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Neuromorphic Implementation of
Orientation Hypercolumns

Thomas Yu Wing Choi, Paul A. Merolla, John V. Arthur, Kwabena A. Boahen, and Bertram E. Shi

Abstract—Neurons in the mammalian primary visual cortex
are selective along multiple stimulus dimensions, including retinal
position, spatial frequency, and orientation. Neurons tuned to dif-
ferent stimulus features but the same retinal position are grouped
into retinotopic arrays of hypercolumns. This paper describes
a neuromorphic implementation of orientation hypercolumns,
which consists of a single silicon retina feeding multiple chips,
each of which contains an array of neurons tuned to the same
orientation and spatial frequency, but different retinal locations.
All chips operate in continuous time, and communicate with each
other using spikes transmitted by the address-event representa-
tion protocol. This system is modular in the sense that orientation
coverage can be increased simply by adding more chips, and
expandable in the sense that its output can be used to construct
neurons tuned to other stimulus dimensions. We present measured
results from the system, demonstrating neuronal selectivity along
position, spatial frequency and orientation. We also demonstrate
that the system supports recurrent feedback between neurons
within one hypercolumn, even though they reside on different
chips. The measured results from the system are in excellent
concordance with theoretical predictions.

Index Terms—Address-event representation (AER), Gabor
filter, image processing, mixed analog–digital integrated circuits,
neural chips, neuromorphic engineering, visual cortex.

I. INTRODUCTION

N
EUROMORPHIC engineering is the design and construc-

tion of systems that replicate the capabilities of biolog-

ical systems, as well as their advantages, such as robustness and

power efficiency by mimicking both functional and structural

characteristics of biological systems [1].

We describe here a neuromorphic multichip implementation

of orientation hypercolumns in the mammalian primary visual

cortex (V1). In their “ice-cube” model, illustrated in Fig. 1(a),

Hubel and Wiesel suggested that the visual cortex can be

thought of as a two-dimensional (2-D) sheet with limited extent

in depth [4]. At any point on this sheet, all of the neurons are

tuned to the same orientation and location regardless of depth.

An orientation tuned neuron’s response to a bar is strongest

when it is located at a preferred retinal location and with a

preferred orientation, and weakens as the bar is moved or

Manuscript received April 8, 2004; revised September 22, 2004. This work
was supported by the Hong Kong Research Grants Council under Grant
HKUST6218/01E and by the National Science Foundation under CAREER
Grant ECS00-93851. This paper was recommended by Associate Editor G.
Cauwenberghs.

T. Y. W. Choi and B. E. Shi are with the Department of Electrical and Elec-
tronic Engineering, Hong Kong University of Science and Technology, Hong
Kong (e-mail: eebert@ee.ust.hk).

P. Merolla, J. Arthur, and K. Boahen are with the Department of Bioengi-
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Fig. 1. (a) The “ice-cube” model of the visual cortex. Hypercolumns are
divided by thick lines and subdivided by thin lines into columns of neurons
tuned to different orientations as indicated by the oriented bars. (b) The
multichip architecture used to implement the ice-cube model. Each layer
represents one chip containing neurons tuned to the same orientation but
different retinal positions. Vertically aligned neurons receive inputs from the
same retinal locations.

rotated. Neurons tuned to the same orientation and retinal

location are grouped into columns, which are depicted as cubes

in Fig. 1(a). Neighboring columns that serve the same retinal

location, but with different preferred orientations, are grouped

into hypercolumns. Bold lines in Fig. 1(a) represent divisions

between hypercolumns. These hypercolumns are arranged

retinotopically, with neighboring hypercolumns serving neigh-

boring retinal locations.

This work is an initial step in the construction of a neuromor-

phic system containing retinotopic arrays of continuous-time

spiking silicon neurons exhibiting the same multidimensional

stimulus selectivity observed in visual cortical neurons. Neu-

rons in V1 are selective along the dimensions of retinal position,

spatial frequency, temporal frequency, color, orientation, direc-

tion of motion, and binocular disparity [2]. Our goals in con-

structing this system are both to investigate hypotheses about

the way biological system fuse information from different vi-

sual cues into a coherent perception of the environment, and to

build biologically inspired systems for artificial perception. Our

system operates in continuous-time to facilitate the incorpora-

tion of feedback interconnections between neurons, which ap-

pear to be critical for perception [3].

We have started by constructing orientation-tuned neurons

because orientation selectivity is one of the predominant distin-

guishing characteristics of neurons in V1 [4]. Due to the pro-

cessing by the retina, the input to cortex is already selective

along the dimensions of retinal position, spatial frequency, tem-

poral frequency, and color. In addition, selectivity along other

stimulus dimensions commonly associated with V1, such as di-

rection of motion and binocular disparity, can be obtained by

combining the outputs of orientation-tuned neurons [5]–[7].

1057-7122/$20.00 © 2005 IEEE
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Our system, illustrated in Fig. 1(b), consists of a number of

silicon chips. Each chip, called a Gabor chip, contains a 2-D

array of silicon neurons, which are arranged retinotopically.

However, unlike the biological cortex, all of the neurons in

one chip have the same preferred orientation. To cover the

orientation dimension, we use different chips, each containing

neurons tuned to different orientations. Each chip in the system

processes signals internally pixel-parallel and in continuous

time using a combination of analog and asynchronous digital

processing circuits. The chips interact with each other by

spike-encoded inputs and outputs, which are communicated

using the digital asynchronous address-event representation

(AER) communication protocol [8]–[10].

We have previously described the circuit design of the Gabor

chips used in this system, and characterized their operation in

isolation with test input provided by a pattern generator [11].

This paper extends that work in several important directions.

First, it describes experimental measurements of the output of

the Gabor chips with optical input provided through a sepa-

rate silicon retina chip. Second, it characterizes experimentally

the operation of reconfigurable multichip systems of two to five

chips linked by point-to-point AER routing circuits included in

each chip. Third, it demonstrates experimentally that the AER

protocol can be used effectively to implement continuous time

feedback interactions between large arrays of spiking neurons

on different chips.

This approach has several advantages over previous ap-

proaches to implementing orientation selectivity.

First, orientation resolution and spatial resolution can be

controlled independently. Orientation resolution (the number

of different orientation tuned neurons serving the same retinal

location) can be increased by adding more Gabor chips. Spatial

resolution (the number of retinal locations processed) can be

increased by tiling more processing pixels in each chip. Since

each neuron has the same orientation selectivity, its structure

is identical to the other neurons on the chip, except for an

offset due to the difference in the retinal position. In contrast,

approaches that follow the ice-cube model by allocating different

regions of silicon to different retinal locations and then further

subdividing these regions for different orientations [12], [13],

must trade off orientation resolution and spatial resolution.

Although placing neurons tuned to different orientations on

the same chip facilitates feedback interactions between them,

we demonstrate here that our approach also supports such

feedback interactions. However, the amount of interaction is

limited by inter-chip bandwidth, which is slower and costlier

in power than intra-chip bandwidth.

Second, the approach is expandable to include selectivity

along more stimulus dimensions. We can combine the spatial

filtering of these chips with temporal filtering to obtain velocity

and direction tuned neurons [14] or combine the outputs of two

chips processing left and right eye inputs to obtain binocular

disparity tuned neurons [15]. Another approach to computing

multiple feature maps is to time multiplex the same processing

circuits and store the results of different maps in local pixel

memories, as adopted by the Cellular Neural Network Uni-

versal Machine [16] or the computation on readout architecture

[17]. However, multiplexing the computation of different

feature maps in time makes it impossible to incorporate con-

tinuous-time recurrent interconnections between neurons with

different stimulus selectivity.

Our approach is most similar to those reported by Ser-

rano–Gotarredona et al. [18] and Venier et al. [19]. It differs

primarily in the orientation selective receptive fields of the

neurons, and in that we have been able to demonstrate feedback

interactions between neurons tuned to different orientations

experimentally. The approach proposed in [18] can implement

only spatial filters with separable convolution kernels. There-

fore, only horizontal or vertical orientation selectivity could be

implemented. The system reported in [19] implements neurons

with purely excitatory and even symmetric RF profiles. Thus,

it cannot implement pairs of neurons with phase quadrature

Gabor-like receptive fields.

The above discussion focused on architectures that are orien-

tation selective, i.e., their responses vary according to the differ-

ence between the input orientation and a preferred orientation.

Very large-scale integration (VLSI) architectures that measure

feature orientation have also been proposed [20], [21]. How-

ever, we do not discuss them here, as the computations are quite

different. For example, measurement assumes that each image

point has a unique orientation. However, an orientation-selec-

tive architecture can support multiple orientation hypotheses at

each point, e.g., the junction of two oriented edges.

In the following, Section II describes our multichip architec-

ture. Section III gives measured results from our system demon-

strating selectivity along three stimulus dimensions associated

with V1: retinal position, spatial frequency, and orientation. We

also demonstrate that our system supports recurrent interactions

between neurons. Finally, Section IV concludes with summary

and a description of the next steps in incorporating additional

cortical functionality into this system.

II. MULTICHIP ARCHITECTURE

This section describes both a feedforward implementation of

orientation hypercolumns, where the Gabor chips operate in-

dependently, and a feedback implementation, where the Gabor

chips interact with each other.

Fig. 2(a) shows the block diagram of the feedforward im-

plementation. The output of a silicon retina chip is fanned out

to several Gabor chips. Fig. 2(b) shows a photograph of the

feedforward system. Each Gabor chip is mounted on a separate

printed circuit board, which also holds the circuits required to

bias it. Each Gabor board dissipates 44 mW at 3 Kspike/s. Most

mW % of the power consumption on the board is

due to circuits that supply constant bias voltages to the chip and

that power light emitting diodes (LEDs) that are used as status

indicators.

The silicon retina, which is described in [22], [23], contains

a 60 96 array of phototransistors and processing circuits that

generate spike outputs that mimic the responses of ON-sustained

and OFF-sustained retinal ganglion cells at a 30 48 array of

retinal positions. ON and OFF neurons encode positive and neg-

ative contrasts relative to the local background intensity. Sus-

tained retinal ganglion cells respond to inputs that vary slowly

in time.
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Fig. 2. (a) Feedforward implementation of orientation selective hypercolumns. Each box with the double line border represents a chip containing a retinotopic
array of neurons. Gabor chips are represented by the larger boxes with the dark bar indicating the tuned orientation of the neurons on the chip. Boxes with single
line borders indicate circuits that manipulate AER encoded spike trains. The “flip image” circuit remaps spike addresses to flip the input and output images of the
fourth chip horizontally, resulting in neurons tuned to 135 . The chip select circuits pass only spikes originating from a desired chip. (b) Photo of the feedforward
implementation. The silicon retina and Gabor chips are mounted on separate printed circuit boards with biasing circuits. The display board connects to a VGA
monitor (not shown) for visualizing the chip outputs. The logic analyzer collects spikes for analysis. (c) Feedback implementation. The “flip ON/OFF” circuit inverts
the image passing through it by mapping ON spikes to OFF spikes and vice versa. The missing bar in the right-most chip indicates that its spatial filtering is disabled.

Each Gabor chip can process ON and OFF spike input from a

32 64 array of retinal positions [11]. Each retinal position has

four neurons associated with it. Each of those neurons computes

a weighted sum of the spike rates from the ON and OFF ganglion

cells in a small neighborhood of that retinal position, half-wave

rectifies it, and encodes the result as an output spike rate. We

refer to the weighting function used in the sum as the neurons

receptive field (RF) profile. The four neurons are denoted by

EVEN-ON, EVEN-OFF, ODD-ON, and ODD-OFF, and differ according

to their RF symmetry (EVEN-ODD) and polarity (ON-OFF). The

ON and OFF neurons encode the positive and negative half-wave

rectified sums.

The RF symmetry with respect to the origin is determined by

a phase parameter . Each neuron’s RF profile is a Gabor-like

function given by

(1)

where and denote the horizontal and vertical distance

from the neuron’s position. The parameters , and are

real valued constants. Because the function (described

below) is even symmetric with respect to the origin, the RF is

EVEN symmetric if and ODD symmetric if .

When presented with a sine wave grating, the neurons will

respond maximally to a grating with spatial frequency

, orientation and phase offset .

Vertical orientations correspond to . The spatial frequency

bandwidth is determined by the function , whose Fourier

transform is given by

where , and are positive constants. The param-

eter controls the gain of the neuron. The parameters

and control the spatial frequency bandwidth in the and

directions. Although we do not have an exact closed form ex-

pression for , we know that it decays with distance from

the origin and that the decay can be approximated by a zeroth

order Bessel function of the second kind [24]. The parameters,

, and , are controllable via external bias

voltages applied to the chip.

The neurons in our system capture many of the important

characteristics of orientation tuned cortical neurons. The model
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of linear filtering followed by nonlinearity has been shown to

account for the responses of a large proportion of V1 neurons

[25]–[27]. The receptive field profile (1) has the same form as

the Gabor functions commonly used to model orientation se-

lective cortical neurons [28], [29], except that the modulating

function is not Gaussian. Pairs of EVEN and ODD neu-

rons are critical in energy models of cortical function, and have

been observed in cortex [30].

In contrast to conventional digital image processing systems

where array readout is synchronized according to a pre-defined

frame rate, output spike activity in our system is asynchronous.

Each neuron in the array determines the time of its next spike

output based upon the array’s input and its last spike time. Neu-

rons operate in continuous time and are free to generate a spike

at any time. There is no clock synchronizing the activity in the

array or its readout. Because the output activity depends upon

the input activity, there is no well defined “frame” during which

all neurons are read out.

We use the AER protocol [8]–[10] to communicate spike

activity between chips. An AER link consists of a transmitter

and a receiver connected by asynchronous digital lines. The

transmitter signals that a neuron has spiked by sending an

address event: a sequence of binary words identifying the

spatial location (address) of the spiking neuron. Each spike

is specified by three words that identify the chip, row and

column that the spiking neuron resides in. The spike time is

not encoded explicitly, but is taken to be the time at which the

address event appears on the link. Simultaneous spikes from

neurons in the same row and the same chip are transmitted

in a single burst, which consists of the chip address, the row

address, followed by the column addresses of the neurons that

spiked. Simultaneous spikes from different rows are sequenced

by arbitration. Since link bandwidth is allocated to the most

active neurons, AER is more efficient than scanning when spike

activity is sparse [31]. The Appendix describes the word-serial

protocol we use, as well as the way in which the four types

of neurons are addressed.

Since all spikes from one chip are transmitted via the same

digital link, the total spike rate in the array is limited by the

time which it takes to transmit one address event, which we

measured to be ns. Subsequent events encoded in

the same burst require only ns. For low loads where

each burst contains only one address event, the link capacity

is million spikes per second. The link capacity

in burst-mode is million spikes per second. This

burst rate does not indicate the true performance of the inter-chip

links, as latches were interspersed between chips to correct for

a design error in the communication protocol circuits.

Our architecture routes spikes between chips using point-to-

point links, rather than a global bus connecting a number of

transmitters and receivers. This avoids the need for complex cir-

cuits that control bus access and perform routing. Instead, we

use two basic routing circuits, the split and the merge, which

are included in each Gabor chip, and determine spike routing

by the way that we link the chips together. Using this approach,

routing circuit complexity expands automatically to accommo-

date the number of chips in the system. In addition, unique chip

addresses are generated and updated automatically by the split

and merge circuits, so that we can distinguish spikes from dif-

ferent chips in one AER address stream. The implementation of

this network architecture will be described in detail in a forth-

coming publication.

The split circuit makes two copies of the AER events ap-

pearing at its input. One copy is sent into the neuron array

through a decoder that reads the originating address of the each

spike and sends a spike to the neuron with the same row and

column address, irrespective of the chip address. The other

copy has its chip address incremented by one and is sent off

chip via a transmitter.

Our system uses the split circuit for signal fan out. By daisy

chaining the Gabor chips by connecting the split output of one

with the split input of the next, we can distribute the same silicon

retina output to all chips.

The merge circuit combines the address events at its input

with address events generated by the neuron array and sends

them off chip via a transmitter. Collisions between events at the

input and the neuron array are handled by arbitration. Events

coming from the neuron array are assigned a chip address of

zero. Events coming from the input have their chip address in-

cremented by one.

In our system, we use the merge circuits to collect the activity

from all of the chips in the system, by daisy chaining the merge

output of one chip with the merge input of the next. The merge

output of each chip encodes all of the spike activity in the chips

up to that point in the chain. Because it increments the chip ad-

dress of input events, the merge circuit enables us to distinguish

spikes originating in different chips. The “chip select” circuit is

a filter that passes only spikes from a desired chip.

To minimize pixel size, we designed the Gabor chips so that

they can only be tuned to orientations between 0 and 90 .

However, the system can contain neurons tuned to orientations

greater than 90 , since the AER protocol makes it easy to

flip images horizontally and/or vertically before and after

processing. The Appendix describes the design of the “Flip

Image” circuit.

Fig. 2(c) shows the block diagram of the feedback imple-

mentation of orientation hypercolumns. Each neuron on each

Gabor chip is driven by a residual signal, which is the difference

between the input from the silicon retina at its corresponding

retinal location and the sum across orientation of the outputs

of all the Gabor neurons serving the same retinal location with

the same polarity and RF symmetry. The feedback system uses

the merge and split circuits as well as a “combination chip” to

compute the residual signal. The system first computes the in-

verted sum of the outputs of the Gabor chips, and then sums the

input from the silicon retina with the inverted sum to compute

the difference.

To compute the inverted sum across orientation, the system

first collects the output spike activity from all of the Gabor chips

at the input to the “flip ON/OFF” circuit by cascading the Gabor

chips’ merge circuits as in the feedforward system. The “flip

ON/OFF” circuit, whose design is described in the Appendix, in-

verts the polarity of the Gabor chips’ outputs by mapping ON

spikes to OFF spikes and vice versa. The output of the “flip

ON/OFF” circuit is fed to the split input of the combination chip,

which sums the spike activity. The combination chip is simply
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a Gabor chip with its spatial filtering disabled. Its neurons inte-

grate spikes corresponding to the same retinal location, polarity

and symmetry but irrespective of orientation, since the decoder

sends all spikes received at the split input into the neuron array

irrespective of the chip address. For each retinal position and

RF symmetry, the output spike rates of the ON and OFF neurons

are approximately proportional to the half wave rectified differ-

ences between their input spike rates.

The combination chip’s merge circuit combines the input

spike activity from the silicon retina with the output of the

combination chip, which represents the inverted sum of the

Gabor chips’ outputs. These spikes are distributed to each of

the Gabor chips by cascading the split circuits as in the feedfor-

ward system. Although spikes from the silicon retina and the

combination chip can be distinguished by their chip addresses,

they are summed by the Gabor chips since the decoder ignores

the chip addresses when routing spikes from the split input into

the neuron array.

Intuitively, the net effect of this feedback connectivity is that

the system automatically adjusts the Gabor chip outputs so that

their sum at each location best fits the input from the silicon

retina at that location. The residual measures the quality of the

fit. If the residual has a large component near the tuned ori-

entation of Gabor chip, that chip increases its response since

the residual signal is fed into its input. The interaction between

neurons tuned to different orientations is inhibitory, since if the

neurons tuned to one orientation are providing a good fit to the

input, they decrease the input to neurons tuned to other orien-

tations. The extensive feedback interconnectivity in this system

might raise concern about its stability. However, we have not ob-

served any unstable or oscillatory behavior in our experiments.

In addition, it is possible to prove that a similar system where

the spiking interactions are replaced by graded interactions is

stable, since its dynamics can be characterized as gradient de-

scent on a Lyapunov function similar to that presented in [33].

III. EXPERIMENTAL RESULTS

This section describes experimental measurements from both

the feedforward and feedback implementations of the orienta-

tion selective hypercolumns. We demonstrate the position, spa-

tial frequency, and orientation selectivity of the neurons using

the feedforward system. In the feedback system, we focus on the

effect of the competitive interactions on the orientation tuning,

which is the primary difference in the response characteristics

of neurons in the two systems.

A. Feedforward System

We tuned the four Gabor-type chips in the feedforward

system to similar spatial frequencies and bandwidths, but dif-

ferent orientations 0 , 45 , 90 , and 135 , with 135 achieved

by tuning the chip to 45 and then flipping the input and output

images horizontally. In total, this system contains 32 768 ori-

entation tuned neurons tuned to four orientations, two spatial

phases, two polarities (ON/OFF) and 32 64 retinal positions.

Including the retina, the system contains 35 648 spiking neu-

rons. We estimated the tuning parameters , and

for each chip by applying a spatial impulse input to the

TABLE I
TUNING PARAMETERS ESTIMATED VIA IMPULSE RESPONSE FITTING

center pixel using a pattern generator and measuring the output

across the array, and finding the parameters that minimized the

squared error between the measured and theoretically predicted

responses (Table I). This estimation assumes the tuning param-

eters of the neurons are identical. In fact, the tuning parameters

vary from neuron to neuron due to transistor mismatch, with

different parameters exhibiting different amounts of variability

[15].

Fig. 3 shows the responses of the neurons in response to a

dark ring on a bright background. Neurons from different chips

respond to parts of the ring, depending on where their tuned

orientation match the ring’s. The ODD neurons are more sharply

tuned in orientation than the EVEN neurons. We used a 4 mm

lens to focus images onto the surface of the silicon retina, and

presented visual stimuli to the system using an liquid crystal

display (LCD) monitor placed 25 cm away. Transistor mismatch

adds variation in the neural responses across position, due to

changes in the gain, tuning, and background firing rates of the

neurons [11], [15].

To evaluate spatial frequency and orientation tuning of the

neurons, we presented the system with Gabor patches with a

constant circularly symmetric Gaussian envelope but varying

orientation and spatial frequency. To avoid edge effects, we en-

sured that the Gabor patch was confined within the field of view

of the retina by choosing the standard deviation of the Gaussian

to span 5.4 of visual angle, which corresponded to the spacing

between the receptive field centers of 8.4 SUSTAINED cells in

the silicon retina. Fig. 4 shows images of Gabor patches plotted

with examples of the parameters used.

To evaluate the spatial frequency tuning of the system, we

varied the spatial frequency of the Gabor patch while keeping

the orientation constant at 90 and monitored the response of

the array tuned to 90 . By measuring the total spike rate from

all neurons irrespective of retinal position, RF symmetry and

polarity, we eliminate the dependency of the response on the

spatial phase of the stimulus, leaving only the dependency on

the spatial frequency. For each spatial frequency, we measured

the spike times of 600 spikes from the chip to compute the

spike rate. Fig. 5 shows the population response of the retinal

neurons and the orientation-tuned neurons plotted versus spa-

tial frequency. The spatial frequency that gave the greatest re-

sponse was 0.6 radians/pixel, which agrees with the results from

the impulse response fitting. This spatial frequency corresponds

to 0.16 cycles per degree of visual angle. Much of the spatial
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Fig. 3. Responses of e feedforward system to a black ring. Image on the left shows the output of the silicon retina. Each image position represents one retinal
position in the upper-left 30� 30 corner of the array. The image intensity encodes the difference between the spike rates of the ON and OFF neurons at each position.
The eight remaining images show the outputs of the EVEN (top row) and ODD (bottom row) neurons on the Gabor chips. For the EVEN responses, black corresponds
to differential spike rates less than or equal to �40 Hz. White corresponds to differential spike greater than or equal to +40 Hz. The mean absolute differential
spike rate is 10.8 Hz. For the ODD responses, black corresponds to differential spike rates less than or equal to �80 Hz. White corresponds to differential spike
greater than or equal to +40 Hz. The mean absolute differential spike rate is 4.4 Hz.

Fig. 4. Examples of the Gabor patches used to characterize the system responses to orientation and spatial frequency. (a) Gabor patch with orientation 90 that
projects onto the retina with the optimal spatial frequency of 0.6 radians/pixel. The black rectangle delimits the visual field of the silicon retina. The black circle
delimits the receptive field of one V1 neuron. (b) Gabor patch with orientation 90 and spatial frequency 0.9 radians/pixel. (c) Gabor patch with orientation 45
spatial frequency 0.6 radians/pixel.

Fig. 5. Spatial frequency tuning of the neurons in the retina (x) and the Gabor
chip (o). To facilitate comparison, both curves are normalized by the peak
population spike rate.

frequency selectivity is due to bandpass filtering by the retina,

which is tuned to the same spatial frequencies as the orientation

tuned neurons, but is not orientation selective.

To characterize the orientation tuning of the neurons, we

fixed the spatial frequency of the Gabor patches at 0.6 ra-

dians/pixel, which yielded the maximum response in the

previous experiment, and varied the orientations from 0 to

180 in steps of 11.25 . Because we used stationary gratings,

orientations greater than or equal to 180 are equivalent to

orientations less than 180 . Fig. 6 shows the measured popu-

lation responses from the EVEN and ODD neurons, which were

obtained by summing the responses from all neurons with the

same RF symmetry on each chip, irrespective of retinal position

or polarity. The polar plots show that neurons on different chips

are tuned to respond maximally to different orientations, and

that the ODD neurons are more sharply tuned in orientation than

the EVEN neurons.

Fig. 6 also compares the measured data with the theoretical

predictions. The equations used to generate the theoretical fits

are given in the Appendix. We assumed that the spatial fre-

quency of the input sine wave gratings and the spatial frequency

tuning of all the chips was 0.6 radians/pixel, and that the neu-

rons were tuned to orientations 0 , 45 , 90 , and 135 exactly.

We also assumed that and that they were identical

in all chips. We estimated the common value to be 0.61 radians

per pixel by a least squares fit to the measured data. This es-

timated value is slightly larger than the value predicted by the

impulse response fits, primarily because the Gabor patches used

in the experimental characterization are spatially localized, and

therefore have broader spatial frequency content than the sine

wave grating assumed in the theoretical analysis. Although it

is possible to predict the responses to Gabor patches numeri-

cally, we do not do so here because the assumption of sine wave

grating inputs matches the measured responses quite closely and

gives a convenient closed form expression. Other contributing

factors include the fact that the impulse response data was mea-

sured by stimulating a single pixel, which is not an accurate

measure of the average tuning across the neurons in the array

due to transistor mismatch, as well as the additional spatial fil-

tering performed by the silicon retina.
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Fig. 6. Orientation tuning of the feedforward system. Polar plots show the total spike rate from all neurons with the same RF symmetry from one chip. For
each point, the angle represents the input orientation and the distance from the origin represents the total spike rate in kilohertz minus the background spike rate
measured in response to a blank screen. Top row shows the response of the EVEN neurons. Bottom row shows the response of the ODD neurons. Each column shows
responses from a different chip. Discrete data points x indicate measured data. Solid lines show the theoretical fit. Labels at the top of each column indicate the
target uncoupled tuning. Label below each graph indicates the preferred orientation computed from the measured data.

TABLE II
SYSTEM CHARACTERISTICS

For each RF symmetry, we evaluated the quality of the theo-

retical fits using a goodness of fit index defined by

%

where is the observed response (in spikes per second) and

is the theoretically predicted response for measurement . The

summation is taken over all input orientations and over all chips.

A perfect fit gives %.

The goodness of fit indexes for all of the systems are given in

Table II, which summarizes the system characteristics. In gen-

eral, the fit between the predicted and measured responses from

the ODD neurons is worse than the fit for the EVEN neurons. The

degradation is largely due to the fact that the theory predicts zero

response to orthogonal orientations, which is not the case for the

measurements.

We define the preferred orientation (PO) of an orientation

tuning curve to be where is the resultant [34]

(2)

and is the response to the input orientation . We double

in the complex exponential and subsequently halve the angle of

to take into account the fact that orientations that differ by

180 are equivalent. The preferred orientation computed from

the measured data and theoretical fit, which are given in Fig. 6,

are in good concordance with the target tuning.

Fig. 7. Orientation tuning of the self-coupled system. Polar plots generated as
in Fig. 6. Label below each graph indicates the preferred orientation computed
from the measured data.

B. Feedback System

We characterized several different configurations of the feed-

back system, which varied in the number of Gabor chips coupled

together. In the following, we refer to the responses of the

neurons in the feedforward system as uncoupled, and the re-

sponses of the neurons in the feedback system as coupled. The

simplest feedback system, which we refer to as self-coupled,

contains one Gabor chip coupled back to itself through the

combination chip. The next level of complexity couples two

Gabor chips tuned to different orientations, where the inhibitory

feedback shifts the orientation tuning curves for the two sets

of neurons away from each other. Finally, we characterized a

system with three Gabor chips. These experiments used the

same bias voltages to set the uncoupled tuning parameters as

used in the feedforward experiments.

We characterized the self-coupled system for the Gabor chips

tuned to orientations of 0, 45 , and 90 with the same bias
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Fig. 8. Orientation tuning with two coupled orientations. Polar plots generated as in Fig. 6. Label below each graph indicates the preferred orientation computed
from the measured data and predicted theoretically (in parenthesis).

voltages as used in the feedforward system. Fig. 7 shows the

polar plots of the measured response and theoretical fit. The

experimental measurements were performed using the same

protocol as for the feedforward system. The theoretical fit was

obtained using the equations described in the Appendix, where

we model the feedback as linear with a gain , which we

estimated to be 0.41 by a least squares fit to the experimental

measurements. The remaining parameters were the same as

used to fit the responses of the feedforward system.

The primary difference between the responses of the neurons

in the feedforward and self-coupled system is a reduction in the

responses of the neurons of the self-coupled system. In the self-

coupled system, each neurons output is inverted and fed back

to its own input. Thus, each neuron inhibits itself, accounting

for the reduced response. There is no significant change in the

preferred orientation or the sharpness of the orientation tuning.

To characterize the two Gabor chip system, we fixed the

uncoupled tuning of one Gabor chip at 45 , and coupled it with

a second chip tuned to 0 or 90 . We measured orientation

tuning using the same protocol as our previous experiments. In

the following, we refer to the chips and the neurons according

to their uncoupled tunings. Fig. 8 shows the orientation tuning

curves and preferred orientations obtained. The theoretical

predictions are based upon the parameters estimated in our

previous experiments, and therefore are true predictions of the

effect of feedback.

Comparing the 45 neurons in the two cases (the two center

columns), we observe that their preferred orientations shift to-

ward higher orientations when they are coupled with 0 tuned

neurons, and toward lower orientations when coupled with 90

tuned neurons. Similarly, we observe that the preferred orienta-

tion of the 0 neurons (the first column) shifts toward negative

orientations. The preferred orientation of the 90 neurons (the

last column) shifts toward orientations greater than 90 .

When two sets of orientation-tuned neurons are coupled to-

gether, their tuning curves shift away from each other so that

the coupled tuning curves are more separated than the uncou-

pled tuning curves. Intuitively, consider two neurons, labeled 1

Fig. 9. Orientation tuning with three coupled orientations, 0 , 45 , and
90 . Polar plots generated as in Fig. 6. The label below each graph indicates
the preferred orientation computed from the measured data and predicted
theoretically (in parenthesis).

and 2, that respond to the same retinal region but different ori-

entations. Feedback interactions will enhance the difference in

orientation tuning because inhibition from Neuron 2 reduces the

response of Neuron 1 to orientations that are near the preferred

orientation of Neuron 2.

Fig. 9 shows the tuning curves and preferred orientations ob-

tained when coupling three chips with uncoupled tunings of

0 /45 /90 . As in the previous experiment, the theoretical pre-

dictions are based upon the parameters identified in the feedfor-

ward and self-coupled experiments.

In this case, the prediction is not as good as the prediction

with only two coupled orientations. In particular, the magnitude

of the response is smaller for the EVEN neurons than predicted

theoretically, resulting in a much poorer fit than observed for

the other systems. It appears that inhibition by two competing

orientations is greater than that predicted by the linear model in

the Appendix. Because we have been unable to fit the responses
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accurately by increasing the strength of the feedback factor, we

speculate that nonlinearities introduced by the spike-based com-

munication between chips, e.g., in spike generation and leaky

integration, may be responsible for the discrepancy between the

theoretical predictions and the measured data.

The net shift in the tuning curve for the 45 neurons is close to

zero, since the shifts introduced by 0 and 90 neurons cancel.

The tuning curves of the 0 and 90 neurons shift in the same di-

rection as in the two Gabor chip system, but by a greater amount

due to the increased inhibition on the same side of the tuned

orientation.

IV. CONCLUSION

Based upon the columnar organization of orientation selec-

tive neurons in the mammalian primary visual cortex (V1), we

have constructed a silicon system consisting of retinotopic ar-

rays of silicon neurons whose receptive field properties closely

match those of orientation selective visual cortical neurons. The

system uses a similar ON-OFF signal representation as used in

biological neural systems to encode signals above and below a

mean value.

We have built and characterized a feedforward system where

the output of a silicon retina is fanned out to several Gabor chips

that are tuned to different orientations, but which operate in-

dependently. Our measurements from the feedforward system

demonstrate that the neurons in this system exhibits stimulus se-

lectivity along three dimensions commonly associated with neu-

rons in V1: retinal position, spatial frequency, and orientation.

We have also demonstrated that even though we implement

neurons that normally reside within a single hypercolumn in the

biological cortex on different chips, our system can still support

feedback interactions between them. This is a critical feature of

a neuromorphic model of cortex since much of the input to cor-

tical cells comes from other cortical cells [35]. Our results show

that a linear model can account for over 80% of the response

of a feedback system consisting of two populations of neurons

tuned to different orientations.

In our system, inhibitory feedback shifts the orientation

tuning. In the biological cortex, similar shifts in orientation

tuning due to changes in feedback can account for changes in

neuronal response due to adaptation and learning [36]–[38].

Another hypothesized role for intracortical inhibition is to

balance local recurrent cortical excitation, leading to orientation

sharpening and contrast invariant tuning [35]. In our system,

contrast invariant tuning is achieved in a different manner, via

push-pull interactions between ON and OFF neurons similar to

those proposed in [39]. However, although our current system

does not exhibit any significant orientation sharpening, with

the exception of the measured data from the even neurons in

Fig. 9, the next generation of our system should be able to be

configured to exhibit orientation sharpening. Our theoretical

analysis indicates that the lack of orientation sharpening in

our current system is primarily because each neuron inhibits

itself, since the residual signal fed back to each neuron contains

its own output. If we eliminate this inhibitory self feedback,

the analysis in [33] predicts that the resulting system will

exhibit sharpened orientation tuning. One reason it is difficult

Fig. 10. Address protocol used by the Gabor-type filter chip. A chip and
row address is followed by one or more column addresses, depending upon
how many neurons in a given row of the chip spiked simultaneously. Since
the protocol is asynchronous, the transmitter and receiver use handshaking
signals to ensure addresses are communicated correctly. Two request signals,
ReqY and�ReqX, identify the start and end of each burst, and the location of
each address within the burst. Transmitter raises ReqY to signal the validity of
the chip address. Receiver acknowledges that it has read the chip address by
raising the acknowledge Ack. The transmitter then lowers �ReqX to signal
the validity of the row and column addresses. Receiver acknowledges receipt
by lowering Ack. Transmitter lowers ReqY to signal the end of the burst.

to implement this type of system using our current chips is

that the decoder at the split input sends all spikes into the array

irrespective of the chip address. However, our next generation

of routing circuits will include the capability to decide whether

or not to route spikes into the neuron array depending upon the

chip address. This will facilitate the construction of a system

that does not include inhibitory self-feedback.

APPENDIX

A. Word-Serial AER Format

The Gabor chips use the 7-bit word serial format for addresses

illustrated in Fig. 10. Spikes are sent in sequences of addresses,

called bursts. The first address identifies the chip, the second ad-

dress identifies the row and the remaining addresses identify the

columns containing neurons in the row that spiked. This “burst

mode” improves efficiency when there is high activity in the

array, by eliminating the time needed to send the same chip and

row addresses for each column address. Because the AER pro-

tocol is asynchronous, we use handshaking signals to ensure ad-

dresses are received properly.

Within each Gabor neuron array, ON and OFF neurons are

addressed in alternate columns, while EVEN and ODD neurons

are addressed in alternate rows. Thus, the LSB of the column

address identifies the neuron’s polarity. The LSB of the row

address identifies the receptive field symmetry. In the silicon

retina, ON and OFF neurons are also addressed in alternate

columns. SUSTAINED and TRANSIENT neurons are addressed

in alternate rows. Thus, the SUSTAINED outputs of the retina

map directly to the inputs of the EVEN neurons with the same

polarity. In the feedforward system, the ODD neurons are driven

indirectly through recurrent feedback interconnections with the

EVEN neurons on each chip. In the feedback system, they are

also driven by the ODD component of the residual signal. In this

system, we disable the TRANSIENT retina outputs, which encode

quickly varying image components.

B. Spike Remapping and Filtering Circuits

The “flip image” circuit can flip an image horizontally and/or

vertically by remapping the row and/or column addresses within

each burst. We generate a flipped row or column address by

inverting all of the bits except for the LSB, which encodes the
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Fig. 11. (a) Multiplexer control for the “image flip” circuit. The shift register
outputs are cleared when ReqY is low. Once ReqY goes high, signalling the
presence of a burst, high bits are clocked into the shift register at every low
transition of the�ReqX. At the chip address, the outputs (Q0; Q1) are (0, 0).
For the row address, the outputs are (1, 0). For all of the column addresses, the
outputs are (1, 1). Switch determines how the SELECT input of the multiplexer
is controlled to flip the row and/or column address. (b) Schematic of a chip
select block. When ReqY_in goes high, the select input to the multiplexer is
latched high or low, depending on whether the chip address matches the desired
chip address. If the chip address matches, then the ReqY in;�ReqX in,
and Ack in signals are passed to ReqY out;�ReqX out, and Ack out.
Otherwise, the ReqY out signal stays low, the �ReqX out signal stays high
and the ReqY in and �ReqX in signals are used to generate the Ack out
signal to complete the communication cycle.

symmetry or polarity. A multiplexer sends either the original or

the flipped address. The logic to generate the multiplexer select

signal is shown in the schematic of Fig. 11(a). The “flip on/off”

circuit is similar. It uses the column flip logic to select whether

to send the original address, or an address with the LSB inverted.

Both are implemented on Xilinx field programmable gate arrays

(FPGAs).

The “chip select” circuit is placed between a transmitter and

a receiver, and passes only bursts corresponding to a desired

chip. If the chip address of a burst matches that of the desired

chip, then the circuit is transparent to the , and

Ack signals. Otherwise, it blocks the ReqY and signals

from the transmitter, and generates Ack signal locally. There

is no need to block the address bits, since data on the address

lines is ignored unless a request is detected. Fig. 11(b) gives

the schematic of this circuit, which we implement on a Xilinx

FPGA.

C. Theoretical Fits to Neuronal Responses

This section gives the expressions used to fit the tuning curves

for the EVEN and ODD neurons measured in the feedforward

and feedback systems. We derive the spatial transfer function

of the orientation selective neurons in the feedback network by

assuming the feedback interactions between neurons is linear.

The analysis is similar to that in [33], but differs because the

residual signal sent to each neuron in [33] does not include its

own output.

Each Gabor chip contains four arrays of neurons labeled

EVEN/ON , EVEN/OFF , ODD/ON and ODD/OFF

. For each spatial position let denote the

input spike rates of the four neurons .

These differentially encode two real numbers and

, where and sim-

ilarly for . These two real numbers can be expressed

as a single complex number

where . Similarly, the output spike rates

encode numbers and . Internally,

the chip performs spatial filtering on arrays of input currents

to produce arrays of output currents. Assuming that the con-

version from spike rate to current and vice versa is linear,

the steady-state input and output images are related by the

equations

(3)

where capital letters denote discrete spatial Fourier Transforms

denotes spatial frequency, and

where , and are tuning parameters, which are

set by external bias voltages, and is a gain factor that de-

pends upon the tuning parameters and constants of proportion-

ality introduced by the spike rate to current conversion and vice

versa.

Solving (3), we obtain

(4)

where

(5)

The transfer function achieves its maximum at

where and drops by half at

and where . By the

Fourier shift theorem, the filter kernel has the form

where

is the inverse Fourier transform of when ,

which is a real valued function that decays with distance from

the origin. If we define and to be the real and imaginary

parts of , we have

which have Fourier transforms
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To find the response of the EVEN and ODD neurons, we first

note that

(6)

Since and are real, and

, where the * superscript denotes complex

conjugation. This implies that

(7)

Combining (6) and (7), we obtain

Expanding (4) to ,

and substituting into the equation above we obtain

In the feedforward system, the input to each chip is supplied

by the silicon retina alone. Thus, and

, where is the discrete spatial Fourier transform of the

SUSTAINED silicon retina output , which is differentially

encoded on ON and OFF channels. Thus, the responses of the

EVEN and ODD neurons are and

. If the retinal input is a sine-wave grating

with frequency , then the responses of the neurons will be

proportional to and .

For the feedback system, the input to each Gabor chip is the

residual signal

where denotes the output of the Gabor chip tuned to orien-

tation and is a feedback factor which determines how much

of the summed output is subtracted from the input in computing

the residual. From (4), the output of the Gabor chip tuned to

is

(8)

Summing over , we find that

(9)

Combining (8) and (9), we obtain where

the “c” superscript denotes the transfer function from the retinal

input to the chip under coupling and

(10)

We predict the responses of EVEN and ODD neurons using equa-

tions similar to those used for the feedforward system, except

is replaced by .
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