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ABSTRACT

Driven by the increasing significance of artificial intelligence, the field of neuromorphic (brain-inspired) photonics is attracting increasing
interest, promising new, high-speed, and energy-efficient computing hardware for key applications in information processing and computer
vision. Widely available photonic devices, such as vertical-cavity surface emitting lasers (VCSELs), offer highly desirable properties for pho-
tonic implementations of neuromorphic systems, such as high-speed and low energy operation, neuron-like dynamical responses, and ease of
integration into chip-scale systems. Here, we experimentally demonstrate encoding of digital image data into continuous, rate-coded, up to
GHz-speed optical spike trains with a VCSEL-based photonic spiking neuron. Moreover, our solution makes use of off-the-shelf fiber-optic
components with operation at telecom wavelengths, therefore making the system compatible with current optical network and data center
technologies. This VCSEL-based spiking encoder paves the way toward optical spike-based data processing and ultrafast neuromorphic vision
systems.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0048674

I. INTRODUCTION

In recent years, the fields of artificial intelligence (AI) and
machine learning (ML) have been growing rapidly, fueling the
interest and research efforts in unconventional, “beyond von
Neumann” computing hardware. Neuromorphic computing is
among these promising new approaches, taking inspiration from
the extraordinary computational power of the human brain. Neuro-
morphic (brain-inspired) systems aim at processing information by
reproducing the massively parallel architecture and dynamics and
signaling observed in the neuronal networks in the brain. Current
neuromorphic computing platforms include, among others, Loihi
by Intel,1 SpiNNaker by the University of Manchester,2 TrueNorth
by IBM,3 Akida by BrainChip,4 and BrainScaleS by the University of
Heidelberg.5 These platforms exhibit a varying degree of biological
plausibility and hold great promise for efficient operation of
AI algorithms or computational neuroscientific models.6 There
is also a wide range of novel experimental technologies that
can power neuromorphic systems, including memristors7,8 and

nano-oscillators,9,10 among others. Besides the aforementioned
fully electronic approaches, photonic realizations of neuromorphic
hardware are attracting increasing interest, given the key inher-
ent advantages of optical systems.11 Examples of these include
signaling via optical pulses that have non-interacting bosonic
nature and allow for both low-loss, high-speed waveguiding and
wavelength-division multiplexing, which allows us to increase com-
munication capacity. Photonic devices can also operate at very high
frequencies, can exhibit the nonlinear dynamical responses required
for neuromimetic information processing, and offer promising
prospects for low power, energy-efficient operation. A wide array
of photonic devices is currently being investigated for neuromor-
phic architectures. These include micropillar lasers,12 distributed
feedback lasers,13,14 electro-optic modulators,15 micro-ring res-
onators with phase change materials,16 Kerr microcomb sources,17

quantum-dot lasers,18 hybrid resonant tunneling diode circuits,19–21

superconducting Josephson junctions,22 or coherent meshes
of Mach–Zehnder modulators (MZM).23 Among the available
photonic technologies for light-powered neuromorphic processing

APL Photon. 6, 060802 (2021); doi: 10.1063/5.0048674 6, 060802-1

© Author(s) 2021

https://scitation.org/journal/app
https://doi.org/10.1063/5.0048674
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0048674
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0048674&domain=pdf&date_stamp=2021-June-2
https://doi.org/10.1063/5.0048674
http://orcid.org/0000-0003-4493-9426
http://orcid.org/0000-0001-6316-5265
http://orcid.org/0000-0003-2605-6494
http://orcid.org/0000-0002-2575-3151
http://orcid.org/0000-0002-4448-9034
mailto:antonio.hurtado@strath.ac.uk
https://doi.org/10.1063/5.0048674


APL Photonics ARTICLE scitation.org/journal/app

systems, VCSELs (vertical-cavity surface emitting lasers) are gath-
ering significant research interest due to their mature fabrication
technology and favorable inherent attributes (such as low-power
and high-speed operation, reduced costs, and compactness). Recent
experimental24–26 and numerical27,28 works have reported that
commercially available VCSELs and VCSELs with integrated sat-
urable absorbing regions are capable of eliciting controllable spiking
responses and exhibit behavior analogous to the leaky integrate-
and-fire (LIF) neuronal model.29 Crucially, VCSELs also exhibit
the capability of information representation using spiking rate
coding,30 as observed in certain classes of biological neurons. This
functionality yields them as a promising solution for interfacing and
conversion of data into a suitable spike-based representation, a key
challenge in the field of neuromorphic engineering.31

One of the domains where neuromorphic approaches are
attracting growing interest is event-based computer vision systems.
These offer many attractive features, such as low power consump-
tion due to the sparse, low redundancy information representation
via events (spikes) and high temporal resolution with continuous
response, all while not suffering from drawbacks such as motion
blur.32 These systems readily yield themselves for combination with
deep learning approaches,33 convolutional neural networks,34 and
spiking neural networks35 for fast, efficient computer vision solu-
tions. While there is a growing appeal for photonic neuromorphic
computing, the suitability of optical brain-inspired spiking hard-
ware for computer vision remains a mostly unexplored territory.
The human eye features two types of photosensitive cells, cones and
rods, which convert the incoming visual stimuli into electric sig-
nals that are transmitted to neurons in the retina and the inner
brain for processing and interpretation. The former have fixed wave-
length range operation, whereas the latter are more sensitive to light
intensity. In this work, we propose a system using a single VCSEL
operating as a spiking photonic neuron, which emulates the opera-
tion of a cone cell. We demonstrate that the VCSEL-neuron is able
to encode the R/G/B color channel intensity from a spatial area of
interest (a camera pixel) into a continuous train of spikes, where
the color component intensity dictates the spiking rate. Moreover,
using time-division multiplexing (TDM) techniques, we are able to
process (at different time instants) complex greyscale (GS) and RGB-
color source images with a large number of pixels using just one
VCSEL-neuron. Therefore, this work experimentally demonstrates
a highly hardware-friendly neuromorphic photonic system for the
spiking representation of standard digital images, where the pixel
values of each color channel are encoded into rate-coded optical
spike trains. Furthermore, our implementation uses an off-the-shelf
VCSEL and fiber-optic components operating at the standard tele-
com wavelength of 1310 nm, therefore making our approach fully
compatible with optical communication networks and data center
technologies. The reported system offers enticing prospects for oper-
ation as an input layer device in future photonic spiking neural net-
work architectures for light-enabled machine learning and artificial
intelligence hardware.

II. METHODS

The VCSEL-based photonic neuron operates as an analog,
coherent optical device. The information input is provided as an
intensity-modulated light signal from an external laser source.

The input data (R/G/B digital images) are pre-processed prior to
injection into the VCSEL-neuron, as shown in Sec. II A. The VCSEL-
neuron encodes the pixel values into a spike-based representa-
tion, which is later reconstructed following the steps described in
Sec. II B. Finally, the optical setup used to operate the VCSEL-
neuron is described in Sec. II C. In a fully parallelized realization
of a neuromorphic vision system, a single VCSEL-neuron would
be used to encode the information of a single color pixel of the
input image. For such an implementation, the number of required
VCSEL-neurons (3 ⋅ N2 VCSEL-neurons in the input layer for RGB
square images with size N ×N) grows very quickly even for small
image sizes. Instead, we take the approach of sequentially process-
ing the pixels by means of time-division multiplexing (TDM). This
allows us to dramatically reduce the number of required VCSELs
to just a single device. Therefore, using this technique, we are able
to deliver a neuromorphic photonic system for spike-based image
data encoding, benefiting from a hardware-friendly implementation
while yielding high operational speeds for image encoding func-
tionalities. For future larger-scale implementations of neuromorphic
photonic systems, integrated VCSEL arrays36 offer the promise of
network scalability and parallelized operation.

A. Pre-processing of the image data for in-VCSEL
spike encoding

In this work, the VCSEL-neuron encodes pixel information
from digital images into spike trains. Multi-channel RGB images
can be split into individual color channels, where each channel can
be processed independently either serially by implementing time-
division multiplexing step or in parallel using individual VCSEL-
neurons for each color channel. Here, all the inspected color chan-
nels are processed serially to allow for the use of a single VCSEL-
neuron for the processing of the complete color information. A sin-
gle color channel of the image is represented as an N ×N array of
independent pixel values with standard eight-bit depth of pixel data.
The pixels in the single-channel array are serialized to enable pro-
cessing with a single VCSEL-neuron device, thus critically reducing
the required experimental system complexity. The pixel serialization
process is realized either on a row-by-row basis or using randomized
processing order, where the n pixels are shuffled before injection into
the VCSEL-neuron. Each of the n pixels is time multiplexed using a
fixed time period T ≙ TP + T0, referred to, in this work, as a single
cycle. During this cycle, single input pixel information is injected
into the VCSEL-neuron in the form of square wave shaped power
drop with temporal length TP, followed by a quiescent “zero” state
for the remaining time period T0 (effectively realizing a return-to-
zero coding scheme). In the power drop, the amplitudeAn represents
the pixel color intensity. The mapping between each pixel value Pn

and its respective drop amplitude An is linear across the non-zero
values, where the min–max range of the produced waveform cor-
responds to the available digital-to-analog converter (DAC) range.
Pixel values Pn ≙ 0 are assigned as An ≙ 0. For eight-bit pixel values,
the mapping can be described as

An ≙

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 if Pn ≙ 0,
1
255
⋅ (1 − b) ⋅ Pn + b if Pn ≠ 0,

(1)
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where b sets the baseline value of the linear mapping for non-zero
pixel values. In this work, we selected b ≙ 0.4. This mapping was
selected to achieve a fully injection-locked dynamical state of the
VCSEL-neuron for zero (dark) pixel values and a gradually increas-
ing perturbation depth for all non-zero pixel color values. This can
be considered as a basic model of a neuromorphic vision system
studied over time period [0, T]. In this model, a single cycle of length
T represents the behavior of a photodetector (PD) (or a single-pixel
camera) exposed to constant light intensity during [O,TP], while
subject to darkness (P ≙ 0) otherwise. The electric output of the pho-
todetector is then processed by the VCSEL-neuron into a rate-coded
train of spikes in the optical domain. Without light exposure, the
detector receives no signal and the spiking neuron remains quiescent
[Fig. 1(c)].

B. Reconstructing the images from spike counts

The temporal evolution of the system plays a crucial role for
representation of information in spiking neural networks. There-
fore, a 2D pixel array response over a given time period would
ideally require a 3D visualization. For simplicity, we instead show
the response of each individual pixel (a single cycle) as a 2D tem-
poral map. In each of the n recorded cycles, the produced spikes
are counted as individual events that cross a given measurement
threshold value, returning the cycle spike counts cn. Every channel
is injected into the VCSEL multiple times under the same set of con-
ditions to obtain an average spike count value cn, delivering a clearer
representation of the system’s response. The average spike count is
converted into an average spiking rate as rn ≙ cn

TP
. The averaging step

is performed over multiple independent encoding trials. This value
is normalized by the maximum measured spiking rate in the image
max(rn) and directly converted into a component intensity value
for given pixel as Pn ≙

rn
max(rn)

. In the final step, the reconstructed
pixel intensity values Pn are assigned to their original positions in

the image pixel array, creating a direct reconstruction of the source
image.

C. Experimental setup for injection-locked
VCSEL-neuron

The experimental setup of this work is shown in Fig. 1(a). The
setup consists of off-the-shelf fiber-optic components, where a com-
mercially available telecom-wavelength (1310 nm) VCSEL is used to
implement the photonic spiking neuron. The VCSEL is operated
at a constant temperature of 298K and with an applied bias cur-
rent of I ≙ 5 mA well above the device’s lasing threshold current
(Ithr ≙ 2.9 mA). The VCSEL’s spectrum [shown in Fig. 1(b)] reveals
a characteristic two-peak emission that corresponds to the two
orthogonal polarizations of the main transverse mode of the device.
These are referred to as parallel (the main lasing peak, at λy) and
orthogonal (the subsidiary attenuated peak, at λx) polarized modes.
TheVCSEL used in this work does not exhibit polarization switching
(PS) with applied bias current.

The operation of the VCSEL-neuron relies on coherent injec-
tion locking of one of the VCSEL’s polarized modes to an intensity-
modulated signal from an external tunable laser source (TL, San-
tec TSL210V), representing the information (image data) input to
the system. The intensity of the tunable laser light represents the
image pixel information input to the VCSEL-neuron. We want to
emphasize that the VCSEL used in this work as an artificial spik-
ing photonic neuron is a commercially sourced, inexpensive device
operating at the standard telecom wavelength of 1310 nm. No mod-
ifications of any kind to the factory design were implemented.
In this work, we injected the external light signal (encoded with
image information) in the subsidiary orthogonally polarized mode
to achieve the characteristic high-speed spiking operation. Light
intensity modulation is realized with a 10GHzMach–Zehnder mod-
ulator (MZM) controlled by RF signals generated with a 12 GSa s−1

FIG. 1. (a) Diagram of the VCSEL-
neuron experimental setup:
TL—tunable laser, ISO—optical
isolator, VOA—variable optical atten-
uator, PC—polarization controller,
50/50—optical splitter, PM—optical
power meter, CIRC—optical circulator,
OSA—optical spectrum analyzer,
PD—photodetector, RT OSC—real-time
oscilloscope, and AWG—arbitrary wave-
form generator. (b) Optical spectrum
of the VCSEL used in this work (I = 5
mA, T = 298 K), here without optical
injection. The two modes are referred
to as λy (parallel) and λx (orthogonal).
The two dashed lines show the spectra
recorded through a polarization beam
splitter to reveal the subsidiary mode
in greater detail. (c)–(e) show the laser
intensity output as recorded on the
photodetector during the (c) quiescent
injection-locked state, (d) activation of a
single spike, and (e) continuous spiking
regime.
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arbitrary waveform generator (AWG, Keysight M8190A). Amplifi-
cation of the electric modulation signal is provided by a 10 dBm
wide bandwidth amplifier (Mini-Circuits ZX60-14012L-S+). First,
the externally injected signal from the TL signal passes through an
optical isolator (ISO) to ensure unidirectional coupling. The signal
is attenuated with a variable optical attenuator (VOA) and polar-
ization matched to the MZM using a polarization controller (PC).
The operation point of the MZM is set to a working point between
the quadrature and the peak, where the electric modulation results
in optical power drops while preserving the full dynamic range and
approximately linear response with high output power. The modu-
lated optical signal is polarization matched to one of the polarized
modes of the VCSEL (here, into the orthogonally polarized mode
at λx) and injected into the laser through a 50:50 optical coupler
and an optical circulator (CIRC). The second coupler branch is used
to record the average injection power Pinj using an optical power
meter (PM). The input signal wavelength is shifted with respect to
the λx mode by an initial frequency detuning δ f . The detuning and
injection power allow for adjustments of the spiking threshold in
the VCSEL-neuron, with higher detuning and lower power values
decreasing the threshold distance from the quiescent state (where
the VCSEL is injection locked to the external injection). Input stim-
uli (power drops) that are strong enough to push the system out of
the injection locking regime result in the VCSEL-neuron respond-
ing with fast (sub-nanosecond) optical spiking responses, including
single spikes37 [Fig. 1(d)] and continuous spike trains30 [Fig. 1(e)].
Following the behavior of excitable systems, the spike shape does
not depend on the input perturbation and only requires the per-
turbation (drop) to cross the spiking threshold. However, during
continuous modulation, the spiking frequency is a function of mod-
ulation amplitude. The detuning and power values used through
this work (indicated in the figure captions) were found experimen-
tally based on values used in previous works (see Refs. 30 and 38).

The VCSEL output passes through the circulator into a 50:50 cou-
pler for analysis using an optical spectrum analyzer (OSA) and a 13
GHz real-time oscilloscope (RT OSC). For the oscilloscope readout,
the optical signal is converted using a 9GHz amplified photode-
tector (PD, Thorlabs PDA8GS). The modulated signal injected into
the VCSEL-neuron is recorded from the power-meter (PM) branch.
The response of the VCSEL-neuron is then recorded and time
de-multiplexed to retrieve responses corresponding to individual
serialized pixels.

III. RESULTS AND DISCUSSION

To assess the viability of the VCSEL-neuron for encoding pixel
color intensity information into optical spike trains, we investigate
its operation using multiple input digital images. We use a single-
channel grayscale (GS) image containing a vertical gradient, a two-
channel RB image containing a two-color (red-to-blue) diagonal
gradient, and a complex, 32 × 32 pixel RGB image.

A. Grayscale (GS) and red–blue (RB) images

The source images, individual channels, and corresponding
input modulation waveforms for the grayscale (GS) image and red
(R) and blue (B) channels in the RB image are shown in Fig. 2.
Figure 3 provides the experimentally measured results for the verti-
cal GS gradient image. The input modulation waveform, shown for
the GS image in Fig. 2(c), carries the pixel values in the amplitude
of negative pulses with temporal duration Tp ≙ T0 ≙ 60 ns, result-
ing in a total encoding time of 7.68 μs. For this measurement, the
frequency detuning was δ f ≙ −6.29GHz and injected power was
Pinj ≙ 182.3 μW. Based on themapping formula shown in Eq. (1), the
first eight black pixels encode into zero amplitude power drops (no
drops), keeping the VCSEL-neuron in a quiescent state. As the pixel

FIG. 2. Pre-processing of the input image data to be injected into the VCSEL-neuron for subsequent rate-spike information encoding. The process is illustrated for a GS
vertical gradient image (a)–(c) and the two color channels: R (d)–(f) and B (g)–(i) in a composite, two-channel (RB) diagonal gradient image.
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FIG. 3. Spike-rate encoding of a GS image with a VCSEL-neuron: (a) For each of the 64 pixels (cycles) in the 8 × 8 GS image, the pixel intensity is encoded in the
magnitude of the input perturbation (power drop) added to the optical signal injected into the VCSEL-neuron, with estimated spiking threshold (Test ) highlighted as a red
line. (b) Experimentally measured temporal maps, showing the VCSEL-neuron’s temporal response to 64 consecutive measurement cycles of Tp = 60 ns (T0 interleave
period is omitted); each blue dot in the map indicates a spike firing event from the VCSEL-neuron. (c) Calculated average spiking rates for each cycle (pixel). (d) Spiking
rate produced by the VCSEL-neuron as a function of input perturbation strength (drop amplitude).

intensity gradually changes from black (0) to white (255), the ampli-
tude of the injected modulated power drops increases, pushing the
VCSEL-neuron beyond the spiking activation threshold into the
continuous spiking regime. The approximate spiking threshold is
illustrated as a red solid line in Fig. 3(a). The response for the GS
modulation case is shown in the temporal map in Fig. 3(b), where
each row in the map corresponds to the response to a single given
pixel in the GS image. The major gridlines in the map in Fig. 3(b)
separate groups of eight processed pixels, hence visualizing each
individual row of the 8 × 8 pixel image. In the case of the GS image,
all eight pixels in a given row have an identical value and should
therefore produce equivalent spiking rates. Similar to the stochas-
tic nature of certain biological neurons, where spike firing can be
considered as governed by Poisson statistics,39 the individual spik-
ing events can appear at random instants while still correctly repre-
senting the input GS image data in the average spiking rate, which
increases monotonically with the input pixel intensity.30 This is illus-
trated in both the increasing density of the events (spikes) in the
temporal map of Fig. 3(b) and the increase in the measured spiking
rate shown in Fig. 3(c). Specifically, the spiking rates in Fig. 3(c) are
obtained by averaging the rates from nmeas ≙ 3 independent oscillo-
scope readouts taken for the same GS image input under the same
operating conditions. The different colors used in Fig. 3(c) highlight
the spiking rates produced by the pixels from each individual row
in the image. Figure 3(d) shows the relation between the amplitude
of the injected optical power drops encoding the pixel GS inten-
sity and the corresponding average spiking rate from the VCSEL-
neuron, clearly confirming a monotonically increasing trend. Note
that for certain pixels at the start of the rows [see, for instance,
rows depicted in purple, pink, and green in Fig. 3(c)], we observed a
sudden, higher-than-expected spiking rate that gradually decreases
toward a constant value. We believe this transient effect is due to the
stateful (memory exhibiting) nature of the VCSEL-neuron, where
the response to an incoming perturbation depends on the previ-
ous state of the device. This is in agreement with earlier reports on

the leaky integrate-and-fire (LIF) functionality in VCSEL-neurons.29

High degree of consistency was observed among the readouts used
for the averaging, confirming that the VCSEL-neuron can process
input images reliably in a single shot fashion.

To demonstrate the optical spike encoding of multi-channel
images with the VCSEL-neuron, we processed the red–blue (RB)
diagonal gradient image shown in Fig. 2. The individual red (RB-
R) and blue (RB-B) image channels and their corresponding input
waveforms are shown, respectively, in the middle (d)–(f) and bot-
tom (g)–(i) rows of Fig. 2. The frequency detuning set for both the
RB-R and RB-B channels was equal to δ f ≙ −5.59GHz, while the
injected power was set to Pinj ≙ 115.6 μWand Pinj ≙ 128.4 μW for the
RB-R and RB-B channels, respectively. Each individual pulse (repre-
senting single-pixel information) in both modulation waveforms for
the RB-R and RB-B channels has a set temporal length Tp ≙ 60 ns
with a return-to-zero period of T0 ≙ 30 ns, resulting in an encoding
time of 5.76 μs per a single iteration of a channel. For both RB-R
and RB-B cases, the VCSEL-neuron is able to successfully encode
the pixel intensity of each color channel into the average spiking
rate. Notably, we can again observe the short-term memory of the
VCSEL-neuron influencing the continuous spiking responses, with
low-to-high transitions in the RB-R channel causing over-firing with
higher-than-expected spiking frequency, while high-to-low transi-
tions in the RB-B channel do not exhibit such an effect. Therefore,
abrupt, high-amplitude incoming stimuli, arriving after a quies-
cent or a low spiking rate state, can cause an accentuated response
with an increased spiking frequency output. This functionality could
hold further promise for spike-based signaling of rapidly changing
events.

To verify the resulting encoded images obtained from the
VCSEL-neuron, we have directly reconstructed the source images
from the average spiking rates shown in Figs. 3(c), 4(c), and 4(g).
Figure 5 shows the composites and individual channels for both the
GS and RB images, with source images shown in the top row and
reconstructed images shown in the bottom row. For all considered
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FIG. 4. Spike-rate encoding of the RB diagonal gradient source image. Results are presented for the individual RB-R (a)–(d) and RB-B (e)–(h) color channels: (a) and (e)
For each of the 64 pixels (cycle) in the 8 × 8 RB-R (a) and RB-B channels (e) in the RB diagonal source image, the pixel intensity is encoded in the magnitude of the
input perturbation (power drop) added to the optical signal injected into the VCSEL-neuron, with estimated spiking threshold (Test ) highlighted as a red line. (b) and (f)
Experimentally measured temporal maps in the 8 × 8 RB-R (b) and RB-B channels (f), showing the VCSEL-neuron’s temporal response to 64 consecutive measurement
cycles (1 per pixel) of Tp = 60 ns (T0 interleave period is omitted). Each blue dot in the map indicates a spike firing event from the VCSEL-neuron. (c) and (g) Calculated
average spiking rates for each cycle (pixel) in the 8 × 8 RB-R (c) and RB-B channels (g). (d) and (h) Spiking rate produced by the VCSEL-neuron as a function of input
perturbation strength (drop amplitude) in the 8 × 8 RB-R (d) and RB-B channels (h).

FIG. 5. Comparison of source color channels (upper row) and channels directly
reconstructed from the spike rates (lower row). Both single grayscale channel (left)
and individual R/B channels including the composite RB image (right) show good
mutual agreement.

cases, both the individual channels and composite images show very
good overall agreement, clearly preserving the color gradients.

B. Complex RGB image

Furthermore, we have also investigated the processing of
larger-scale full-color images using a 32 × 32 pixel RGB image
with more complex features. The pixels are processed in a
fixed randomized order, where the same order was used for
all three color channels. The input waveform pulse parame-
ters were Tp ≙ 53.3 ns and T0 ≙ 26.6 ns, resulting in 81.9 μs
single-channel processing time. The frequency detuning was set
to δ f ≙ −4.9GHz for RGB-R, δ f ≙ −4.9GHz for RGB-G, and
δ f ≙ −5.25GHz for RGB-B. The injected power was set to
Pinj ≙ 120.9 μW for RGB-R, Pinj ≙ 119.6 μW for RGB-G, and Pinj

≙ 121.5 μW for RGB-B. The spike trains were reconstructed using
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FIG. 6. Experimentally obtained spiking rates vs input pixel values. Results are shown for all the processed color channels: (a) red (R), (b) green (G), and (c) blue (B). Each
color dot in the plots corresponds to an individual processed pixel. Mean values per each individual pixel value are shown as black dots, with error bars corresponding to
single standard deviation. The dashed line connects the calculated average spiking rate values and is considered as a tone curve of the system.

the same methodology as previously used for the GS and RB images
in Figs. 3 and 4. Due to the high number of processed pixels
(n ≙ 322 ≙ 1024), the modulation waveform and temporal maps are
omitted from the depicted results for this case. The response spiking
frequencies as a function of input pixel values for the three channels
(R/G/B color) are shown as color dots in Fig. 6. The latter also shows
themean spiking rate and the standard deviation for each set of equal
pixel values with number of occurrences nocc > 3. The dashed curve
connecting themean spiking rate values is considered as a tone curve
of the system. The mean values in Fig. 6 exhibit a clear, monotoni-
cally increasing relation between the source value and the produced
spiking rate. The source and reconstructed images for the individ-
ual color channels (R, G, and B) and the composite RGB image are
included for comparison in Fig. 7, showing again very good over-
all agreement. The degree of variance observed in the plots in Fig. 6
(and the color noise observed in the reconstruction in Fig. 7) can
be attributed to the random pixel addressing process, which dis-
tributes the memory-induced transient rate increase effect across
the image. The reconstructed composite image, combining all the

FIG. 7. Comparison between the source (upper row) and reconstructed (lower row)
images for the individual color channels R/G/B (left plots) and the composite, full
color RGB image (right plots). The contrast of the individual reconstructed chan-
nels and directly reconstructed composite image was adjusted to better match to
the source images and allow for a clearer comparison.

independently processed R/G/B channels, is in good agreement with
the source and preserves the key features from the original image.

IV. CONCLUSIONS

This work demonstrates that a VCSEL-based photonic spik-
ing neuron can be used to encode digital image data into optical
spike trains with variable spike firing rates, therefore exhibiting the
behavior of certain biological neurons at speeds that are multiple
orders of magnitude faster. We use this functionality to rate-encode
and reconstruct grayscale and RGB color digital images, showing,
in all cases, very good agreement between source and reconstructed
image data. Use of time-division multiplexing allows us to dramati-
cally reduce system requirements, permitting operation with a single
VCSEL and enabling an extremely hardware-friendly implementa-
tion. This approach yields a simple neuromorphic photonic plat-
form serving as a data encoder (interface) for spike-based machine
vision hardware, which is also able to deliver high speed, thanks to
the GHz-rate optical spikes, low timescales (active encoding time
of 50–60 ns per pixel is used in this work), and low energy con-
sumption. For future approaches, we envision systems using mul-
tiple independent and array-integrated VCSEL-neurons for parallel
pixel processing operation for faster operation speeds and enhanced
functionalities. Our results further demonstrate that the VCSEL-
neuron implementation, built with a commercially available and
telecom-compatible 1310 nm VCSEL and off-the-shelf fiber-optic
components, can realize spike-rate information encoding of com-
plex analog (image) data streams, yielding itself as a viable option for
operation as an input layer device in future photonic spiking neural
network hardware architectures.
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