
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2008, Article ID 428265, 9 pages
doi:10.1155/2008/428265

Research Article

Neuromorphic Configurable Architecture for
Robust Motion Estimation

Guillermo Botella,1 Manuel Rodrı́guez,2 Antonio Garcı́a,3 and Eduardo Ros2

1 Department of Computer Architecture and Automation, Complutense University of Madrid, 28040 Madrid, Spain
2 Department of Computer Architecture and Technology, University of Granada, 18071 Granada, Spain
3 Department of Electronics and Computer Technology, University of Granada, 18071 Granada, Spain

Correspondence should be addressed to Guillermo Botella, gbotella@fdi.ucm.es

Received 1 July 2008; Accepted 8 October 2008

Recommended by Gustavo Sutter

The robustness of the human visual system recovering motion estimation in almost any visual situation is enviable, performing
enormous calculation tasks continuously, robustly, efficiently, and effortlessly. There is obviously a great deal we can learn
from our own visual system. Currently, there are several optical flow algorithms, although none of them deals efficiently with
noise, illumination changes, second-order motion, occlusions, and so on. The main contribution of this work is the efficient
implementation of a biologically inspired motion algorithm that borrows nature templates as inspiration in the design of
architectures and makes use of a specific model of human visual motion perception: Multichannel Gradient Model (McGM).
This novel customizable architecture of a neuromorphic robust optical flow can be constructed with FPGA or ASIC device
using properties of the cortical motion pathway, constituting a useful framework for building future complex bioinspired systems
running in real time with high computational complexity. This work includes the resource usage and performance data, and the
comparison with actual systems. This hardware has many application fields like object recognition, navigation, or tracking in
difficult environments due to its bioinspired and robustness properties.

Copyright © 2008 Guillermo Botella et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Bioinspired systems emulate the behavior of biological ones.
Neuromorphic approximations [1] are based on the way
how the nervous systems create physical architectures and
computations, attending to the morphology, information
coding, robustness against damage, and so on. Neuromor-
phic systems usually deliver good primitives for the building
of more complex systems, being the output of each system
simpler than its input. This data reduction helps in the task
of integrating every response associated with all information
channels [2].

Attending to the estimation of a pixel motion inside
the image sequence, there are many models and algorithms
that could be classified as belonging to the matching
domain approximations [3], energy models [4], and gradient
models [5]. Related to this last family, different studies
[6–8] show that this represents an admissible choice for
keeping a tolerable tradeoff between accuracy and computing

resources. For designing systems operating efficiently, it is
required to deal with many challenges, such as robustness,
static patterns, illumination changes, different kinds of noise,
contrast invariance, and so on. If bioinspirational behavior is
required, that is, ability to detect correct motion related to
optical illusions or avoiding operations like matrix inverse
or iterative methods that are not biologically justified, we
have to select carefully a model that carries out this kind
of requirements. This is the Multichannel Gradient Model
(McGM) [9–12].

Motivated by these previous results and analysis, we
present the architecture and implementation of a customiz-
able optical flow embedded processing core running in real
time. This system works in the framework of a codesign
scheme that is able to manage complex situations in real
environments [13] better than other algorithms [14] and
mimic some behavior of the mammalians [15].

This paper is organized as follows. First, the stages of
McGM model are explained very briefly; after that, we tackle

2 International Journal of Reconfigurable Computing

FIR spatial

blur filtering

IIR temporal

filtering

FIR spatial

filtering

Steering

filtering stage

Product &
Taylor stage

Quotient stage

Phase Modulus

Repeat for each

orientation

I

II

III

IV

V

VI

Figure 1: General scheme of the McGM algorithm.

the precision study of every conceptual stage, obtaining
a set of bit width values which models the filters and
the bit width stage required to obtain results that match
with the statistical error metric requirements. From this
previous study, we design the customizable architecture
implementation attending to the original model plus several
hardware modifications in order to improve the feasibility
of the system. An example of this is the design of IIR
filters replacing the original FIR filters due to the memory
limitation of the prototyping platform, or the use of several
information channels with a few bit width, replicating the
nature of the brain (large number of neurons with very
little precision for a few channels with huge information
capacity) [14]. After that, we explain the coarse pipeline
processing architecture and the platform and language used
in our systems. Finally, quality results, hardware associ-
ated cost, and comparisons to other implementations are
shown.

2. Multichannel Gradient Model (McGM)

The original algorithm was proposed by Johnston and
Clifford, and we have applied Johnston’s description of
the McGM model [9], while adding several variations
to improve the viability of the hardware implementa-
tion. Figure 1 shows a simplified scheme of the algo-
rithm.

2.1. IIR Filtering

A temporal IIR filter is modeled from its original FIR
description due to the limitation of available memory in our
prototyping platform [15, 16]. The result is a recursive filter
with only two frames of latency, being o and i the output and
input, respectively, of the filter and ai , bi the coefficients from
our previous work [14, 15]:

O(n) = a1i(n− 1)− b1o(n− 1)− b2o(n− 2), (1)

where a1 = e−1/α/α2; b1 = 2e−2/α, b2 = e−2/α, and α drives
the peak in the temporal impulse response function. It is
calibrated with a frame peak value equals to 10 following a
critical flicker fusion limit of 60 Hz, according to the human
visual system evidences [11]:

R(t) = 1√
πτα

e−(ln(t/α)/τ)2 . (2)

Attending to the original algorithm, we need to perform the
order zero, one and two derivatives, which represent our first
triplet of information to be processed, as shown in Figure 1.
The derivatives are obtained applying a gradient operator of
minimal length (+1,−1) to (1):

T0(n) = o(n− 1),

T1(n) = o(n)− o(n− 2),

T2(n) = o(n)− 2o(n− 1) + o(n− 2).

(3)

2.2. FIR Spatial Filtering

A set of spatial FIR filters is modeled by the next impulse
response corresponding to bidimensional Gaussians and
their separable derivatives:

dn

dxn
(
GO

)
= dn

dxn

(
e−(x2+y2)/2σ2

σ
√

2π

)

= Hn

(
x√
2σ

)
Hn

(
y√
2σ

)(
−1√
2σ

)2n

·
(
e−(x2+y2)/2σ2

σ
√

2π

)
,

(4)

where σ represents the spread of the Gaussian and Hn is the
Hermite polynomial of order n . The convolution is done in
a separable way, taking derivatives in x and y directions up
to sixth and second order, respectively, due to bioinspired
and robustness reasons [11–13]. The aim of this stage is to
cover enough spread area of information channels that allow
us to contribute to the calculus when any of them are null
due to many reasons, such as noise. Therefore, we have three
spatial structures, each one containing a pyramidal set of
several filters corresponding to Gaussians and their different
derivatives.

2.3. Steering Stage

The steering stage represents the approach to projecting the
space-temporal filters calculated in previous stages, under

International Journal of Reconfigurable Computing 3

the different orientations. Being n and m the order in x
and y directions, respectively, θ the angle projected, D the
derivative operator, and GO the Gaussian expression, we
obtain the general expression of the filter rotated in the space
as a linear combination of filters belonging to the same order
basis [14]. Thus, we have to apply this transformation to each
value:

Gθ
n,m(x, y) =

[n∑

k=0

(
n
k

)(
Dx cos θ

)k(
Dy sin θ

)n−k
]

·
[n∑

i=0

(
m
i

)(
−Dx sin θ

)i(
Dy cos θ

)m−i
]
G0.

(5)

2.4. Taylor Expansion Stage

In this stage a truncated Taylor expansion is done, substi-
tuting it for the point on the space-time image in order
to further enhance the algorithm. To perform this, it is
necessary to use each oriented filter previously calculated.
This expansion is highly versatile and represents a robust
information structure of the sequence in space and time:

Iθ(x + p, y + q, t + r) =
l∑

i=0

m∑

j=0

n∑

k=0

piqirk

i ! j ! k !

∂n

∂xi∂y j∂tk

× Iθ(x, y, t).

(6)

With this, it is necessary to differentiate each Taylor expan-
sion respect to x, y, t, calling these derivatives X, Y, T, and

forming the following sextet of quotient as shown in the
quotient stage:

⎡
⎢⎢⎣
Xθ = ∂Iθ/∂x

Y θ = ∂Iθ/∂y

Tθ = ∂Iθ/∂t

⎤
⎥⎥⎦

3×1

−→
[
XθXθ XθY θ XθTθ

Y θY θ Y θTθ TθTθ

]

2×3

. (7)

2.5. Quotient Stage (General Primitives) and
Following Stages

This is the last stage belonging to the common path, where a
quotient of every sextet’s component is computed from every
measurement of the product of steered Taylor expansion
differentiates:

[
Y θY θ/TθTθ XθY θ/XθXθ XθTθ/XθXθ

Y θY θ/XθXθ XθY θ/Y θY θ XθTθ/TθTθ

]

2×3

. (8)

The architecture of the core is branched in two separated
ways, modulus and phase, with different bit operations work-
ing independently, containing products, several quotients,
and even trigonometric operations as arctangent, which are
performed in software. The details of the software stages can
be found in previous works [14, 15] being the final aim to
recover a dense representation of motion. Therefore, we have
two values for each input pixel corresponding to modulus
and phase of the velocity, that is, velocity projection in x and
y directions, following the next expressions

Phase = tan−1

⎛
⎜⎜⎜⎜⎝

(
X·T
T·T +

X·T
X·X

(
1 +

(
X·Y
X·X

)2)−1)
sin(θ) +

(
Y·T
T·T +

Y·T
Y·Y

(
1 +

(
X·Y
Y·Y

)2)−1)
cos(θ)

(
X·T
T·T +

X·T
X·X

(
1 +

(
X·Y
X·X

)2)−1)
cos(θ)−

(
Y·T
T·T +

Y·T
Y·Y

(
1 +

(
X·Y
Y·Y

)2)−1)
sin(θ)

⎞
⎟⎟⎟⎟⎠

, (9)

Modulus2 = det

∣∣∣∣∣∣∣∣∣∣

X·T
X·X

(
1 +

(
X·Y
X·X

)2)−1

cos θ
X·T
X·X

(
1 +

(
X·Y
X·X

)2)−1

sin θ

Y·T
Y·Y

(
1 +

(
X·Y
Y·Y

)2)−1

cos θ
Y·T
Y·Y

(
1 +

(
X·Y
Y·Y

)2)−1

sin θ

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

X·T
X·X

(
1 +

(
X·Y
X·X

)2)−1
X·T
T·T

X·T
X·X

(
1 +

(
X·Y
X·X

)2)−1
Y·T
T·T

Y·T
Y·Y

(
1 +

(
X·Y
Y·Y

)2)−1
Y·T
T·T

Y·T
Y·Y

(
1 +

(
X·Y
Y·Y

)2)−1
Y·T
T·T

∣∣∣∣∣∣∣∣∣∣

. (10)

3. Precission Study (Bit Width Analysis)

We have designed a specific strategy to define the bit width
required in each conceptual stage following this previous
algorithm. The basic idea is to transform every calculus in
the model, applying a chained process of quantization. For
the sake of clarity, if the parameters of the convolution are
the bit width of the input I, the length of the filter L, the mask

size M, we can compute the output bit width simply shifting
the range the output bit width O:

stagen =
2O

2I+L+M
stagen−1. (11)

Applying this method in each stage, we obtain a set of values
that throw back the transformation between floating point

4 International Journal of Reconfigurable Computing

domain and integer domain, getting a tradeoff between bit
width and affordable error.

As the metric error value, we have proposed the most
common ones used in the specialized literature, such as
Barron’s vector [8] and Galvin’s couple of metrics [6], where
Vc and Ve are the values of the correct and experimental
velocities, respectively, and g⊥ is the normal component to
the Galvin vector difference:

�v =
(vx, vy , 1)√
v2
x + v2

y + 1
→ ψBARRON = arccos(�vc·�ve),

ψGALVIN =
∥∥�vc − �ve

∥∥,

ψGALVIN⊥ =
∥∥(�vc − �ve)·ĝ⊥

∥∥.
(12)

We have also taken into account the simple error measures
(absolutes and relatives) relative to modulus and phase:

ψMOD =
∣∣∥∥�ve

∥∥−
∥∥�vc
∥∥∣∣,

ψFAS = | arctan(�vcy/�vcx)− arctan(�vey/�vex)|.
(13)

Regarding the stimuli, we have used synthetic compositions
of sine waves of different spatial frequencies and the famous
stimulus of diverging tree and translating tree [17], com-
monly used to evaluate optical flow. As a result, we obtain
the set of precision parameters that are applied in the model
attending to the range of affordable error. Figure 2 shows the
bit width of the stages performed in hardware, and Table 1
contains the final values chosen, for an FIR Blur filter length
of 5 pixels, FIR spatial filter of 23 pixels, and IIR temporal
filter equivalent to an FIR length of 21 frames, with a more
detailed analysis available in [14].

4. Codesign Process

The system has been designed as a codesign process working
with an asynchronous pipeline (micropipeline). The PC
feeds the FPGA with a stream of frames through a bank of
memory connected to PCI bus. The board takes a continuous
stream of pixels at its input (1 byte/pixel); however, we
employ 32 bits at the output, coming back to the PC,
where they are reordered and written to the hard disk. We
have selected Handel C to implement this core, using DK
tool [18]. Relating to the prototyping board, an AlphaData
RC1000 board has been used, which includes a Virtex 2000E-
BG560 chip and 4 SRAM banks of 2 MB each [19]. The
memory banks can be accessed both from the FPGA and the
PCI bus, Figure 3 showing the communication scheme of the
codesign system between the external memory banks, FPGA,
and the host platform.

We have implemented a bit width precision defined
version of the model, that we called “semihardware” version
or SmHW; furthermore the next step is to implement
different hardware cores for examining the tradeoff between
accuracy and efficiency. We have developed in the FPGA
two kinds of platforms that are called “basic” (HWbas)
and “extended” (HWext) architectures. The SW version is

Table 1: Parameters of each stage (100% density).

Stage Bit width Error (%) phase mod

I
F1 = 6

3.64 4.95
O1 r = 9

II

F2 = 8

4 4.95O2 r I = 9

O2 r II = 10

III
W3 = 6

4.73 6.24
O3 r = 10

IV
W4 = 11

5.31 9.01
O4 r = 17

V O5 r = 12 5.52 12.83

Being F1 temporal IIR, F2 spatial FIR, W3 steering weight, W4 Taylor
expansion, Oi r bit width output of stage i,.

Table 2: Summary of the different implementations.

Main differences SW SmHW HWbas HWext

Temp filter FIR IIR IIR IIR

Esp. filter 6 6 5 4

Orientations 24 24 18 8

Taylor weights 100% 65% 65% 65%

implemented using the temporal FIR filtering, 24 orienta-
tions (each 15◦), the SmHW version keeps the same number
of orientations, although the implementation of the IIR
filters and the Taylor Expansion is not completed (only are
used the 65% of the weights). The basic architecture has
one less order of spatial differentiation than the versions
commented above, and it has only 18 orientations (each
20◦), remaining the rest of the parameters constant. The
extended architecture has one additional order less than the
basic and also decreases in the number of orientations, taking
8 orientations (each 45◦). Table 2 summarizes the main
differences between these versions attending to the nature of
temporal filter, the final spatial derivative order, the number
of orientations, and the density of the weights used in the
expansion.

5. Results

We have analyzed the resources required by the platform
and also the number of cycles (NCs) of each stage in
Table 3. Every stage belonging to both architectures has been
designed as customizable, scalable, and modular.

The basic architecture computes initial blur filter in order
to remove aliasing components, IIR temporal filtering that
performs the temporal derivatives, FIR spatial filtering, that
is, spatial derivatives, and steering filtering that project the
results onto the whole space (the SW prefix denotes that these
stages are performed in software). This architecture contains
the processing scheme belonging to most of gradient-based

International Journal of Reconfigurable Computing 5

30272421181512963

Bitwidth

0

20

40

60

80

100

120

E
rr

o
r

(%
)

IIR filtering (I)

FIR filtering (II)

Steering (III)

Product & Taylor (IV)

Quotient (V)

Error (%) modulus in stages I, II, III, IV, V

(a)

30272421181512963

Bitwidth

0

20

40

60

80

100

120

E
rr

o
r

(%
)

IIR filtering (I)

FIR filtering (II)

Steering (III)

Product & Taylor (IV)

Quotient (V)

Error (%) phase in stages I,II,III,IV,V

(b)

Figure 2: Evaluation of the bit width needed in the modulus (a) and phase (b) converting the data to fixed point.

Table 3: Slices and memory requirements and number of cycles for basic and extended architectures.

Pipeline stage
Basic architectures Extended architectures

Slices (%) Block RAM (%) MC Slices (%) Block RAM (%) NC

Blur filter 289 (2%) 1% 4 289 (2%) 1% 4

IIR temporal filtering 190 (1%) 1% 9 190 (1%) 1% 9

FIR spatial filtering 1307 (7%) 36% 17 1307 (7%) 36% 17

Steering 5961 (31%) 2% 15 2012 (10%) 2% 29

Product and Taylor SW SW SW 5952 (31%) 13% 24

Quotient SW SW SW 8831 (46%) 19% 21

PC
4 GB RAMBUS BUS PCI

External memory

4 banks of 2 MB

FPGA
VIRTEX E

XCV2000EBG560-6

Celoxica RC1000
(AlphaData PP1000)

Figure 3: Scheme of the communication process.

optical flow models, thus it could be considered as a
motion preprocessor [15, 16]. The extended architecture is
able to cover more stages and is focused in the specific
McGM algorithm, implementing all the stages commented

previously, plus a Taylor expansion, Taylor product (their
derivative products), and the quotient stage as shown in
Figure 4.

5.1. Hardware Cost

The basic architecture consumes 41% of the board slices,
with every stage being performed with parameter values very
close to the original model (derivatives in x up to order 5,
18 orientations in the steering stage), implementing 4 stages.
Nevertheless, the extended architecture requires 97% of the
development board.

5.2. Performance

Related to the number of cycles, we have noted the Xilinx
timing analyzer tool [20] to be very conservative; thus we
can increase the throughput around 25%–35% if we clock
the system manually from the values obtained. The slower
stage in the basic architecture is the FIR filtering, while the
last stages designed need the maximum number of Block
RAMs and slices due to the computation being performed
replicating the spatial convolution (FIR filter) concurrently

6 International Journal of Reconfigurable Computing

External
SRAMs

Bank 0
Bank 1 Bank 3

Bank 2

Send/
rec

modulus

Low
pass
filter

IIR
temporal

filter

FIR
spatial

filter

Steering
stage

Taylor

expansion
Quotient

stage

SW

Basic architecture

Extended architecture

Host module

Customizable FPGA core

Figure 4: Scheme of the two architectures working with an asynchronous pipeline.

for n orientations until order m in x. Nevertheless, in the
extended architecture we must keep resources for the next
stages, removing some contributions and parallelizing the
processing scheme in discrete groups, which replace the
whole group entirely concurrently. For instance, the steering
stage is performed with fewer terms and with reduced
parallelization level, requiring almost the double of cycles.
Applying this strategy of keeping enough resources in the
prototyping board, we can extend the model to additional
stages. We can see in Figure 4 the global codesign scheme and
the two architectures involved, representing the transactions
between external RAM (grey blocks) and the stages. The stage
corresponding to IIR filter has to keep 3 frames using the
bank number one, the steering stage reads the orientation
weights from bank number three, and the send/receive
modulus connects the input/output data between the FPGA
and the host system via the PCI bus using DMA transfer.
Figure 5 shows the performance for the whole systems using
chained stages, attending to the pixel/seconds processed,
concluding that it is possible to compute 177 frames/second
with a resolution of 128× 96 pixels in the basic architecture,
and 37.9 frames/second for the extended architecture.

5.3. Quality of the Results

An accuracy analysis has been carried out, being possible to
examine the quality of the results under different transfor-
mations and metrics, as we can see in Figure 6. The phase
and modulus metrics (difference between values) show a
good behavior regarding the implementation changes, while
Barron’s metric seems to go well keeping the proportion
accuracy under changes, but Galvin and Galvin perpendic-
ular metrics suffer with the implementation change from
SW to HW. It is due to the nature of the metric, which
gives an idea about how the algorithm copes with the
Aperture Problem [8], this topic being discussed in previous

I, II, III,
IV, V

I, II,
III, IV

I, II, IIII, IIIBlur

Chained stages

0

10

20

30

40

50

60

F
re

q
u

en
cy

(M
h

z)

0

2

4

6

8

10

12

14
×103

ISE tool frequency

Applied frequency

Basic architecture

Extended architecture

Performance versus stages

(K
p

p
s)

Figure 5: Throughput of the pipeline (Kpps) and frequency
corresponding to basic and extended architectures.

work [14]. Despite restricting every version in terms of
precision parameters one step further until finally taking
the extended architecture, in general the error values are
delimited reasonably.

5.4. Some Visual Results

Figure 7 shows some visual results corresponding to different
versions of our system, concretely SW versus HWbas. It can
be noted that while the SW version keeps a calculus density
close to 100% (middle row in Figure 7), HWbas loses some
points due to precision bit width (bottom row in Figure 7),
that is, the bit number of the parameters in each stage. The
input sequence, called diverging tree (upper row in Figure 7)
has a divergent structure where the modulus is supposed
to vary poorly and the phase is changing regularly over
360◦. Since we are working with synthetic sequences, we can
estimate the error without any ambiguity. Also we have used

International Journal of Reconfigurable Computing 7

Barron’s
metric

Galvin’s
metric

Galvin’s
normal
metric

Phase
metric

Modulus
metric

0

1

2

3

4

5

6

7

8

9

10

R
at

io

Basic architecture to extended

Software to basic architecture

Error metric SW versus to HW

Figure 6: Quality of different implementations.

Figure 7: Some visual results corresponding to the software version
versus the basic architecture (diverging tree sequence). Left hand
indicates velocity modulus and right hand velocity phase.

Table 4: Summary of the different implementations for the
Yosemite sequence. NP means not provided.

Models
Average

error
Standard
deviation

Density

Described here (HWbas) 5.5◦ 12.3 100%

Described here (HWext) 7.2◦ 11.1 100%

Described here (HWext) 6.1◦ 6.2 60%

Described here (HWext) 4.3◦ 3.1 20%

Dı́az et al. [21] 18.30◦ 15.8◦ 100%

Dı́az et al. [22] 7.6◦ NP <55%

Martı́n et al. [25] NP NP <50%

the translating tree sequence, where modulus is changing
from left to right and the phase is practically almost the same.

6. Comparison with other Approaches

There are other gradient optical flow models implemented
in hardware [21, 22], belonging to the Lucas and Kanade
algorithms [23] and to Horn and Schunk approximations
[24, 25], while in Table 4 we can see the average error for dif-
ferent metrics, although only we compare the Barron’s metric
since the cited authors do not provide other measurements.

Attending to the errors, our implementation provides
better results than the other approaches, even with cal-
culation density 100%. Nevertheless, the final results are
improved if the points where the scene structure changes,
that is, points smaller than a determinate temporal deriva-
tive, are filtered. This is caused by a least squares process
being performed at the end of the algorithm for calculating
the modulus and the phase final values. The points filtered
would force the slope of the linear regression to be very small,
with the value of velocity is almost null.

Regarding throughput, we are able to calculate more
than 2000 Kpixel/s in the basic Architecture and about
1000 Kpixel/s in the extended. It would locate our imple-
mentation between those in [23, 26], enough for real-time
purposes, although it could be improved using a board
with more resources that is used here and increasing the
parallelism level.

The error using the diverging and translating tree
sequences [17] is shown in Figure 7, and it is obtained with
different metrics regarding the expressions (12)-(13).

7. Conclusion

We have developed an FPGA-based implementation of a
bioinspired robust motion estimation system with an asso-
ciated complexity higher than those found in other gradient-
based models commonly used in the literature. The study
of precision calibrates the model and adjusts the bit width
needed for keeping a tradeoff solution between accuracy and
efficiency, acting as a bridge between software and hardware
and estimating the cost to convert every stage from floating
to fixed point. Taking the results from this precision study,
different hardware moduli have been designed, organizing

8 International Journal of Reconfigurable Computing

this in two high parallelized architectures. The first one,
referred to as basic architecture and common to optical flow
gradient models, is a superconvolutive processor orientated
along multiple angles. It could be used as a starting point for
many computer vision algorithms, not necessarily restricted
to the motion estimation field, like change detection, stereo,
or even biometry techniques such as real-time signature
recognition. The second architecture, called extended, is
focused in the Mutichannel Gradient Model, and includes
the truncated Taylor expansion representation of space tem-
poral information of the scene, its three differentiates respect
space and time, and the quotients of the products of these last
functions. The rest of the stages, called velocity primitives,
corresponding to the expressions (8)-(9) are performed in
software in the framework of a codesign process, where
the final modulus value is a quotient of determinants and
the final phase is an arctangent. This extension can be
implemented using a board with more resources than the
VIRTEX 2000 E and, depending on the accuracy required,
using a structure based on LUTs or implementing a CORDIC
core. Both architectures are scalable and modular, and also
extensible to one device with more resources that our
prototyping platform.

Additionally, the resources consumed have been eval-
uated as well as the throughput and the accuracy of the
designed coprocessors. All models come forward with asyn-
chronous segmented architectures (micropipelines). Regard-
ing quality, the average error has been compared using
Barron’s metric, since other authors do not provide results
with other metrics; also the throughput of the design has
been compared with other implementations. This work
generates dense optical flow maps up to 80 frames/second
and 185 frames/second for a resolution of 128 × 96 in the
extended and basic architectures, respectively. The present
contribution opens the door to embed complex bioinspired
systems that require a huge quantity of computation. We are
currently improving the system to extend the model to a fully
stand alone platform also to deal with stereo vision. Several
application fields are though to use it, such as motion illusion
detection or video compression.

Acknowledgments

This work was partially supported by Projects TEC2007-
68074-C02-01/MIC, TIN2005-05619-2004-07032 (Spain),
EU Project DINAM-VISION (DPI2007-61683), and an
EU “Marie Curie” Fellowship (QLK5-CT-1999-50523). The
authors would like to thank the anonymous reviewers for
their insightful suggestions and Professor Johnston and Dr.
Dale, from the Vision Group at University College London,
for their help and support during this research.

References

[1] C. Mead, “Neuromorphic electronic systems,” Proceedings of
the IEEE, vol. 78, no. 10, pp. 1629–1636, 1990.

[2] C. Mead, Analog VLSI and Neural Systems, Addison-Wesley,
Reading, Mass, USA, 1989.

[3] H.-S. Oh and H.-K. Lee, “Block-matching algorithm based
on an adaptive reduction of the search area for motion
estimation,” Real-Time Imaging, vol. 6, no. 5, pp. 407–414,
2000.

[4] C.-L. Huang and Y.-T. Chen, “Motion estimation method
using a 3D steerable filter,” Image and Vision Computing, vol.
13, no. 1, pp. 21–32, 1995.

[5] S. Baker and I. Matthews, “Lucas-Kanade 20 years on:
a unifying framework,” International Journal of Computer
Vision, vol. 56, no. 3, pp. 221–255, 2004.

[6] B. McCane, K. Novins, D. Crannitch, and B. Galvin, “On
benchmarking optical flow,” Computer Vision and Image
Understanding, vol. 84, no. 1, pp. 126–143, 2001.

[7] H. Liu, T.-H. Hong, M. Herman, T. Camus, and R. Chellappa,
“Accuracy vs efficiency trade-offs in optical flow algorithms,”
Computer Vision and Image Understanding, vol. 72, no. 3, pp.
271–286, 1998.

[8] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance
of optical flow techniques,” International Journal of Computer
Vision, vol. 12, no. 1, pp. 43–77, 1994.

[9] A. Johnston and C. W. G. Clifford, “A unified account of three
apparent motion illusions,” Vision Research, vol. 35, no. 8, pp.
1109–1123, 1995.

[10] A. Johnston and C. W. G. Clifford, “Perceived motion of
contrast-modulated gratings: predictions of the multi-channel
gradient model and the role of full-wave rectification,” Vision
Research, vol. 35, no. 12, pp. 1771–1783, 1995.

[11] A. Johnston, P. W. McOwan, and C. P. Benton, “Robust
velocity computation from a biologically motivated model of
motion perception,” Proceedings of the Royal Society B, vol.
266, no. 1418, pp. 509–518, 1999.

[12] P. W. McOwan, C. Benton, J. Dale, and A. Johnston, “A multi-
differential neuromorphic approach to motion detection,”
International Journal of Neural Systems, vol. 9, no. 5, pp. 429–
434, 1999.

[13] A. Johnston, P. W. McOwan, and C. P. Benton, “Biological
computation of image motion from flows over boundaries,”
Journal of Physiology-Paris, vol. 97, no. 2-3, pp. 325–334, 2003.

[14] G. Botella, Robust optical flow implementation in reconfigurable
hardware, Ph.D. thesis, University of Granada, Granada,
Spain, 2007, ISBN 978-84-338-4381-4.

[15] G. Botella, E. Ros, M. Rodrı́guez, A. Garcı́a, and S. Romero,
“Pre-processor for bioinspired optical flow models: a cus-
tomizable hardware implementation,” in Proceedings of the
13th IEEE Mediterranean Electrotechnical Conference (MELE-
CON ’06), pp. 93–96, Málaga, Spain, May 2006.

[16] G. Botella, E. Ros, M. Rodrı́guez, and A. Garcı́a, “Bioinspired
robust optical flow in a FPGA system,” in Proceedings of the
32nd EUROMICRO Conference on Software Engineering and
Advanced Applications (EUROMICRO-SEAA ’06), Dubrovnik,
Croatia, August-September 2006.

[17] The input sequence was created by David Fleet at Toronto
University and can be obtained from: ftp://ftp.csd.uwo
.ca/pub/vision/TESTDATA.

[18] Handel-C Languaje reference manual and DK tool. Celoxica
company, 2007.

[19] AlphaData RC1000 product, 2006, http://www.alpha-data
.com/adc-rc1000.html.

[20] “Timing Analysis and Optmization of Handel-C designs for
Xilinx chips,” Celoxica application note AN 68 v1.1, 2005.

[21] J. Dı́az, E. Ros, F. Pelayo, E. M. Ortigosa, and S. Mota, “FPGA-
based real-time optical-flow system,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 16, no. 2, pp.
274–279, 2006.

International Journal of Reconfigurable Computing 9

[22] J. Dı́az, E. Ros, R. Rodriguez-Gomez, and B. del Pino, “Real-
time architecture for robust motion estimation under varying
illumination conditions,” Journal of Universal Computer Sci-
ence, vol. 13, no. 3, pp. 363–376, 2007.

[23] B. D. Lucas and T. Kanade, “An iterative image registration
technique with an application to stereo vision,” in Proceedings
of DARPA Image Understanding Workshop, pp. 121–130,
Washington, DC, USA, April 1981.

[24] B. K. P. Horn and B. G. Schunck, “Determining optical flow,”
Artificial Intelligence, vol. 17, no. 1–3, pp. 185–203, 1981.

[25] J. L. Martı́n, A. Zuloaga, C. Cuadrado, J. Lázaro, and U.
Bidarte, “Hardware implementation of optical flow constraint
equation using FPGAs,” Computer Vision and Image Under-
standing, vol. 98, no. 3, pp. 462–490, 2005.

[26] Z. Wei, D.-J. Lee, and B. E. Nelson, “FPGA-based real-time
optical flow algorithm design and implementation,” Journal of
Multimedia, vol. 2, no. 5, pp. 38–45, 2007.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

