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Abstract—Resistive switching memory (RRAM) has been pro-
posed as artificial synapse in neuromorphic circuits due to its
tunable resistance, low power operation, and scalability. For
the development of high-density neuromorphic circuits, it is
essential to validate state-of-the-art bistable RRAM and to intro-
duce small-area building blocks serving as artificial synapses.
This work introduces a new synaptic circuit consisting of a
one-transistor/one-resistor (1T1R) structure, where the resistive
element is a HfO2 RRAM with bipolar switching. The spike-
timing dependent plasticity (STDP) is demonstrated in both the
deterministic and stochastic regimes of the RRAM. Finally, a
fully-connected neuromorphic network is simulated showing on-
line unsupervised pattern learning and recognition for various
voltages of the POST spike. The results support bistable RRAM
for high-performance artificial synapses in neuromorphic circuits.
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I. INTRODUCTION

Emerging memory devices, such as the resistive switching

memory (RRAM), are currently being investigated for future

memory generation featuring high density, low cost, high

speed and nonvolatile retention [1], [2]. As the device size

and the operating current are reduced, however, the statistical

variations of device parameters increase [3], [4], raising the

demand for control algorithms and the associated circuit

overhead [5]. Statistical variations are generally detrimental

for digital memory operation, however they can be tolerated

in some computing applications, such as the generation of

random numbers [6]–[9] and the neuromorphic networks [10]–

[12]. Neuromorphic computing can even take advantage of

stochastic variations, which contribute to the normal operation

of fuzzy neural networks in animals and humans [13].

In this work, we present a new synapse circuit with

one-transistor/one-resistor (1T1R) structure that is used as

a tunable connection between a pre-synaptic neuron (PRE)
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and a post synaptic neuron (POST). The RRAM synapse

allows, on the one hand, to passively transmit spikes, and,

on the other hand, to update its weight in accordance to a

spike-timing dependent plasticity (STDP) protocol. The STDP

characteristics are characterized and modeled for deterministic

and stochastic switching. Finally, we simulate a 2-layer neuro-

morphic network based on the experimentally observed STDP

characteristics, taking into account resistance-dependent STDP

[12], [14], [15] and demonstrating on-line pattern learning

and recognition with deterministic and stochastic switching.

These results support state-of-the-art RRAM for neuromorphic

circuits capable of learning, updating and recognizing real-

world visual and auditory patterns.

II. RRAM SAMPLES AND CHARACTERISTICS

Our RRAM devices consist of a Si-doped HfO2 layer

with TiN bottom electrode (BE) and Ti top electrode (TE)

[4]. 1T1R structures, as shown in Fig. 1a, were used to

conduct pulsed experiments driving TE and gate nodes by

an arbitrary waveform generator, while the TE voltage and

RRAM current were monitored by an oscilloscope as in Fig.

1b [16]. Fig. 1c shows a typical I-V curve obtained in response

to bipolar triangular pulses for set (positive voltage) and reset

(negative voltage) [16]. The pulse-width tP was 1 ms, while

the compliance current IC was adjusted to 50 µA by proper

tuning of the gate voltage VG. Set transition from the high-

resistance state (HRS) to the low-resistance state (LRS) takes

place at Vset ≈ 1.5 V. On the other hand, the onset of the reset

transition from LRS to HRS is seen at Vreset ≈ -1 V and is

completed at Vstop = −1.5 V, which is the maximum voltage

in the negative sweep, as shown in Fig. 1c [9]. Note that

both set and reset transitions are rather abrupt, which contrasts

with the gradual adjustment of synaptic weight observed in the

biological STDP [17], [18]. Complementary switching during

set process was avoided in our devices by use of an asymmetric

structure of RRAM with a Ti oxygen exchange layer at the

TE, and of a relatively low IC [19], [20].

III. 1T1R SYNAPSE

The 1T1R structure in Fig. 1a can be adopted as a synapse

circuit as shown in Fig. 2a. This is a simplified version

of the 2-transistor/one-resistor (2T1R) synapse [12], where

one transistor could activate the communication of the PRE
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Fig. 1. Schematic illustration of the 1T1R structure used in this work (a), experimental setup (b) and measured I-V curve showing the definition of parameters
Vset, Vreset, Vstop, IC and Ireset (c). The RRAM stack includes a HfOx switching layer, a Ti cap layer and TiN BE.

spike to the POST, while the other transistor was responsible

for updating the synaptic weight according to STDP. The

1T1R circuit in Fig. 2a is capable of both functions with just

one transistor, which alternatively activates communication or

plasticity in the synapse. As shown in Fig. 2a, the PRE spike

controls the gate voltage VG of the transistor, while the TE

voltage VTE is controlled by the POST and is generally biased

to a relatively low constant voltage. As a result, every PRE

spike activates a current which is inversely proportional to

the 1T1R resistance. The 1T1R current is collected by the

virtual ground input node of the POST neuron, which also

collects the current from other synapses. As the integrated

current exceeds an internal threshold, the POST experiences a

fire event according to the typical ’integrate and fire’ behavior

of the neuron [21]. Upon fire, besides sending a spike pulse

to the subsequent layer of neurons, the POST also delivers

a pulse back to the top electrode (TE) of the 1T1R synapse

according to the waveform in Fig. 2b. The TE waveform shows

2 phases, the first one consisting of a positive voltage pulse of

1 ms followed by a 9 ms pause, while the second phase has a

negative pulse of 1 ms width followed by a 9 ms pause. Before

and after the backward spike, the same low-amplitude VTE is

maintained with the purpose of activating current spikes to the

POST. In our experiments, the VG spike of the PRE consists

of a first phase with positive voltage 2.1 V and width 10 ms

followed by a second phase of zero voltage for 10 ms. The

value of VG was chosen in correspondence of a compliance

current IC = 50 µA, which is small enough to allow a relatively

small power consumption during set/reset transitions. The TE

voltage during communication was kept constant and equal to

a relatively low value VTE = 20 mV, which is low enough to

induce no change in the RRAM resistance. The positive and

negative peaks during the fire events were VTE+ = +2.5 V

and VTE− = -1.6 V, respectively.

The large values of VTE+ and VTE−, in contrast to the

low value of VTE < Vset in the communication stage, allow

to activate STDP according to the timing between the PRE

and POST spikes. In fact, defining a relative delay ∆t given

by:

∆t = tpost − tpre, (1)

where tpre and tpost are measured in correspondence of the

onset of the PRE and POST pulses, respectively, as shown

in Fig. 2b, the sign of ∆t dictates the change of RRAM

resistance. For ∆t > 0, the positive VTE pulse overlaps with

the VG spike, thus resulting in a set transition corresponding

to long-term potentiation (LTP). On the other hand, for ∆t

< 0, the negative VTE peak overlaps with the VG spike,

thus resulting in reset transition and consequent long-term

depression (LTD) [12].

IV. STDP CHARACTERISTICS

To validate the proposed 1T1R synapse, we applied the VG

and VTE pulse waveforms in Fig. 2b to a 1T1R device with

variable ∆t and initial resistance R0, with the purpose of col-

lecting the STDP characteristic. After every combined gate/TE

pulse application, the new resistance R of the device was

measured. Fig. 3a shows R0/R, namely the relative increase

of conductance induced by application of the 2 pulses, as a

function of the pulse delay ∆t. Various curves are reported

corresponding to increasing initial resistance R0, which was

changed in a range from 25 kΩ to 500 kΩ by initially preparing

the device by a partial reset operation with variable voltage

Vstop [22]. The curves show STDP with LTP and LTD at

positive and negative delay ∆t, respectively. As previously

noted [12], the STDP depends on the initial resistance: for

instance, virtually no LTP can be observed on LRS (R0

= 25 kΩ in Fig. 3a), since this state already has a very

low resistance. In fact, the resistance after set transition is

controlled by the size of the conductive filament (CF) which is

controlled by the compliance current IC [23]. Since a constant

VG was used in the scheme of Fig. 2b, no variation in the

maximum size of the CF could be obtained, thus resulting

in no possible potentiation of LRS. Similarly, no substantial

LTD is possible for HRS (R0 = 500 kΩ in Fig. 3a). Note

that a similar dependence on the initial state was observed

in biological systems, where a synapse conductance change

cannot exceed minimum and maximum values [24]. On the

other hand, intermediate resistance states can achieve both LTP
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Fig. 2. Scheme of the 1T1R synapse connected to PRE and POST (a) and
typical spike signals at VG and VTE at the basis of STDP (b). A VG spike
from PRE induces a current which is integrated by POST, eventually leading
to fire. At fire, VTE induces potentiation (∆t > 0) or depression (∆t < 0),
thus resulting in STDP.

and LTD. In any case, the STDP characteristics show constant

R0/R for ∆t < 0 and ∆t > 0, as a result of the constant VTE+,

VTE− and VG in Fig. 2b.

The STDP curves were reproduced by a Simulink circuit

model able to simulate the 1T1R device. The RRAM in the

1T1R was described by our previous analytical model [25]

where set transition consists of the growth of the CF diameter

while the reset transition occurs via the formation and growth

of a depleted gap, in agreement with the results of numerical

simulations of set/reset processes [26]. In the simulations, we

applied the same pulses shown in Fig. 2b and used in Fig. 3a,

assuming variable ∆t and variable R0, as in Fig. 3a. Fig. 3b

shows the calculated R0/R as a function of ∆t at increasing

R0, indicating a close agreement with data. Fig. 4 shows the

calculated STDP characteristics in a 3D plot, where R0/R in

the z-axis is reported as a function of R0 (x axis) and ∆t (y

axis). LTP occurs for ∆t > 0 and increases with R0, while

LTD occurs for ∆t < 0 and is more pronounced for low R0.

Note that the maximum relative LTP is around a factor

20, while the maximum relative LTD is around a factor 1/20,

corresponding to the overall resistance window between HRS

(about 500 kΩ) and LRS (about 25 kΩ) in our device. This

indicates that the synapse shows a bistable behavior where,

starting from any arbitrary intermediate state, even one spike

is enough to change the synaptic weight to either HRS (in

case of LTD) or LRS (in case of LTP). The bistable behavior

arises from the abrupt set/reset transitions (Fig. 1c) and the

relatively large VTE+ and VTE− values used in our STDP

protocol (Fig. 2b), and contrasts with the generally assumed

analog behavior of biological synapses [17], [18], [24].

V. PATTERN LEARNING WITH DETERMINISTIC STDP

To demonstrate the functionality of the bistable 1T1R

synapse for unsupervised pattern learning, we simulated a 2-

layer neuromorphic network with 64 PRE in the first layer

and one 1 POST connected to the first layer with 64 synapses

[12]. As schematically shown in Fig. 5a, the first layer acts as

a retina, emitting spikes in correspondence of a visual pattern,

e.g., an ’X’ as shown in Fig. 5b, alternated with random

noise (Fig. 5c). The currents generated in each activated 1T1R

synapse are collected by the POST which is modeled as a

leaky-integrate & fire (LIF) neuron, integrating the currents

Fig. 3. STDP characteristics, namely change of conductance R0/R as a
function of ∆t defined in Fig. 2b, obtained from data (a) and calculations
(b). Data were collected from 1T1R RRAM devices as in Fig. 1, while
calculations were done with a Simulink model. The change of conductance
was measured/calculated for increasing initial resistance R0.

Fig. 4. Calculated STDP characteristics as in Fig. 3b, but showing the 3D map
of R0/R as a function of ∆t and R0. Note that high (low) R0 preferentially
displays potentiation (depression).

and delivering a spike as the internal potential exceeds a

fixed threshold. Either the pattern or noise were periodically

presented by the PRE layer every epoch, corresponding to a

period of 10 ms. Pattern and noise were submitted with equal

probabilities of 50%, and noise had an average density of 9%

activated PREs in the first layer. The RC time constant of the

LIF was τ = 45 ms.

Fig. 5d shows the spiking activity of the first layer, reporting

the active channel (PRE) as a function of discrete time (epoch).

Either noise or pattern events occur randomly at each epoch.

Fig. 5e shows the corresponding internal potential in the POST,

namely the output potential of the leaky integrator, which is

the equivalent of the membrane potential in biological neurons

[24]. The internal potential increases due to the integration

of spiking currents, then eventually exceeds the threshold

resulting in a POST fire event. This dictates the generation

of a POST spike and the discharge of the internal potential.

Fig. 6a shows the evolution of the calculated synapse

conductance 1/R of the 64 synapses as a function of epoch

number. Red and blue lines represent the weight for synapses

within the pattern and the background, respectively. The color

map of the weights within the 8x8 synapse array at 0, 250

and 500 epochs is shown in Figs. 6b, c and d, respectively.

All weights were initially prepared in a random state uniformly

distributed between HRS and LRS. The weights corresponding

to the input pattern show a fast potentiation due to LTP

in the initial 50 epochs. On the other hand, background

patterns display gradual depression toward low conductance
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Fig. 5. Schematic layout of the 2-layer neuromorphic network to demonstrate pattern learning (a), input visual pattern (b) and typical noise (c), typical
pattern/noise sequence from POST (d) and corresponding internal voltage in PRE showing fire events upon reaching threshold voltage (e).

Fig. 6. Calculated evolution of weights 1/R for pattern synapses (red) and
background synapses (a), and pattern weights in the initial state (b), after 250
epochs (c) and after 500 epochs (d). The average weight of pattern synapses
reveals learning in around 50 epochs, while the average weight of background
synapse shows a gradual depression in 150 epochs.

due to LTD. Noise is functional in depressing background

synapses since LTD generally takes place in synapses excited

by noise soon after a fire event induced by presentation of the

pattern. Because of uncorrelated noise behavior, depression of

background synapses is relatively slow, taking approximately

150 epochs in Fig. 6a. These results support unsupervised

pattern learning in RRAM-based synaptic network via STDP.

VI. LEARNING WITH STOCHASTIC SYNAPSES

The abrupt set/reset processes in our RRAM device causes

bistable STDP in contrast with the gradual weight tuning

which is believed to occur in biological STDP. It was pre-

viously reported that gradual switching can be mimicked in

bistable synapses via stochastic switching, where set/reset

process is induced randomly (instead of deterministically) in

the STDP protocol [14], [15]. To study the impact of stochastic

Fig. 7. Voltage pulse sequence for partial reset (a) and random set (b)
experiments of Fig. 8 and Fig. 9.

switching on pattern learning we changed the VTE+ and

VTE− voltages to explore both random set transition and

partial reset transition of RRAM.

A. Partial reset characteristics

We characterized the partial-reset process in our RRAM

by applying a sequence of triangular VTE pulses as shown

in Fig. 7a. First, the device was initialized in the full reset

state (HRS) by a reset pulse, then a set pulse was applied

to induce set transition to the LRS. The compliance current

was 50 µA during the set pulse by properly limiting the gate

voltage (not shown). Finally, a partial reset pulse with variable

Vstop was applied to induce transition to the partial reset state.

The sequence was repeated 103 times for each value of Vstop

to gain sufficient statistics.

Fig. 8a shows the distribution of R measured after the partial

reset pulse with Vstop = -0.7 V, -1 V, -1.1 V, -1.2 V, -1.3 V, -

1.6 V. For Vstop = -0.7 V, the R distribution coincides with the

LRS distribution, since the voltage is too small for the reset

transition. As Vstop is increased, first a high-R tail appears

with increasing amplitude, then the full distribution moves

toward high R [16]. The distribution dependence on Vstop
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Fig. 8. Cumulative distributions of measured and calculated R after partial
reset at increasing |Vstop | (a), corresponding average values of HRS and
LRS subdistributions (b), and lognormal spread of R for HRS and LRS
subdistributions (c).

can be captured by an empirical model, where we described

each distribution by combining 2 sub-distributions, one for

HRS and one for LRS. Both sub-distributions were modeled

as log-normal distributions defined by an average value µ and

a slope (or standard deviation) σ. We extracted the average

value µHRS and its slope σHRS on the lognormal scale, which

are reported in Fig. 8b and c, respectively. We also extracted

the average value µLRS of the set-state distribution (i.e., the

one for Vstop = -0.7 V in Fig. 8a) and its slope σLRS on

the lognormal scale, which are also shown in Fig. 8b and

c, respectively. Based on the extracted parameters in Figs.

8b and c, we obtained the partial reset distributions at any

Vstop by combining HRS and LRS distributions with a Monte

Carlo approach, as shown by calculations in Fig. 8a. Note

that µHRS can be smaller than µLRS in Fig. 8b, as a result of

extrapolating the HRS tail to lower resistance in the lognormal

scale. Such low values of µHRS have no physical meaning,

but are functional to the accurate description of the overall R

distribution in Fig. 8a.

B. Random set characteristics

Fig. 7b shows the triangular pulse sequence for studying

random-set distributions, similar to partial reset distributions in

Fig. 8. The VTE waveform in Fig. 7b includes an initialization

Fig. 9. Cumulative distributions of measured and calculated R after random
set at increasing VA (a), typical I-V curves for states A, B and C (b), and
set probability at increasing VA. Due to random switching, the device may
undergo set transition (A), or display no transition (B) or partial transition
(C). Calculations by Eq. (2) are shown in (c).

set pulse, a full reset pulse with Vstop = -1.6 V, and a final

pulse for random set transition with a variable voltage VA [9].

As a result of the large stochastic cycle-to-cycle fluctuation of

the set voltage Vset, the voltage VA can be above or below

the nominal value of Vset, thus inducing set transition in a

fraction of cycles. Fig. 9a shows the cycle-cycle distributions

of measured R for the initial HRS and after random set

transition at variable VA. The random set pulse induces set

transition in a fraction of cycles, as a result of the statistical

variability of Vset. Therefore, the application of VA might lead

to set transition for VA > Vset (state A in the distribution

of Fig. 9a), or the device might remain in HRS state for

VA < Vset (state B). In some case for VA ≈ Vset, the

set transition might be stopped at the end of the VA pulse,

thus resulting in an intermediate state as indicated by state

C. Fig. 9b shows the I-V curves captured during the random

set pulse in correspondence to states A, B and C in Fig. 9a.

As VA increases, the set probability increases as summarized

in Fig. 9c, showing the fraction of cells with R < 80 kΩ in

the distributions in Fig. 9a. We chose 80 kΩ as a threshold

for separating LRS and HRS cells. Data in Fig. 9c can be

described by the fraction of cells undergoing set transition, i.e.,

those falling below VA in the Gaussian distribution P(Vset)

of Vset. As a result, the set probability Pset can be obtained
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Fig. 10. Color maps of calculated learning efficiency Plearn and error
probability Perr for 1 cell per synapse (a,b), 2 cells per synapse (c,d) and 4
cells per synapse (e,f).

as:

Pset =

∫ VTE+

0

P (Vset)dVset =
1 + erf

VTE+−µ
√

2σ

2
, (2)

where µV set = 1.3 V is the average value of Vset and σV set

= 0.193 V is the standard deviation of Vset. Similar to partial

reset, the random set distribution was modeled by a Monte

Carlo approach combining the full (initial) distribution HRS

and the full LRS distribution with a random-set probability

given by Eq. (2). Calculations by Eq. (2) are shown in Fig.

9b, in good agreement with the observed Pset. Eq. (2) was

used in STDP simulations by assuming VA = VTE+, namely

the positive peak of the POST spike in Fig. 2.

VII. PATTERN LEARNING WITH STOCHASTIC SYNAPSES

To study the impact of stochastic switching on pattern

learning efficiency, we simulated the neuromorphic circuit of

Fig. 5a by changing the values of VTE+ and VTE− of the

POST spike in Fig. 2b. An ’X’ pattern was presented to

the PRE layer with a noise occurrence probability of 50%

and noise average density of 9%, as in the simulations of

Fig. 11. Calculated Plearn and Perr as a function of VTE+ for increasing
number of cells (a) and as a function of noise pixel density (b). Noise is
beneficial for learning, with an optimum efficiency around 9% of noise density.

Fig. 6. After each applied pulse at voltage VTE+ or VTE−,

the resistance was updated according to the Monte Carlo

model for partial reset and random set of section VI. After

1000 simulated epochs starting from a random distribution of

synaptic weights, we defined the learning efficiency Plearn as

the ratio of the number np,f of fire events in correspondence

of the presentation of a pattern, divided by the number np
of total appearances of the pattern. Note that Plearn should

be ideally one in the case of fire occurring systematically at

the presentation of the pattern. We also calculated the error

probability Perr as the ratio of the number nn,f of fire events

in correspondence of the presentation of noise, divided by the

number nn of total appearances of noise. Note that Perr should

be ideally zero, i.e., the POST never fires in correspondence

of the presentation of noise.

Fig. 10 shows the calculated Plearn (a) and Perr (b) in color

maps as a function of VTE− in the x-axis and VTE+ in the

y-axis. VTE+ controls the probability of synapse potentiation,

while VTE− is responsible for synapse depression. From the

maps, the region with the highest Plearn and lowest Perr

is for VTE+ ranging between 1.2 V and 1.6 V and for

|VTE−| above 1.3 V. LTP is too weak for VTE+ < 1.1 V,

thus causing a generalized depression of all synapses. On the

other hand, synapses cannot be depressed for |VTE−| < 1.2

V, thus causing a generalized potentiation of all synapses and

systematic spiking in response to both pattern and noise.

We studied a possible improvement of learning by using

multiple 1T1R cells for each synapse, each connecting the

same PRE to the POST. Fig. 10c and d shows the calculated

Plearn and Perr, respectively, for the case of 2 cells per

synapse, while Fig. 10e and f shows the calculated Plearn

and Perr, respectively, for the case of 4 cells per synapse. The

learning/error performance slightly increases due to averaging

within the resistance distributions after partial reset and ran-

dom set. In fact, the regions of high Plearn and the regions

of low Perr show an increasing area for increasing number

of cells per synapse in Fig. 10. Fig. 11a shows the calculated

Plearn and Perr as a function of VTE+ for VTE− = 1.6 V (full

reset) and for variable number of cells per synapse, indicating

a slight improvement obtained by redundant RRAM cells.

We also studied the impact of noise on learning efficiency.

Fig. 11b shows Plearn and Perr as a function of the noise activ-

ity within the PRE array, namely the average fraction of firing
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PREs while presenting a noise image. In the simulations, noise

was presented randomly in 50% of all epochs. For zero noise

activity, Plearn is around 60% due to the lack of background

depression. As noise is increased, Plearn increases, reaching a

maximum value around 95.3% in correspondence of 9% firing

PREs. A further increase of noise activity leads to performance

degradation where Plearn decreases and Perr increases. This

is because excessive noise may cause a sequence of noise-

induced fire of the PRE, immediately followed by pattern

presentation, which results in the LTD of all pattern synapses.

The results in Fig. 11b suggests that noise should be carefully

tuned to maximize the learning efficiency in the neuromorphic

network.

VIII. CONCLUSIONS

We presented a novel 1T1R synapse using bipolar RRAM

as tunable resistance for neuromorphic learning circuits. The

STDP behavior in the synapse arises from the overlap of PRE

and POST pulses across the RRAM. We demonstrated STDP

characteristics by experiments and unsupervised learning in

a fully-connected neuromorphic network of 64 PRE and 1

POST. The impact of stochastic switching was studied by

implementing an empirical Monte Carlo model for switching

variability during partial reset and random set processes.

Stochastic switching simulations of learning show a large re-

gion of operation with optimum learning at large TE voltages.

Optimization of noise for best learning efficiency is finally

discussed.
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