the dendritic

membrane of the neuron and that serve to sense, amplify, sink, and pipe

analogue synaptic currents en route to the spike generation mechanism in the

soma. The members of this society of conductances are each effective for a

specific ion, or profile of ions, and they interact via their mutual dependence

on either membrane potential or intracellular free calcium or both. The mac-

roscopic conductance for a particular ion depends on the states of individual

channels embedded in the neuronal membrane. These channels are charged,

thus their performance is sensitive to voltage gradients across the membrane.

The fraction of the channels that are conductive (open) at any membrane

potential can be described by the Boltzmann distribution (Hille 1992). The

fraction of channels that are open is given by

O (O + C) = 1/(1 e"zV/kT),

~However, DeYong et al (1992) have designed a neural processing element that is more clearly
neuromorphic.
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where O is the number of open channels; C, the number of closed channels;

V, the transmembrane voltage; z, the channel charge; and kT, the thermal

energy per charge carrier. This activation function has a sigmoidal form,

saturating when all of the channels are open. Its dynamics are controlled by a

time constant that may itself be voltage dependent. The activation is often

opposed by an inactivation process that attenuates the conductance.

aVLSI neurons are synthesized by combining modular circuits that emulate

the behavior of biological conductances. As in the example in Figure 5, the

prototypical conductance module consists of an activation and an inactivation

circuit that compete for control of an element that emulates the membrane

conductance. When CMOS circuits are operating in their subthreshold regime

(Mead 1989), the transistors’ gate voltages control the heights of the energy
barriers over which the charge carriers with Boltzmann-distributed energies

must pass in order to flow across the channels. This similarity between the

physics of membrane and transistor conductance offers a method of construct-

ing compact circuits that represent biological channel populations.

The usual operation of these analogue circuits is similar to Hodgkin-Huxley

descriptions (Hodgkin & Huxley 1952, Hille 1992) of membrane conductance.

If the membrane potential is driven into the range of activation, the conduc-

tance for that ion will increase and charge the membrane towards its associated

reversal potential. During activation, inactivation will grow with a slower time

constant, finally quenching the conductance and allowing the membrane to

relax back to its resting state.

The prototypical circuits are modified in various ways to emulate the par-

ticular properties of a desired ionic conductance. For example, some conduc-

tances are sensitive to calcium concentration rather than membrane voltage

and require a separate voltage variable representing free calcium concentration.

Synaptic conductances are sensitive to ligand concentrations, and these circuits

require a voltage variable representing neurotransmitter concentration. The

dynamics of the neurotransmitter in the cleft is governed by additional time

constant circuits. These special circuits are simple modifications of the general

theme of the prototypical circuit. Circuit modules that have been designed and

tested so far include the sodium and potassium spike currents, the persistent

sodium current, various calcium currents, the calcium-dependent potassium

current, the potassium A-current, the nonspecific leak current, the exogenous

(electrode) current source, the excitatory synapse, the potassium-mediated

inhibitory synapse, and the chloride-mediated (shunting) inhibitory synapse.

Once a repertoire of circuits is available, the desired profile of currents can

be inserted into the neuronal compartments that are capacitance nodes sepa-
rated by axial resistances, just as one might specify a neuron for digital

simulation. The behavior of the individual circuits that compose the neuron

can be controlled by setting the voltages applied to the gates of various
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transistors in the module. These parameters determine, for example, the tem-
poral dynamics of activation and inactivation, the voltage at which activation

or inactivation occurs, and the maximum conductance that can be obtained
when the ion conductance is fully activated. The parameters can be varied to

Vm

m_max >-I~

’conductance’

transistor

Vm

VDD

tt-< v~0

Ym

’eotadtlctsrl~e’
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.... ........................
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emulate neurons with a range of biophysical properties. The effect of changing

these parameters is immediate, so the electrophysiological personality of the

silicon neuron can be .switched rapidly, for example, from a regular adapting

to a bursting pyramidal cell (Figure 6). The fact that a range of neuronal

subtypes with the same circuitry can be emulated suggests that the control

parameters of the silicon neuron are analogous to those available in the devel-

opment of real neurons. Of course, the range of reconfigurability is limited to

the range of interaction of the circuits that are placed in the neurons at the

time the chip is fabricated. Modules can be inactivated and so effectively

removed from a compartment, but no new modules can be added. If additional

properties are required, another silicon neuron with different morphology and

different types of channels can be fabricated by using variations of the basic

circuit modules.

To produce compact circuits it is often necessary to make approximations

in the design of the circuit modules (Douglas & Mahowald 1994a). However,

the striking results of the aVLSI emulations are the degree to which qualitative

realistic neuronal behavior arises out of circuits that contain such approxima-

tions, and the fact that adjustments in the control parameters cause the neuron

to change its behavior in a way that is consistent with our understanding of

neuronal biophysics.

Communication

The degree of connectivity in neural systems and the real-time nature of neural

processing demand different approaches to the problem of interchip commu-

nication than those used in traditional digital computers. VLSI designers have

adopted several strategies for interchip communication in silicon neural net-

Figure 5 Example of a neuromorphic CMOS aVLSI circuit. (a, b) Basic circuit that emulates
transmembrane ion currents in the silicon neuron (Douglas & Mahowald 1994a,b; Mahowald 
Douglas 1991). A differential pair of transistors have their sources linked to a single bias transistor
(bottom). The voltage, mmax, applied to the gate of the bias transistor sets the bias current, which is
the sum of the currents flowing through the two limbs of the differential pair. The relative values of
the voltages, Vm and V50, applied to the gates of the differential pair determine how the current will
be shared between the two limbs. The relationship between Vm and the output current, m, in the left
limb is shown in b. The current, m, is the activation variable that controls the potassium (in this
example) current, Ik, that flows through the conductance transistor interposed between the ionic
reversal potential, Ek, and the membrane potential. (c) The circuit that generates the sodium current
of the action potential is composed of activation and inactivation subcircuits that are similar to those
shown in a. The activation and inactivation circuits compete for control of the sodium conductance
transistor by summing their output currents at the node marked by the asterisk. The current mirror
is a technical requirement that permits a copy of the inactivation current to interact with the activation
current. In this example, sodium current, lna, flows from the sodium reversal potential, Ena, onto
the membrane capacitance, Cm. The transconductance amplifier and capacitor on the right of the
inactivation circuit act as a low pass filter, causing the inactivation circuit to respond to changes in
membrane voltage with a time constant set by the voltage, xh.
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Vm

800 mV

200 mV

100 msec

800 mV

200 mV

50 msec

Figure 6 A silicon neuron that emulates the response of a cortical pyramidal neuron. (a) Response
to two levels of intrasomatic current injection (time course shown below). The neuron is configured
as a regular adapting pyramidal cell. Each pair of response traces consists of the somatic membrane
potential, Vm (800 mV scale bar), and a voltage that is proportional to the intrasomatic free calcium
concentration, [Ca] (200mV scale bar). Notice the adaptation of discharge and after-train hyperpo-
larization in the upper voltage trace. The voltage response of the silicon neuron is ten times larger
than that of a real neuron (Douglas & Mahowald 1994a). (b) Response to sustained current injection
of neuron configured as a bursting pyramidal cell.

works. Each strategy has advantages, and the choice of method depends on

which factors are-most crucial to the application.

One of the most literal approaches to interconnecting silicon neurons has

been adopted by Mueller et al (1989a,b). They use a direct physical connection

between nodes on different chips through a cross-bar switching array. A major
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advantage of this approach is that it allows continuous-time communication

between nodes. In addition, the switching arrays provide flexible connectivity

and can be programmed digitally by a host computer. The system is able to

handle larger connectivities than are possible on a single chip because the

dendrites of a single artificial neuron are extended over multiple chips. How-

ever, this approach requires many chips to model even a small number of

neurons. The number of artificial neurons on each output chip is limited to

less than 100 by the number of output pins available.

To increase the number of neurons that can be placed on a single chip, a

strategy must be adopted that relies on the speed advantage of VLSI technology

over biological neurons. Because neuromorphic systems are intended to inter-

act with the real world, their dynamics should evolve concurrently with exter-

nal events. To achieve speeds comparable to biological neurons, neuromorphic

aVLSI circuits operate about 105 times more slowly than the maximal speed

of CMOS. The excess bandwith is available for communication by multiplex-

ing a single connection path in time. This communication strategy attempts to

achieve in time what the axonal arborizations achieve in space.

A number of multiplexing techniques are currently in use in artificial neural

systems (Brownlow et al 1990; Mahowald 1994; Murray et al 1989, 1991;

Murray & Tarrasenko 1994; Sivilotti et al 1987). One communication strategy

that is closely related to the action potential coding of biological neurons is

an address-event representation (AER) (Mahowald 1992, 1994).

The address-event protocol works by placing the identity (a digital word)

of the neuron that is generating an action potential on a common communica-

tions bus that is an effective universal axon. The bus broadcasts this address

to all synapses, which decode the broadcast neuronal addresses. Those syn-

apses that are connected to the source neuron detect that their source neuron

has generated an action potential, and they initiate a synaptic input on the

dendrite to which they are attached. Many silicon neurons or nodes can share

a single bus because, like their biological counterparts, only a small fraction

of the silicon neurons embedded in a network are generating action potentials

at any time and because switching times in the bus are much faster than the

switching times of neurons. At present, neuronal events can be broadcast and

removed from the data bus at frequencies of 1 MHz. Therefore, about one

thousand address-events can be transmitted in the time it takes 1 neuron to

complete a single 1-ms action potential. And if, say, 10% of neurons discharge

at 100 spikes/s, a single bus could support a population of about 105 neurons.

Of course, many more neurons will be required to emulate even one cortical

area. Fortunately, the limitation imposed by the bandwidth of the AER bus is

not as discouraging as it may seem. The brain has a similar problem in space.

If every axon from every neuron were as long as the dimensions of the brain,

the brain would explode in size as the number of neurons increased. The brain
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avoids this fate by adopting a mostly local wiring strategy in which the average

number of axons emanating from a small region decreases at least as the inverse

square of their length (Mead 1990, Mitchison 1992, Stevens 1989). If the action

potential traffic on the AER bus were similarly confined to a local population

of neurons, the same bus could repeat in space and thus serve a huge number

of neurons.

The AER communication protocol has a number of advantages. It preserves

the temporal order of events taking place in the neural array as much as

possible. Events are transmitted as they occur. AER has better temporal accu-

racy than standard sequential multiplexing because the bandwidth of the com-

munication channel is devoted to the transmission of significant signals only.

For example, an AER silicon retina generates address-events only at regions

of the image where there is spatial or temporal change. In areas of uniform

illumination, the neurons are generating only a few action potentials, so they

do contribute much to the communication load. Finally, the AER scheme has

the advantage that the mappings between source neurons and recipient syn-

apses can be reprogrammed by inserting digital circuitry to map the output

addresses to different synaptic codes.

Synapses

The synaptic couplings between neurons determine the function of the network.

They are critical elements of artificial neural networks because it is believed

that, in addition to establishing connections between neurons, they are the site

of learning. Most VLSI synapse circuits have been developed for artificial

neural networks and simply express a coupling weight, without concern for

the temporal behavior of their biological counterparts,

Synaptic circuits fall into two broad classes: those that store their coupling

weights locally and those that receive their weights together with each presyn-

aptic input. Local weight storage facilitates local learning, which can occur in

parallel at each synapse. The synaptic weight can be stored digitally2

(S~ickinger et al 1992) or in analogue form as the charge on a capacitor.

Analogue storage may be volatile (Churcher et al 1993), in which case it must

be refreshed periodically by some external source, or it may be a permanent

charge stored on a well-insulated capacitor called a floating gate (Benson 

Kerns 1993, Vittoz et al 1991). Permanent storage is usually preferable to

2Digital storage can be more precise than analogue storage, depending on the number of bits

required. But for moderate precision (about six bits), digital storage requires a larger silicon surface

area than analogue storage, Furthermore, digital arithmetic rules for synaptic update are

cumbersome. Digital hardware is more appropriate for functions that are multiplexed, rather than

those that occur massively in parallel.
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volatile storage, but methods for updating the state of the floating gate are not

yet flexible enough to implement many common learning rules.
Because the number of synapses per neuron is large (5 - 10 ̄  103), they are

the limiting spatial consideration in neuromorphic design. The synapses of

individual neurons can be distributed across dendrites on multiple chips (Lans-

ner& Lehmann 1993, Mueller et al 1989a), but this approach raises the

problem of accurately transmitting the analogue voltages and currents at the

compartment boundaries between chips. Alternatively, entire silicon neurons

can be fabricated on the same chip so that only robust, action potential-like

events need be transmitted between chips. In this case the synapses of the

neuron are also limited to a single chip, and their number becomes a trade-off

between space and biological versimilitude.

MULTICHIP SYSTEMS

Multichip neuromorphic systems are still in the early stages of development.

The address-event protocol has been used to communicate between retinae

and receiver chips, which contain an array of receiver cells that are scanned

out onto a video monitor. Similar unidirectional connections have been devel-

oped for outputting address events from a digital computer to a receiver array

(Mahowald 1992, 1994) and for receiving AER data from a silicon cochlea

(Lazzaro et al 1993). These simple systems have been used to test the perfor-

mance of the AER and explore the possibility of using neuromorphic prepro-

cessing for sensory input to digital computers. The first steps toward more

complex sensory-motor systems and multichip processin/g are described below.

Stereopsis

A functional multichip neuromorphic system has been described by Mahowald

(1992, 1994). It is a stereopsis system consisting of two silicon retinae that

transmit their image data to a third, stereocorrespondence, chip by using the

address event protocol. This system computes the stereodisparity of objects

continuously as the objects move around in the field of view of the retinae.

Stereodisparity arises from the projection of visual targets onto different

positions in the images formed by the eyes. The stereodisparity of a visual

target is proportional to the distance between the target and the viewer. To

determine the distance of a target, the viewer must find the image features that

correspond to each other and calculate their stereodisparity. Finding corre-

sponding image features is difficult if many image features are similar to each

other. The wallpaper illusion, in which a surface covered with identical, peri-

odically arranged targets is perceived at the wrong depth, exemplifies the

difficulty of determining stereocorrespondence.

The algorithms used by the cortex to compute stereodisparity are not known,
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a.

Figure 7 The cooperative multiresolution approach to the problem of stereocorrespondence.
(a) The one-dimensional retinae receive disparate images from the projection of identical targets
(gray circles) located in a two-dimensional space. The pattern of all possible targets consistent with
the retinal images is shown. A two-dimensional array of correlators is indicated by the grid. A
correlator is stimulated when a target lies within its grid position. The outputs of the activated
correlators are averaged to provide an analogue estimate of the distance of the targets from the viewer
(heavy line). (b) Positive feedback from the analogue distance estimate to the correlators most
consistent with the analogue estimate, combined with competition between correlators, results in
the enhancement of the correlators associated with some targets (solid circles) and the suppression
of correlators associated with others (open circles). The analogue estimate of distance converges to
a solution close to the enhanced correlators as the suppressed correlators are removed from the
average. Targets associated with the enhanced correlators are sufficient to explain the images on the
two retinae. They reflect the stereocorrespondence chip’s estimate of the tree state of the two-di-
mensional world.

but the response characteristics of certain elements that compute disparity have

been recorded from cortex. For example, Poggio has described five distinct

types of disparity-tuning reponses in cortical neurons of the primate (Poggio

1984, Poggio et al 1988). The principle innovation of the cooperative multi-

resolution algorithm (Figure 7) is to introduce cooperative feedback interac-

tions between disparity representations at different spatial scales. The high

spatial frequency representation of disparity, analogous to Poggio’s tuned-zero

neurons, is spatially precise but susceptible to false correspondences. The low

spatial frequency representation, analogous to Poggio’s tuned-near and tuned-

far neurons, makes an analogue estimate of disparity that averages out false

correspondences at the expense of spatial blurring. Positive feedback between

these two representations, coupled with nonlinear surround inhibition, allows

the system to converge to a precise and correct determination of stereodisparity.

The chip is able to fuse random dot stereograms and to solve other hard

stereocorrespondence problems such as the fusion of surfaces tilted in depth.
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The chip demonstrates that a network can use positive feedback to perform a

significant computation, the suppression of false targets, while remaining con-
tinuously sensitive to retinal input. The biological relevance of the chip is that
it expresses the stereofusion problem as just one instance of a general class of
constraint-satisfaction problems in sensory perception and shows how this

class of problems can computed with neuron-like elements.

Tectum

The real-time performance of neuromorphic systems suggests that the natural
application of aVLSI is the investigation of neural computation in the context

of behavioral functions. One of the behavioral functions that has been well
studied in biological systems and that complements the aVLSI systems de-
scribed above is the control of eye movement. Eye movement allows the visual

system to actively seek new data based on previous data. It changes the
fundamental character of the sensing process from a passive one to an active

one (Ballard 1991).
The first steps towards synthesis of an aVLSI eye control system have been

taken by DeWeerth, who constructed a primitive tecto-oculomotor system for
tracking the brightness centroid of a visual image (DeWeerth 1992, Horiuchi

et al 1994). Visual input to the system is provided by a two-dimensional retina
with aggregation circuitry that computes the centroid of brightness in the
horizontal and vertical dimensions. The magnitudes of the visual input signals

are normalized before they are aggregated. This prevents changes in global
illumination from affecting the localization of the centroid. The superior col-
liculus employs a similar computational principle to integrate visual informa-

tion for oculomotor control (Sparks & Mays 1990). The silicon tectum resolves
one example of a more general problem in neuroscience and artificial intelli-

gence, that of reducing the dimensionality of complex data, such as audio and
visual images, to low dimensional representations that can be used for motor

control or decision making.
The aVLSI tecto-oculomotor system converts the output of the centroid

computation into a motor signal and uses this signal to update the position of
the retina. The aggregated output currents are converted into pulse trains that
are directly applied to drive antagonistic motors in a bidirectional mechanical

system that models the ocular muscles. Two motors are placed in an antago-
nistic configuration such that they produce torque on the eye in opposite
directions. Each pulse output generated by the chip controls one of the motors.

If the chip is stimulated by a bright spot that is not at the center of the
photoreceptor array, the motors will produce a differential torque that rotates
the eye so that the center of the photoreceptor array moves towards the
stimulus. Because of the background firing rates of the neuron circuits, the

motors will produce equal and opposite torques when the stimulus is centered.
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Negative feedback is generated by the mechanical system to move the retina

chip so that it faces the stimulus.

This simple system is a foundation for future development. The present

tectum has photodetectors integrated in the two-dimensional array that com-

putes the centroid. But, with the AER communication protocol, a two-dimen-

sional image derived from a separate retina or an auditory localization chip

could be transferred to the tectum to drive eye movements. The oculomotor

system also presents an opportunity to explore hierarchical structures for motor

control, such as the coordination of vergence and conjugate eye movements

for pointing the eyes at targets in depth.

CONCLUSION

CMOS aVLSI has been used to construct a wide range of neural analogues,

from single synapses to sensory arrays, and simple systems. The circuits in

these examples are not completely general; rather, they are specialized to take

advantage of the inherent physics of the analogue transistors to increase their

computational efficiency.

These analogues emulate biological systems in real time, while using less

power and silicon area than would an equivalent digital system. Conservation

of silicon resource is not a luxury. Any serious attempt to replicate the com-

putional power of brains must confront this problem. The brain performs about

1016 operations per second. Using the best digital technology, this performance

would dissipate over 10 MW (Mead 1990) by comparison with the brain’s

consumption of only a few watts. Subthreshold analogue circuits are also no

match for neuronal circuits, but they are a factor of 104 more power efficient

than their digital counterparts. In the short term, small, low-power neuro-

morphic systems are ideal for prosthetic applications. Development of these

applications is just beginning. For example, silicon retina projects have inspired

work on a VLSI retinal implant (Wyatt et al 1993), and Fromherz et 

(1991a,b) are studying silicon-neural interfaces. The development of other

useful applications, such as the silicon cochlea for cochlear implants, will

depend on the collaboration of neuromorphic silicon designers and biomedical
engineers.

The specialized but efficient nature of neuromorphic systems causes ana-

logue emulation to play a different role in the investigation of biological

systems than does digital simulation. Analogue emulation is particularly useful

for relating the physical properties of the system to its computational function

because both levels of abstraction are combined in the same system. In many

cases, these neuromorphic analogues make direct use of device physics to

emulate the computational processes of neurons so that the base level of the

analysis is inherent in the machine itself. Because the computation is cast as
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a physical process, it is relatively easy to move from emulation to physiological

prediction.

Analogue VLSI systems emphasize the nature of computation as a physical

process and focus attention on the need for computational strategies that take

account of fundamental hardware characteristics. For example, the inherent

variability between transistors operating in their subthreshold regime means

that analogues cannot depend on finely tuned parameters. Instead, like biolog-

ical systems, they must rely on processing strategies that minimize the effects

of component variation. Biological systems operate with exquisite sensitivity

over a wide range of physiological and environmental conditions by adjusting

their operating points and combining multiple outputs to extract and amplify

meaningful signals without amplifying component noise. Consequently, bio-

logical strategies such as signal aggregation, adaptation, and lateral inhibition

also improve the performance of analogue silicon systems. By designing neu-

romorphic systems, we enlarge our vocabulary of computational primitives

that provide a basis for understanding computation in nervous systems. This

circuit vocabulary can be written into silicon systems to perform practical tasks

and test our understanding. This is the quest of neuromorphic aVLSI research.
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