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Computing stands to be radicallyimproved by neuromorphic computing (NMC) approaches inspired by
the brain’sincredible efficiency and capabilities. Most NMC research, which aims to replicate the brain’s
computational structure and architecture in man-made hardware, has focused on artificial intelligence;
however, less explored is whether this brain-inspired hardware can provide value beyond cognitive
tasks. We demonstrate that high-degree parallelism and configurability of spiking neuromorphic
architectures makes them well-suited to implement random walks via discrete time Markov chains.
Such random walks are useful in Monte Carlo methods, which represent a fundamental computational
tool for solving a wide range of numerical computing tasks. Additionally, we show how the
mathematical basis for a probabilistic solution involving a class of stochastic differential equations can
leverage those simulations to provide solutions for a range of broadly applicable computational tasks.
Despite being in an early development stage, we find that NMC platforms, at a sufficient scale, can

drastically reduce the energy demands of high-performance computing (HPC) platforms.

The efficiency of biological nervous systems has intrigued even the earliest designers of computing
systems [24, 39], but the theoretical value of neuromorphic hardware remains unclear. While quantum
computing offers clear fundamentaladvantages at scale [36], the advantages of NMC are more subtle, a
fact that has muted enthusiasm despite the increasing ability to develop large scale neural processors
today [9, 13, 26]. Nonetheless, in addition to the advanced cognitive capabilities, there are several
architectural features of most nervous systems that may yield advantages including the high degree of
connectivity betweenneurons, the colocation of processingand memory, and the use of action potentials

(i.e., spikes) to communicate.

Algorithms research for spiking neuromorphic hardware has primarily focused on its suitability for deep
learning and other emerging Al algorithms [31, 35]. This application is straight-forward, given the
alignment of neural architectures with neural networks, and it can be expectedthat the value of NMC will

grow as Al algorithms derive furtherinspiration from the brain [1]. However, the impact of NMCbeyond



cognitive applications is less clear. Quantum computing provides a precedent for emerging hardware to
have impact beyond its original inspiration: while quantum computing was conceived as a means for
efficient chemistry simulations [11, 22], it is now recognized that it can impact a much broaderrange of
computing applications [4, 18, 36]. Along these lines, there is growing evidence that neuromorphic
hardware can provide theoretical complexity advantages on a growing set of non-cognitive, non-Al
applications [2, 3, 7, 12, 25, 27-29, 33, 37]. Unlike quantum computing, which still faces technical
challenges in scaling up to sizes necessary for real-world impact (as noted by the recent findings
concerning guantum supremacy [4]), NMC platforms can already be scaled to non-trivial sizes, with several
multi-chip spiking NMC systems achieving scales of over a hundred million neurons. Nevertheless, NMC
systems remain smaller and less efficient than the human brain, and the critical scales for NMC remain
unknown since the appropriateness of an analogous concept of neuromorphic supremacy remains

unclear.

Identifying NMC’s value for an application is complicated by the fact that its advantage primarily derives
fromits energy-efficiency as opposed to a promise of faster computation (although speed benefits remain
a possibility, and because NMCis an immature technology compared to conventionalvon Neumann (VN)
systems, which have been optimized and advanced over decades in both hardware and software. We
define an algorithm as having aneuromorphic advantageif that algorithm shows a demonstrable
advantage (compared to a VN architecture) in one resource (e.g., energy) while exhibiting comparable
or better scaling in other resources (e.g., time). Given NMC’s currently realized advantages in power
consumption, we are seeking algorithms that show comparable or better time-scaling comparedto a VN
architecture while still requiring less total energy (i.e., “energy efficiency”) to perform the same

computation.

Observinganeuromorphic advantage for non-cognitive applications should not be taken as agiven, as the

specialization of computerarchitectures toimprove performance on asubset oftasks (in the case of NMC,



towards the brain) will result in degraded performance in other tasks [41]. Therefore, observing a
neuromorphicadvantage on non-cognitive applications would demonstratethat NMC can have a broader

impact than previously assumed and provide a concrete framework by which to develop the technology.

In this paper, we identify for the first time an explicit neuromorphic advantage for large-scale spiking
neuromorphichardware on a fundamental numerical computing task: solving partial integro-differential
equations (PIDEs) that have probabilistic representations involving a jump-diffusion stochastic differential
equation (SDE). The solutions to these PIDEs can be approximated by averaging over many independent
random walks (RWs), a process oftenreferred to as Monte Carlo. Diffusion is a quintessential component
of the underlying SDEs usedin the probabilistic solution of the PIDEs. We can show our NMCalgorithm
for generating RW approximations to diffusion satisfies our neuromorphic advantage criteria on two
currentlarge-scale neuromorphicplatforms: the IBM Neurosynapticsystem [26], also knownas TrueNorth
and introduced in 2014, and the Intel Loihi system [9], introduced in 2018. While distinct neural
architectures, both directly implementa large number of neuronsin silicon (1 million and 128 thousand
per chip, respectively), are readily-scalable to multi-chip platforms, and are reflective of the long-term
technology trendsin spiking neuromorphichardware. We then show that our NMCalgorithm for random
walks can be extended to account for more sophisticated jump-diffusion processes that are useful for
addressing a wide range of applications, including financial economics (e.g., option pricing models),

particle physics (e.g., radiation transport), and machine learning (e.g., diffusion maps).

Spiking Neuromorphic Hardware Shows Neuromorphic Advantage on Simulating Random

Walks

Random walk solutions are often an attractive option for large scale modeling efforts since independent
RWs can readily be computedin parallel. Countering these benefitsis the large number of RWs required

to approximate solutions via a Monte Carlo method, and translating large-scale RW-based particle codes



to GPU-heavy computing platformsis an active area of research [16, 17]. Our approach leverages two key
features of spiking neuromorphic hardware — the parallel computation of neurons and the event-driven
spiking communication between them —to perform a highly efficient mapping of stochastic processes.
While deterministic numerical solutions of PIDEs often rely on relatively few large complex calculations,
RWs typically rely on many simple computations. As we show, these computations can be efficiently

implemented within circuits of spiking neurons.
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Figure 1: Neuromorphic hardware can efficiently implement random walks. (A) Leaky integrate-and-fire (LIF) neurons
on spiking neuromorphic hardware integrate activity from many inputs, generate a ‘spike’ if an internal threshold is
crossed, and only communicate to targets if the spike exists. (B) Random walk transitions can be performed and
tracked by a counter circuit combined with a stochastic output. Each circuit typically comprises of between 10 and
20 LIF neurons, depending on the number of edges. (C) Random walk transition circuits are repeated for every mesh
point, and the graph of mesh points equates to the state transition matrix of a discrete time Markov chain. The NMC
algorithm implements both the stochastic and deterministic state transitions of all random walkers at all mesh points

in parallel. (D) Demonstration of simple diffusion on a 30x30 torus on the Intel Loihi platform. Aside from reading out



intermediate states for visualization, the entire random walk process was performed within the NMC system. (E)
Simulating additional walkers on Intel Loihi and IBM TrueNorth increases time efficiency, whereas additional walkers
have same cost on single CPU core. (F) Random walk processes can be distributed over multiple meshes on IBM
TrueNorth or multiple cores on CPUs. (G) The NMC platforms, TrueNorth and Loihi, have a considerably higher
energy-efficiency (walker updates per Joule) than CPUs Legend the same as panels E and F. All scaling experiments

had 10 replicates with standard errors below 0.5%, so error bars are not shown.

Our neural algorithm for RWs is based on a previously described circuit to model diffusion, in which we
demonstrated that neural circuits can simulate random walks, but did not show how this process could
extend to efficiently solve PDEs [34]. In this algorithm, each mesh-point consists of a simple neural circuit
that uses common leaky-integrate and fire (LIF) neurons (Fig. 1A) to count the number of incoming spikes
and a circuit to stochastically distribute spikesto output nodes (Fig. 1B). These nodes are then assembled
into a graph whose edges represent the transition probabilities from one state to another (Fig. 1C). An
initial count of walkersis set at the appropriate starting location mesh point (eitherthrough input spikes
or aninitial voltage condition), and once the supervisor circuit initiates the model, the spikes’ propagation
through this mesh directly reflects the movement of RWs through the corresponding state space. Stated
differently, the NMC hardware implements both the stochastic and deterministic components of the

stochastic process.

Importantly, this neural algorithm can be generally configured to represent any time-homogeneous
Discrete-Time Markov Chain (DTMC) by configuring the shape of this graph and setting the output
probabilities within each node to represent the problem description. For instance, a nearest-neighbor
mesh with uniform probabilities would lead to Brownian motion in the limit as the mesh and time step go

to zero (Fig. 1D). More sophisticated RWs, including those with non-local and jump diffusion, walker



absorption and creation, can readily be implemented with location-dependent transition probabilities in

this framework, allowing the algorithm to realize the processing-in-memory advantages of NMC.

We first performed scaling studies to assess the computational costs inherent in simulating RWs on two
NMC platforms, IBM TrueNorth and Intel Loihi, relative to a commodity server-class Intel Xeon E5-2662
CPU. The benchmark task, uniform diffusion on a small torus, was selected to be a simple “best-case” for
conventional platforms; we expect any added complexity, such as non-uniform transition probabilities
and larger mesh, to preferentially benefit the NMC implementations. For single-threaded
implementations of the benchmark task, the CPU is faster than both Loihi and TrueNorth, however
Increasing the density of RWs on the NMC platforms required relatively less additional time, whereas
additional walkers scale linearly on the CPU (Fig. 1E). Distributing the RWs over multiple threads showed
comparable time-scaling on multiple cores on CPUs and replicated meshes on TrueNorth (Fig. 1F).
Despite the slower base clock-rates of these less technologically mature NMC platforms, TrueNorth and
Loihi exhibit better single-mesh scaling than conventional platforms and similar multi-threaded
capabilities compared to conventional platforms (Fig. 1G). Combined, these scaling results satisfy our

weaker condition for a neuromorphicadvantage.

We nextcompared the total energy cost of the RW calculations on NMC and conventional platforms for
equivalentamounts of computational work. To estimate energy, we scaled the top power estimatesfor
each platform by the relative percentage ofthe chip used(e.g., number of cores orthreads) and integrated
overthe total simulation time. TrueNorth and Loihi implementations show both a considerable absolute
advantage and preferential scaling in total walker-updates-per-Joule compared to the CPU (Fig. 1g),
satisfying our strong condition for a neuromorphic advantage. Notably, Loihiand TrueNorth appear to
occupy different places on the energy-time trade space, possibly in part due to Loihi’s incorporation of

conventional processors on chip.



Neuromorphic-compatible random walks apply to broad class of PIDEs

While RW solutions to PIDEs have mixed appealto conventional computing programmers, they have been
utilized to provide solutions in a variety of fields, including computer science, physics, medicine, and
operations research [23]." The decision between using a deterministic approach and a random walk
approach is a complicated and important question. However, this question is beyond the scope of this
paper. Rather, we aim to demonstrate that NMC can efficiently implement random walks and,
consequently, are able to solve a variety of PIDEs, while potentially mitigating some of the disadvantages

of RW solutions (such as the high costs associated with the required number of walkers).

The connection between RWs and the heat equationis well-known. Einstein’s 1905 work posits that
there exist particles small enough that they may be viewed (with a microscope) but large enough that
their Brownian motion is measurable, further arguing that such particles exerta measurable
thermodynamicforce [10]. Langevinrelated the mean squared displacement of Einstein’s particles to a
differential equation describing the particle’s motion [21]. A more detailed discussion of the history of

this fundamentalrelationship can be foundin [14].

To motivate the probabilistic solution fora larger class of PIDEs, we explore the heat equation. Consider

the one-dimensional heat equation with initial condition given by f (x):

”n u

* Due totheir broad relevance, terminology such as “Monte Carlo”, “random walks”, and other terms may
have specificmeanings in some fields, so to give clarity to the methods that follow, we emphasize that we
are employing discrete-time, finite state space Markov chain approximations to stochastic processes
underlying particular PIDEs. These Markov chains are used to generate several random walks. These
random walks are evaluatedina Monte Carlo fashion to estimate an expectation.
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u(0,x) = f(x).
Equation 1

Let W(t) be a standard Brownian motion on R. The key relationship relates an expectation (i.e. expected

or average value) involving W (t) with the solution u:

2
IE[f(W(t))|W(O) = x] = \/%ntff(y) exp <—(yz—tx)>dy =u(t,x).

Equation 2

In words, the expectation of a function evaluated at Brownian motion is exactly the solution to the one-
dimensional heat equation. This probabilistic representation allows us to approximate the functionu(t, x)
using RWs. Traditionally, this is accomplished by employing some sampling procedure to generate sample
paths of W(t), typically involving a discretization of time and value sampling over a continuous space[15].
Discussed in detail later, in order to make this process amenable to our neural RW algorithm, we must
sample our paths through a DTMC X (jAt) that approximates the process W (t). For each spatial location
x;, several RWs starting at x; are generated from the Markov chain. Letting X;,; represent the mth Rw

generated starting from location x; the Monte Carlo approximation gives

u(jat, x) = E[f(W(ae) [w(0) = x;] = XiniGAD)).

ﬁMz

Equation 3

Regardless of modifications needed for NMC implementation, this simple result can be extended to a

more computationally challenging set of problems. Consider the family of PIDEs defined by the equation
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Equation 4

As with Eqg. 1, there is an underlying stochastic process, albeit slightly more complicated than just

Brownian motion. The stochastic process related to this PIDE is

dx(t) = b(t,X(0))dt + a(t,X(®))dw (t) + h(t,X(t),q)dP(t; Q, X(t)).
Equation 5

The process X(t) is defined by adrift, diffusion, and a non-local jump. In this form, b gives the driftand a

gives the diffusion. The process W (t) is a Brownian motion with respectto the underlying space, in this

case R%. The term P(t; Q,X(t)) is a Poisson process with parametergiven by — fot)l(s,X(s))ds and the
function h describes the non-local jump awarded whenever the Poisson process fires. This stochastic
process is readily visualized in Figs. 2a-c for constantvalues of b, a,and h. The jump value h need notbe
constant and can even be random as seen in Fig. 2d (Q can be interpreted as a random variable
correspondingtothe random jump mark amplitude of acompound Poisson process). The final two panels
showcase whenthe jumpvalue is drawn uniformly over{—3,—2, ..., 2, 3}. We note that while ¢ does not
appearin Eq. 5, it can often be interpreted as an absorption or killing term, demonstrated in Fig 2e. A

discussion on this interpretation can be found in SN2.

Pairing Eqg. 4 with the initial conditionu(0, x) = g (x), undercertain conditions the solution to the initial

value problem can be represented as



X(0)=x

t t s
u(t,x)=E [g(X(t)) exp <f c(s,X(s))ds> + f f(s, X(s)) exp <f c(f’,X(i’))d#)ds
0 0 0

Equation 6

A proof for the one-dimensional case can be found in SN2.

Various special cases of this result exist. A particular interesting special case arises when consideringthe
. 7] . . .
steady-state version of Eq. 4, where U= 0and tdoesnotappearasanargumentin allfunctions. Setting

¢ = 0 and considering this case as a boundary-value problemwith u(x) = v(x) onthe boundary of some

domain D, the solution can be shown to take the form

Tx
u(x) =E [v(X(Tx)) +f0 f(X(s))ds| x(0) = x].

Equation 7

Here, X(t) is the process given by Eq. 5 with t omitted as the first argumentin a, b, and h. Since time is
still an argument for the process, the probabilistic solution requires the use of the stopping time T, or
the time for which the random process X(t), starting at X(0) = x exits the domain D. A proof for the

one-dimensionalcase can be foundin SN2.
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Figure 2: Random walk processes are well-suited for NMC, and the inclusion of different terms in the stochastic
process yields random walks with differing behavior. For (A)-(E), left panel shows three illustrative random walks for
2 seconds (100 time steps); right panel shows density of 1000 random walkers run on Loihi. The range shown in the
density plots is highlighted in overlaid onto the process examples. (A) Including only an a term yields basic diffusion;
(B) Including a and b yields diffusion with drift. (C-D) The inclusion of A and h allows the random walk to jump’ for
discontinuous movements. (E) The c term under some conditions can yield walker removal.In all plots, the finite range
is applied by imposing an upper and lower bound for the walks. (F) Sources of discretization in all stochastic processes
(of either conventional or neuromorphic sources) impacts the accuracy and convergence of expectation solution for
the PIDE. The first row details the Monte Carlo order of convergence; the second row is the order of convergence for
the Euler-Maruyama discretization method; the third row is a best-case scenario estimate for error accrued due to
discretizing space; the fourth and final rows merely indicate that some problems could have additional error due to
enforcing a finite state space or due to reduced precision on neuromorphic platforms. For further discussion, see

Methods.

Non-ZeroTerms in Eq. 4 Example Application
Time-dependent problems
ab,cf Stock Option Pricing [5]

Boltzmann Flux Density SN3
Ab,c,f,h .
Reduced Problem, Fig. 3A-D.
a,c Heat Equation with Dissipation (See Fig. 4C)
Steady-state problems

Electrostatic Scalar Potential, Heat Transport, or

a, . .
f Simple Beam Bending [38]

Particle Fluence SN3

Ab h
b,cf, Reduced problem, Fig. 3E-I.

Table 1: Examples of applications involving a PIDE in the form of Eq. 4. This table is not exaustive and includes only

a sample of possible applications. In this paper, we utilize a random walk method to solve two heat transport



problems and a reduced problem for both the Boltzmann particle angularflux density problem and the angular

fluence problem.

These PIDEs are important within many application domains, including particle physics, quantitative
finance, and molecular dynamics, among others. When viewed probabilistically, the steady-state
problems are particularly interesting for neuromorphic because the long run-times required for RWs to

reach steady-state solutions are often computationally prohibitive on conventionalhardware.

The precedingdiscussion on the two families of PIDEs and their probabilistic solution representations are
largely known results — we merely reformulate these results in forward time (see SN2). The new
contribution we provide is the use of well-understood DTMC approximations to SDEs in order to make the

probabilistic sampling of paths viable on the NMCdiffusion algorithm.

A DTMC approximating Eq. 5 is compatible with the neuralalgorithm we described for diffusion (Fig 1D).
In particular, the drift b and non-local diffusion terms A and h can naturally be reflected within the
definition of the mesh and transition probabilities (Fig 1C), in effect providing those extensions to
diffusion. Similarly, non-conservation of walkers (walker absorption or creation) can be easily integrated
into the system we described. Such a situation may be desirable when the form of ¢ lends itself towards

an absorption interpretation.

To approximate Eq. 5 with a DTMC, one must employ some sort of temporal and spatial discretization
scheme. Having NMC approximate the DTMC introduces additional sources of uncertainty (Fig 2F).
Specifically, the finite node structure of NMCarchitectures forces the DTMC to have a finite state space.
In one dimension, this equates to havinga maximum and minimum value in the state space. The error of
enforcing a finite state space forthe DTMC would vary from application to application. The discrete state
space arising from the DTMC also introduces error depending onthe problem at hand. If the state space

of the random walk is already discrete, it introduces no error. In the continuous case, it could introduce



1 . . . . .
error on the order of > AtAs on each time step in a special best-case scenario (see Methods). Additional

error could arise from hardware specific limitations. For instance, the IBM’s TrueNorth and Intel’s Loihi

pseudo-random number generators that we use are effectively limited to 8 bits.

Both conventional simulations, which modeleach random walker independently and track the evolution
of state variables, and our neuromorphic simulations, which model the parallel evolution of random
walkers overastate-space represented by the neural circuit, are impacted by each of these error sources.
However, the high numerical precision of conventional processing minimizes the impacts of discretizing
the values and ranges of state variables, making the dominant errors due to time discretization and the
numberof random walkers. In contrast, our neuromorphicimplementation enables avery large number
of walkers at negligible cost, but the dedication of neurons to explicitly representing state variables raises
the cost of reducing the meshing error. The implication of these errors will differ considerably across

applications in practice.

Results/Examples

To demonstrate the ability of neuromorphic hardware to implement the DTMCs requiredfor solving these
PIDEs, we provide a handful of examples. These are grouped into two main categories: particle equations
and geometries. The results of our simulations on hardware and spiking neuron simulators can be found
in Fig. 3 and Fig. 4. We coverthe more salient points of these examplesin the nexttwo subsections and

relegate the remaining details to SN3.

Neuromorphic hardware can simulate particle transport
First, we showcase two examples of particle transport equations with probabilistic representations
suitable for our spiking algorithm. The first is an initial-value time-dependent problem detailing the

angular flux density of a hypothetical particle (Fig. 3A). Consider a hypothetical particle that has a property

called ‘direction’. This direction property takes on the value +1 or —1. According to a Poisson process



with rate g, the particle can experience a ‘scattering’ event. When a scattering event occurs, the partide
chooses a new direction with uniform probability. A second Poisson process with rate g, controls when
the particle is absorbed and ceases to exist. These rates correspond to A and c, respectively, in Eq. 4. The
function h is represented by the change in direction the particle experiences after a scattering event.
Coupled with an initial condition g, a population of these particles is assumed to obey the Boltzmann

equation forangular flux density (see SN3).

The angular flux density, ®(t,Q), is a function of both time t and direction Q. We will leave the PIDE in
SN3, butit takes the form of Eq. 3 with a, b, and f all equalto zero. Assigning some initial condition g, the

solution is given by

®(t,0) = E[e=%tg(Y(£))|v(0) = ],

dY (t) = wy(pdP(t).
Equation 8

The SDE almost behaves like our hypothetical particle. The ‘direction’ at time t is given by Y(¢). P(t) is a
Poisson process with parameter ost, and wy () is the random change in direction of the random walk after
a scattering event given the previous direction. The direction remains the same until the Poisson process
fires (signaling a scattering event). Once this occurs, the value of Y (t) increments by the random change
in direction wy (). Notably, the random process differs from the hypothetical particle in that it does not

account forabsorption. Instead, absorptionis resolved through the exponential termin the expectation.

We deployed a neural circuit of a DTMC approximating the dynamics of the stochastic process Y(t) on
TrueNorth. The description of the random walk and the parameter values used can be found in SN3. In
this scenario, an analytic solution exists. Fig. 3C shows that the true solution is well approximated by
sampling just 1000 random walks pereach starting condition. Moving to 10,000 RWs per starting position

(Fig3D), we see notable improvementin approximation.



This simplified example of particle transport has broad implications. Directly, if we can well-approximate
the analytic solution for this reduced particle transport problem, then it will be possible to approximate
more complicated particle transport problems where no solution is available. To that end, we have

examined asecond particle transportinspired example for which no analytical solution is readily available.
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Figure 3: Monte Carlo particle transport simulations on neuromorphic hardware. (A) Non-spatial Boltzmann
transition/absorption model (top). Corresponding DTMC approximation for underlying SDE (bottom). (B) Evolution of
particles through Boltzmann transitions on TrueNorth. Pink represents higher density of walkers and blue represents
lower density for the case where 1000 walkers start in +1 state (top) or -1 state (bottom) and equilibrate due to
Boltzmann transitions. (C) PIDE solution calculated through TrueNorth spike data starting 1000 random walkers on
each direction. (D) PIDE solution calculated through TrueNorth spike data starting 10000 random walkers on each
direction. (E) Spatial particle transport model. Particles travel at fixed speed in measured dimension. At position ‘0’
(red dot), the particles scatter ata random angle preserving their total velocity. At the next time step, the particles
will have a different position and direction of movement. (F) MATLAB approximate solution from DTMC
implementation of spatial particle model, 1 million walkers at each starting location (G) Intel Loihi approximate

solution from DTMC implementation of spatial particle model, 6250 walkers per starting location (H) absolute error



between Loihi and numerical simulation, (I) average percent error between Loihi and numerical simulation as a

function of increasing random walkers per starting location.

In our second example, we consider a similar particle. This hypothetical particle is subject to scattering
events according to a Poisson process with rate a5, however the direction can assume any value in[—1, 1]
with a uniform distribution. We assume that this particle is not subject to absorption. In addition to
direction, this hypothetical particle also has a spatial coordinate. The particle travels at a speed v in the
direction ( updatingits position (Fig 3E). We seekto find the angular fluence ¥, or time-integrated flux,

in the spatial domain [—1, 1] subjecttothe source term S(x, Q).

In terms of Eq. 4 (and detailed in SN3), 1 = va,, f = vS(x, Q), b = vQ, and h is the change in direction
after a scattering event given the current direction of travel. The remaining terms, a and c, are zero for

this example.

Enforcing absorbing conditions on the boundaries, the angular fluence W (x, Q) is a function of position x

and direction (), and obeys the PIDE in SN3. The solution may be represented as

T
Y(x,0) =E [ j vS(X(w),Y(w))du|x(0) = x,Y(0) = Qf,
0

dX(¢t) = —vY(t)dt,
dY(t) = wypdP(t),

T, = inf{t > 01X (¢) ¢ [-1,1], X(0) = x}.
Equation 9

Both P(t) and wy(¢) are the same as in the previous example. The SDE in this case describesa process
with a position given by X (t) and direction given by Y (t). The position updates with velocity —vY (t).

The direction only changes by wy(;) wheneverthe Poisson process P(t) fires.



We deployed a RW approximation from a DTMC of this joint process on Intel’s Loihi platform. Details on
the DTMC and parameters used are in SN3. We completed a 1M walker/location simulation in MATLAB
to use as a baseline comparison. One interpretation of the angular fluence is the cumulative density of
particles traveling from the source location. From the MATLAB simulation, we see that these particles
appear to have mostly traveled with speed v in their original direction assigned by the source, with
lessening bands of deviations due to scattering events (Fig 3F). Similar to the Boltzmann example on
TrueNorth, implementing this simulation on Loihi was able to replicate the numerical examples (Fig. 3G)
with a low overall error (Fig. 3H-I). This low error in the neuromorphicimplementation is of particular
importance since the low output probabilities due to the high-fan out in this model (up to 30 output

nodes) are potentially at risk due to the relatively low 8-bit precision of Loihi’s random number generator.

Neuromorphic approach to simulating on non-Euclidean geometries

The particle examples above are straightforward demonstrations of RWs with non-localjumpson asimple
domain. We next demonstrated neuromorphic RWs over non-Euclidean domains, solving two heat
equations. By carefully defininga mesh and calculating transition probabilities, PIDEs over large complex
geometries are no problem forthe neuromorphicRW method. To demonstrate the ability of this method
to solve problems on non-Euclidean domains, we presenttwo examples involving spheres. While the non-
Euclidean shapes we consider are by no means ‘complex,” we merely showcasethatthe method is mostly

agnostic to the domain.

Considera basic heatequation on the unit sphere. We let S2 represent the unit sphere and take a(t, x)
to be the positive scalar a for all t € [0, ©) and x € S2. Set the remaining coefficients in Eq. 4 to zero.
Paired with an initial condition g (x), the probabilistic solution to the heat equation on the sphere is given

by

u(t,x) = E[g(x(®))|x(0) = x],



dX () = V2adw (t),
Equation 10

where W (t) represents Brownian motion on the surface of the sphere. By choosing a particular initial
condition, this problem has a tractable analytic solution (SN3). The initial condition selected resembles a

soccer ball pattern (Fig. 4A).

To employ our neuromorphicapproach, we must be able to approximate Brownian motion on the surface
of the sphere witha DTMC. There are several ways to describe Brownian motion on the sphere, including
using the von-Mises Fisher distribution [40], employing representations with spherical coordinates [6], or
limiting from higher dimensions [8]. Since itis applicable to other curved shapes, weelectto use atangent
plane approximation. Setting ¢ = 42, we deploy a RW approximating the process X(t) on Intel’s Loihi
platform. Starting 3000 RWs on each position yields the approximate solution found in Fig. 4A for a
collection of time points. We would expect better agreement with a greater number of nodesand walkers
per starting location. Further, as shownin Fig.4B, we see that the low precision of probability transition
has acutely increased the amount of error accrued for this example when compared to a MATLAB

simulation.

This example provides compelling evidence that complex geometries where analytic methods are less
tractable representan opportunity for NMCimpact. These could arise where domains are more
complicated than just a single sphere. One could imagine an object with many spines or with several
crevices. To start down this path, we presentaninitial-value problem onthe surface of a barbell shaped

object.
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Figure 4: NMC random walk algorithm can implement random walks over non-Euclidean geometries. (A) Time-
course of random walks simulated on Loihito model heat diffusion on the surface of a sphere. Red locations
represent higher initial temperature relative to yellow locations. Heat is conserved on this simulation. (B) Absolute
norm of error is higher on NMC relative to MATLAB simulation at initial timepoints, but approaches conventional
error levels as simulation progresses. (C) Time-course of random walks run on neural simulator for heat diffusion on
two spheres connected by a tube (“barbell”). Heat was allowed to dissipate from the surface. (D) Average
temperature of the left sphere decreases rapidly during the simulation. (E) Temperature gradually increases sharply
for small time on the right sphere. As time increases, this rate of increase slows as cooling begins to take effect. For

large time, the temperature on the right sphere will decrease to zero.

Considerthe heat flow on a barbell with cooling and an initial condition. Let B represent the surface of

the barbell shape. Again, we set a(t, x) = a, some positive scalar. Then, to account for cooling, we take



c(t, x) = k, another positive scalar. All other coefficientsin Eq. 4 are assumed to be zero. Again letting

g(x) be an initial condition, the probabilistic solution is
u(t,x) = IE[e‘th(X(t)NX(O) = x],

dX () = V2adw (¢),
Equation 11

where W (t) now represents Brownian motion on B. Our discretization of the shape required 748 mesh
points (more details on the mesh construction and DTMC are in SN3). Due to the mesh-size relative to
the currently limited neuromorphic chip sizes available to us, we deployed this example on a spiking net
simulator. We implemented arandom walk approximating the stochastic process. The results of
simulation for various time points can be found in Fig 4C. The temperature equilibration of the left (Fig.

4D) and right (Fig4E) sides of the barbell proceed as one would expect from thermodynamics.

Discussion

The results here demonstrate that spiking neuromorphic hardware technology is suitable for
implementing a scalable energy-efficientapproach to solving an important set of numerical computing
problems. Neuromorphichardware is still immature relative to conventionalhardware in terms of both
physical scale and clock speed, although it already demonstrates considerable poweradvantages. Here,
we show that our neural RW algorithm scales comparably to a parallel CPU approach, allowing us to
observe asignificant energy advantage in current neuromorphic platforms today while being positioned
to take full advantage of large-scale neuromorphichardware once realized. We furtherfocus our
exploration on demonstrating the broad application impact of our algorithm approach, showingthat

with simple extensions this approach can apply to a wide range of complex application domains.

Notably, the approach taken here does not leverage all the brain-inspired features presentin many

emerging neuromorphichardware technologies. Forinstance, ourapproach does not leverage learning;



however, we expect that the neuralformulation of stochastic processes may make them more
amenable to model calibration against experimental observations, and in situ neuromorphiclearning
may make this process more efficient. Likewise, we focused our demonstrations on large-scale digital
spiking platforms, such as Loihi and TrueNorth, because they exist at the requisite neural scales for our
algorithms. There is considerable interestin analog neuromorphicapproaches that should similarly be
compatible with this approach [19, 30, 32], although we would have to consider the precision

implications of analog devices alongside the other approximation considerations (Fig. 2b).

One important consideration of this work is that the numerical accuracy of our neuralapproach is
relatable to typical numerical precision considerations in conventional computing. Stated differently,
this approach avoids the approximation pitfalls associated with many Al algorithms, wherein the
implications of numerical precision and interpretability is still an open question. While understanding
and accounting forthese approximation errors will be critical for any application, the graph-based
approach taken here provides several well-understood design choices to tailor the algorithm and
hardware solution appropriately given precision concerns. For instance, in applications with clearly
defined state spaces, such as diffusion overa social network, the mesh can directly map to the system,
and resources can be dedicated to adding more walkers. Alternatively, in complex geometries or
unbounded systems, it may be necessary to commit considerable neuromorphichardware to a larger

mesh.

Whateverthe eventual set of capabilities that future neuromorphicplatforms have, we expect that
neuromorphic hardware will eventually exist primarily in heterogeneous system architectures alongside
CPUs, GPUs, and otheraccelerators [20]. The neuromorphicalgorithms for solving PIDEs described here
complement Al as an application for brain-inspired hardware, and they strengthen the long-term value
proposition for neuromorphic hardware in future computing systems. Further, in contrast to neural

network applications, where neuromorphic hardware has struggled to match the speed of GPUs and



linear algebra accelerators, our work shows that in the realm of numerical computing, neuromorphic
hardware notonly can deliver concrete energy advantages today, butis capable of scaling effectivelyin

terms of processing time and overall efficiency.
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Methods

We subdivide our Methods section into two main components: neuromorphic hardware methods
and mathematical methods. In Section M.1, we provide details on the random walk circuit as well
as model implementation. In Section M.2, we describe one method for approximating a stochastic
differential equation with a finite state space, discrete-time Markov chain. We also showcase how
to average the random walks to approximate the solution to a PIDE.

M.1 Neuromorphic Hardware Methods

General

The neurons used on both Loihi and TrueNorth either are integrate-and-fire neurons (IF) or thresh-
old gate (TG) neurons. In both cases, the hardware neurons integrate all active synaptic inputs
and make a decision to fire based on a threshold. For IF neurons, if a neuron does not fire, there is
no decay of the neuron’s internal voltage. In contrast, TG neurons have full decay every time step,
regardless of whether it spikes.

For both TrueNorth and Loihi, the implementation of the random walk algorithm was based on
the density circuit described in [14]. Each mesh point in the simulation consisted of two counting
circuits (one to buffer inputs, one to count down outputs) and a probabilistic fan-out circuit. The
network also utilized a population of supervisor neurons to control the timing and synchrony of the
walkers through the circuit. For cases where walkers are synchronized (each time step involves every
walker advancing in time by 1), the separate buffer circuit is required to accumulate all walkers
coming to a location, however this is unnecessary if the walkers can be run asynchronously. We
briefly describe the design of each circuit here in the context of Loihi. The TrueNorth configuration
was similar, albeit with some minor differences that are noted.

Buffer and Counter Circuits

In the random walk algorithm, the buffer circuit and walker counting circuit are identical, with the
only difference being the inputs and outputs. The counting circuits on the Loihi are structured as
shown in Fig. M.1. Each circuit consists of three neurons: an IF “count” neuron, which stores
the count of random walkers at that location in its internal voltage (as a negative distance from
threshold), a TG “generator” neuron, which is designed to spike until the counter neuron reaches
its threshold, and a TG “relay” neuron, which corrects for situations where there are no walkers
at that location. In the buffer circuit, the count neuron receives synaptic inputs (weight= —1)
from other mesh node outputs. In the counter circuit, this neuron receives a synaptic input (weight
= —1) from the buffer generator neuron. In both cases, the count neuron will represent the
cumulative walker density at that location. The output of the count neuron is an inhibitory
connection to its respective generator neuron, designed to stop its activity

The circuit is designed so that when the supervisor activates the circuit, the generator neuron
will continue to spike until the count neuron reaches a threshold and sends an inhibitory spike
to stop it from firing. Thus, at each simulation time step, if there are k& walkers at a location,
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d=

d=5

Figure M.1: Neural Circuits for Buffering and Counting on Loihi. Red input lines (from left)
represent inputs from supervisor neuron. Circle ends represent inhibitory connections (weight =
-1), arrows represent excitatory connections (weight = 1). For buffer circuit, outputs (to right) go
to counter circuit count neuron; for counter circuit, outputs go to probability neurons.

the generator neuron will fire £ 4+ 1 times (which is subsequently corrected for). During the
first half of the simulation time step, the buffer generator neuron transfers the count from the
buffer to the counter circuit, and during the second half of the simulation time step, the counter
generator neuron transfers the count to the probabilistic fan-out circuit (described below) which
then distributes the walkers to a different mesh node’s buffer circuit.

The relay neuron is present to account for the subtle timing between the generator and
count neurons that provides the extra signal from the generator neuron as well as help handle
cases where the mesh point has no walkers. There are several mechanisms for performing these
corrections, which also result in a few additional synaptic connections, for which the Loihi strategy
is shown in Fig. M.1.

Probability Circuit for Loihi

The goal of the probability circuit is to send a walker, as a spike, to one of the mesh node’s
downstream target’s buffer count neuron. The circuit is designed to use intrinsic pseudo-random
number generators (PRNGs) available to each individual neuron to select only one of the mesh
node’s outputs at the appropriate Markov transition probability.

While there are likely several implementations of a circuit to send a spike to one of N outputs
with a probability pout, i=1,...,n, the methods we selected on Loihi and TrueNorth were identified to
account for the particular nature of the PRNGs on each chip.

For Loihi, the PRNG provides a random input onto each neuron on a particular neural core as an
8-bit pseudo-random integer, with potential multiplicative and additive scaling. For our purposes
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here, we can consider this random number as an integer uniformly chosen from [—127, 128]. Suppose
we want a neuron, b, that has a threshold 100, to fire at probability p when it receives a spike from
an upstream neuron, a. We then can set an input weight from a to b as

Wap = 128 X py + 36. (M.1)

To output to one of N neurons, we considered the neural circuit that collapses a probability tree
into a single layer. For instance, one can consider a uniform 3 layer decision tree, with each branch
having a 50% probability, leading to eight outputs with 12.5% probability. This scales as a depth
log,(N) circuit with N — 1 total probability neurons. We can compress this into a single layer, by
having each output node (the leaves on the decision tree) requiring that all positive input branches
are active and receiving inhibition from all “wrong” decision branches, and no inputs from branches
on the other side of the decision tree.

pl _ (I-p)
077099872/ N\, 922900128

/ /

02/ \ (-p2) EI N () A
/'3 N O

\.+ 1/ )
pl¥p2 pl*(1-p2) (1-pl)*p3 (1-p1)*(1-p3) pl¥p2 pI¥(1-p2) (I-pl)*p3 (1-p1)*(1-p3)
.922900128 0

(I-p1)
1922900128

.038549936 .038549936 .922900128 0 038549936 038549936

Figure M.2: Illustration of computing probabilistic circuit. Left: hypothetical decision tree to com-
pute probabilities with example output probabilities in red. Right: same decision tree compressed
into a single layer, with source input driving probabilistic choice. The dotted line is an excitatory
connection with a delay to correspond to skipping the probabilistic layer. From source neuron,
weights from source neuron (green) to probability neurons (blue) are set to tune probabilities neu-
rons fire, per equation M.1. Outputs of probability neurons with arrows are excitatory (weight
= 1) and with circles are inhibitory (weight = —1).

Procedurally, this is achieved by having N — 1 probability neurons, whose probabilities of being
active on a given time step are given by the following procedure.
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Algorithm 1: Determine Probability Circuit
Input: Neuron g that generates a spike per walker
Input: Output nodes o5 ...o0y with desired output probabilities v ...vy
// Assume N is a power of 2
T := A binary tree with o1 ...ox as the leaf nodes
for non-leaf noden=1...N —1 do
| Label one edge as ‘positive’ and the other as ‘negative’
end
for non-leaf noden=1...N —1 do
A :={i:o0;is a leaf of n}
A, = {i: 0; is a leaf of n connected through the ‘positive’ branch}
Dn ZieAP Vi/Y ienVj // Assign a conditional probability to each node

end

// T is a ‘‘probability tree’’

T := set of 2N — 1 neurons

for node n in T do

fi € T := a neuron with threshold 1 and decay 0

if n is a leaf node then

P = (n;,e;)1..r := the unique path from the root node to n

¢ := number of ‘positive’ edges in P

for i=1...L do
if e; is a ‘positive’ edge then
‘ weight[n;, n] < 1/c+¢€ // All ‘positive’ edges must have spikes
else
‘ weight[n;,n] < —1 // No ‘negative’ edges can have spikes
end

end

if ¢ == 0 then

‘ weight[g,n] < 1 // with delay matching depth of circuit

end

else

weight[g,n] < 1 // alternatively can be set to control neuron fire
probability, as in equation M.1 for Loihi

Dp < pn // convert the probability to a probability to fire

end

end

We then set the threshold to number of positive inputs onto the output neurons. For neu-
rons that don’t have any positive inputs, we include a connection with delay = 3 from the spike
generator.

The output neurons, when activated, will send a single spike to their corresponding mesh node’s
buffer count neuron. This corresponds to the transfer of that walker to the different mesh location.
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Probability Circuit for TrueNorth

The probability circuits for Loihi and TrueNorth are functionally equivalent, but due to differ-
ences in the two hardware platforms the realizable TrueNorth circuit differs slightly from that of
Loihi. It is important to provide adequate coverage of the TrueNorth probability circuit in this
section for completeness.

TrueNorth has a few different stochastic neuron dynamics that can be configured for each
neuron. For this material we are taking advantage of stochastic leak. The two pertinent neuron
equations that emerge when utilizing TrueNorth’s stochastic leak function is the leak equation
defined as

Vi) =V;(t)+ F <)\j,p;‘> , where,

)
F<)\ A)_ 1 if A\ > p}
»Pi) = 0 otherwise

Further, p;‘ is a random sample from the PRNG drawn from /(0,255) and ); is an integer in
the range of [0,255]. The stochastic property of the neuron is ultimately controlled by setting the
neuron parameter \;. We then set the threshold of this neuron to 1 with a reset potential of 0.
Thus, if F' evaluates to 1 the neuron will fire, and if F' evaluates to 0 the neuron will not fire. In
effect, we created a stochastic neuron that fires with some probability defined by F.

We exploit this stochastic neuron dynamic to provide a neuron circuit that directs a walker
(spike) through a binary tree to give rise to a controllable exit probability for each of the four exit
neurons of the mesh node. We define a probability neuron that receives the walker input (spike)
but also receives input from the stochastic neuron. We set this neuron’s threshold at 1 with a leak
value of —1. These probability neurons are depicted in Figure M.3 as rg, 71, and r5. Thus, if a
walker enters this probability neuron it contributes a value of 1 to the neuron potential and if the
stochastic neuron also provides a spike, or value of 1, the potential will have a value of 2. Then, the
probability neuron will leak a value of —1 to result in a final potential value of 1 that is compared
to the threshold value of 1, which will result in a fire of that neuron. This neural dynamic requires
two spikes to fire, if it only gets 1 spike, meaning the stochastic neuron did not fire, the probability
neuron will not fire.

This is the exact formulation that defines the probabilistic nature of the mesh nodes in TrueNorth.
The leaf nodes of the tree define the exit directions of each mesh node. An easy way to understand
how the three probability nodes influence the exit direction is to consider the combinatorial effects
of the probability nodes firing. For og to fire it means rg and ry fired. For oy to fire it means rg
fired and r; did not. For o5 to fire it means r¢ did not fire and ro did. For o3 to fire it means both
ro and ro did not fire.

More formally, each leaf node’s probability of firing can be related to the probabilities of the
tree nodes probability to fire. Specifically,
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Figure M.3: Binary tree representing the stochastic walk through a TrueNorth mesh node. Prob-
ability neurons are rg, 71, and ro. Black edges are excitatory, red edges are inhibitory. Blue edges
indicate a delay of 1, and bold blue and red dashed edges indicate a delay of 2. The four leaf nodes,
0g, 01, 02, and o3, are the directional nodes with derived exit probabilities.

P(Oo) = P(’FO) X P(’r‘l),
P(o1) = P(ro) x (1 — P(r1)),
P(02) = P(r2) x (1 — P(rop)), and

M-100 But, in practice we prefer to define the probabilities of each exit direction first and formulate
mi0  what the stochastic parameter of the stochastic neuron should be. To this end,

P(’r'(]) = P(O(]) + P(Ol),
P(oo)

P(ri) = ———~+——, and

)= Plog) + Plor)

P(o3)

P(ry) = .

(r2) = 1= P(0o) + P(oy)
M-111 On TrueNorth, this stochastic dynamic utilizes, effectively an 8-bit PRNG. Technically, the
miz  PRNG on TrueNorth is 32-bits, but the stochastic leak use case masks off the upper 24 bits and
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delivers the lower 8 bits of the PRNG to the computational circuit of the neuron. From the an-
alytical side of solving PDEs with random walk algorithms the exit probabilities of each mesh
node are defined by real numbers in the range of [0,1]. To convert the real valued represen-
tation to the lower bit resolution, for acceptance into a TrueNorth model, we multiply the real
value by 256 and then apply a standard round operation to the result. This essentially scales
the range of [0,1] to the range of integers from [0,256]. Because the range of A; is [0,255], we
then shift the scaled range left by 1, effectively creating represented probabilities in the range
of [—1,255]. What is meant by the value of —1 is a probability of 0. Since —1 is not an
acceptable value for the TrueNorth model we handle this by removing the stochastic neurons
synapse to the probability neuron and setting the stochastic neuron’s stochastic parameter to
0. The removal of that synapse effectively provides it a 0 probability of firing. More specifi-
cally, there is a 0 probability of the stochastic neuron delivering a spike to the probability neuron.

Implementing Models on Loihi and TrueNorth

Models are initialized on Loihi and TrueNorth by generating a mesh of equivalent buffer and
counter circuits and probabilistic circuits tailored to the outputs defined in the application’s Markov
Transition table. Specific to TrueNorth, a connectivity diagram is represented in Figure M.4 which
provides the implementation details of neuron connectivity for implementing the mesh node in
TrueNorth; this is the TrueNorth model representation of M.3. Importantly, different mesh points
can have distinct numbers of outputs, though more outputs will directly equate to more neurons
required. Further, there is no real restriction on the types of graphs and the connectivity, though
there will be resource constraints in terms of overall neuron counts and hardware-specific fan-in and
fan-out constraints, if any. It should be noted that cases where network connectivity restrictions
are problematic can typically be resolved by replicating target neurons or mesh points.

For most of the examples in the main text, the Loihi and TrueNorth neuromorphic models are
unchanged, with the only variable input being the transition matrix used to define the connections
between mesh nodes and the weights onto the probability neurons in the mesh points. In most
examples, inputs are given by providing a sequential number of spikes to the appropriate buffer
count neuron of the mesh location from which the random walks will be initialized. There are
precision considerations in the internal voltage levels that differ between platforms, so we held the
number of walkers on Loihi to a maximum of about 1000 for the initial condition; although this
likely can be higher. On TrueNorth, the range of voltage potentials can support up to 393215
walkers. Full details of generating Markov transition matrices for the examples in the main text
used on Loihi and TrueNorth are given in Supplemental Note 3.

TrueNorth Scaling Studies: Execution and Statistics

We performed a number of scaling experiments on IBM’s Neurosynaptic System (TrueNorth) to
better understand how the random walk algorithm performs on actual neuromorphic hardware.
The base experiment is a random walk simulation on a 21 x 21 node torus mesh, where each node
has 4 incoming and 4 outgoing connections. This corresponds to a walker on the surface moving
up, down, left, or right. The transition probabilities of the 4 directions are all an equal 0.25. All
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Density Method Node
Configuration on TrueNorth

From
Neighboring
Nodes
[
From
Buffer
| Output
A Stochastic Tree Nodes To
Relay Tree Nodes Buffer
A\ Stochastic Generators
4. Directional Output Nodes e :; )
'A‘ Command and Control Neurons elﬁod::ng

¢ Boundary of the Tree Structure

Figure M.4: A near complete specification of the TrueNorth mesh node model for a random walk
algorithm. This is a more defined representation of the binary tree from Figure M.3. Neurons are
represented by triangles, neuron inputs are on the left edge of the square and a synapse to a neuron
is defined by a circle on the cross bar. Green circles are excitatory connections and yellow circles
are inhibitory connections. The red number 2 above neurons 6, 7, and 8 indicate that they fire as a
result of 2 or more incoming spikes, all other neurons fire as a result of 1 or more incoming spikes.

walkers begin the simulation at the center of the mesh, and the simulations are ran for 100,000
time steps. Here, a time step is the unit of time for all walkers to have moved one position.

Initially, the number of walkers is increased from 1000 to 32000 (see Fig. 1le-g in the main
text, red line) in 8 different runs. Then, this is repeated, increasing the number of walkers through
parallelization. Copies are made of the underlying mesh, and each mesh is given 1000 random
walkers. The mesh copies increase to keep the total walkers in the simulation consistent with the
static mesh runs.

Fach experiment had 8 parameter sets that scaled the number of walkers or a parameter of
parallelism (mesh copies or number of starting locations). Within each of these parameter sets, 10
trial iterations were executed to allow for a meaningfully computation of the mean and standard
deviation of the trial set. For execution on TrueNorth, the total number of neural time steps, or
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ticks, must be defined a priori. Because of the random nature of these experiments, achieving
exactly 100,000 time steps is not possible given a fixed number of ticks. Therefore, sample trials
were run to achieve a close enough tick count per each parameter set to achieve close to 100,000
time steps. Then the data was normalized to exactly 100,000 time steps by computing the tail
time step to tick count ratio. The tail step ratio is defined by taking the mean step ratio of all
simulation steps ignoring the first 1,000 simulation steps (this is an arbitrary choice, but, based on
empirical evidence, the step ratio flattens out after the first few hundred time steps as the random
walk reaches sufficient diffusion). This mean step ratio was then used in conjunction with the tick
rate (seconds per tick) to subtract or add time to the measured time of the experiment’s trials. For
example, if a particular trial ran for 100, 034 time steps, had a mean tail ratio of 17.382, an execution
time of 937s, and a tick rate of 0.5ms/tick we would take 937 — 34 x 17.382 x 0.0005 = 936.705s as
our normalized execution time.

Computer Simulations

For validation of our algorithm and simulations of the barbell experiment, we performed simple
direct simulations of the neural algorithm dynamics. This is a simple direct Python discrete-
time simulation of the neural algorithm, not a formal simulator like NEST or a model description
language like PyNN. For this, we used the reference simulator described in in “Composing Neural
Algorithms in Fugu” [3].

M.2 Mathematical Methods

Here, we discuss a general approach to creating a discrete-time, finite state space Markov chain
approximation to a jump-diffusion SDE.

The success of approximating solutions to PIDEs hinges on the ability to implement a random
walk approximation of the underlying stochastic process for each PIDE. While there are many
different ways to construct such an approximation, we will discuss the basics and point out where
variations can occur.

M.2.1 Construction

We will explain a basic method for constructing a discrete-time finite state space Markov chain
approximation to the following one-dimensional SDE:

dX(t) =b(t, X(t))dt +a(t, X (t))dW (t) + h (t, X(t),q) dP (t; Q, X (t),t) . (M.2)

Here, b represents the drift of the process X (¢) and a represents the diffusion. A non-local diffusion,
or jump term, is governed by the process P with reward given by h. @ is the jump-amplitude mark
random variable with probability density function given by ¢¢(q;t, x).

For discussion, we assume that X (¢) € R and that a, b, and h are such that X (¢) could assume
any value in R with non-zero probability. The Markov chain approximation we construct will take
values on a finite set. This means we will need to divide the real line into a finite number of intervals
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to represent our state space and, using (M.2), determine the probability of transition between these
intervals.

However, the determination of this probability is subtle — a representative location for the
interval is needed, and neuromorphic hardware constraints may limit the number of allowable
transitions. Given a starting location, there is a non-zero probability that the process X (¢) can
transition to any interval on the real line. If the number of allowable transitions in the Markov
chain is limited, care must be taken to conserve probability. That is, the particle must transition
to somewhere and the probability of the allowable transitions must sum to 1.

We will carefully explore the nuances of the approximation, first exploring a countable state
space and then restricting to a finite one. Specifically, we will follow this order:

1. Define a countable state space for the Markov chain;

2. Determine neighbors for each state in the Markov chain;

3. Calculate the probability for each transition in the chain; and
4. Restrict to a finite state space.

The ultimate artifact of construction is a transition matrix among the states of a Markov chain.

M.2.1.1 Countable state space for the Markov chain.

To begin our approximation for (M.2) we must chop the real line into a sequence of “bins” or
“nodes.” We note that this discretization does not have to be uniform. In the interest of keeping
this discussion simple, we elect to make uniform divisions. Suppose we wish to make uniform
divisions of the real line, starting at 0 of a selected size Ax. From zero, in both directions, we
count out the edges of our bins by increments of Az. Since the probability calculations will require
a starting point, we need to choose a location to represent each of these intervals. We use the
midpoints of these intervals to represent the countable state space. In Figure M.5, these states are
illustrated by circles.

Figure M.5: Hlustration on the creation of a Markov chain on the real line.
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M.2.1.2 Neighbors for each state in the Markov chain.

We must now identify the neighbors of each state in our space. As previously discussed, given a
starting location, the process X (¢) has a non-zero probability of transitioning to any of our defined
intervals on the real line. If we were to mimic this, then each state in our state space would be a
neighbor to all other states. That is, the graph representing the possible transitions between state
spaces would be a complete graph.

However, neuromorphic hardware and practical limitations (i.e., fan-in/fan-out considerations)
suggest that we cannot allow each state space to transition to all others. This means a choice must
be made. In the context of neuromorphic hardware, we must decide how much fan-out we want.
In the examples in the text, we typically allowed transitions between adjacent states and back to
the original state. For this discussion, we allow transitions to the left and right, and back to itself
(see arrows in Fig. M.5).

M.2.1.3 Calculation of transition probabilities.

Our first two steps in the calculation of the Markov chain approximation involved two independent
choices: a choice of Az and a choice of neighboring states. To calculate the probabilities, a depen-
dent choice will be made based on the previous selections. Namely, we must select an appropriate
time discretization size At for the discrete time Markov chain.

Again, recalling that (M.2) can transition to any interval on the real line given a starting
position, we must choose At small enough so that the probability of transitioning to intervals
outside of the defined neighbors is smaller than some threshold probability. For all of our examples
in the text, we choose At small enough so that transition outside of the chosen neighbors is less
than 0.05.

However, the choice of At may also depend on another factor. If there is a Poisson process, that
isif dP(t;Q, X (t),t) appears in the SDE, then we also want to choose At small enough so that we
can be reasonably sure that at most one Poisson event can occur in any time window. Again, we
ensure At is selected so that the probability of more than one Poisson event occurring in any time
window is less than 0.05.

To that end suppose that x; and z; are nodes and that z; is a neighbor of x;. What is the
probability that z; transitions to x;? For simplicity, we will assume that h is deterministic. Then,
using (M.2), the probability of x; transitioning to x; in the time interval [¢,¢ + At] is the sum of
two probabilities. Given X (t) = w;, the first is the probability that X (¢ + At) is in the interval
represented by z; and that no Poisson jump occurs. The second is the probability that X (¢ + At)
is in the interval represented by z; and some Poisson jump occurred.

To help calculate these probabilities, we will appeal to the Euler-Maruyama simulation method
for SDEs. This is a discretization method for simulating sample paths of SDEs. The method
works similar to the Euler method in that the value of X () is assumed constant over some interval
[t,t + At] and an increment is calculated from this assumption. For (M.2), given X (t) = z; and
assuming that A is deterministic, the Euler-Maruyama method gives

X(t+At) =z +b(t,z) At +a (t,2) W(AL) + b (t, 2:) Lp;0,2:,0) (M.3)
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where 1p;. 4, ) represents the indicator function of whether the Poisson process P fired in the
time window [t,t + At| given that X (t) = z;, and W(At) is a normal random variable with mean
0 and variance At. Put another way, if the Poisson process does not fire, then X (¢t + At) is
assumed to be a normal random variable with mean z; + b(t, ;) At and variance a?(t, z;)At. If the
Poisson process does fire, then X (t + At) is assumed to be a normal random variable with mean
x; + b(t, ;) At + h(t, ;) and variance a?(t, z;)At.

Phrased in this way, calculation of the appropriate probabilities is clearer. Let

py (i, A) = < /t t+At}\(s,xi)ds> exp <— /t o A(s,xﬁds) . (M.4)

This is the probability of a single Poisson event occurring in the window [t,¢ + At| given that
X(t) = z; is constant on the time interval. Let N (u,0?) denote a normal random variable with
mean £ and variance o2. Then pij, the probability of transitioning from z; to z;, is given by

pij(t) :IP’[:EZ — T |t—>t+At]

=1 —py(zi,t,A))P [N (:cl + b(t, z;)At, a2(t,xi)At) € (:cj — %,xj + %)]

(M.5)

+pg (zit, At)P [N (z; + b(t, ;) At + h(t, 2;), a®(t,z;)At) € (xj - %,xj + %)] ,
where IP[-] denotes the probability of the interior event occurring. This is a probabilistic represen-
tation of the intuition we discussed: the probability of transitioning is the sum of two probabilities,
one of ending up in the interval with no jump and one of ending up in the interval having experienced
a jump.

In the the event that the jump A is random, a similar construction can be made taking care to
sum or integrate over the distribution of rewards. Our steady-state particle transport problem is
an example of this concept.

Letting t; = jAt, (M.4) can be used along with the probability of no jumps occurring

ti+At
po (x4, t5, At) = exp —/ A(s, ;) ds
¢

J

to ensure that the probability of more than one jump occurring (1 — pg — py) is less than 0.05 for
all z; and ¢;. Similarly, (M.5) can be used to ensure the probability of transitioning to neighbors
other than the allowed transitions is less than 0.05 for all z;. The time discretization At should be
chosen to satisfy both of these constraints.

Using (M.5), a transition tensor C (t¢) = (psj (t¢)) can be constructed representing the Markov
chain. For each fixed t,, we must conserve probability — the probability of transitioning from state
z; to some other state must sum to 1. In the Markov chain, this means that }_; p;; (t/) = 1. In
this discussion example, we are only allowing transitions to the left, right, and back to the same
node. However, the true process X (¢) may transition to any interval on the real line; calculating the
transition probabilities for just a subset of the possible transitions may mean that these probabilities
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do not sum to 1. While At was chosen so that this probability of transition is small, we must require
a sum of 1 to ensure the Markov chain is well defined.

There are various ways to conserve probability at this point. One possibility is to just normalize
the rows. Another possibility is to add the missing amount to one of the transitions. Unless stated
otherwise in our example discussions, we calculate as follows. If, in our example, we were calculating
the transition of probability to the left node, we would calculate the probability of transitioning
to the left node or beyond. Similarly for the right node. Again, since At has been chosen so that
transitioning more than a single space to the left or right is small, the error accrued from this
assignment is also small.

It is important to call out that C' does depend on the time step t; whenever a, b, A\, or h
depend on t. When these functions do not depend on time, a static transition matrix is created.
If time dependence exists and if a maximum desired time is known, the transition tensor C' can
be collapsed into a single matrix. For example, if there are 10 possible state spaces and it is only
desired to simulate for 100 time steps, then the one hundred 10 x 10 transition matrices for each
time step would become a single transition matrix over a state space of size 1000.

Before discussing the restriction to a finite state space, we call out an implicit assumption made
in this construction: namely that when a random walk transitions to an interval represented by the
midpoint z;, we assume that the walker takes on the value of the midpoint. This introduces some
rounding error, discussed further below.

M.2.1.4 Restriction to a finite state space.

For some problems, like our heat transport on the sphere or time-dependent particle transport
examples, the construction above yields a finite state space. However, situations may arise where
the method we have described yields a countably infinite state space. When considering hardware
limitations, like the finite number of nodes on a spiking neuromorphic platform, it may be necessary
to reduce to a finite state space.

Continuing our discussion of (M.2) on the real line, we would need to select a finite subset
of our states to transition between. Due to the construction of neighbors, we probably would
select a minimum interval and a maximum interval, keeping all states between. Without loss of
generality, suppose that the states are ordered and that the minimum state corresponds to x1 and
the maximum state corresponds to .

For each t;, we pluck out the N x N section of the transition matrix C(t;) corresponding to
our truncated state space. To conserve probability, for each state we add the total probability of a
transition to a state less than 1 to the probability of transitioning to z;. Similarly for a transition
to a state greater than z . In this example where transitions are restricted to the left, right, and
to the same state, this addition of probabilities only occurs on the endpoints.

Once the transition matrix is finalized, it can be used to sample some number M of random
walks. If z; is some node in the state space, then we write X;;(kAt) for the location of the ith
random walk at time kAt that started at position x;.
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M.2.2 Utilizing Sampled Random Walks to Approximate PIDE Solution
Consider the probabilistic solution from Theorem S2.1.1 in Supplementary Note 2

w(t,z) =E [g (X (1)) exp (/Otc(s, X(s)) ds> | X(0) = g;]

+E [/Otf (5, X(5)) exp </Osc(e,X(e))de> ds

We would like to evaluate u (t;, ;) via this expectation using the Monte Carlo method and the
sampled random walks for each position z; in the mesh and time point ¢;. Since our random
walks occur over discrete time points and occupy discrete locations, we do this via Riemann sum
approximations for the integrals. If there were M total random walks sampled that started on
position x;, then

(M.6)

X(0) = ;v] .

M i
1
u(ts, x5) ~ Z X (iAt)) exp (Zc(tk,Xﬂ (k‘At))At)
M= k=0

. (M.7)
k
+ Zf (kAt, X (KAt)) exp (Zc(sAt, X (sAt)) At) At] .

s=0

k=0

M.2.3 Brief Commentary on Accuracy of Approximation

Here, we evaluate the implications of using a discrete spatial mesh for approximating random walks
that ideally would be continuous valued. Such approximations are implicit in any numerical imple-
mentation of random walks on a system with finite precision, although since our implementation
directly implements a discrete mesh to describe the state-space, it is necessary to consider the
numerical implications. We approximate a jump-diffusion process with a discrete-time Markov
chain. Weak convergence results for Markov chains converging to jump diffusions were found by
Skorokhod [16]. Analytic, rather than probabilistic, proofs were later considered, determining an
order of convergence of O(1/y/n) [10].

Fixing some initial condition and setting Az = 1/n, let X,,(¢) represent the Markov chain
approximation of (M.2). By saying that X,,(¢) converges weakly to X (¢), we mean that as n — oo,
or rather as Az — 0, the transition density of X,, converges to that of X. If a function ¥ is
continuous and bounded and if X,, converges weakly to X, then E* [¥ (X,,)] converges weakly to
E [¥ (X)], where E* represents the outer expectation (or outer measure). This would imply that,
under appropriate conditions, we have convergence of (M.7) to (M.6) as we decrease Ax. Beyond
the scope of this work, error bounds for continuous time Markov chain approximations (At — 0)
have been found for PIDEs involving fractional time operators [9].

Setting aside these concepts of order of convergence, we would like to demonstrate an error
estimate on using the discretization of space in the best case scenario. To that end, fix some time
t and a position z. Suppose we wish to approximate

u(t, x) = E[W (X (1)) [ Xo = ]
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by sampling M paths of X (¢). Let X; be the i*® sampled path. Then the Monte Carlo approximate
solution is

1 M
Mta) = 22 3 W (X (1)
i=1

To mimic the discrete spatial approximation in the best case scenario, let’s assume that there
exist true random paths ¥ (X;(¢)) and that our approximation “snaps” or rounds the true value of
U (X;(t)) to the nearest point on a spatial grid with size Az. We will denote this rounded process
by U (X;(t)) and the resulting approximate Monte Carlo solution by

1
upm(t,z) = MZ‘I/(Xi(t))-
=1

In this manner, at time ¢, the process W (X;(t)) is at most Az/2 away from the true sample path
U (X;(t)). The error of this best case approximation is estimated as

lu(t,x) —ans(t, x)| < |ult,z) —upns(t, )| + |uar(t, x) — wpg(t, )|

M
< Ju(t, ) —wnt ()| + 7 > [o o) - ¥ (o)
=
< Jut. ) — unr(t,2)] + 52
The first term on the right hand side is the Monte Carlo error and decays as 1/v/M. The second
term is the error accrued due to forcing our process ¥ (X (¢)) to snap to a grid. Notably, it cannot
be controlled by the number of samples M and can only be made small with a sufficiently small
grid.

When using the Markov chain approximation, however, we do not have the actual path and
instead calculate the next value in the path by assuming the random walk is in the center of a
voxel and then travels to the center of another voxel with a probability determined from landing
anywhere in the voxel. The error that arises by this method would increase on each time step.
Even in the best case scenario, the error accrued on the j*™ time step would be dependent on the
function ¥ applied to the underlying spatial grid. If W is the identity, and we are snapping a true
sampled path X;(t) to a grid, then the error accrued in an absolute best case scenario for the ;"
time step would be on the order jAtAz/2.

Reducing to a finite state space is problem specific. The error heavily depends on the application
and how the finite states are selected. Additionally, the examples we consider do not require this
truncation. As such, we will not explore the consequences of a finite state space here.
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Supplementary Note 1: Complexity, Scaling, and the Neuromor-
phic Advantage

This note is primarily concerned with discussing a neuromorphic advantage by analyzing the compu-
tational complexity of our random walk algorithm across conventional and neuromorphic platforms
(Section S1.1). We perform additional TrueNorth studies in Section S1.2. We close this note with
a small discussion on the hardware differences between Loihi and TrueNorth in Section S1.3.

S1.1 Computational Complexity

There is no fundamental reason to expect neuromorphic computing to belong to a different compu-
tational complexity class (such as allowing exponential algorithms to be computed in polynomial
time; as can be the case with quantum computing) than von Neumann architectures, as proposed
neuromorphic systems largely leverage the same physics. However, several aspects of neuromorphic
computing can be formally shown to provide scaling benefits. Specifically, neuromorphic hard-
ware can be shown to provide formal advantages due to both reduced communication inherent in
processing-in-memory [2], and high neuron fan-in/fan-out [15, 12].

In this paper, we define a neuromorphic advantage as an algorithm that shows a demonstrable
advantage in one resource (e.g., energy) while exhibiting comparable scaling in other resources (e.g.,
time).

Unfortunately, making apples-to-apples comparisons of an NMC algorithm to a VN algorithm
is non-trivial, because while the objective may be the same, the respective algorithms should
be tailored to the underlying architecture (stated differently, our spiking algorithm would be an
inefficient approach to compute random walks on standard hardware, and neuromorphic hardware
cannot directly implement a conventional implementation). For this reason, we compare our NMC
algorithm to the most straightforward VN algorithm, even though these implementations may be
formulated quite differently. This analysis is relatively straightforward for the case of a simple
Markovian random walk, which we explore here.

S1.1.1  Objective

For this analysis, we consider a simple Markovian random walk model over a pre-defined state space
of size K, which for most applications we will benefit from increasing the number of walkers to the
greatest extent permitted by computational resources. While the approach described in our paper
can extend to more complex physics, such as particle absorption, we focus on the simplest scenario
here.

For our analysis, we will consider the time (T") and energy (F) scaling of independently simu-
lating a number of walkers, W, over S time steps.

To simplify the analysis, we focus our analysis on a hypothetical single-chip system, though the
analysis extends to multi-chip systems insofar as chip to chip communication is similar between
architectures. We further focus exclusively on the DTMC simulation itself, as opposed to any
averaging or other subsequent analysis of the outputs of the runs.
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S1.1.2 Complexity of Random Walks on a Parallel von Neumann System

We consider specifically the case of a system with multiple von Neumann processors in parallel,
such as a CPU with multiple cores. We define P as the number of processors, or programmable
cores, on the chip. In the absence of interactions, the most efficient straightforward implementation
of a large number of walkers would be to distribute the walkers evenly over P and walkers would
persist on that core through the length of the simulation. Under these conditions, the time of the

simulation, Ty, would be
W xS

P )
where Oy, time 1S a constant describing the hardware-dependent time cost of the RW operations
on the von Neumann architecture. Likewise, the total energy required to perform the DTMC
simulation would be

TVN = C’VN, time (Sll)

EVN = C’VN, energy (W X S) ) (812)

where CyN, energy i a constant describing the hardware-dependent energy cost of the RW operations.

From these equations, it can be seen that increasing the density of cores on a chip (or number of
chips) can speed up a simulation dramatically, however it does not yield any power savings, which
remains proportional to the total computational work of the task.

S1.1.3 Complexity of Random Walks on NMC

The NMC algorithm that we consider is fundamentally different than the straightforward VN
algorithm. While it is possible to dedicate a subset of neurons to model each walker (see the
particle method in [14]), the approach explored here uses neurons to explicitly model the state
space over which walkers may randomly walk as a graph, with a small circuit of neurons at each
mesh point. At each simulation time, the circuit at each mesh point distributes its walkers through
its edges by the probabilities defined in the Markovian transition matrix. This method, which
is referred to as the density method in [14] since the algorithm directly represents the density of
walkers at each time step, has a time cost given by

W xS
Theural = Cneural, timeT, (S1.3)

where cpeyral, time 1S the corresponding time-cost of updating a single walker’s position on the mesh
for one time step.

More complicated, however, is the denominator M, which is the neuromorphic analogue to the
number of cores, P, on a VN processor. M both captures the inherent parallelism of neurons on
a chip, which varies across architectures, as well as the distribution of walkers over the neurons,
which is a non-deterministic characteristic.

In an ideal NMC system, where every neuron is computed truly in parallel, M would approach a
maximum value, Mpyax, which is the number of mesh-points K, in the state space. Currently, most
neuromorphic architectures leverage cores that are responsible for computing a subset of neurons,
making computation across cores fully parallel with differing degrees of parallelism within cores.
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So conservatively we can also limit M. to no greater than the number of distinct neural cores
Neores 011 a chip.

In addition, M will vary with walker distribution over time. If walker updates are synchronized,
then the DTMC simulation can only advance forward a time step after all walkers have been
processed at each mesh node. If we consider an initial condition where all walkers start at the same
mesh point, it will take W hardware time steps for the model to progress one time step; however,
if the model is fully mixed (walkers distributed evenly over the mesh), then the time to simulate
one time step drops considerably.

In practice, this will make M highly dependent on both the physics being modeled (how fast
do the walkers distribute over the mesh), the ratio of number of walkers to the mesh-size, and the
relevant time of simulation (longer simulations permit more mixing and thus more time-efficient
time steps). Further, in practice one could replicate mesh-points which can be anticipated as
chokepoints due to initial conditions (such as parallelizing start nodes), but this is not always
foreseeable in simulations.

For our purposes, we consider that M will eventually approach the minimum of the number of
mesh points and number of independent neural cores for long simulations. That is,

M ~ min (Neores, K) - (S1.4)

However, as with the conventional processing, the total energy consumption should be independent
of M:

Eneural = Cneural, energy (W X S) : (815)

S1.1.4 Identifying a Neuromorphic Advantage

Per our definition above, our approach can show a neuromorphic advantage is if the time-scaling of
the algorithm on neuromorphic hardware is preserved while showing an energy advantage. While
we know neuromorphic hardware shows an absolute power advantage (typical neuromorphic chips
have sub-1W power requirements vs 100W for server-class CPUs), a power advantage can be easily
offset if the computation takes much longer to complete.

We performed scaling studies on a single TrueNorth chip, a single Loihi chip from an 8-chip
Nahuku board, a commodity class dual CPU system, using Intel Xeon E5-2665, which has 8 CPU
cores capable of 16 threads, and an NVIDIA Titan-XP GPU (expanded GPU details are below).
While some of these platforms are several years old at this point, they are representative of the state-
of-the-art in process engineering at the time of their development. We programmed each platform
to implement a simple random walk over a small mesh (21 x 21 spatial grid, configured as a torus)
using a platform-appropriate algorithm. The implementation was using C++ with OpenMP to
leverage multiple threads on the Xeon CPUs, C++ with CUDA for the GPU, MATLAB corelets
for the TrueNorth implementation, and NxNET using Python for Loihi.

We measured scaling in two ways. First, we measured model scaling on a single core / NMC mesh
by progressively increasing the number of walkers on a single core / mesh. Second, we performed
a standard “weak scaling” experiment; increasing the number of walkers along with the number of
cores / NMC meshes. For the GPU, we distributed the walkers onto a single thread block (1024
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threads) or allocated resources to match the number of walkers in the simulation (GPU-weak).
Each simulation ran for 100,000 walker updates with walker counts increasing through [1000, 2000,
4000, 8000, 12000, 16000, 24000, 32000]. Through the C++ code on the CPU and GPU, MATLAB
scripts for TN, and Python scripts for Loihi we measured only the simulation time, ignoring all
costs associated with model setup or post-processing of the walkers. We further eliminated 1/0
from the chips to the fullest extent possible, as depending on the system can dominate processing
cost. For each of these simulations, we performed 10 replicate runs, though the variability across
runs was typically negligible.

From these scaling studies, we first measured the time to complete these simulations (raw data
available in supplemental data file). As expected, the GPU implementation is considerably faster
than the neuromorphic hardware (Figure S1.1), however the Loihi platform is nearly as fast as the
CPU. However, we do see that the ability of a single NMC mesh to distribute additional walkers
provides NMC with an advantage in terms of time-scaling, suggesting that a single NMC mesh
scales at the rate of multiple CPU cores (Figure S1.2a). The weak scaling experiment tracks a
different form of scaling, whereby we use multiple CPU cores / NMC meshes to simulate walkers
in parallel. Here, we observe that both the CPU and NMC implementation scale similarly, at least
up until the CPU starts using multi-threading on cores (Figure S1.2b). Combined, these results
confirm that the scaling of our NMC' algorithm on NMC' architectures scales similarly, and possibly
slightly better, to the standard CPU algorithm on CPUs.

1.00E+09

1.00E+08

1.00E+07

1.00E+06

1.00E+05 I

1.00E+04 .

CPU GPU TrueNorth Loihi
= 1000 = 32000

Figure S1.1: Walker updates per second for a 1000 (dark green) and 32000 (light green) basic
diffusion simulation across conventional and neuromorphic platforms.

From these time measurements, based on (S1.1) and (S1.3) above, we approximated the quan-
tities P/cyN, time and M/ cpeural, time, Since the meaning of M is poorly defined. In both cases,
these quantities can be measured in units of walker updates per second. Similarly, from the
number of CPU and NMC cores used and published estimates of maximum power consumption of
these chips ([1] and [11]), we can roughly estimate the power consumption in watts, or joules per
second. Combining these two measures, we can then approximate the number of walker updates

26 July 2021 Submitted 19



S1-133
S1-134
S1-135
S1-136
$1-137
S1-138
S1-139
$1-140
S1-141
S1-142
S1-143
S1-144
S1-145
S1-146
S1-147

S1-148

S1-149

$1-150

S1-151

Additional Material Smith et al.

Walkers Updates per Second (normalized) - Walker Updates per Second (normalized) -
Single Core / Mesh / Block Parallel Scaling
5 32
&4 16
3 8
2 4
1 2
0 1
1 2 - 8 16 32 1 4 4 8 16 32
# Walkers (normalized) # Walkers (normalized)
—e—Loihi CPU —e—TrueNorth —e—GPU CPU —e—TrueNorth —e—GPU Single Block
(a) (b)

Figure S1.2: Normalized time comparison of a simple diffusion simulation accomplished on conven-
tional and neuromorphic as a function of increasing random walkers. All times normalized to the
time it takes to complete a simulation with 1000 walkers. Left: comparison of Loihi and single-
chip TrueNorth to a single-core CPU simulation. Right: Comparison of multi-chip TrueNorth to
multi-core CPU and GPU simulations. GPU generates threads for all walker scenarios; GPU Single
Block allocates only 1024 threads for all walkers.

per joule.

This energy-centered analysis shows that despite being considerably slower than conventional
CPUs, NMC platforms can be considerably more energy-efficient than von Neumann processors.
Not surprisingly, regardless of on-chip parallelization, CPU energy scaling is relatively constant at
between 2.5 and 3 million walker updates per Joule. Based on core-utilization estimates, the NMC
is considerably more efficient and becomes more so at larger simulation sizes, starting at about 60
million walker updates per Joule and progressing up to as high as 250 million walker updates per
Joule when walker density is high.

It is important to acknowledge that this is an indirect measure of power consumption. For
instance, the CPU power measurement used above was based on linearly estimating power require-
ments based on core usage relative to published values of Total Draw Power (TDP) for a maximum
load. Likewise, on event-driven NMC platforms, such as TrueNorth, the actual power draw should
be a function of spiking activity, not core usage. It therefore would not be surprising to see these
efficiency measures vary by several fold in either direction if direct measures were feasible. Nev-
ertheless, the magnitude of the energy differences observed (between 10x and 100x) would show a
considerable NMC advantage even if these estimates were off considerably.

S1.2 Additional TrueNorth Scaling

Supplementing the previously described scaling studies (see Methods), we performed 3 additional
studies evaluating the random walk algorithm on TrueNorth. In our third experiment, the total
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count of walkers is held fixed at 4000, but multiple copies of the mesh are instantiated, and the 4000
walkers are equally distributed over all the copies. The fourth experiment is the same as our initial
scaling study on a static mesh, however every node is assigned a random transition probability.
These are drawn from a uniform distribution, and the sum of all transition probabilities is forced
to sum to 1. The final experiment increases walkers by maintaining a single copy of the mesh, but
distributing each additional set of 4000 random walkers over multiple starting locations, chosen at
random from a uniform distribution.

Experiment 3 further explores the nature of parallelizing the random walk by holding the number
of walkers constant at 4000 and distributing them equally over more and more mesh copies. That
is, by the last data point of Figure 2, at 50 copies of the mesh there are 80 walkers present on
each mesh. As can be seen in figure 3 we achieve a significant reduction in execution time with
diminishing returns beginning at 16 mesh copies. This is specific to the mesh size used in this
experiment, however. With a 21 x 21 mesh size there are 441 nodes. Therefore, as the walkers
spread out if there are less walkers than total nodes then the mean spread is tending towards one
walker per node which is the lower bound for execution time in terms of the time step to tick ratio.
At 16 mesh copies and 4000 walkers there are 250 walkers per mesh copy. Fewer walkers on the
mesh will result in a quicker spread to the lower bound of execution time of the algorithm. The
results of Experiment 3 are displayed graphically in Figure S1.3, while the data points are in our
supplemental data file.

EXPERIMENT #3: PARALLELIZED WALKERS

3000
2500
2000

1500

TIME (S)

1000

500

0 10 20 30 40 50 60
PARALLEL MESH COUNT

Figure S1.3: Results of TrueNorth Experiment #3. Execution time reaches a limit as mesh counts
increase.

Experiment 4 demonstrates the random walk algorithm’s sensitivity to transition probabilities.
In this experiment the transition probabilities between nodes where randomized. Figure 3 shows
that we still achieve linear scaling as the number of walkers increase, but the error bars grow
significantly as the mesh becomes crowded with walkers. The error bars are defined as 1 standard
deviation of the experiment’s trial set. These results show the sensitivity of the algorithm to
execution time bottle necks due to transition probabilities that define areas of the mesh that have
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high likelihood of walkers entering but low likelihood of them leaving. Such a situation would cause
the mean step ratio to be very high, lengthening the number of ticks required to reach 100,000
simulation steps. The results of Experiment 4 are plotted in Figure S1.4 and data points are
available in our supplemental data file.

EXPERIMENT #4: RANDOM MESH
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0 5000 10000 15000 20000 25000 30000 35000
WALKER COUNT

Figure S1.4: Results of TrueNorth Experiment #4. Execution time scales linearly with walker
count, again, but also demonstrates the sensitivity of the algorithm to bottlenecks caused by uneven
transition probabilities.

Experiment 5 demonstrates the effect of providing an a priori spread of the walkers. From
Figure 4 we see that a slight initial spread has a large effect on reducing execution time. We
also reach diminishing returns very quickly. The initial data point is 4000 walkers all starting at
one node on the mesh, which is consistent with all other experiments. The second data point is
putting 1000 walkers each at 4 random locations and we see that any further initial spread does
not make a significant difference in execution time. It is also interesting to point out that the
standard deviation of the trial sets are noticeable, on the order of 10% of the mean. This is because
some random choices could clump walker starting nodes together which would then have a greater
likelihood of moving back and forth to each other, slowing the diffusion. Whereas starting locations
that are maximally separated in the mesh will diffuse faster and thus execute faster. The results of
this final experiment are displayed in Figure S1.5 and data are given in our supplemental data file.

S1.3 Implications of TrueNorth and Loihi Neuromorphic Imple-
mentations

As described in the Methods, the specific circuit implementations of our neural algorithm on
TrueNorth and Loihi had subtle differences due to hardware-specific considerations such as neuron
types and where random numbers are accessible within the circuit. While hardware-specific circuit
alterations may introduce constant costs (e.g., a few extra neurons per mesh point), we expect that
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EXPERIMENT #5: RANDOM START
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Figure S1.5: Results of TrueNorth Experiment #5. Execution time is dramatically reduced once
all walkers do not start on the same position.

they should not affect the scaling of the algorithm, which we do observe in the generally comparable
scaling between these two platforms. There are several considerations that are worth expanding on
further, as they are generally applicable to NMC.

S1.3.1 Hardware-specific Neural Circuit Partitioning

The first consideration is how to partition a neural circuit onto the neural processing cores on
different NMC platforms. Both platforms consist of many effectively independent neural cores
which are responsible for a subset of neurons. As with conventional parallel programming systems,
while these cores operate in parallel with one another; within each core neural processing is not
fully parallel, and communication between cores is often a dominant processing cost. As a result,
strategies to partition neural circuits onto these cores will be an opportunity for future optimiza-
tion, and these strategies will often be constrained by hardware-specific restrictions. Figure S1.6
illustrates how a simple mesh of our algorithm would be partitioned over 5 neural cores on Loihi
and TrueNorth. One key difference shown in the figure is that the TrueNorth architecture allows
different neuron types on the same core, whereas our Loihi NxNet implementation requires that
neurons with different stochastic properties be placed on different cores, increasing inter-core com-
munication costs between neurons within a single mesh of points. A separate consideration that
arises in more complex implementations is that TrueNorth neurons can communicate at most to
one other core, which requires that some neurons be duplicated if the algorithmic neuron’s fan-out
would need to target neurons on two different cores.

Importantly, the implications of this neural circuit partitioning is still an open research question
and an opportunity for further optimization for algorithm and compiling research. For instance,
as we consider larger scale meshes that would span multiple chips, on Loihi it will be important to
develop embedding strategies that ensure deterministic and probabilistic neurons for mesh points
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Figure S1.6: Hlustration of the partitioning of our mesh onto Loihi and TrueNorth. Loihi requires
deterministic and stochastic neurons be separated whereas TrueNorth allows for mixing.

stay on the same chip.

S1.3.2 Spike Routing and Timing

The mechanism by which spikes are communicated between cores is one of the most variable features
across neuromorphic platforms and has significant implications on the relative performance of these
platforms. Some NMC architectures leverage fully asynchronous spike delivery with no guarantees
of specific timing since a presumed benefit of brain-like algorithms on NMC is that biology-inspired
algorithms can often be more tolerant of spikes arriving slightly earlier or later (or not at all).
Unlike more brain-inspired algorithms, the algorithm we present in this paper requires very precise
spike-timing and is very sensitive to any missing spikes. As such, this makes the algorithm not
as immediately well-suited for NMC architectures which derive performance advantages from less
precise timing in their information routing. While our algorithm can be ported to systems such as
SpiNNaker whose spike routing is more asynchronous, it will require several mitigation strategies
(custom neuron types; slowed system clock speeds) to ensure that information is not lost. On Loihi,
the main implication of asynchronous spike delivery here is that we have to artificially build in a
minimal delay in every neural connection to ensure that all spikes are delivered for a time step
prior to neurons updating. One opportunity for future Loihi-specific optimization to mitigate this
is to leverage Loihi’s multi-compartment neurons to avoid these delays in our counter circuits. On
TrueNorth, the main implication of its routing is that the chip has to be operated at a relatively
slow clock-speed to avoid spike collisions in its custom core-to-core routing. As with the circuit
embedding above, it is likely possible to optimize circuit layout on chip to reduce the risk of such
communication bottlenecks.
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Supplementary Note 2: Connecting a Class of PIDEs with a Prob-
abilistic Representation

This note provides references and covers results concerning the probabilistic representation of so-
lutions to the PIDEs considered in the main text.

The underlying tools used here are the stochastic analogs of methods from differential calculus.
Specifically, the main tool leveraged is Itd’s rule (sometimes called 1t6’s lemma or 1to’s formula).
This landmark result from stochastic calculus is often referred to as the stochastic chain rule and
serves the same purpose as the traditional chain rule in calculus. The two proofs in this note follow
the same general road map. It6’s rule is used to determine a form for du (¢, X (t)), where X () is
a stochastic process. Once this is found, integration in time followed by an expectation yields the
final result.

In the results provided below, we assume that a unique solution to the problem exists. Then,
we show that the unique solution has a probabilistic representation. We do not address conditions
for the existence and uniqueness of a solution. Classical solutions to these types of problems are
discussed in [6, 18]. For this style of problem with no integral term, conditions for existence,
uniqueness, and the probabilistic representation are covered in [7].

The results for probabilistic representations were heavily influenced by techniques used in finan-
cial math. As such, the original results typically concern final value problems. Indeed, [18] contains
results of this flavor. The primary source we use for the results shown is [8]. This text determines
the Kolmogorov equations for a generic jump-diffusion process. Using these derivations, the author
discusses a probabilistic representation for the final value problem of the PIDE considered in the
main text.

It is beyond the scope of this work to provide a full introduction to stochastic calculus. However,
we provide a few short details of stochastic differential equations for intuition purposes. Consider
the stochastic differential equation

AX(8) = b(t, X(8)) dt +a (t, X (1)) dW () + h (t, X(£)) dP(2).

In this equation, W(t) is a Brownian motion and P(t¢) is a Poisson process. Those with some
background in white noise processes may feel uneasy with this equation since Brownian motion is
nowhere differentiable. Therefore the concept of “dW(t)” does not make much sense. However,
this equation is merely shorthand for the integral equation

X(t)zX(O)—{—/O b (s, X(s)) ds—{—/o a(s, X(s)) dW(s)+/0 h(s,X(s)) dP(s).

In this context, dW (t) feels more like the concept of Riemann-Stieltjes integration. Indeed, inte-
gration against Brownian motion can be shown to make mathematical sense. Similarly, integration
against a Poisson measure is well defined. The integrals with respect to Brownian motion and the
Poisson process are called stochastic integrals. The expectation of the Brownian motion one is
always zero. When the Poisson measure has mean zero, the expectation of the Poisson integral can
also be shown to be zero.
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Returning to the SDE, we are now ready to apply some intuition. The term b (¢, X(¢)) is the
drift, or velocity, term. This describes the overall trend of the process X(t). The next term,
a(t,X(t)) is the diffusion term. This term describes the noise associated with the process X (t).
The final term h (¢, X (¢)) is a special term. This describes the value of any jumps in the process.
The Poisson process P(t) determines the times of the jumps. For further reading, [20] provides a
basic overview of the stochastic calculus limited to Brownian motion; an in-depth approach covering
stochastic integration against more general processes is given in [13].

We have organized this note as follows. In Section S2.1, we prove a representation theorem for
the time-dependent initial value problem. In Section S2.2, we prove an analogous representation
theorem for a special case steady-state boundary value problem. We adopt the notation from [8].
Hence, in all that follows, allow a semicolon in an argument to denote that the function might retain
the variables to the right of the semicolon. An example of this retention occurs in our particle
transport problems (see Supplementary Note 3). In these problems, the change in direction of
transport after a scattering event depends on the previous direction. Hence, the previous direction
appears in the probability density function.

S2.1 A Probabilistic Solution for an Initial Value Problem PIDE

The following result is discussed for a final value problem in [8]. To obtain the result for an initial
value problem considered, only a change of variables is needed. Rather than citing the result, we
instead prove the result for the initial value problem with a slight alteration. Namely, we generalize
the probability space so that the result can be directly applied to geometries like the sphere.

Theorem S2.1.1. Let (X C R, F,P) be a probability space that admits a Brownian motion W (t)
and suppose x € ¥ and t € [0,00). Let a,b, A\, ¢, f,u :[[0,00) x X] = X and g : ¥ — X with a > 0.
Denote by P(t;Q,x) a Poisson process such that

E[dP(t;Q,z,t)] = A(t,x)dt,

where @Q 1is the jump-amplitude mark random wvariable of the process with co-domain in Q and
probability density function ¢g. Let h: [[0,00) x ¥ x Q] — 3. Define the stochastic process

AX(8) = b(t, X(£)) dt +a(t, X (&) AW (E) + h (£, X (£), q) dP (£ Q, X (1), 1) . (S2.1)

Consider the initial value problem

0 1 iz 0
5t (62) = 50 (t.2) Ssu(t2) + bt 7) 5 ou(t o)
+ At / (t,x+h(t,z, q) —u(t,z))dqg (¢:t,x)dg (S2.2)

+eltz)ut,z) + f(t ),
u(0,2) =g (x).

Suppose:
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$2-50 e The functions a, b, and h are continuously differentiable in all arguments and their spatial
$2.60 gradients are bounded.
5261 e The functions c, f, g are bounded and continuous almost everywhere.

Then, if a unique solution to (S2.2) exists, it is given by

u(t,z) =F [exp </Otc(s,X(3))d8> g(X (1) ‘ X(0) = $] (52.3)

+E [/Otf (5, X () exp </Osc(€,X(€))d€> ds | X(0) = x] .

$2-62

Proof. Let u be the unique solution to (S2.2). Let some ¢ € (0,00) be given. Let s € [0,t) represent
the forward time (or time since zero) and 7 = ¢ — s represent the backward time (or time until ¢).
Then u(t — s,x) = u(s, x) satisfies the final value problem

0 1 0?2

___ e 2 -
87_u(7',x) 2a (1,2) 522

A () / @(r,x +h(r,2,q)) - @ (r,2)) P (¢:7.2) dg (52.4)

+e(rz)u(re)+ f(r,2),
u(t,x) =u(0,2) =g (x).

u(r,z)+b(r,x) (%17(7’,33)

s263 Lo simplify notation, denote
uap (1,2,q) = u (1,2 + h(1,2,q)) — u(T, x). (S2.5)
For p € (7,t), consider the function
w (7, p, X (p)) = u(p, X(p)) v (7, p),
where

v (1, p) = exp </Tpc(€,X(€)) d€> .

1to’s rule combined with the stochastic product rule yield
aw (7, X(0) = (7.0) | (52 (0. X(01) + (6. X)) 5
1, 0*u
t30 (p, X(p)) ) (p, X(p))

el X(p) ulp, X(p») ap (52.6)

(0, X () 92 (0. X () AW ()

+/QﬂAh (P,X(p),q)P(dp,dq;X(P)aP)],

(P, X(p))
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where P (dp,dg; X (p), tp) is the Poisson random measure for the Poisson process; i.e.

/QP (dp, dg; X (p), p) = dP (p; Q, X (p), p) -

We rewrite the Poisson random measure as the sum of a mean-zero Poisson random measure and
the mean:

~

P (dp,dq; X(p), p) = P (dp,dq; X(p), p) + A (p, X(p)) ¢q (¢; X (p), p) dgdp.
Using this in (S2.6) and appealing to (S2.4) yields

~

ou

dw (1, p, X(p)) = v(1, p) [—f (s X(p))dp+b(p, X(p)) e (p; X(p)) dW (p)

+/QaAh (pa X(p), Q) 7/5 (dp’ dq; X(p)’ p):|

We now integrate both sides of this equation for p € (7,t) and then take an expectation. Since one
is against Brownian motion and the other against a mean-zero Poisson measure, the expectation
of the stochastic integrals are zero, yielding

Bl (ot X(0) — w (7.7, X() | X(7) = 2] = 5 |~ [ ol )1 (2. X(0)) ap | X(r) =]
The left-hand side of this equation becomes
Ew(rt,X(@)—w(r7X(1)|X(1)=2|=E [ﬂ(t,X(t)) exp </ c(l,X (1)) d€> ‘ X(1) = ZE:|
—u(T,x).

Hence, we may rearrange and use the final condition to write

t

a(r,2) = E [a (t, X (1)) exp ( / ¢(£,X(0)) d€> ( X(r) = ;v]

+E [/Ttexp (/fc(p,X(p))dp) F(6,X(0))de ‘ X(r) = x]
_E [g (X (£)) exp </t ¢ (6, X(0)) d€> ‘ X(r) = x]

+E [/Ttexp </fc(p,X(p))dp> F(6,X(0))de ‘ X(r) = x]

s26¢  Finally, we set 7 = 0 to yield (S2.3). O
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In the main text, we mention that the function ¢ can be interpreted as an absorption term. We
provide a little intuition for this declaration here. Consider (S2.2) with A, h, f all zero and assume
c(t,x) = —k for some k € RT. Then, (52.1) becomes

AX () = b(t, X (£))dt + a(t, X (£))dAW (t), (S2.7)

and (S2.3) becomes
ult,x) =B [e g (X (1) ‘ X(0) =] (52.8)

Imagine that we randomly kill the process (S2.7) according to a Poisson process with parameter
kt. Then, the survival probability, or the probability that X (¢) has not been killed by time ¢ is the
probability that no events have occurred by time ¢, or e~**. Then, we read (S2.8) as the average
of g (X (t)) weighted by the probability that X (¢) has not died by time ¢. Rather than doing the
weighting in the averaging, we could push this probability into the process X (t) itself. We do this
by terminating the process X () according to the Poisson process described.

We finally note that Theorem S2.1.1 can be extended to multiple dimensions, but it requires
significantly more bookkeeping. The extension to higher dimensions allows for the inclusion of
multiple jump processes and allows for some correlation between stochastic processes. For examples
on higher dimensions and further reading on these Feynman-Kac style results, see [7, 8, 4].
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»n 92.2 A Probabilistic Solution for a Boundary Value Problem Steady-
52-80 State PIDE

s281  Here we prove a probabilistic representation theorem for a special case of the previous theorem:.
s2s2 'This ordinary integro-differential equation is a steady-state boundary value problem where ¢ = 0.
s283 A multiple dimension version of this theorem without an integral term is considered in [7]. Before
s2sa  proving the following theorem, we will discuss how this result intuitively follows the previous one.

Theorem S2.2.1. Let (¥ C R, F,P) be a probability space that admits a Brownian motion W (t)
and suppose x € D C X. Let a,b, A\, ¢, f,g,u : D — D with a > 0. Denote by P(t;Q,x) a Poisson

process such that
E[dP(t; Q. z,t)] = Mz)dt,

s285  where Q) is the jump-amplitude mark random wvariable of the process with co-domain in Q and
s286  probability density function ¢g. Let h: [D x Q] — D. Define the stochastic process

dX(t) =b(X(t))dt + a(X(t))dW(t) + h(X(t),q)dP (t;Q, X (t),1), (S2.9)
s287  and the associated stopping time
T,=inf{t >0|X(¢t) € D, X(0) =x}. (52.10)

Consider the boundary value problem

0= %a2 (z) dd—;u(x) + b (x) %U(ZE)
2 @) [ (@t h(.0) - u(e) o (ait,a) dg (s2.11)
+f(2),
u(zr)=g(z), x € 0D.

s288  Suppose:
5289 e The functions a, b, and h are continuously differentiable in all arguments and their spatial
$2.90 gradients are bounded.
201 e The functions f,qg are bounded and continuous almost everywhere.
$2-92 e Forany x € D, E[T;] < co.

s203  Then, if a unique solution to (S2.11) exists, it is given by

T

uwzﬁpuum+o £ (X (s)) ds

X(0) = x] . (S2.12)

52-94
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To discuss how this result might intuitively follow from the first, consider (S2.2). If we wanted
to consider a steady-state version, we could integrate in time, taking ¢ to infinity. This would
effectively give us an ordinary integro-differential equation in x for a time integrated version of w.
In terms of the SDE, this would mean we would need to sample X (¢) for an arbitrarily long time.

If we then move from an equation on the whole plane to an equation on a more restrictive
domain, we would need to somehow ensure that our process X (¢) does not travel outside of the
domain of interest due to random fluctuations. We could accomplish this by artificially cutting off
any sample of the process X (t) when it first exits the domain of interest.

We now see how one might intuitively navigate from the time-dependent result to this one. Now

we prove the result to fill in the details.

Proof (of Theorem S2.2.1). Let u be the unique solution to (S2.11) and let uay be as defined in
(S2.5) without the time argument. Let n € N be given. Denote T, An = min{T,,n}. By Itd’s

rule, for t < T, An we have

Ly
2

du (X (t)) = b(X(t))iU(X( t) + 5a” (X(t) —Zu(X(t))
dz dx

D) Lo (X)W + [ uan(X(1).0)P (at.dg: X(0).0).

d2

)t

(S2.13)

Similar to the previous problem, we rewrite the Poisson random measure as the sum of a mean-zero
Poisson random measure P and the mean. We then integrate in time from 0 to T, An, use (S2.11),

and rearrange terms:

N
u(X(0)) = u(X(Ty An)) + /0 £ (X(s)) ds

TeA\n d
- [ e >>d$ u (X(5)) W (s)

T An
[ [ st

~

q) P (ds, dg;

The expectation of the stochastic integrals are zero. Hence,

n—oo

0

X(s),s).

TeAn
lim E[u(X(0))|X(0) =2] = nh_)rgoE [u (X(Tx Am)) —I—/ f(X(s)) ds

r N
w(z) = | lim u(X(Tm/\n))—i—/O F(X(s)) ds

n—oo

u(z)=E -u (X (T,)) +

u(z)=E -g (X (T,)) +

T

0

0

Ty

f(x

f(x

(s)) ds
(s)) ds

X(0) = ZE-

X(0) :ZE- .

s2105  Ergo (S2.12) is justified. The limit and expectation can be interchanged as the argument of the

s2106  expectation forms a uniformly integrable set (see [7]).

O
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Similar to the previous theorem, this can also be extended to multiple dimensions with more
bookkeeping. In multiple dimensions, this ordinary integro-differential equation would become a
PIDE. See [7] for additional multi-dimensional special cases. The given reference considers problems
without an integral term and provides assumptions that ensure the existence and uniqueness of the
solution as well as the probabilistic representation. The proof provided here demonstrates that the
integral term is not difficult to add in when the unique solution is assumed.
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Supplementary Note 3: Additional Information on Main Text Ex-
amples

This note provides additional context and information for the example problems considered in the
main text. The primary purpose of this section is to provide the equations and parameter values
used along with any relevant discussion on building the particular discrete-time, discrete-space
Markov chains associated with each example. Examples appear in the same order as the main text
with particle transport problems appearing in Section S3.1 and heat equations on non-Euclidean
geometries appearing in Section S3.2.

S3.1 Particle Transport

In this section we will discuss further details of the particle transport examples in the main text.
We first begin with some notation.

Assume that a particle occupies a single point with no mass and that intra-particle interactions
can be ignored. The position and velocity of a particle is given by

r = (r1,z9,23) and v =vQ = v (sinf cos @,sinfsinp,cosf),

respectively. The quantity v is the particle speed. The angular density of particles at position r
traveling in direction €2 with energy E at time t is denoted by N (¢,r,Q, E).
A quantity of interest when considering particle transport is the angular flux density, given by

o (t,r,Q, E) =vN (t,r,Q, E).
We will assume that:

e energy E remains constant;

e we only care about either a single dimension or a projection into a single dimension, so that
we may write r = z and {2 = cos 6, or similar.

Under these assumptions, ® := @ (¢, z, ). The angular flux density is then assumed to satisfy the
Boltzmann particle transport equation given by

L0 42 0)+ 02 (1 2,Q) + S, D (1,2, Q)

:/@@@WMJ@W%QﬂW+R@@m,
where
Et($a Q) = Ea(fba Q) + Es(fEa Q)’

and Y, and X are functions representing the rates of particle absorption and scattering, and R is
a function representing a particle source [5]. The scattering term in the integral o, is the scattering
kernel and is related to the scattering rate function by

&@m:/%@ﬂémm. (53.2)
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Note that the arrow indicates a transition in direction, and is not a limit. Given that a scattering
event has occurred at position x, let ) represent the direction before scattering and a represent the
direction of the particle after scattering. Then, the probability density function of a given 1 and x

is defined as
O's(xan%a) _O's(xan%a)

- [os(z,n—a)da!  Xs(z,7m)

p(afn, ) (53.3)
Similarly, we can define the distribution of the reverse situation. That is, the probability density
function of having came from the direction 1 given that a scattering event occurred at position x
and the direction after scattering was a. Letting

Ss(3,0) = / i, 17— Sy, (S3.4)

we can write ( ) ( )
% Os (X, — Oos(x, N — «
p (TI | Oéa x) f O's (x’ T]/ _} Oé) d’l]' SZ (x’ Oé) ( )

Note that when p is symmetric, that is p (a |b) = p(b]a) for all a and b then X3 = Sy, and p = p*.
By using the above definitions and by assuming that Sy, > 0, we can write

/ O(t, 2, )0y (2,Q — Q)Y = Sx(x, Q) / (®(t, 7, ) = @(t,2,9)) p* (V] 2, 2) dY (S3.6)

+ S (2, Q) D(t, , Q).

Now, by using (S3.6) and using the change of variables w = ' — Q, the PIDE (S3.1) can be
written as
0 0
—®(t,z,Q) = —vQ— (t,z,Q) — v (Z¢(x, Q) — Sx(z,Q)) ® (¢,2,Q) + vR (t,x,Q)
ot ox (S3.7)

~|—USZ(J:,Q)/(<I>(t,x,Q—I—w) _ B () p (Wt QD7) du.

Note that the scattering and absorption related terms could also depend on time. We elected to
omit that dependence here for compactness.

S3.1.1 Example 1: Simplified Transport

The first example we consider is an angular flux density problem that only depends on direction
Q) and not space z. Essentially we consider a hypothetical particle that has two states: state 1
with Q = 1 and state 2 with Q = —1. The particle is subject to scattering and absorption events
controlled by the constants ¥, and 3, respectively. After scattering, the particle changes from
state i to state j with probability p;;. Note that p;; or p;; represents the probability that a particle
does not change its state on a scattering event.

Since ® does not depend on z in this example, the parameter v serves only to scale the absorption
and scattering rates. Hence, we set v = 1 for clarity. Administering an initial condition, we seek

26 July 2021 Submitted 34



$3-42

$3-43

S3-44
$3-45
$3-46
S3-47
$3-48
$3-49
S3-50
$3-51
$3-52
S3-53
S3-54
S3-55
S3-56
S3-57
S3-58
S3-59

S3-60

$3-61

$3-62

Additional Material Smith et al.

to solve the PIDE

%cb (t,92) = — (Za + s — Sx(2) @ (¢,0)

1 55(®) / (B(F, 2+ w) — B(,Q)) p* (w + 2|Q) dw (53.8)

5 ifQ=1,
(D(O’Q):g(ﬂ):{ 3 ifQ=-1.

If we assume that p;; = 1/2 for all 4, j, then the analytic solution is given by

5 (e7Zat 4 e=(BatZa)t) 4 3 (g~Tat _ o~(ZatB)t) jr Q=1
®(t,N) =4 2 2 ’ S3.9
(t, Q) { 5 (et — 6—(Za—|—23)t) +3 (e et 4 6—(Za—|—25)t) O =—1. (53.9)

For this example, we will further assume that ¥, = 0.5 and X4 = 5.0.
Since p;j = 1/2 for all 4 and j, the distribution p is symmetric and therefore p = p* and Sy, = Xs.
The probabilistic representation gives

D (t,Q) =E[e g (Y(t)|Y(0)=9Q], ($3.10)
dY (t) = wy(t)dP(t).

The stochastic process Y (t) is effectively a proxy for our hypothetical particle. The particle retains
its state (either 1 or —1) until the Poisson process P(t) fires. Once the process fires, Y (¢) increases
by the random change in direction wy ;). We have included the subscript Y'(t) on w to draw
attention to the fact that the change in direction depends on direction before the Poisson process
fires. We would need to base this random change in direction off of the reverse distribution p*,
meaning our proxy particle is moving in reverse when compared to the physical process. To tie
this back to the original equation, the stochastic process is having us randomly select a previous
direction € given the current direction (after scattering) € every time the Poisson process fires.
Luckily for this example, our forward distribuiton p is symmetric — if we did not have p;; = 1/2 for
all 7, j then we would have to carefully draw our changes for the process Y.

Returning to the stochastic process, notice that it does not involve absorption. Rather, absorp-
tion is handled by the exponential term inside the expectation.

In order to develop the discrete-time Markov chain used to approximate the process Y (t), we
must first discuss the state space. For this problem, the state space is merely +1, so we do not
need to discretize by choosing some increment AS). The next step in creation of the Markov chain
is selecting an appropriate time discretization At.

Note that for any ¢ and any (2, the parameter of the Poisson process P(t) is

t+At
/ Sydu = Sy At = Y AL.
t

Ergo, our selection of At is independent of both ¢ and 2. In particular, we will want to choose At
sufficiently small so that we can be reasonably sure that the Poisson process P(t) will not fire more
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than one time in the time window At. Since the probability of no events occurring during the time
window At is

go = e~ ZoA

9

and the probability of one event occurring is
q1 = EsAte_ZSAta

we want to choose At so that
¢>1=1—q —q

is sufficiently small, or less than 0.05. Given the value of g, a selection of At = 0.01 causes
q>1 ~ 0.001.

For the construction of our Markov chain, we use ¢ for the probability that a Poisson event
occurs and 1 — ¢; for the probability that no Poisson event occurs. Technically, the stochastic dif-
ferential equation representation for Y (¢) would have us calculate the probability for all increments
in direction w given the current direction and assign these probabilities to the states they would
ultimately transition to. However, for this problem it is equivalent to instead change direction based
on the given probabilities p;;. Hence, we can define our Markov chain by the transition matrix

1 —
o | ma+l-aq) P12q1 _ (S3.11)
P21q1 po2q1 + (1 —q1)

This transition matrix was used to inform a random walk process on TrueNorth. As shown in
Fig. 3c and Fig. 3d in the main text, 1000 and 10000 random walks per starting location were
sampled, respectively. These were averaged according to (M.7) to produce the curves shown. The
analytic solution is also plotted for comparison.

The low bit resolution of the PRNG for the stochastic configuration used for our implementation
forced the transition probabilities to be quantized to an 8-bit resolution. For this problem, with
our defined parameters

C’%[

0.976219264387482  0.0237807356125179
0.0237807356125179  0.976219264387482

However, the actual transition probabilities used by the TrueNorth implementation are

CN[0.9765625 0.0234375] 1 [250 6 ]

0.0234375 0.9765625 | ~ 256 | 6 250

The simulation was run for 5.5E+6 hardware ticks. This was to ensure at least 500 simulation
steps were produced, equating to a real simulation time of 5 seconds. The images shown in Fig.
3c-d in the main text are zoomed to show ¢ € [0,2]. Due to the random nature of the simulation,
it is impossible to know, a priori exactly how many hardware ticks are needed in order to obtain
exactly 500 simulation steps. Hence we must over estimate the run time and manually terminate.
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S3.1.2 Example 2: Particle Angular Fluence

The second particle transport example we consider pertains to angular fluence, or time-integrated
flux. Up to changes in units, the angular fluence problem is given by (S3.7), but with the time
derivative set to zero and no dependence on time. For our simplified example, we will assume that
Yl is a constant and that >, is zero. That is, there are no absorption events. We additionally
assume that after scattering events, the new direction of particles is uniform on [—1, 1], and that
we are concerned with x € [—1, 1] only. The uniform assumption again means that p is symmetric
and p = p* and Sy = Xg. Finally, we assume that the source term does not depend on direction of
travel. Taken with an absorbing boundary condition, this gives the following problem:

d
— 0L P (2,0
0 v (z,92) +vR (x)

+UZS/(<I>($,Q—I—M)—<I>(:U,Q))p*(w—|—Q|Q)dw, T€(-1,1),9€[-1,1], (g319)

®(1,Q) =0, ifQ<0,
®(—1,Q) =0, ifQ>0.

For this example, we take v = 200, 33 = 0.15, and

{0015 if |z| <05
R(z) = { 0 otherwise.

There is no readily available analytic solution to this problem. The probabilistic solution is

®(2,Q) = E [/OTQ R (X(u)) du

X(0)=z,Y(0) =Q},

dX (1) = —vY (£)dt, ($3.13)
dY (t) = wy ) dP(1),
Ty =inf{t > 0], X(t) & [-1,1], X(0) = &, Y (0) = Q} .

Once again the stochastic process provides a proxy for our particle. The position X (¢) decreases
according to its velocity (speed v times current travel direction Y (¢)), and the current direction of
travel Y () is updated by the random increment wy ;) every time the Poisson process fires. This
proxy particle again behaves like the reverse of the actual particles. The negative sign on the X (t)
term means that the particle moves in the opposite of the current direction Y (¢). For Y (¢), the
increment wy () is chosen according to the distribution in the integral — given the current direction
Q, a new direction €’ is chosen such that €’ could have scattered to the direction Q) after a scattering
event.

To create the Markov chain approximation, we will need to discretize the state space. This
involves choosing a Az and AS) to create bins across the domain. For reasons that will become
clear, we will wait to pick Az until after we have chosen At. To begin, we select AQ = 1/15. This
creates 30 possible locations for Y (¢) in [—1, 1], corresponding to the midpoints of 30 bins. From
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left to right, these midpoint values begin with —1+ AQ/2 and end at 1 — AQ/2, increasing by AQ.
We will write the midpoints of these bins as €2; = —1 4+ AQ/2 4 (j — 1)AQ for j € {1,...,30}.

Next we will choose a value for At. For any time window [t,¢ + At], the parameter for the
Poisson process P(t) is v3gAt. Using the same notation from the previous example for g, ¢1, and
g>1, choosing At = 0.01 puts ¢-1 < 0.05.

Selecting both At and AQ will help us choose a Ax that will complement the problem. Note
that in a single time window, a particle starting at some position (z,) can only increment its
position by vQAt. Once we discretized both direction and time, we have quantized the jumps the
position can make based on the magnitude of the smallest nonzero direction. Since the smallest
allowable (positive) direction is A/2, this yields,

1
Az = §UAQA7§. (S3.14)

For our values of v, AQ and At, we have Az = 1/15. This yields 30 possible spatial locations,
corresponding to the midpoints of 30 bins in [—1,1]. Again, we will denote these locations by z;
where z; = =1+ Az/2+ (j — 1)Az, for j € {1,...,30}. These divisions yield a state space of size
30 x 30 = 900.

Letting (4, j) represent the location (z;,2;), we now seek to calculate the transition matrix

C* = (Clig)mho)) »

where c(; jy_(1,¢) Tepresents the probability of transition from (i, j) to (k,£). We will assume some
sort of ordering on the pairs (7,7) so that C* is a 900 x 900 matrix. As implied in the previous
discussion, the position can only transition to z; — v§2;At, a valid location by construction of Az.
As with the previous example, p = p*. Therefore, it is equivalent to choose our new directions based
on the final specified distributions of directions rather than calculating the appropriate conditional
densities. In this example, we assumed directions after scattering are uniform. Therefore new
directions in our discretized space are selected with probability 1/30. Hence

1—q)+ & ifop =2 —vQ;At and j =/,
Clij)—(k,0) = g—a if v, = x; —vQ;At and j # £, (S3.15)
0 otherwise.

This, however, does not define the entire transition matrix. We have not accounted for random
walks that would travel out of the domain. This occurs when the transition from the state (i, j)
would create an x value that no longer falls in [—1, 1]. To this end, we create an additional absorbing
state, say a that corresponds to absorption. We must now define the column vector of probabilities

Ca = (C(i,j)—)a) :

The probability of transition to this state is simply 1 whenever the increment would force the walk
to exit the domain. Hence,

(S3.16)

. . 1 if |LL‘Z —’L)QjAt| > 1
€Gi)=a = Y 0 otherwise.
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Finally, allowing 0 to represent a row vector of 900 zeros, the full 901 x 901 transition matrix for
the Markov chain can be written as
C* ¢y
(S ). oin

This transition matrix was used to implement 6250 random walks per possible starting location on
Loihi. Random walks are allowed to run until they arrive at the absorption state. The data from
the collected random walks is averaged in the Monte Carlo sense via equation S3.13. We note that
the averaging requires the use of a Riemann sum approximation to an integral. However, rather
than keep information on every individual path, the Riemann sum term can be collapsed using
cumulative densities. For more information on this technique, see [17]. The result is plotted as
Fig. 3g in the main text.

S3.2 Non-Euclidean Geometries

The two previous examples utilize random walks on a domain that is not very complicated. The
method does extend to more complicated domains, although there is some nuance in execution.
Any time a diffusion coefficient exists (a # 0), the underlying SDE contains a Brownian motion
term (W (t)). As detailed in Supplementary Note 2, this is a Brownian motion with respect
to the appropriate probability space. If the problem were in RY, then W (t) represents a standard
d-dimensional Brownian motion.

On the other hand, if the problem were on the surface of some admissible 3-dimensional shape,
W (t) is not a 3-dimensional Brownian motion, but rather a Brownian motion on the surface of
the shape. For smooth shapes, this means that locally W (¢) is a 2-dimensional Brownian motion,
however more complicated distributions can be defined (see [19] for a discussion on the von Mises-
Fisher distribution, a distribution describing Brownian motion on the surface of the sphere).

In this section we consider two examples monitoring heat transport on the surface of non-
Fuclidean objects. The first is a sphere; a smooth shape where locally the diffusion is a 2-
dimensional Brownian motion. Here, transition probabilities are calculated by projecting to a
tangent plane. The second is two spheres joined by a hexagonal prism. The shape is not smooth
where the prism joins the spheres and along the spines of the prism. On the sphere, the same
tangent plane approximation is used. On and near the prism, an unfolding argument is applied.
See Figure S3.1 for a visualization of the sphere and barbell.

S3.2.1 Heat Equation on the Surface of the Unit Sphere

Let S? represent the unit sphere and consider the initial value heat equation:

d
P
u(0,x) = g(x).

. 2
(t:x) = aVxu(t,x),  x €S te(0,0), (3.18)
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(a) Sphere Mesh Structure

(b) Barbell Mesh Structure

Figure S3.1: Visualization of mesh structure for heat transport examples. In the sphere (left), the
center of each triangle represents a location in the mesh or an element of the state space. In the
barbell (left), the center of each triangle or rectangle represents a location in the mesh.

With an appropriate g, the probabilistic solution is

u(t, x) = E[g (X(#)) | X(0) = ¥]

dX(t) = V2adW (1), (83.19)

where W (t) is a Brownian motion on the surface of the sphere. Let ) represent the real part of
the spherical harmonic of degree m and order n. Suppose

g (X) =g (9, ¢) = yg (9, ¢) + \/%yg (9, ¢) ) (83'20)

where (0, ¢) is the spherical coordinate for the vector x on the unit sphere with 6 € [0, ¢] and
¢ € (—m,m|. That is, # measures the angle from the north pole and ¢ measures the angle from
the prime meridian. Since the spherical harmonics are the eigenfunctions of the Laplacian in three
dimensions, this initial condition admits a tidy analytic solution to (S3.18):

uw(x) :=u(f,0) =e 2% (0, ¢). (S3.21)

Let o = 1/42 be given.

In order to perform our random walk approximation, we will first need to discretize the sphere.
In the previous examples we took a uniform approach to discretization. In this example we will
create roughly congruent triangles on the surface of the sphere. This is accomplished by calculating
a geodesic dome structure.

Begin with an icosahdron with vertices on the surface of the unit sphere. An icosahedron is a
polyhedron constructed with 20 equilateral triangles and 12 vertices. Our construction begins with
two of these vertices equidistant from the north pole (and consequently two others equidistant from
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the south pole). At the midpoint of each triangle, a new line is drawn, creating four new equilateral
triangles on each face of the icosahedron. Once more, on the midpoint of each triangle a new line
is drawn creating four new smaller triangles. This yields 16 small equilateral triangles on each face
of the original icosahedron for a total of 320 triangles. The vertices of these triangles are projected
to the surface of the sphere (see Fig. S3.1a).

Our random walk on the sphere will traverse over the centroids of these triangles, projected to
the surface of the sphere. We will allow the random walk to transition to any triangle neighbor that
shares a vertex and back to itself. Since the original icosahedron had 12 vertices, this means that 60
triangles with have 12 possible transitions and the remaining 260 will have 13 possible transitions.

We must now select a time step size At and compute transition probabilities for the triangles.
We will ultimately use the tangent plane approximation method for this calculation. However,
some may wonder why not use spherical coordinates since our initial condition and analytic solution
utilize these coordinates. Translating (S3.18) into spherical coordinates yields

2 2

9 T 9 ) 0
Sut0.9)=a <wu (10.0) + cot0 50 (1.0.6) + e 05 (1.0 ¢>> ,

U(0,0,¢):g(0,¢)-

This gives the probabilistic solution

u(t,0,9) =E[g(X(t),Y ()| X(0)=6,Y(0) =g
dX(t) = acot X (t) + vV2adW,(t) (S3.23)

dY (t) = v/2acese? X (t)dWa(t).

We can already see an issue with taking this approach — when X (¢) nears the north or south pole,
the drift in latitude approaches infinity and the diffusion in longitude approaches infinity. We do
not take this approach to avoid dealing with this singularity.

Order the 320 triangles in some fashion. Given a current triangle center r; = (x;,y;, ), we
project to a tangent plane using the gnomonic projection. This projects points to a tangent plane
so that arcs along a great circle are projected onto straight line segments. We accomplish this
by rotating the sphere so that r; is at the north pole (0,0,1) and then projecting all neighboring
triangles to the zy tangent plane centered at (0,0). A standard two dimensional Brownian motion is
used to approximate the probability of transition into each of these projected triangles. Under such
a rotation and projection, the new coordinates (2/,y’) of any point (x,y, z) in terms of (z;, y;, 2;)
are given by

(S3.22)

(§ E) if 22 +y2 =0

> otherwise. (83.24)

I
(ZU Y ) = zi(mir+yiy)—2($?+y?) TiY—YiT
Va2 42 (matyiy+zi2) | /22492 (wiztyiy+2iz)

We note that in the construction we have detailed here, the north and south poles are always a
vertex of a triangle and are never a center point. Therefore, the first assignment in (S3.24) is never
used.
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Suppose that r; and r; are centers of triangles that share a vertex. We use the SDE for X(t)
(see (S3.19)) to inform our calculation of transition probability from r; to r;. There is no drift
term. Locally, X(t) is a two-dimensional Brownian motion. Letting X’ represent the projection to
the tangent plane, then X'(t) is Gaussian with mean X’(0) and covariance matrix given by

2t 0
Et_[ 0 2at]'

Applying Euler-Maruyama, X'(t + At) is Gaussian with mean X’(¢) and covariance matrix given
by

(S3.25)

Sa, = [QQAt 0 ]

0 200t

Let 7;; represent the triangle with center r; in the tangent plane created by the gnomonic projection
about the point r;. Let fg(p, u,X) be the probability density function for the two dimensional
Gaussian with mean g and covariance matrix > at the point p. Recalling that the projection of r;
is (0,0), then we approximate the probability of transition from r; to r; by

pij ~ / fg (p;(0,0),Xa¢) dp, (S3.26)

where Ya; is given by (S3.25). After selecting At, this integral can be evaluated numerically.
We elected to use a Gaussian quadrature method. A selection of At = 0.1 ensures that the
probability of transition to any triangle outside of those triangles that share a vertex with the
starting location is less than 0.05. Departing from the previous examples, we added the missing
probability for transition to the probability of not changing locations. That is, we added 1 — ;i Pij
to the probability p;;. This is a simplifying choice we have made. Integration of transition to any
other possible triangle via (S3.26) is not possible as the approximation is only valid locally and also
because the gnomonic projection does not work for triangles in the opposite hemisphere.
Setting our transition matrix to

C = (i), (53.27)

we implemented a graph for random walks on Loihi over the 320 possible locations. Using 3000
walkers total, the solution was calculated by changing the center points to spherical coordinates and
averaging in the Monte Carlo sense via equation (S3.19). The simulation result displayed for various
frames in time is given in Fig. 4a in the main text. Additionally, the norm of the difference in the
Loihi calculated solution and the analytic solution over time for 1000 walkers/position is plotted in
Fig. 4b.

S3.2.2 Heat Transport on the Surface of a Barbell

Our final example is heat transport on a barbell shape. The barbell in consideration is two unit
spheres joined by a hexagonal prism (see Fig. S3.1b). We created our barbell shape by starting
with two unit spheres, centered on +2. When performing the triangular mesh construction on the
sphere as in the previous example, there will exist a left- or right-most vertex, closest to zero for
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each sphere. This vertex will belong to six triangles. We replace these triangles on either side with
a hexagonal prism with side lengths equal to the length of the hexagon sides formed by the six
triangles. Since the vertex we use to make this replacement comes from an initial division in the
construction, this is a regular hexagon.

Let B be the surface of the two unit spheres joined by the described hexagonal prism. We are
interested in solving

Fr (t,x) = aVu (t,x) — ku (t,x), x €B, te(0,00)
u(0,x) = g (x).

The parameter x can be thought of as a rate of cooling. For this problem, we assume that a = 1/2,
k = 0.05. Letting x = (z,v, 2), we take

(S3.28)

20 y > 2.5,
7T 25>y>1,
g(x)=¢ 5 1>y>0, (S3.29)
3 0>y>-1,
1 —-1>uy.

The probabilistic solution is given by

u(t,x) =E [e_”tg (X(t)) | X(0) = x]

dX (t) = V2adW (), (3.30)

where W (t) represents a Brownian motion on the surface of the barbell.

We discretize the spheres in the same manner from the previous example. We divide the hexagon
into rectangles as follows. All the triangles on the sphere have roughly equal area by construction.
We select one of the triangles with the smallest area; that is, one of the triangles that shares a
vertex with the original vertices of the icosahedron. Using this area and the length of the edge of
the hexagonal prism, we determine the ideal width of a rectangle to equal the area of this triangle.
We then round this width based on the closest number of rectangles we can place along the prism.

From this construction, we get 314 triangles for each sphere and 120 rectangles in the prism, for
a total of 748 locations in the state space. The states are taken to be the centroids of the triangles,
projected to the surface of the sphere, and the centers of the 120 rectangles.

Probabilities of transition among triangles on the left and right spheres are handled like in the
previous example. Triangles are again considered adjacent if they share a vertex. Transitions from
a triangle on the sphere to a rectangle on the prism are only allowed if the rectangle shares a vertex
with the triangle. Since there are six rectangles replacing six triangles on each sphere, and these
rectangles are roughly equal in area to the triangles, we assign the probability of transition from a
triangle to an adjacent rectangle to be the probability of transition from the triangle to the triangle
that the rectangle is replacing. Again, this is not perfect. This is a choice we have made. The
tangent plane projection does not work as well in these locations because the rectangles on the
prism are almost perpendicular to the tangent plane.
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Transitions among rectangles on the prism are allowed to other rectangles that share at least
one vertex and back to the original rectangle. Transitions are calculated by unfolding the prism,
setting the center of the rectangle equal to (0,0), and calculating the probability of transitioning
into the rectangles surrounding the current location. This probability is calculated via (S3.26),
where the integration is performed over the appropriate rectangle rather than triangle.

Transitions from a rectangle on the prism to a triangle on the sphere are handled similarly.
First, the triangle sharing a side with the rectangle is unfolded into the plane with the center of the
rectangle occupying (0,0). The probability of transition into this triangle is calculated via (S3.26).
Now, depending on the rectangle (transitioning to left or right sphere), there are six additional
triangles that share a vertex. These share the upper and lower vertices on one side of the rectangle,
dependent on whether the rectangle is transitioning to the right or left sphere. There are three for
the upper vertex and three for the lower vertex. We approximate the transition to one of these
three upper triangles by calculating the probability of moving into the entire quarter plane diagonal
from the upper vertex. This is accomplished by replacing the integration bounds in (S3.26) with
the appropriate bounds for the quarter plane. This probability is divided by 3 and assigned to each
of the three triangles sharing a vertex. Again, this is a simplifying choice as unfolding the three
triangles is difficult in this scenario. This is repeated for the other three triangles touching the
lower vertex.

Through this calculation, all possible transitions are calculated for locations that share a vertex.
By selecting At = 0.005, we ensured that the probability of transition outside the allowable locations
for each starting location in the state space was less than 0.05. As in the previous example, we add
any missing probability to the probability of transitioning to the same location to ensure a total
probability.

We use this to define a transition matrix. The graph for this random walk was implemented
on a spiking net simulator as in [17]. Starting 1000 walkers on each location and averaging in the
Monte Carlo sense via (S3.30), we calculated an approximate solution, plotted in Fig. 4c in the
main text.

26 July 2021 Submitted 44



$3-278

$3-279
$3-280

$3-281

$3-282
$3-283
$3-284

$3-285

$3-286

$3-287

$3-288
$3-289

$3-290

$3-291

$3-292

$3-293

$3-294

$3-295

$3-296

$3-297

$3-298
$3-299
$3-300

$3-301
$3-302

$3-303
S3-304
$3-305
$3-306

$3-307
$3-308

$3-309

$3-310

$3-311

Additional Material Smith et al.

References

1]

[10]

[11]

Intel xeon processor e5-2665. https://ark.intel.com/content/www/us/en/ark/products/
64597/intel-xeon-processor-e5-2665-20m-cache-2-40-ghz-8-00-gt-s-intel-qpi.
html. Accessed 2020-9-08.

AGARWAL, S., QuacH, T.-T., PAREkH, O., Hsia, A. H., DEBENEDICTIS, E. P., JAMES,
C. D., MARINELLA, M. J., AND AIMONE, J. B. Energy scaling advantages of resistive memory

crossbar based computation and its application to sparse coding. Frontiers in neuroscience 9
(2016), 484.

AIMONE, J. B., SEVERA, W., AND VINEYARD, C. M. Composing neural algorithms with
fugu. In Proceedings of the International Conference on Neuromorphic Systems (2019), pp. 1-8.

Ccuung, K. L., WiLrLiams, R. J., AND WILLIAMS, R. Introduction to stochastic integration,
vol. 2. Springer, 1990.

DUPREE, S. A., AND FRALEY, S. K. A Monte Carlo primer: A Practical approach to radiation
transport. Springer Science & Business Media, 2002.

GARRONI, M. G., AND MENALDI, J. L. Second order elliptic integro-differential problems.
CRC Press, 2002.

GRIGORIU, M. Stochastic calculus: applications in science and engineering. Springer Science
& Business Media, 2013.

Hanson, F. B. Applied stochastic processes and control for jump-diffusions: modeling, anal-
ysis and computation. STAM, 2007.

KELBERT, M., KONAKOV, V., AND MENOZzZI, S. Weak error for continuous time markov

chains related to fractional in time p (i) des. Stochastic Processes and their Applications 126,
4 (2016), 1145-1183.

Konakov, V., AND MAMMEN, E. Local limit theorems for transition densities of markov
chains converging to diffusions. Probability theory and related fields 117, 4 (2000), 551-587.

MEROLLA, P. A., ARTHUR, J. V., ALvAREzZ-IcAzZA, R., CAsSSIDY, A. S., SAWADA, J.,
Axoryan, F., Jackson, B. L., Imam, N., Guo, C.;, NAKAMURA, Y., ET AL. A million

spiking-neuron integrated circuit with a scalable communication network and interface. Science
345, 6197 (2014), 668-673.

PAREKH, O., PHiLLips, C. A., JAamESs, C. D., AND AIMONE, J. B. Constant-depth and
subcubic-size threshold circuits for matrix multiplication. In Proceedings of the 30th on Sym-
posium on Parallelism in Algorithms and Architectures (2018), pp. 67-76.

PROTTER, P. Stochastic integration and differential equations: a new approach. Springer-
Verlag, 1990.

26 July 2021 Submitted 45



$3-312
$3-313

S$3-314

$3-315

S3-316

$3-317

$3-318

$3-319
$3-320
$3-321

$3-322

$3-323

$3-324

$3-325

$3-326

Additional Material Smith et al.

[14] SEVERA, W., LEHOUCQ, R., PAREKH, O., AND AIMONE, J. B. Spiking neural algorithms
for markov process random walk. In 2018 International Joint Conference on Neural Networks
(IJCNN) (2018), IEEE, pp. 1-8.

[15] Stu, K.-Y., ROYCHOWDHURY, V., AND KAILATH, T. Discrete neural computation: a theo-
retical foundation. Prentice-Hall, Inc., 1995.

[16] SKOROKHOD, A. V. Studies in the theory of random processes, vol. 7021. Courier Dover
Publications, 1982.

[17] SmiTH, J. D., SEVERA, W., HiLL, A. J., REEDER, L., FRANKE, B., LEHOUCQ, R. B.,
PAREKH, O. D., AND AIMONE, J. B. Solving a steady-state pde using spiking networks and

neuromorphic hardware. In ICONS 2020: International Conference on Neuromorphic Systems
2020 (2020), no. 27, ACM, pp. 1-8.

[18] TANKOV, P. Financial modelling with jump processes. CRC press, 2003.

[19] WATSON, G. S. Distributions on the circle and sphere. Journal of Applied Probability (1982),
265-280.

[20] WIERSEMA, U. F. Brownian motion calculus. John Wiley & Sons, 2008.

26 July 2021 Submitted 46



	Arxiv_DOCX
	Spiking Neuromorphic Hardware Shows Neuromorphic Advantage on Simulating Random Walks
	Neuromorphic-compatible random walks apply to broad class of PIDEs
	Results/Examples
	Neuromorphic hardware can simulate particle transport
	Neuromorphic approach to simulating on non-Euclidean geometries

	Discussion
	Acknowledgments
	Contributions
	Data Availability Statement
	References

	Figure1
	Figure2
	Figure3
	Figure4
	arxiv_appendix_print_image

