
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS
Int. J. Circ. Theor. Appl. 2004; 32:277–302 (DOI: 10.1002/cta.282)
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SUMMARY

This paper reviews recent important results in the development of neuromorphic network architectures
(‘CrossNets’) for future hybrid semiconductor=nanodevice-integrated circuits. In particular, we have
shown that despite the hardware-imposed limitations, a simple weight import procedure allows the
CrossNets using simple two-terminal nanodevices to perform functions (such as image recognition and
pattern classi�cation) that had been earlier demonstrated in neural networks with continuous, determin-
istic synaptic weights. Moreover, CrossNets can also be trained to work as classi�ers by the faster
error-backpropagation method, despite the absence of a layered structure typical for the usual neural
networks. Finally, one more method, ‘global reinforcement’, may be suitable for training CrossNets to
perform not only the pattern classi�cation, but also more intellectual tasks. A demonstration of such
training would open a way towards arti�cial cerebral-cortex-scale networks capable of advanced infor-
mation processing (and possibly self-development) at a speed several orders of magnitude higher than
that of their biological prototypes. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

VLSI circuits with sub-10-nm device features could provide enormous bene�ts for all in-
formation technologies, including information storage, processing, and transfer [1]. However,
recent results [2, 3] indicate that the current VLSI paradigm (based on a combination of
lithographic patterning, CMOS circuits, and Boolean logic) can hardly be extended into this
region. The main reason is that at gate length below 10 nm, the sensitivity of parameters
(most importantly, the gate voltage threshold) of silicon �eld-e�ect transistors to inevitable
fabrication spreads grows exponentially. As a result, the gate length should be controlled
with a few-angstrom accuracy, far beyond even the long-term expectations of the semicon-
ductor industry [1]. Even if such accuracy can be technically implemented using sophisticated
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patterning technologies, this would send the fabrication facilities costs (growing exponentially
even now) skyrocketing, and lead to the end of Moore’s Law some time during the next
decade.
Some alternative nanodevice concepts, for example quantum interference devices [4] or

single-electronics [5], o�er some potential advantages over MOSFETs, including a broader
choice of possible materials. Unfortunately, the minimum features of these devices (e.g. the
single-electron transistor island size) for room-temperature operation should be below ∼1 nm
[3, 5]. Since the relative accuracy of their de�nition has to be of the order of 10%, the absolute
accuracy should be of the order of an angstrom or less, again far too small for the current
and even realistically envisioned lithographic techniques.
This is why there is a rapidly growing consensus that the impending crisis of the mi-

croelectronics progress may only be resolved by a radical paradigm shift from lithography
to the ‘bottom–up’ fabrication. In the latter approach, the smallest active devices should be
formed in some special way (for example, synthesized chemically), ensuring their fundamen-
tal reproducibility. An example of such unit is a specially designed and synthesized molecule
comprising of a few tens or hundreds of atoms.
Unfortunately, integrated circuits consisting of molecular-size devices alone are hardly

viable, because of their limited functionality. For example, voltage gain of a 1-nm-scale
transistor, based on any known physical e�ect (e.g. the �eld e�ect, quantum interference,
or single-electron charging), cannot exceed one, i.e. the level necessary for the operation of
virtually any active analog or digital circuit [3]. This is why the only plausible way toward
high-performance nanoelectronic circuits is to integrate nanoscale (e.g. molecular) devices,
with the connecting nanowires, on the top of CMOS chips whose �eld-e�ect transistors would
provide the circuit with the necessary additional functionality, in particular high voltage gain.
The practical implementation of such hybrid integration, of course, faces several hard chal-
lenges, in particular that of interfacing the nanowires (whose half-pitch can eventually reach
a few nanometers) with cruder, lithographically-de�ned CMOS-level wiring. We believe that
the recent suggestion of a speci�c species of CMOS=nanodevice hybrids, called ‘CMOL’
(standing for CMOS=MOLecular circuits) [6] has opened an e�cient way for the solution of
the interfacing problem.‡

A CMOL circuit (Figure 1) would combine an advanced CMOS subsystem with two, mu-
tually perpendicular, arrays of parallel nanowires and similar nanodevices formed at each
crosspoint of the nanowires. The reason for this topology is that parallel nanowire arrays
may be fabricated by several high-resolution patterning technologies, such as nanoimprint [9]
or interference lithography [10]. These novel technologies cannot be used for patterning of
arbitrary integrated circuits, in particular because they lack an adequate layer alignment accu-
racy, but the crosspoint topology does not require such alignment. This approach, of course,
requires a nanodevice formation process that also does not need lithographic patterning. An
example of such process is the chemically directed self-assembly of pre-synthesized molecules
from solution [11, 12].
In contrast with the earlier suggestions of crossbar-like hybrid circuits [7, 8], in CMOL chips

the interface between the CMOS and nanowire=nanodevice subsystems is provided by pins that

‡ Previously suggested solutions of the problem (for a recent review, see, e.g. References [7, 8]) do not seem
technologically feasible.
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Figure 1. General structure of a CMOL circuit: (a) side view and (b) top view (schematically). For
the sake of clarity, panel (b) shows only one CMOS cell (serving the central interface pin) and

two nanodevices (actually, a similar device has to be formed at each nanowire crosspoint).

are distributed all over the circuit area. The interface pins are of two types (providing contacts
to the lower and higher level of nanowiring); pins of each type are located on a square lattice
of period 2aFCMOL that is inclined by a small angle �= arctan(Fnano=aFCMOS)� 1 relative to
the nanowire arrays. (Parameter a is de�ned by the area A=2a2F2CMOS of the CMOS cell
serving each pin.) This trick allows an individual access to each nanowire crosspoint even
if the ratio Fnano=aFCMOL is very small. For example, if the CMOS system applies, via the
pin shown in blue in Figure 1(b), voltage Vh to the corresponding horizontal nanowire, and
voltage −Vv (through red pin 1) to the vertical nanowire shown leftmost, then nanodevice 1
will be biased with larger voltage (Vh +Vv) than any other device. For non-linear nanodevices
with a sharp threshold voltage Vt (within the range Vh, Vv¡Vt¡Vt +Vv), such selection allows
the activation of a single device of the whole array. By moving the bias −Vv from pin 1 to,
e.g. pin 2 (Figure 1(b)) we may alternatively select nanodevice 2, etc. Note that the distance

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2004; 32:277–302
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between the individually selected nanodevices may be as small as 2Fnano, i.e. much less that
the CMOS wiring pitch 2FCMOS.
The CMOL approach may enable, in future, an unprecedented density of useful devices.

The only fundamental physical limitation here is the direct quantum tunneling between the
nanowires; it limits the half-pitch Fnano at the level of the order of 3 nm and hence the
nanodevice density at approximately 1012 cm2. Moreover, since the density of CMOS devices
may be much lower than that number, the total fabrication costs of CMOL chips may be quite
acceptable. The development of this technology (especially the nanodevice formation, e.g. the
molecular self-assembly) will certainly require a major industrial e�ort and substantial time
period, probably not less than 10–15 years. However, this timing may be still acceptable to
prevent the impending crisis of Moore’s Law.
The main architectural challenge for CMOL circuits is that even after the anticipated ex-

tensive development, the bottom–up approach to fabrication will hardly allow nanodevice
formation with yield approaching 100%. This is why CMOL circuits seem more suitable for
the implementation of such defect-tolerant circuits as embedded and stand-alone memories
[7, 8, 13] and neuromorphic networks [14–17], rather than Boolean logic circuits for which
ways to provide such tolerance still have to be found [18]. The prospects for CMOL memo-
ries have been addressed in our recent paper [13]. The goal of this work was to review the
current status of the development of neuromorphic networks (‘CrossNets’) compatible with
CMOL technology.
Section 2 reviews the basic structure of CrossNets and major challenges to their training.

Section 3 describes one possible approach to the training, the synaptic weight import. In
Section 4, we illustrate the application of this strategy to the Hop�eld-mode operation of
recurrent CrossNets of ‘InBar’ variety. (In the same section we demonstrate that at least
in this operation mode the CrossNets may be highly defect-tolerant.) The application of the
same approach to feedforward CrossNets with a di�erent (‘FlossBar’) topology is discussed in
Section 5, while in Section 6 we discuss its applicability to feedforward InBars. In Section 7,
we show that CrossNets can be also trained by direct error backpropagation method, without
the need for a software precursor network. The bottom line at that point is that CrossNets
may be taught to perform virtually any function that arti�cial neural networks have ever been
used for. In Section 8, we describe a possible alternative CrossNet training technique (‘global
reinforcement’) that may also be used for more complex information processing tasks. Finally,
in Conclusion (Section 9) we discuss possible performance of CMOL CrossNet networks and
prospects for large-scale, hierarchical systems for advanced information processing, based on
such networks.

2. CROSSNETS

We have proposed [14–17] a family of neuromorphic circuits, called Distributed Crossbar
Networks (‘CrossNets’), whose topology is uniquely suitable for CMOL implementation. Like
most arti�cial neural networks explored earlier (see, e.g. References [19–22]), each CrossNet
consists of the following components:

(i) Neural cell bodies (‘somas’) are relatively sparse and hence may be implemented in
the CMOS subsystem. Most our results so far have been received within the simplest
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Figure 2. Structure of neural cell bodies (somas) of: (a) feedforward; and (b) re-
current CrossNets in the operation mode. Low input resistances RL are used to
keep all input (‘dendritic’) voltages Vd =RL�iIi well below the output (‘axonic’)
voltage Va, for any possible values of net input currents Ii, thus preventing un-
desirable anti-Hebbian e�ects [14]. G is the voltage gain of the somatic ampli�er
at the linear part of its transfer (‘activation’) function f(x)—see Equation (5) be-
low. Bold points show open-circuit terminations of nanowires, that do not allow

somas to interact in bypass of synapses (see below).

‘�ring rate’ model, in which somas operate just as a di�erential ampli�er with a non-
linear saturation (‘activation’) function (Figure 2).

(ii) ‘Axons’ and ‘dendrites’ are implemented as physically similar, straight segments of
mutually perpendicular metallic nanowires (Figure 1). Somatic load resistances RL
(Figure 2) keep all dendritic wire voltages Vd much lower than axonic voltages Va.
Estimates show that wire resistances may be negligible in comparison with nanodevice
resistances, even in the open state (see below). On the contrary, capacitance of the
wires cannot be neglected and (in combination with RL) determines the CrossNet
operation speed.

(iii) Synapses, each comprising one or several similar nanodevices, are formed at cross-
points between axonic and dendritic nanowires (Figure 1). In the light of the recent
spectacular demonstration of single-molecule single-electron devices by several groups
[23–27], they seem to be the most attractive option for synapse implementation.

Figure 3(a) shows the schematics of the simplest single-electron device, latching switch, that
has functionality su�cient for CrossNet operation and allows a natural molecular implementa-
tion (Figure 3(b)). The device is essentially a combination of two well-known single-electron
devices: the transistor and the ‘box’ [5].§ If the applied voltage V =Va − Vd is low, the box
island in equilibrium has no extra electrons (n=0), and its total electric charge Q=−ne is
zero. As a result, the transistor is in the closed (‘Coulomb-blockade’) state, and input and
output wires are essentially disconnected. If V is increased beyond a certain threshold value

§This is a simpli�ed version of the device suggested by our group earlier [28]. It may be also considered as a
two-terminal version of the four-terminal device discussed in Reference [29]. (Multi-terminal devices look hardly
practical for any ‘bottom–up’ implementation, for example the molecular self-assembly.)
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Figure 3. (a) Schematics; and (b) possible molecular implementation of a two-terminal
single-electron latching switch. The tunnel barrier connecting the box island is substantially
thicker than those embedding the transistor island, so that the rate of tunneling to and from
the box is much lower. Vg is the voltage applied to the (quasi-) global gate (Figure 1(a)).

Figure 3(b) is courtesy of Prof. A. Mayr (SBU=Chemistry).

Vinj, the electrostatic potential of the trap island is su�ciently increased and one electron
tunnels into the box (through a thicker barrier than those of the single-electron transistor):
n→ 1. This change of box charge a�ects, through the coupling capacitance Cc, the potential
of the transistor island, and lifts the Coulomb blockade; as a result, the transistor connects
the nanowires with a �nite resistance R0. (For a symmetric transistor, R0 is close to the
tunnel resistance of a single tunnel junction of the transistor [5].) If V stays above Vinj, this
connected state is sustained inde�nitely; however, if the synaptic activity V (t) remains low
for a long time, eventually thermal �uctuations will kick the trapped electron out of the box,
and the transistor will close, disconnecting the wires. (Such disconnection may be forced to
happen much faster by making the applied voltage V su�ciently negative.) Thus the device
works as an adaptive binary-weight, analog-signal synapse.
Figure 4(a) shows the general topology of CMOL CrossNets on the examples of the simplest

feedforward (a) and recurrent (b, c) networks. Any pair of cells may be connected, in one
direction, by maximum two synapses leading to di�erent somatic ampli�er inputs, so that the
net synaptic weight wjk may take any of three values. (They may be normalized to −1, 0, and
+1). Note that the real area of the somatic CMOS cell (shown by the light-grey square in
Figure 4(a)) may be much larger than that of the interface pin area of that cell (darker-grey
square); the former area is only limited by the distance between the adjacent somas.
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Figure 4. Cell connections in the simplest (a) feedforward; and (b, c) recurrent CrossNets [14–17]. The
lines show ‘axonic’, and ‘dendritic’ nanowires. Dark-grey squares are interfaces between nanowires and
CMOS-based cell bodies (somas), while light-grey squares in panel (a) show the somatic cells as a
whole. (For the sake of clarity, the latter areas are not shown in the following �gures.) Signs show the
somatic ampli�er input polarities. Circles denote nanodevices (latching switches) forming elementary
synapses. For clarity, panels (a) and (b) show only the synapses connecting one couple of cells ( j and
k), while panel (c) shows all the nanowires connected to these two cells and all the synapses located
at the crosspoints of these wires. All the synapses are located within two imaginary square ‘plaquettes’.
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This distance also determines the most important topological parameter of a CrossNet, its
connectivity that is de�ned as the number of cells ‘directly’ (via a single synapse) connected
to any given cell. The mechanism of this limitation is shown in Figure 4(c): any axon running
into a somatic cell is open-circuit terminated (bold red points); so is any dendritic wire starting
at a somatic cell (bold blue points). These terminations do not allow cell connections bypassing
synapses, and set �nite lengths for axons and dendrites and hence a �nite connectivity: the
farther are the somatic cells, the longer are the nanowire segments, and the more synapses
they contact, providing connections to more cells. This is probably the most important feature
of the CrossNet topology: it ensures arbitrary connectivity (that may be, for example, as high
as 104, the number typical for the biological cortical networks with their quasi-3D structure
[30, 31]) in essentially 2D integrated circuits such as CMOL. (The price for the increase
of connectivity is the operation speed-to-power tradeo� and noise immunity—see Section 9
below.)¶

While the somatic cell density in CrossNets is very important since it determines the net-
work connectivity, the particular location of the cells is not too crucial (say, may be completely
random [14, 15]‖ ) and may be directed by the convenience of either hardware implementation,
or training, or both. In this review we will discuss only two particular structures.

(i) The simplest CrossNet, the so-called FlossBar (Figure 5(a)), in its feedforward version
is essentially a �avor of multilayer perceptrons [19–22], with quasi-local connectivity.
Thus, the study of FlossBars allows a natural comparison of CrossNets with traditional
arti�cial neural networks (typically implemented in software running on usual digital
computers).

(ii) In the so-called Inclined Crossbar (or just ‘InBar’, see Figure 5(b)), somatic cell pin
areas are located on a square lattice that is inclined by a (small) angle � relatively
to the axonic=dendritic nanowire array.∗∗ This geometry is more natural for CMOL
implementation, because each somatic cell may have the same shape.

Preliminary estimates ([14–16]; see also Section 9 below) has shown that CMOL Cross-
Nets may combine very high density (considerably higher than the areal density of biological
synapses in the mammal cerebral cortex [30, 31]) with a peak performance at least several
orders of magnitude higher than those of the human brain [30, 31], modern and realisti-
cally envisioned digital microprocessors [1], and arti�cial neural networks implemented on
either usual serial computers or special CMOS chips [34–37]. However, the peak performance

¶Note two other properties of CrossBar architectures, that are crucial for CMOL implementation of such circuits:

(i) The networks use similar nanodevices that are formed at all crosspoints between axonic and dendritic
nanowires (Figure 4(c)). Moreover, their operation is not disturbed by additional nanodevices formed at
axonic=axonic and dendritic=dendritic crosspoints. Indeed, the former devices just lead to additional power
dissipation, while the latter devices are always closed because the smallness of all dendritic voltages. Hence,
CrossNets may work with nanodevices formed at ALL nanowire crosspoints.

(ii) Due to similarity of all nanowires and nanodevices, CMOL CrossNet tolerates an almost arbitrary shift between
them and CMOS subsystem.

‖ Such randomness provides a small amount of very long interconnects, that has some implications [32] for statistical
properties of the networks—see, e.g. Reference [33]. However, so far we have not found possible practical
advantages of such random CrossNets (‘RandBars’ [14, 15]) over more convenient InBars (see below).

∗∗There is a substantial parallel between the incline angles � shown in Figures 1(b) and 5(b). This analogy makes
InBar arrays especially natural for CMOL implementation.
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(a) (b)
α

Figure 5. Two particular CrossNet species: (a) FlossBar; and (b) InBar. For clarity, the �gures show only
the axons, dendrites, and synapses providing connections between one soma (indicated by the dashed
circle) and its recipients (inside the dashed oval), for the feedforward case. For FlossBars, the number M
of direct recipients is always even (in Figure 5(a), equal to 10), while for InBars M is always the square
of an integer number M 1=2 = 1= tan �, where � is the angle of incline of the square lattice of somatic
cells relative to the nanowire arrays. (In Figure 5(b), M =9.) In recurrent CrossNets (Figure 2(b)),

the cell connectivity is four times higher (equals 4M).

advantage of CrossNets make sense only if these networks may be trained to perform ef-
�ciently at least the functions demonstrated earlier with the software-implemented arti�cial
neural networks (including notably pattern classi�cation [19–22, 38]) and hopefully more in-
telligent tasks.

Such training faces several hardware-imposed challenges:

(i) CrossNets use continuous (analog) signals, but the synaptic weights are binary, if only
one latching switch for synapse is used.

(ii) The only way to reach for any particular synapse in order to turn it on or o� is through
the voltage V =Va −Vd applied between the two corresponding nanowires. Since each
of these wires is also connected to many other switches, special caution is necessary
to avoid undesirable ‘disturb’ e�ects.

(iii) Processes of turning single-electron latches on and o� are statistical rather than dy-
namical [5], so that the applied voltage V can only control probability rates �↑↓ of
these random events.†† Fortunately, these rates are very strong functions of V, close
to the Arrhenius law

�↑↓=�0 exp{±�(V − S)} (1)

††In the terms of neural network literature, CrossNets are ‘fuzzy’ systems—see, e.g. Reference [39].

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2004; 32:277–302
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where �≡ e=kBT , T is the e�ective temperature, while S is a shift parameter that de-
pends on the switch design, and may be changed by applying voltage to a special
global gate electrode (Figure 1(a)).‡‡ Since voltage V may easily be made much
higher than kBT=e (e.g. ∼500 vs ∼30mV, respectively), the degree of randomness
(‘fuzziness’) of switching may be restricted if necessary. For example, if �0 is su�-
ciently low (so that �0t�1, where t is the characteristic time of network operation),
Equation (1) ensures that the latch turns on as soon as V exceeds the e�ective thresh-
old voltage V+ ≈ S+(kBT=e) ln(1=�0t), and turns o� at V¡V− ≈ S− (kBT=e) ln(1=�0t).
Due to this fact, the last of the three problems listed above is apparently the least
serious one.

Until a few months ago, our work on overcoming these challenges had been focused on
CrossNets with three-terminal latching switches. In particular, we have shown [15, 16] how
CrossNets of a speci�c (‘InBar’) variety, based on such switches, can be used as Hop�eld
networks, e.g. for recognition of corrupted images. However, the practical implementation
of three-terminal devices, especially self-assembly of three-terminal molecules, would present
an enormous technological challenge. The placement of two-terminal devices is much easier,
and for single devices it has already been demonstrated by several groups—see, e.g. Refer-
ences [12, 23–27]. Recently, we have shown [17] that CrossNets with two-terminal switches
may have at least similar functionality, so that in this review we will discuss only this case.

3. SYNAPTIC WEIGHT IMPORT

The �rst CrossNet teaching procedure that allows to overcome the problems listed above is the
synaptic weight import. First, a ‘precursor’ arti�cial neural network with continuous synaptic
weights (say, implemented on usual computers) that is homomorphic to a CMOL CrossNet, is
trained using one of existing methods [19–22]. Then the synaptic weights wjk are transferred
to the CrossNet, with some ‘clipping’ (rounding) due to the binary nature of the elementary
synapses.
For the weight import operation, all latching switches are �rst reset to their o� state.§§

Now we can use the �exibility of the CMOS circuitry to recon�gure all somatic cells from
the ‘operation’ con�guration (Figure 2) to an ‘import con�guration’. The fact that somatic
cells of FlossBar and InBar are located on rectangular lattices (Figure 5), allows the external
teacher system to select, via CMOS-level wiring, any particular somatic cell, just like it is
done in the usual semiconductor memories—see, e.g. Reference [40]. Each selected soma
applies ‘write enable’ negative voltages with amplitude V0 ≈ (2=3)Vt to its dendritic wires,
and ‘data’ voltages Va =±V0, with the sign corresponding to the desirable wjk , to all axonic
wires. As has been explained during the discussion of Figure 1(b) above, if this procedure
is carried out with a pair of cells k and j connected directly by a synapse, the net voltage

‡‡Such gate may be made ‘quasi-global’ (i.e., partitioned into sub-gates, each controlling all nanodevices belonging
to a particular CMOS cell) by its patterning at the CMOS level.

§§This may be done, e.g. by raising shift S well above kBT=e for a short time by applying a short pulse to the
global gate (Figures 1(a), 3(a)). For the sake of simplicity, we will assume that S =0 during all the following
operations described in this section, though such exact setting is not really necessary. In particular, in this case
the turn-on/o� voltages are equal and opposite: V−=−Vt , V+ = + Vt , where Vt ≡ (kBT=e) ln(1=�0t).

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2004; 32:277–302



NEUROMORPHIC ARCHITECTURES 287

V =Va − Vd applied to this synapse becomes close to +(4=3)Vt , i.e. beyond the threshold Vt ,
and the latches are reliably turned on. At the same time, all the ‘half-selected’ nanodevices
devices, connected to only one of the activated nanowires, experience a net voltage close to
±(2=3)Vt and hence remain in the initial o� state.
After all the necessary synapses have been properly set, the somatic cells are recon�gured

back into the operational con�guration (Figure 2) and the system is provided with appropriate
input signals and=or initial conditions, and is allowed to evolve. In this ‘operation’ mode the
activation function of somatic ampli�ers limit all axonic voltages to |Va|6Vs¡Vt , while load
resistances RL (Figure 2) keep all the dendritic voltages even lower, so that all net voltages
V are kept below Vt . Equation (1) shows the in this case synaptic weights do not change
(with high probability) during the operation stage.

4. RECURRENT INBAR AS A HOPFIELD NETWORK

Let us illustrate this training strategy on a simple example of a recurrent CrossNet working
as a Hop�eld network. As we have shown before [14, 15], this operation may be performed
e�ciently not only by a network with global connectivity [19–22], but also by a network with
quasi-local connectivity such as InBar (Figure 5(b)), provided that the connectivity parameter
M is su�ciently high in comparison with number P of stored patterns. Moreover, the Hop�eld
function may be achieved with ternary synaptic weights set in accordance with the ‘clipped
Hebbian rule’ [41]:

wjk = wkj = sgn
p∑
p=1
�(p)j �

(p)
k (2)

where �(p)j is the jth pixel of the pth stored pattern. Figure 6 shows the procedure of importing
the externally calculated synaptic weights (2) into a recurrent InBar. (Actually, shown is just
one of 4MN 1=2 steps of this process, where N is the total number of cells in the InBar
array). At each step, a speci�c set of control and data voltages applied to CMOS wires¶¶

by external tutor forces the somatic cells to apply:

(i) ‘data’ voltages ±V0 to all four axons connected to each somatic cell of one quasi-
horizontal row of the InBar (shown red in Figure 6), and

(ii) mutually opposite, data-independent ‘write enable’ voltages ±V0 to two dendrites con-
nected to each 2M 1=2th cell of another row, separated by a vertical distance less than or
equal to M 1=2 from the ‘axonic’ row. (Figure 6 shows, in blue, just one of these cells.)

The sign of axonic voltages is controlled by ‘data’ wires and follows rule (2). For exam-
ple, if wjk¿0 and the axonic voltage is positive, the net voltage V applied to the synapse
connecting the activated axonic wire and the negatively activated vertical dendrite exceeds Vt ,
turning the latch on. Figure 4(b) shows that in the operation mode the selected cells are only
becoming connected via one synapse jk+, so the corresponding synaptic weight wjk = +1 as
required by Equation (2). In the case of the opposite sign of the data, only synapse jk− is
turned on, providing for wjk =−1 in the operation mode. (One of synapses kj+ and kj− is

¶¶A somatic cell (recon�gured for the import mode) is activated by either ‘semi-select’ voltages applied to two
control wires or by a (larger) ‘full select’ voltage applied to one of the wires.
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Figure 6. Teaching the recurrent InBar to operate as a Hop�eld network. The somas selected for axon
activation are marked by a dashed oval, while that with activated dendrites are in a dashed circle.
Bold lines show CMOS-level wires carrying control and data signals from the external tutor. For
clarity, the �gure shows only the synapses being turned on at this particular weight import step, and

only the nanowires activated at this step.

turned on when the control signals turn the ‘red’ soma into ‘blue’ one and vice versa.) Thus
the import procedure allows the external system to set all synaptic weights to values (2).
As has been shown in References [14, 15], recurrent InBar with such weights operates as

a Hop�eld network with capacity

Pmax ≈ (4=�)M=�2(�) (3a)

where �(�) is the solution to the transcendent equation

2�=1− erf [�(�)] (3b)

erf is the error function, and � is the average fraction of wrong pixels. (For a reasonable
value �=1%, �(�)≈ 1:64 and Pmax ≈ 0:47M . This capacity is by only ∼30% less than that of
a global Hop�eld network with 4M cells and continuous synaptic weights [19–22].)
We have checked this approximate analytical result by numerical simulation of recurrent

InBars on usual computers (in particular, our supercomputer cluster Njal, see Reference [42]).

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2004; 32:277–302



NEUROMORPHIC ARCHITECTURES 289

Figure 7. The process of recall of one of three trained black-and-white images by a recurrent
InBar-type CrossNet with 256×256 neural cells, binary synapses, and connectivity M =64. The
initial image (left panel) was obtained from the trained image (identical to the one shown in the

right panel) by �ipping 40% of randomly selected pixels.

At the modelling, the network evolution follows the usual �re-rate equations [19–22],

8MC0
dUk
dt

=
Vs
R

∑
±

M∑
j=−M
( j �= 0)

(±w(±)jk )Vj − Uk
RL
; Vj=f(GUj=Vs) (4)

describing electric recharging of two dendrites connected to the kth soma (Figure 2(b)) by
currents through 4M synapses connected to these nanowires.‖‖ Here C0 is the capacitance of
nanowires per elementary synapse (so that capacitance per synaptic plaquette is 4C0), ±Vs are
the saturation values of the axonic voltages Vj, and f(x) is the normalized activation function
describing this saturation:

f(x)=

{
x; |x|�1
sgn(x); |x|�1 (5)

These calculations have con�rmed the analytical result (3) and have also shown that the
pattern restoration (‘image recognition’) is very fast. For example, Figure 7 shows the result
of the restoration of one of three black-and-white images initially taught to an InBar with
M =64. The original image was spoiled initially by �ipping 40% of randomly selected pixels,
and then given to the CrossNet as an initial condition. In this case, the �nal restoration is
not only perfect, but also achieved in just a few characteristic time units �0 ≡MRLC0.R0C0
of Equation (4). In a CMOL CrossNet with realistic parameters, �0 may be as low as a few
nanoseconds—see Section 9 below.
We have also studied CrossNet defect tolerance of this operation mode, using both an

(approximate) analytical theory and numerical modelling. For example, Figure 8 shows results
for a 3744-neuron InBar with M =25. It is remarkable how resilient the network may be, if

‖‖Equations (4) are exact if resistances of nanowires, output resistances of somatic ampli�ers, and the product MRL
are all much lower than open-state resistance R0 of the synaptic nanodevice. This assumption may be readily
satis�ed in practical CMOL circuits.
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Figure 8. Defect tolerance of a recurrent InBar with connectivity parameter M =25,
operating in the Hop�eld mode. Lines show the results of an approximate analytical

theory, while dots those of a numerical experiment.

the number of stored patterns P is not too close to Pmax ≈ 8. For example, for P as high as 4
(i.e. close to one half of the network capacity), the network functioned very reasonably (with
99% �delity) even in the case when approximately 85% (!) of randomly selected synaptic
switches had been disconnected. The defect level of this order may be quite expected at the
initial stage of CMOL circuit development, so that Hop�eld CrossNets may be an interesting
test application of this emerging technology.∗∗∗

5. FEEDFORWARD FLOSSBAR AS A MULTILAYER PERCEPTRON

It is well known that practical application of Hop�eld networks is rather limited. Many more
applications (most notably, pattern classi�cation) have been demonstrated for perceptrons with
one or more hidden layers [19–22, 38]. Some CrossNet species, e.g. feedforward FlossBars
(Figure 5(a)) are directly suitable for the use as layered perceptrons. Unfortunately, the in-
formation loss at synapse clipping may a�ect the performance of such networks as pattern
classi�ers more seriously than for the Hop�eld networks. For example, Figure 9 shows the
results of our calculations of the average error of ‘simple’ perceptrons (with no hidden layers),
as well as multilayer perceptrons with one–three hidden layers, induced by synapse ‘clipping’,
i.e. rounding of the initially continuous weight to the closest of L equally spaced quantization
levels. The error has been calculated by considering a perceptron with randomly generated

∗∗∗ Suggested memory applications of CMOL chips are substantially less defect tolerant, requiring less than 1% of
bad nanodevices [13].
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Figure 9. Output error of few-layer perceptrons, with M =100 neurons on each layer, in-
duced by synaptic weight rounding to L discrete values, as a function of number of quanti-
zation levels L. Straight line shows results of an approximate analytical theory for the simple
perceptron (with no hidden layers). These results are only valid if the e�ective somatic gain
g≡GRL=R0 is close to its threshold value gt =M−1=2 corresponding to signal propagation

from input to output without attenuation. (The numerical results are for g=gt = 1.)

continuous weights as perfect, then clipping them, and calculating the output di�erence.†††

One can see that for the original CrossNets (Figure 4) with ternary synapses (L=3) the error
may be above 20%, unacceptable for most applications. At the same time, an increase of L
to a modest value (say, ∼30) reduced the clipping-induced errors to 1–2%, that is almost
negligible in comparison with typical errors of existing pattern classi�ers [19–22, 38].
Such multi-valued synapses, with L=2n2 + 1 where n is an integer, may be readily imple-

mented by replacing each latching switch (Figure 3) with a square array of n×n such switches
(Figure 10). In the operation mode, all n axonic wires are fed with the same voltage, while
the resulting currents �owing into n dendritic wires are just summed up at the somatic load
resistance RL. As a result, the net output (post-synaptic) signal from two arrays (Figure 4(a))
is proportional to w=(l+ − l−)=n2, where l± are the numbers of latches turned on in each
array (06l±6n2).
In order to �x the desirable value of l± in each array during the weight import mode, both

axonic and dendritic are fed with graded voltages:

V (i)a =Vw + A(i=n− 1=2); V (i
′)

d =± [Vt + A(i′=n− 1=2)] (6)

†††This procedure ignores the opportunity to retrain the clipped-weight network, that still has to be explored.
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Figure 10. A half of the composite synapse for providing L=2n2 + 1 discrete levels of the weight in
(a) operation and (b) weight import modes. The dark-grey rectangles are resistive metallic strips (with
the total resistance RS ÷RL) serving as soma=nanowire interfaces. Plate (c) shows (schematically) the

boundary between the domains of two possible states of elementary synapses.

where i (16i6n) is the nanowire number, the voltage spread A is slightly lower than Vt , and
sign of Vd is, as before, opposite for horizontal and vertical dendrites.‡‡‡ This creates a gradi-
ent of the net voltage V (i) ≡V (i)a −V (i)d applied to each switch, and hence a domain of switches
being turned on (Figure 10(c)). The boundary of this domain, de�ned by the equation V (i) =Vt ,
and thus the total number l of latches turned on, depends on the average axonic voltage
Vw(|Vw|¡Vt), which carries information about the desired (now continuous) synaptic weight.
Figure 11 shows that the procedure of synaptic weight import into a feedforward FlossBar

is even simpler than that for the InBar recurrent network (Figure 6). At each time step, the
external ‘select’ signals activate:

(i) both dendrites of each M th cell of one row of somas, and
(ii) both axons of each cell of the previous row.

As a result, importing all synaptic weights of one layer takes M steps.

‡‡‡The necessary voltage gradients may be readily generated, e.g. by passing current along simple resistive strips
(marked as Rs in Figure 10) serving as contacts for axonic and dendritic nanowires.
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Figure 11. Importing synaptic weights into the feedforward FlossBar (for M =4). The
notation is similar to that in Figure 6.

6. FEEDFORWARD INBAR AS AN INTERLEAVED PERCEPTRON

Generally, InBar structure is preferable to FlossBar for the CMOS subsystem implementation,
because all CMOS somatic cells may have nearly square shape. In this context, we have carried
out a preliminary study of feedforward InBars (Figure 5(b)) with quasi-continuous (L-level)
synaptic weights as perceptrons (Figure 12).§§§ For this, we have �rst generated a set of
‘teacher’ perceptrons (either a one-hidden-layer perceptron or an InBar) with the input and
output vectors of the same size as the InBar under study, and random synaptic weights
(distributed uniformly within the range −1¡wjk¡+1). Then, each teacher has been repeatedly
used to generate the model output from a random vector of binary input signals. This set of
related input and output vector pairs has been separated into a training set and a test set. The
former set had been used for teaching of continuous-weight ‘student’ InBars (each to be used
later as the precursor for a CMOL InBar) by the standard error backpropagation method;
after that the test set has been used for the evaluation of prediction ability of the student
networks, i.e. their quality as pattern classi�ers. As a reference, we have also applied it to
student perceptrons with one hidden layer and the same number of input, hidden, and output
cells as the InBars under study.

§§§Note that these networks cannot be reduced to the usual multilayered perceptron: each cell of a feedforward
InBar (say, cell 1 in Figure 12) sends its output signal to M cells within an square-shaped area, including cells
2 and 3. Cell 2, in turn, sends signals to cells within a similar area that includes, in particular, cell 3. Hence,
InBar cannot be partitioned to layers, and we prefer to call it an ‘interleaved’ network.
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Figure 12. Feedforward InBar as an interleaved perceptron. (For explanation, see the text.)

Figure 13 shows a typical result of such calculation for perceptrons with 36 input cells,
36 hidden cells, and 6 output cells (whose binary output vector belongs to one of 26 =64
classes). The results show that InBars may be trained to operate as pattern classi�ers rea-
sonably well.¶¶¶ Thus, the student InBars may be used as precursors for a hardware (e.g.
CMOL) InBar operating with a reasonable accuracy.

7. DIRECT TRAINING OF CROSSNETS BY ERROR BACKPROPAGATION

To summarize the three last sections, the synaptic weight import procedure allows Cross-
Nets to perform, with very small loss of �delity, the functions of Hop�eld networks (pattern
recognition, i.e. associative memory), multilayer perceptrons (e.g. pattern classi�cation), and
very probably any other function demonstrated for any �re-rate-model neural network (either
feedforward or recurrent), provided that the synaptic weights have been calculated externally.
For some cases, for example the Hop�eld network, such calculation does not present much
problem—see Equation (2). However, in some cases (e.g. classi�cation problems) the weight
calculation may only be performed by training a homomorphic precursor network with con-
tinuous weights. Since we are speaking about very large networks (see Section 9 below),
such training may take very long time if performed on the usual sequential computers. For
some applications with limited input vector size (say, handwritten character recognition), the
training period duration may be quite acceptable. However, in other cases (e.g. recognition
of large-size patterns, such as detailed optical images) the precursor network training may
require impracticable computer resources.
One possible solution of this problem is direct training of CrossNets with multi-level (quasi-

continuous) synapses (Figure 10) by error backpropagation. We have developed a method for
such training, that requires doubling the number of nanowires and synapses connecting each

¶¶¶The fact that layered perceptrons may be trained substantially better (see black square points in Figure 13), on
a subset of tasks (namely, those generated by similar perceptrons) does not mean that their general prediction
ability is better than that of the InBars. For example, on problems generated by InBar teachers, layered percep-
trons perform not better than InBars (green triangles). At this moment it is not clear how would these networks
compare for real-life classi�cation problems; we plan to address this issue in near future.
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Figure 13. Results of training of feedforward InBars with M =36, and layered perceptron (LP) net-
works with one hidden layer (each with 36 input cells, 36 hidden cells and 6 output cells) using the
error backpropagation, after 2000 iterations (‘epochs’). For each teacher=student combination, the re-
sults are averaged over 3 teachers, 5 students, and 100 test vectors. Before training, the average cost
function is close to 1, while the average number of wrong bits is 3. For networks of both types, the

normalized somatic cell gain g=gt is close to 2.

pair of somas (Figure 14). In such ‘dual-rail’ networks, each axonic and dendritic signal is
carried by two wires, with opposite polarity. The reason for this hardware doubling is that
it naturally forms four-synapse groups (Figure 14(b)) that have Hebbian properties. Indeed,
using Equation (1) for switching rates, it is straightforward to show that the change of the
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Figure 14. CrossNet with the double number of synapses: (a) soma schematics in the operation mode
(cf. Figure 2); (b) cell coupling (shown for one way only—cf. Figure 4(a)); and (c) the same picture as
in (b), but showing all the wires connected to each of the two cells. Each crosspoint circle denotes either

a single nanodevice or a multi-device array (Figure 10).

average net synaptic weight w=w++ + w−− − w+− − w−+ of the four-synapse group obeys
equation

d
dt

〈w〉= − 4�0 sinh(�S) sinh(�Va) sinh(�Vd) (7)

provided that 〈w〉�1. At relatively small axonic and dendritic voltages, and a negative shift
S, this equation corresponds to the classical Hebb rule [19–22], d〈wjk〉=dt∝Vj ×Vk , if the
dendritic voltage of the kth (postsynaptic) cell is made, at least temporarily, relatively large
and proportional to its output (axonic) voltage.‖‖‖

‖‖‖The non-linearity of Equation (7) at larger signal values may actually be bene�cial for the Hebb rule enforcement.
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This property allows one to implement the network training process by its time-multiplexing
into the following three steps that are repeated periodically:

(i) At the �rst, ‘operation’ stage, the somas are con�gured as shown in Figure 14(a),
and the network provides the usual feedforward signal propagation described by Equa-
tion (4). Since in this mode the dendritic voltages are low, rate (7) of synaptic weight
change is negligible, at any moderate value of shift S.

(ii) At the second, ‘error-backpropagation’ stage, each somatic ampli�er is recon�gured to
provide linear ampli�cation of the error signal with voltage gain proportional to f′(Uf ),
where Uf is the �nal value of the dendritic voltage at the �rst step. In contrast to the
�rst stage, the ampli�er is now fed with axonic voltage and applies its output signal to
dendritic nanowires. The outputs of the network (now essentially turned into its input)
are fed by an error signals proportional to (Vout − Vtar), where Vout are output signals
of the network at the �rst stage, while Vtar are the components of target value of the
output vector. As a result, error signals � are propagated back through the network in
accordance with the well-known rule of error backpropagation [19–22]. Since at this
stage the axonic voltages are low, and synapses still do not switch.

(iii) With the developed error signals still applied to dendrite nanowires, axonic nanowires
are now fed, for a short time interval �t, with voltages Vf =f(GUf =Vs). (This requires
a storage of signals Uf during the second step of the process; this temporary storage
may be achieved by using just one additional capacitor per soma.) At this ‘weight
adjustment’ stage, the amplitude of both axonic and dendritic voltages may be consid-
erable, leading to much higher probability of synapse switching. In accordance with
Equation (7), at S¡0 the average change rate of synaptic weight wjk is proportional
to Vj�k�t, thus implementing the backpropagation method algorithm.

8. GLOBAL REINFORCEMENT

A possible alternative way to train a CrossBar without the external precursor was suggested
by our group earlier [14, 15] for three-terminal devices. Here we describe the modi�cation
of this method that would work for CrossNets with more realistic two-terminal devices [17],
plus some novel results.
The initial idea of this approach has been based on the fact of chaotic excitation of recurrent

CrossBars with di�erential dendritic signals (Figures 2, 4 and 14), at su�ciently large e�ective
gain of somatic cells (g¿gt ∝M−1=2) [14, 15]. One may say that in this regime the system
walks randomly though the multi-dimensional phase space of all possible values of Vj. Now,
let input signals be inserted into some of the cells, and outputs picked up from a smaller subset
of cells. The system is allowed to evolve freely, but this evolution is periodically interrupted,
for brief time intervals �t, by the application of somatic output voltages Vk of each cell back
to its input dendritic wires. Simultaneously, the tutor applies to all synapses a global shift S
corresponding to its satisfaction with the system output at this particular instant: S¡0 if the
network output is correct and S¿0 if it is not. This operation results is a small change of
average synaptic weights 〈wjk〉, that is described by Equation (7) with the replacement of Va
for Vj and Vd for Vk , thus implementing the Hebb rule if the system output is correct, and
the anti-Hebb rule if it is incorrect. It had been our hope that the repeated application of this
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Figure 15. A preliminary result of reinforcement training: the input signal of the output
cell of a recurrent InBar with quasi-continuous doubled synapses (Figure 14) trained to
calculate parity of three binary inputs. (Any output signal value above the top horizontal
line means binary unity, while that below the bottom line is binary zero). System param-
eters: N =612, M =16, n=10, RL=(R=Mn2)= 0:1, �0=R0C0 = 5×10−6, g=1, Vs=T =10,

Smax=T = ln 100≈ 0:46, �t=R0C0 = 10−3.

procedure would increase the probability of the system’s eventual return to the ‘good’ regions
of the phase space, possibly with the eventual quenching of the chaotic dynamics.
By the moment of submission of this paper, we have just started numerical experiments with

this procedure, and obtained only initial results, some of which have turned out to be rather
unexpected. Namely, recurrent InBar CrossNets exhibit some learning ability (Figure 15) when
external signals are so strong that they suppress the chaotic dynamics (due to the activation
function non-linearity) even before the training has been started! However, the trained state
of the system is not quite stable: if the training procedure is not stopped, the network may
walk away from the trained state. We are currently working on the interpretation of these
observations, and are experimenting with the initially suggested chaotic regime.

9. DISCUSSION

Our results so far may be summarized as follows. There are several ways, including the import
of externally calculated synaptic weight values (see Sections 3–5 above), error backpropaga-
tion (Section 6) and probably also global reinforcement (Section 7), that enable CrossNet
circuits to perform most (all?) information processing functions that had been demonstrated
with arti�cial neural networks. The signi�cance of this result is that the CMOL implementa-
tion may allow CrossNets to have much higher performance that their biological prototypes
and arti�cial predecessors.
Indeed, let us estimate possible CrossNet parameters.∗∗∗∗ The most fundamental limita-

tion on the half-pitch Fnano (Figure 1) comes from quantum-mechanical tunneling between
nanowires. If the wires are separated by vacuum, the corresponding speci�c leakage conduc-
tance becomes uncomfortably large (∼10−12	−1m−1) only at Fnano = 1:5nm; however, since re-
alistic insulation materials (SiO2, etc.) provide somewhat lower tunnel barriers,

∗∗∗∗These are slightly more realistic estimates than those published previously [14, 15].
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let us use a more conservative value Fnano = 3 nm.†††† With the typical speci�c capacitance
of 3×10−10 F=m=0:3 aF=nm [13], this gives nanowire capacitance C0 ≈ 1 aF per working
elementary synapse, because the corresponding segment has length 4Fnano (see Figures 4(c),
14(c)). The CrossNet operation speed is determined by the time constant �0 of dendrite
nanowire capacitance recharging through resistances of open nanodevices. (Since both the
relevant conductance and capacitance increase similarly with M and n,

�0 ≈R0C0 (8)

Small load resistances RL.R0=M decrease �0, however, this speed-up cannot be over-exploited
because of noise immunity concerns—see below.) For example, the time of image recovery
shown in Figure 7 is approximately 20�0, the time of pattern classi�cation shown in Figure 15
is close to one �0, etc.
The possibilities of reduction of R0, and hence �0, are limited mostly by acceptable power

dissipation per unit area, that is close to V 2s =(2Fnano)
2R0. For room-temperature operation, the

voltage scale V0 ≈Vt should be of the order of at least 30 kBT=e≈ 1 V to avoid thermally
induced errors [3, 6]. With our number for Fnano, and a relatively high but acceptable power
consumption of 100 W=cm2, we get R0 ≈ 1010 	 (which is a very realistic value for single-
molecule single-electron devices like one shown in Figure 3).‡‡‡‡ With this number, �0 is
as small as ∼10 ns. This means that the CrossNet speed may be approximately six orders
of magnitude higher than that of the cerebral cortex circuitry!30;31 Even scaling R0 up by a
factor of 100 to bring power consumption to a more comfortable level of 1 W=cm2, would
still leave us at least a four-orders-of-magnitude speed advantage.
These estimates make us believe that even relatively small CrossNet chips may revolutionize

the pattern classi�cation �eld. For example, assuming that the number of layers of FlossBar
(or ‘quasi-layers’ of InBar) necessary for e�cient image classi�cation scales as N=M ,§§§§

a 1-cm2 CMOL CrossNet chip with N ≈ 107, M =102 could classify high-resolution (a-few-
megapixel) optical images in ∼ 105�0 ≈ 1ms. Such chips may be very important, for example,
for security systems, fabrication quality control, etc.
If the hopes for mass production of CMOL chips materialize, more ambitious goals might

be pursued. Imagine a cerebral-cortex-scale CrossNet-based system with ∼1010 neurons and
1015 synapses. With the parameters cited above, it would require an approximately 30×30cm2
silicon substrate¶¶¶¶ and, at power consumption of the order of 1W=cm2 (provided by mak-
ing R0 of the order of 1012 	), operate at least ten thousand times faster than its biological

††††Note that this value corresponds to 1012 elementary synapses per cm2, so that for 4M =104 and n=4 the areal
density of neural cells is close to 2×107 cm−2. Both numbers are higher than those for the human cerebral
cortex [30, 31], despite the fact that the quasi-2D CMOL circuits have to compete with quasi-3D cerebral
cortex.

‡‡‡‡The large value of R0, and hence the smallness of current I ∼Vs=R0 ∼ 10−10 A through each elementary
synapse, may make one worry about the noise immunity of the CrossNet operation. A simple analysis shows
that the main contribution to the current �uctuations is provided by shot noise of the nanodevices, that may
be estimated as IN ∼ (eI=��0)1=2. Assuming that the noise does not a�ect CrossNets properties at IN � I (this
hypothesis still needs to be checked), we get an R0-independent condition Vs� e=C0. For the values of Vs and
C0 listed above, this condition is well satis�ed.

§§§§This scaling still has to be checked.
¶¶¶¶ In digital electronics, such a ‘superchip’ would be impracticable because of vanishing fabrication yield; however,

large defect tolerance of neuromorphic networks (see, e.g. Figure 8 and its discussion above) makes this option
much more plausible.
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Figure 16. General structure of a possible hierarchical neuromorphic system based on CrossNet arrays
and high-speed global communication system.

prototype (�0∼1 �s). Such large-scale system would of course require a hierarchical organi-
zation involving, at least, the means of fast signal transfer over long distances. Fortunately,
for the InBar-type CrossNet with its regular location of somatic cell interfaces (Figure 5(b)),
such communication subsystem is easy to organize (Figures 16 and 17).‖‖‖‖

Unfortunately, neurobiology is still very far from teaching us how to train such system for
performing higher intellectual functions such as self-awareness (consciousness) and reasoning.
However, one may hope that, after a period of initial training by a dedicated external tutor, the
system would be able to learn directly from its interaction with the environment (Figure 16).
Such self-development could repeat, at much higher speed, the natural evolution of the human
cerebral cortex, and may even extend it. Any success along these lines would have a strong
impact not only on information technology, but also on society as a whole.
However, it is necessary to emphasize that even in the best case the development of neu-

romorphic CMOL circuits and systems will require a very substantial e�ort. Hardware-wise,
the most challenging problem is the development of nanodevice fabrication techniques with
substantial yield. From the architecture standpoint, the most urgent problem we face is the ver-
i�cation and improvement of the global reinforcement training method (Section 8), including
the e�ects of chaos and noise (see Footnote‡‡‡‡ above) on this procedure.

‖‖‖‖ In order to minimize communication distances in 2D CrossNets, such communication system may have, for
example, the so-called X layout (Figure 17(a)) that immediately yields system geometries reminiscent of the
brain (Figure 17(b)).
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(a) 

(b) 

nanodevice-based 
CrossNet
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CMOS-based 
global 

communication 
system 

system I/O

Figure 17. X layout for the global communication network: (a) general structure and (b) possible 2D
geometry of a hierarchical neuromorphic system (Figure 16) using such layout.
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