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Abstract

Reconstruction of high dynamic range image from a sin-

gle low dynamic range image captured by a frame-based

conventional camera, which suffers from over- or under-

exposure, is an ill-posed problem. In contrast, recent neu-

romorphic cameras are able to record high dynamic range

scenes in the form of an intensity map, with much lower

spatial resolution, and without color. In this paper, we pro-

pose a neuromorphic camera guided high dynamic range

imaging pipeline, and a network consisting of specially

designed modules according to each step in the pipeline,

which bridges the domain gaps on resolution, dynamic

range, and color representation between two types of sen-

sors and images. A hybrid camera system has been built

to validate that the proposed method is able to reconstruct

quantitatively and qualitatively high-quality high dynamic

range images by successfully fusing the images and inten-

sity maps for various real-world scenarios.

1. Introduction

High Dynamic Range (HDR) imaging is a widely used

technique that extends the luminance range covered by an

image. A batch of HDR imaging techniques have devel-

oped in recent decades by computer vision and graphics

community, as summarized by Sen and Aguerrebere [48].

Traditional methods include taking multiple Low Dynamic

Range (LDR) images under different exposures, then merg-

ing them with different weights to reproduce an HDR im-

age [6]. Another approach is hallucinating texture details

from a single LDR image, which is called inverse tone map-

ping [3]. Inverse tone mapping is obviously an ill-posed

problem, that relies on predicting badly exposed regions

from neighboring areas [54] or priors learned through deep

neural networks [7].

In recent years, some specially designed neuromor-

phic cameras, such as DAVIS [4], have drawn increas-
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Figure 1. An intensity map guided HDR network is proposed to

fuse the LDR image from a conventional camera and the intensity

map captured by a neuromorphic camera, to reconstruct an HDR

image.

ing attention of researchers. Neuromorphic cameras have

unique features different from conventional frame-based

cameras, they are particularly good at sensing very fast mo-

tion and high dynamic range scenes (1µs and 130 dB for

DAVIS240). The latter characteristic can be utilized to form

an intensity map, which encodes useful information lost in

conventional imaging by a dynamic range capped camera

due to over- and/or under-exposure. Despite the distinctive

advantages in dynamic range, neuromorphic cameras gener-

ally bear low spatial resolution (180 × 240 for DAVIS240)

and do not record color information, resulting in intensity

maps less aesthetically pleasing as LDR photos captured by

a modern camera. It is therefore interesting to study the fu-

sion of LDR images and intensity maps with mutual benefits

being combined for high-quality HDR imaging.

In this paper, we propose a neuromorphic camera guided

HDR imaging method. Directly stitching the intensity map

and LDR image from two types of sensors is expected to

produce poor HDR reconstruction, due to the great domain

gap on spatial resolution, dynamic range, color represen-

tation and so on. To address these issues, we propose the

intensity map guided HDR network, with specific modules

designed for each type of gap. As illustrated in Fig. 1, the
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proposed network successfully takes as input two types of

images and reconstructs a high-quality HDR image.

The main contributions of this paper can be summarized

as follows:

1) We propose an information fusion pipeline to recon-

struct an HDR image by jointly taking a single LDR

image and an intensity map. This pipeline demon-

strates the principles and design methodologies to

bridge the gap on resolution, dynamic range, and color

representation between two types of sensors and im-

ages (Sec. 3.1).
2) According to the proposed pipeline, an intensity map

guided HDR network is constructed to achieve the

faithful reconstruction. We design specific modules in

the network to address each type of gap in a more ef-

fective and robust manner (Sec. 3.2).
3) We build a hybrid camera system to demonstrate that

the proposed method is applicable to real cameras and

scenes (Sec. 4.2). Extensive experiments on synthetic

data, and real-world data captured by our hybrid cam-

era validate that the proposed network is able to recon-

struct visually impressive HDR images compared with

state-of-the-art inverse tone mapping approaches.

2. Related Work

Image-based HDR reconstruction. The classic HDR

imaging method was proposed by Debevec and Malik [6]

by merging several photographs under different exposures.

However, aligning different LDR images may lead to ghost-

ing in the reconstructed HDR result due to misalignment

caused by camera movement or changes in the scene. This

problem incurs a lot of research on deghosting in HDR

images [26, 38, 49, 56]. Instead of merging multiple im-

ages, inverse tone mapping was proposed by Banterle et

al. [3], whose intent is to reconstruct visually convincing

HDR images from a single LDR image. This ill-posed prob-

lem was attempted to be solved by several optimized ap-

proaches [30, 34, 43].

In recent years, Convolutional Neural Networks (CNNs)

have been applied to a lot of HDR image reconstruction

tasks. Kalantari and Ramamoorthi [25] firstly aligned im-

ages under different exposures using optical flow, and then

fed them to a neural network which merged LDR images to

reconstruct an HDR image. Eilertsen et al. [7] used a U-

Net [44] like network to predict the saturated areas in LDR

images, and applied a mask to reserve non-saturated pixels

in LDR images, then fused the masked image with predicted

image to get the HDR results. Endo et al. [8] clipped the

badly exposed pixels at first. It predicted the LDR images

under multiple exposures, then merged these LDR images

using classic method [6]. ExpandNet [33] adopted three

branches of encoders, concentrating on different level fea-

tures, then it concatenated and fused the features to get HDR

images. Trinidad et al. [52] proposed PixelFusionNet to

fuse misaligned images from multi-view under different ex-

posures for dynamic range expansion.

Computational HDR imaging. HDR imaging prob-

lem would become less ill-posed by using computational

approaches or even unconventional cameras that implic-

itly or explicitly encode expanded dynamic range of the

scene. Nayar et al. [36] added an optical mask on a con-

ventional camera sensor to get spacially varying pixel expo-

sures. Tocci et al. [51] implemented an HDR-video system

that used a beam splitter to simultaneously capture three im-

ages with different exposure levels, then merged them into

an HDR image. Hirakawa and Simon [18] placed a com-

bination of photographic filter over the lens and color filter

array on a conventional camera sensor to realize single-shot

HDR imaging. Zhao et al. [58] used a modulo camera that

is able to wrap the high radiance of dynamic range scene pe-

riodically and save modulo information, then used Markov

Random Field to unwrap and predict the HDR scene radi-

ance pixel-wisely.

Inspired by the mechanism of human retina, neuromor-

phic sensors such as DAVIS [4] (Dynamic and Active Pixel

Vision Sensor), ATIS [40] (Asynchronous Time-based Im-

age Sensor), FSM [59] (retina-inspired Fovea-like Sam-

pling Model), and CeleX [20] detect the changes of scene

radiance asynchronously. This series of non-conventional

sensors surpass conventional frame-based cameras in var-

ious aspects [10] including high dynamic range. Re-

constructing from raw events/spikes data has shown great

potential in recovering very high dynamic range of the

scene [21, 41, 42, 46, 59]. But there are few attempts try-

ing to combine them with conventional imaging to produce

more visually pleasing HDR photos with higher resolution

and realistic color appearance.

3. Proposed Method

3.1. LDR Image and Intensity Map Fusion Pipeline

As illustrated in Fig. 1, our goal is to reconstruct an HDR

image given the input of an LDR image I and an intensity

map X . Such a fusion pipeline can be conceptually illus-

trated using Fig. 2, which contains four key steps:

Color space conversion. Most conventional cameras

record color images in RGB format and each channel con-

tains pixel values represented by 8-bit integers. There ex-

ists a nonlinear mapping between scene radiance and the

pixel values in the camera pipeline, so we have to firstly

map LDR images to linear domain via the inverse camera

response function (CRF) f−1. To fuse with the one-channel

intensity map, we then convert color space of the LDR im-

age from RGB to YUV. The Y channel IY indicates the lu-

minance of I which is in the same domain of X , and U, V
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Figure 2. The conceptual pipeline of intensity map guided HDR imaging, consisting of four steps: color space conversion of the LDR image,

spatial upsampling of the intensity map, luminance fusion to produce HDR image in luminance domain, and chrominance compensation

that refills the color information to get a colorful HDR result.

channels contain the color information. We use IY to fuse

with intensity map and reserve U, V channels as chromi-

nance information to be added back later.

Spatial upsampling. To bridge the resolution gap be-

tween X and IY , we need to do an upsampling operation

for the intensity map to make it have the same size as IY .

The upsampling operation S(·) is defined as follows:

XHR = S(X), (1)

where XHR is the upsampled intensity map. S(·) can be

any upsampling operator such as nearest neighbor or bicu-

bic interpolation, or a pre-trained neural network for super-

resolution.

Luminance fusion. To expand the dynamic range of IY
using XHR, an intuitive solution is to define a weighting

function which indicates the pixels that should be retained

for fusion and those should be discarded. This can be im-

plemented by adopting a similar merging strategy proposed

by Debevec and Malik [6]. The fused value of HY is calcu-

lated as follows:

HY = W (IY , X
HR) =

wIIY + wXXHR

wI + wX
, (2)

where wI and wX ∈ [0, 1] indicate corresponding weights

for different types of input signals. A straightforward

way to determine the weight values is to set a threshold τ
(e.g., τ > 0.5) manually. Pixel values (normalized to [0, 1])
lying in the effective range [1−τ, τ ] are given larger weights

to retain the information, while values out of the range

are either too dark (under-exposed) or too bright (over-

exposed), hence smaller weights are given to discard such

information. A binary mask could be calculated based on

the threshold, which is the simplest way to get a weight

map. Another option is to set weights as a linear ramp,

LDR image 𝑰

1.0

1.0

Pixel

value

Weight value

𝝉𝟏 − 𝝉

Weighting function Weight map

1.0

0.5
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Figure 3. An example of fusing an intensity map and an LDR im-

age using a linear ramp as weighting function. Such a straightfor-

ward fusion strategy results in various unpleasant artifacts (color

distortion in the red box and blurry artifacts in the green box).

which is similar to the pixel-wise blending in [7]. Such a

weighting function can be expressed as

wi =
0.5−max(|Ii − 0.5|, τ − 0.5)

1− τ
. (3)

The weighting function and calculated weight map are

shown in the first row of Fig. 3.

Chrominance compensation. HY now contains HDR

information in high resolution, but only in luminance do-

main. The color information can be compensated from U, V
channels of I , i.e., IU and IV . Denote C(·) as the color

compensation operator, this procedure can be represented

as

H = C(HY , IU , IV ), (4)

which combines HY with IU , IV , and converts it back to

RGB color space.
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Figure 4. Overview of the intensity map guided HDR network architecture. It contains upsampling & luminance fusion network for

HDR reconstruction in luminance domain, which is a double-encoder network with the input of IY and X , followed by the chrominance

compensation network which takes the HRGB as input to refine the color information.

Due to the dynamic range gap between HY and IU (IV ),
directly combining them leads to unnatural color appear-

ance, such as HRGB shown in the color compensation

block of Fig. 2. Realistic color appearance could be re-

covered using some color correction methods, such as color

histograms adaptive equalization [5] or tone curve adjust-

ment [31].

The synthetic example in Fig. 3 demonstrates that simply

applying the conceptual pipeline in Fig. 2 may not achieve

a satisfying HDR image. From the green box, we can easily

observe blurry artifacts caused by misalignment between I
and X (we add displacement between I and X in synthetic

data to simulate the real setup), and unrealistic color recov-

ery in the red box due to dynamic range gap.

To address these issues, we translate the pipeline in Fig. 2

as an end-to-end network F(·):

H = C
(

W
(

f−1(IY ), S(X)
)

, IU , IV
)

= F(I,X; θ), (5)

where θ denotes parameters of the network. We will next

introduce the specific concerns in realizing each of the four

steps using deep neural networks.

3.2. Intensity Map Guided HDR Network

In this section, we describe the details of the proposed

network, whose architecture is shown in Fig. 4. First of

all, inverse CRF and color space conversion are conducted

offline as a preprocessing to input. Then for each pixel in

the input IY , the proposed network learns to extend the bit-

width with the information encoded in X . We design spe-

cific modules in the network in accordance to the remaining

three steps described in Sec. 3.1. Upsampling and lumi-

nance fusion can be realized by deconvolutional layers and

skip connections in the network, respectively. Therefore,

we design the network using the U-Net [44] architecture

with double encoder (encoder of IY and X) and one de-

coder, the encoder of X guides the decoder to reconstruct

HDR images at multiple representation scales.

Upsampling using deconvolution. We perform the up-

sampling operation by deconvolutional filters in the de-

coder. The purpose of decoder is to reconstruct HY from

the fused latent representation, which has been encoded

by the two encoders. Deconvolution has the ability to

diffuse information from a small scale feature map to a

larger feature map with learnable parameters. Feature maps

from X at multiple scales guide the decoder to upsample

with extended dynamic range information. Compared to a

naive upsampling operation S(·), the deconvolutional layers

learn a comprehensive representation from the image con-

text to realize upsampling operation by end-to-end back-

propagation, rather than simply rely on interpolation from

nearby pixels.

Luminance fusion with attention masks. Information

fusion in the luminance domain is the key step for dynamic

range expansion. The proposed architecture applies skip-

connections, which transfer feature maps between encoders

and decoder to incorporate both rich textures in IY and high

dynamic range information in X . Deeper networks have

been shown to benefit from skip-connections in a variety

of tasks [16, 19]. However, simply concatenating feature

maps from two encoders is expected to be influenced by the

dynamic range gap between the two input images. So we

fuse the concatenated tensor by 1 × 1 convolution before

each deconvolutional layer. As stated in the luminance fu-

sion part of Sec. 3.1, a weighting function W (·) is added to

determine the regions to retain, and the regions to be com-

plemented by the other input. The weighting function can

be implemented by introducing attention mechanism [23]

in the network to assign different importance to different

parts of an image. We choose to use self-attention gate [47]
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Figure 5. An example of attention mask calculated from self-

attention module, which is added on LDR image to filter the badly

exposed regions and reserve useful information for reconstruction.

as a mask added on IY to preserve the relevant informa-

tion. There is no mask being added on X , and we use it

just to complement the information that IY lacks. The at-

tention mask is computed by 1 × 1 convolution, then acti-

vated by a non-linear function as implemented in Attention

U-Net [39]. Then the element-wise multiplication of atten-

tion mask and input feature map from IY is able to filter

the badly exposed pixels and reserve areas with valid infor-

mation for reconstruction. Compared to assigning weights

intuitively like Eq. (2), our attention mask is computed from

feature maps of two input images, and the learnable param-

eters can be trained end-to-end. Fig. 5 demonstrates the

effectiveness of attention mask.

Chrominance compensation network. Given the HDR

image in luminance domain HY , we combine it with

chrominance information IU and IV from the LDR image,

then convert it to RGB color space to recover color appear-

ance. The directly converted HRGB may suffer from color

distortion due to the dynamic range gap between HY and

IU (IV ). Because the luminance values of Y channel are

stored in high precision format (e.g., float), while the UV

values directly inherited from I are still in 8-bit integer for-

mat. As a result, the converted HRGB tends to be dim and

less colorful after tone mapping, as shown in Fig. 4. There-

fore, we propose a chrominance compensation network to

realize color correction for HRGB . The network is an au-

toencoder [17] architecture with residual blocks [16], as the

skip-connections in residual blocks learn to compensate for

the difference between input and output images. It recov-

ers the chrominance information on each pixel and learns

to reconstruct realistic color appearance in HDR images, as

demonstrated in the Output H of Fig. 4.

3.3. Loss Function

The proposed network reconstructs images in the linear

luminance domain, which covers a wide range of values.

Calculating loss between the output images HY and ground

truth ĤY directly may cause the loss function being domi-

nated by large values of HY , while the effect of small values

tends to be ignored. Therefore, it is reasonable to compute

loss function between HY and ĤY after tone mapping. The

range of pixel values are compressed by the following func-

tion proposed by [25] after normalized to [0, 1]:

T (HY ) =
log(1 + µHY )

log(1 + µ)
, (6)

where T (·) is the tone mapping operator and µ (set to

be 5000) denotes the amount of compression. The tone

mapping operator is computationally effective and differ-

entiable, thus easy for back-propagation.

We train our network by minimizing the loss function

which has two parts: pixel loss and perceptual loss [24].

Pixel loss computes the ℓ1 norm distance between T (HY )
and T (ĤY ):

Lpixel =
∥

∥T (HY )− T (ĤY )
∥

∥

1
. (7)

Since the LDR images and intensity maps are taken from

different cameras, the misalignment in the input pair is un-

avoidable. We try to solve this problem by adding the

perceptual loss, which is defined for tone-mapped images

based on feature maps extracted from the VGG-16 net-

work [50] pre-trained on ImageNet [45]:

Lperc =
∑

h

(

∥

∥φh(T (HY ))− φh(T (ĤY ))
∥

∥

2

2

+
∥

∥Gφ
h(T (HY ))−Gφ

h(T (ĤY ))
∥

∥

2

2

)

, (8)

where φh denotes the feature map convoluted from h-th

layer of VGG-16, Gφ
h is the Gram matrix of feature maps

φh of two input images. Both of the two parts are com-

puted by ℓ2 norm. We use the layers ‘relu4 3’ and ‘relu5 3’

of VGG-16 network in our experiments, because high-level

features are less sensitive to unaligned pair of images.

To summarize, our total loss is written as:

Ltotal = α1Lpixel + α2Lperc, (9)

where α1 and α2 are the weights for different parts of loss

function. We set as α1 = 100.0 and α2 = 3.0.

As for the chrominance compensation network, we also

apply pixel loss and perceptual loss, and a slight difference

is that the weight for perceptual loss α2 is 5.0.

3.4. Methods of Acquiring Intensity Maps

The intensity maps can be acquired by various types of

neuromorphic cameras.

Indirect approach. For neuromorphic cameras such as

DAVIS [4], the output is a sequence of events data, con-

taining the time, location, and polarity information of log

intensity changes in a scene. The high dynamic range scene

radiance is recorded in a differential manner by event cam-

eras. Among many methods of reconstructing intensity

maps from events, we choose the E2VID [41] network to
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accumulate streams of events as a spatial-temporal voxel

grid for reconstruction because it reconstructs the most con-

vincing HDR intensity maps according to our experiments.

Direct approach. Intensity maps can also be acquired

from spike-based neuromorphic cameras such as FSM [59].

Each pixel of the FSM responds to luminance changes in-

dependently as temporally asynchronous spikes. The accu-

mulator at each pixel accumulates the luminance intensity

digitalized by the A/D converter. Once the accumulated in-

tensity reaches a pre-defined threshold, a spike is fired at

this time stamp, and then the corresponding accumulator is

reset in which all the charges are drained. To get the in-

tensity map, we apply a moving time window to integrate

the spikes in a specific period, and the intensity map can be

computed by counting these spikes pixel-wisely [59]. FSM

generates 40000 time stamps per second. We find that set-

ting the window size as 1000 time stamps (1/40 second)

reconstructs valid HDR intensity maps in our experiments.

3.5. Implementation Details

Dataset preparation. Learning-based methods rely heav-

ily on training data. However, there are no sufficiently

large-scale real HDR image datasets. Therefore, we collect

HDR images from various image sources [1, 2, 11, 12, 37,

57] and video sources [9, 29]. Since the proposed network

has two different types of images as input, we synthesize

LDR images from HDR images like taking photos with a

virtual camera [7]. The irradiance values of HDR images

are scaled by random exposure time and then distorted by

different non-linear response curves from DoRF [15]. As

for the intensity maps, we simulate them in accordance with

those acquired from neuromorphic cameras. Event cam-

era estimates the gradients of the scene, and reconstructs

the intensity maps using event data. So we firstly compute

the gradients of tone-mapped HDR images and reconstruct

intensity maps using Poisson solver [27] to simulate such

process. During the training, we apply data augmentation

to get an augmented set of pairwise data. We resize the

original HDR images and then crop them to 512 × 512 at

random locations followed by random flipping. We select

viewpoints that an image covers the scene region with HDR

information. Intensity maps are augmented using the same

operations except cropping to the size of 256 × 256 as a

low-resolution input.

Training strategy. The proposed network is implemented

by PyTorch, and we use ADAM optimizer [28] during the

training process with a batch size of 2. 600 epochs of train-

ing enables the network to converge. The initial learning

rate is 10−5, during the first 400 epochs it is fixed, in the

next 200 epochs, it decays to 0 with a linear strategy. The

encoder of IY is a VGG-16 network [50]. We convert I
from RGB to YUV color space and duplicate IY twice to

form a 3-channel tensor, since the input channel size of

VGG-16 network is supposed to be three. The network

is initialized with Xavier initialization [13]. We use in-

stance normalization (IN) [53] instead of batch normaliza-

tion (BN) [22] after each deconvolutional layer in the de-

coder. The output of network is activated by Sigmoid func-

tion that maps pixel values to the range of [0, 1].

4. Experiments

4.1. Quantitative Evaluation using Synthetic Data

Fig. 6 shows reconstruction results of the proposed and

other comparing methods. To the best of our knowledge,

the proposed framework is the first one to combine LDR im-

ages with intensity maps to realize HDR images reconstruc-

tion. Therefore, we compare to three state-of-the-art deep

learning based inverse tone mapping methods: DrTMO [8],

ExpandNet [33], HDRCNN [7]; and traditional method [6]

merging an over- and an under-exposed images with the ex-

posure ratio of 50 : 1. For the sake of fairness, we omit

the comparison to merging three or more LDR images with

different exposures. Thanks to the complementary dynamic

range information provided by intensity maps, the proposed

approach is able to recover rich texture details in the images

such as clouds or the outline of the intense light source. For

example, in the top row of Fig. 6, the leaves around the

street lamp (green box) and the trunk (red box) are clearly

visible in our results, which are similar to the ground truth,

while this is not the case for other inverse tone mapping

methods. Although merging two LDR images extends the

dynamic range (more reliable than single-image solutions),

it cannot recover rich details of a scene due to the limited

dynamic range covered by two LDR images.

Besides visual comparison, we conduct quantitative

evaluations using the widely adopted HDR-VDP-2.2 met-

rics [35], which computes the visual difference and pre-

dicts the visibility and quality between two HDR images.

It produces the quality map and Q-Score for each HDR im-

age to indicate the quality of reconstruction. Fig. 7 shows

the quality maps and Q-Scores of different methods. The

quality maps show the difference probability between a pre-

dicted HDR image and the ground truth. Results show

that the proposed approach achieves more similarities to the

ground truth and higher Q-Score in HDR image reconstruc-

tion compared to other methods.

4.2. Qualitative Evaluation using Real­world Data

In order to demonstrate the effectiveness of the proposed

method on real-world scenarios, we build a hybrid cam-

era system [55], which is composed of a conventional cam-

era (Point Grey Chameleon 3) and a neuromorphic camera

(DAVIS240 [4] or FSM [59]) with the same F/1.4 lens, as

illustrated in Fig. 8. There is a beam splitter in front of the

two sensors, which splits the incoming light and sends them
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Figure 6. Visual comparison between the proposed method and state-of-the-art deep learning based inverse tone mapping methods:

DrTMO [8], ExpandNet [33], HDRCNN [7]; and a conventional approach merging two LDR images [6]. The Q-Scores are labeled in

each image. Please zoom-in electronic versions for better details.

Q-Score 51.68 44.49 43.18 44.61 51.20

Figure 7. Comparisons on quality maps and Q-Scores calculated

from HDR-VDP-2.2 evaluation metrics [35]. Visual differences

increase from blue to red. Q-Scores average across all images in

the whole test dataset.

to different sensors simultaneously. We conduct geometric

calibration and crop the center part from two camera views

to extract the well-aligned regions as I and X .

We take photos for both indoor and outdoor high dy-

namic range scenes and reconstruct the HDR images using

our method. In Fig. 9, the input images are first fused in the

luminance domain (the third column) and then compensated

by the chrominance information (the last column). Results

show that the proposed method could fuse the input I and

X to reconstruct high-quality HDR images. For example,

the outline of car roof (the first row) is over-exposed due

to the strongly reflected light, but the detailed texture could

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
Scene radiance

Beam 
splitter

Conventional
camera

Neuromorphic
sensor

𝐼𝐼 𝑋𝑋
Intensity map 

guided 
HDR network

𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
HDR image

Figure 8. The prototype of our hybrid HDR imaging system com-

posed of a conventional and a neuromorphic camera.

be captured by the neuromorphic cameras, and recovered in

the fusion results using our method. Some artifacts could be

observed in our results, such as in the glass window of the

second row. This is brought by the intensity map during im-

age reconstruction using stacked events [41], since we need

to shake the DAVIS to trigger events, where blur and noise

may occur.

4.3. Ablation Study

To validate the effectiveness of the proposed architec-

ture and each specific module, we conduct ablation study

on three variants as follows. Visual comparison for differ-

ent variants is shown in Fig. 10.
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Figure 9. Real data results reconstructed by the proposed network.

The LDR images are captured by conventional cameras and the

intensity maps are acquired by DAVIS (the upper two rows) and

FSM (the lower two rows).

(a)

(d)

(b)

(e)

(c)

(f)

Figure 10. Visual comparison of different variants of the proposed

method. (a) Input LDR image, (b) without attention mask, (c) sin-

gle encoder architecture, (d) adding adversarial loss, (e) intensity

map guided HDR network, and (f) ground truth.

Without attention masks. We investigate the effective-

ness of the attention mask module. As shown in Fig. 10 (b),

the green box of over-exposed region is similar to the input

LDR image. Without the guidance of attention masks, it is

difficult for the network to correctly distinguish information

to reserve or discard. Hence leads to some artifacts.

Single encoder architecture. We compare our network

with a single encoder architecture without the encoder of

X . This can be achieved by scaling X to the same size

of IY and concatenating them at first, then sending the 4-

channel tensor to a single encoder. In this case, two images

from different domains are directly combined. As Fig. 10

(c) shows, although the over-exposed region is recovered,

obvious artifacts can be observed in the under-exposed re-

gions.

Adding adversarial loss. We investigate adding adver-

sarial loss [14] Ladv to the total loss function. By treating

the proposed network as the generator, we train a discrim-

inator simultaneously to distinguish the real or fake HDR

image. The example in Fig. 10 (d) shows that the adver-

sarial loss may lead to undesired mosaics in both over- and

under-exposed areas.

We also conduct HDR-VDP-2.2 metrics for different

models, and the average Q-Scores are calculated for eval-

uation, which are shown in the following results. Without

attention masks: 45.55, single encoder: 49.74, adding ad-

versarial loss: 45.22, complete model: 51.68. These results

demonstrate our complete model achieves the optimal per-

formance with these specifically designed strategies.

5. Conclusion

We proposed a neuromorphic camera guided HDR imag-

ing method, which fuses the LDR images and the intensity

maps to reconstruct visually pleasing HDR images. A hy-

brid camera system has been built to capture images in real-

world scenarios. Extensive experiments on synthetic data

and real-world data demonstrate that the proposed method

outperforms state-of-the-art comparing methods.

Discussion. Considering the limitation of GPU memory,

we use 512 × 512 LDR images and 256 × 256 intensity

maps to train the networks. However, our model can han-

dle higher resolution LDR images once we upsample the

intensity maps to the corresponding scale level with LDR

images.1 Apart from that, increasing the resolution of out-

put images might also be achieved by a pre-trained super-

resolution network [32].

Limitations and future work. Due to the distortion of

camera lens and different field of views of the two sensors in

our hybrid camera system, the pixels that are better aligned

are mostly centered on the whole image plane. Therefore,

although this paper demonstrates convincing evidence of

fusing two types of images for HDR imaging, the final qual-

ity still has a gap between merging multiple images of dif-

ferent exposures, captured by a modern DLSR with tens of

millions of pixels. To realize this, using a better designed

hybrid camera is our future work.
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