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Computing stands to be radically improved by neuromorphic computing (NMC) approaches inspired by 

the brain’s incredible efficiency and capabilities. Most NMC research, which aims to replicate the brain’s 

computational structure and architecture in man-made hardware, has focused on artificial intelligence; 

however, less explored is whether this brain-inspired hardware can provide value beyond cognitive 

tasks. We demonstrate that high-degree parallelism and configurability of spiking neuromorphic 

architectures makes them well-suited to implement random walks via discrete time Markov chains. 

Such random walks are useful in Monte Carlo methods, which represent a fundamental computational 

tool for solving a wide range of numerical computing tasks. Additionally, we show how the 

mathematical basis for a probabilistic solution involving a class of stochastic differential equations can 

leverage those simulations to provide solutions for a range of broadly applicable computational tasks. 

Despite being in an early development stage, we find that NMC platforms, at a sufficient scale, can 

drastically reduce the energy demands of high-performance computing (HPC) platforms. 

The efficiency of biological nervous systems has intrigued even the earliest designers of computing 

systems [24, 39], but the theoretical value of neuromorphic hardware remains unclear. While quantum 

computing offers clear fundamental advantages at scale [36], the advantages of NMC are more subtle, a 

fact that has muted enthusiasm despite the increasing ability to develop large scale neural processors 

today [9, 13, 26]. Nonetheless, in addition to the advanced cognitive capabilities, there are several 

architectural features of most nervous systems that may yield advantages including the high degree of 

connectivity between neurons, the colocation of processing and memory, and the use of action potentials 

(i.e., spikes) to communicate.  

Algorithms research for spiking neuromorphic hardware has primarily focused on its suitability for deep 

learning and other emerging AI algorithms [31, 35]. This application is straight-forward, given the 

alignment of neural architectures with neural networks, and it can be expected that the value of NMC will 

grow as AI algorithms derive further inspiration from the brain [1]. However, the impact of NMC beyond 



cognitive applications is less clear. Quantum computing provides a precedent for emerging hardware to 

have impact beyond its original inspiration: while quantum computing was conceived as a means for 

efficient chemistry simulations [11, 22], it is now recognized that it can impact a much broader range of 

computing applications [4, 18, 36]. Along these lines, there is growing evidence that neuromorphic 

hardware can provide theoretical complexity advantages on a growing set of non-cognitive, non-AI 

applications [2, 3, 7, 12, 25, 27-29, 33, 37]. Unlike quantum computing, which still faces technical 

challenges in scaling up to sizes necessary for real-world impact (as noted by the recent findings 

concerning quantum supremacy [4]), NMC platforms can already be scaled to non-trivial sizes, with several 

multi-chip spiking NMC systems achieving scales of over a hundred million neurons. Nevertheless, NMC 

systems remain smaller and less efficient than the human brain, and the critical scales for NMC remain 

unknown since the appropriateness of an analogous concept of neuromorphic supremacy remains 

unclear.  

Identifying NMC’s value for an application is complicated by the fact that its advantage primarily derives 

from its energy-efficiency as opposed to a promise of faster computation (although speed benefits remain 

a possibility, and because NMC is an immature technology compared to conventional von Neumann (VN) 

systems, which have been optimized and advanced over decades in both hardware and software. We 

define an algorithm as having a neuromorphic advantage if that algorithm shows a demonstrable 

advantage (compared to a VN architecture) in one resource (e.g., energy) while exhibiting comparable 

or better scaling in other resources (e.g., time).  Given NMC’s currently realized advantages in power 

consumption, we are seeking algorithms that show comparable or better time-scaling compared to a VN 

architecture while still requiring less total energy (i.e., “energy efficiency”) to perform the same 

computation. 

Observing a neuromorphic advantage for non-cognitive applications should not be taken as a given, as the 

specialization of computer architectures to improve performance on a subset of tasks (in the case of NMC, 



towards the brain) will result in degraded performance in other tasks [41]. Therefore, observing a 

neuromorphic advantage on non-cognitive applications would demonstrate that NMC can have a broader 

impact than previously assumed and provide a concrete framework by which to develop the technology. 

In this paper, we identify for the first time an explicit neuromorphic advantage for large-scale spiking 

neuromorphic hardware on a fundamental numerical computing task: solving partial integro-differential 

equations (PIDEs) that have probabilistic representations involving a jump-diffusion stochastic differential 

equation (SDE). The solutions to these PIDEs can be approximated by averaging over many independent 

random walks (RWs), a process often referred to as Monte Carlo. Diffusion is a quintessential component 

of the underlying SDEs used in the probabilistic solution of the PIDEs.  We can show our NMC algorithm 

for generating RW approximations to diffusion satisfies our neuromorphic advantage criteria on two 

current large-scale neuromorphic platforms: the IBM Neurosynaptic system [26], also known as TrueNorth 

and introduced in 2014, and the Intel Loihi system [9], introduced in 2018. While distinct neural 

architectures, both directly implement a large number of neurons in silicon (1 million and 128 thousand 

per chip, respectively), are readily-scalable to multi-chip platforms, and are reflective of the long-term 

technology trends in spiking neuromorphic hardware. We then show that our NMC algorithm for random 

walks can be extended to account for more sophisticated jump-diffusion processes that are useful for 

addressing a wide range of applications, including financial economics (e.g., option pricing models), 

particle physics (e.g., radiation transport), and machine learning (e.g., diffusion maps).  

Spiking Neuromorphic Hardware Shows Neuromorphic Advantage on Simulating Random 

Walks 

Random walk solutions are often an attractive option for large scale modeling efforts since independent 

RWs can readily be computed in parallel. Countering these benefits is the large number of RWs required 

to approximate solutions via a Monte Carlo method, and translating large-scale RW-based particle codes 



to GPU-heavy computing platforms is an active area of research [16, 17]. Our approach leverages two key 

features of spiking neuromorphic hardware – the parallel computation of neurons and the event-driven 

spiking communication between them – to perform a highly efficient mapping of stochastic processes. 

While deterministic numerical solutions of PIDEs often rely on relatively few large complex calculations, 

RWs typically rely on many simple computations. As we show, these computations can be efficiently 

implemented within circuits of spiking neurons.  



 

Figure 1: Neuromorphic hardware can efficiently implement random walks. (A) Leaky integrate-and-fire (LIF) neurons 

on spiking neuromorphic hardware integrate activity from many inputs, generate a ‘spike’ if an internal threshold is 

crossed, and only communicate to targets if the spike exists. (B) Random walk transitions can be performed and 

tracked by a counter circuit combined with a stochastic output. Each circuit typically comprises of between 10 and 

20 LIF neurons, depending on the number of edges. (C) Random walk transition circuits are repeated for every mesh 

point, and the graph of mesh points equates to the state transition matrix of a discrete time Markov chain. The NMC 

algorithm implements both the stochastic and deterministic state transitions of all random walkers at all mesh points 

in parallel. (D) Demonstration of simple diffusion on a 30x30 torus on the Intel Loihi platform. Aside from reading out 



intermediate states for visualization, the entire random walk process was performed within the NMC system. (E) 

Simulating additional walkers on Intel Loihi and IBM TrueNorth increases time efficiency, whereas additional walkers 

have same cost on single CPU core. (F) Random walk processes can be distributed over multiple meshes on IBM 

TrueNorth or multiple cores on CPUs.  (G) The NMC platforms, TrueNorth and Loihi, have a considerably higher 

energy-efficiency (walker updates per Joule) than CPUs Legend the same as panels E and F. All scaling experiments 

had 10 replicates with standard errors below 0.5%, so error bars are not shown. 

Our neural algorithm for RWs is based on a previously described circuit to model diffusion, in which we 

demonstrated that neural circuits can simulate random walks, but did not show how this process could 

extend to efficiently solve PDEs [34]. In this algorithm, each mesh-point consists of a simple neural circuit 

that uses common leaky-integrate and fire (LIF) neurons (Fig. 1A) to count the number of incoming spikes 

and a circuit to stochastically distribute spikes to output nodes (Fig. 1B). These nodes are then assembled 

into a graph whose edges represent the transition probabilities from one state to another (Fig. 1C). An 

initial count of walkers is set at the appropriate starting location mesh point (either through input spikes 

or an initial voltage condition), and once the supervisor circuit initiates the model, the spikes’ propagation 

through this mesh directly reflects the movement of RWs through the corresponding state space. Stated 

differently, the NMC hardware implements both the stochastic and deterministic components of the 

stochastic process.  

Importantly, this neural algorithm can be generally configured to represent any time-homogeneous 

Discrete-Time Markov Chain (DTMC) by configuring the shape of this graph and setting the output 

probabilities within each node to represent the problem description. For instance, a nearest-neighbor 

mesh with uniform probabilities would lead to Brownian motion in the limit as the mesh and time step go 

to zero (Fig. 1D). More sophisticated RWs, including those with non-local and jump diffusion, walker 



absorption and creation, can readily be implemented with location-dependent transition probabilities in 

this framework, allowing the algorithm to realize the processing-in-memory advantages of NMC.   

We first performed scaling studies to assess the computational costs inherent in simulating RWs on two 

NMC platforms, IBM TrueNorth and Intel Loihi, relative to a commodity server-class Intel Xeon E5-2662 

CPU.  The benchmark task, uniform diffusion on a small torus, was selected to be a simple “best-case” for 

conventional platforms; we expect any added complexity, such as non-uniform transition probabilities 

and larger mesh, to preferentially benefit the NMC implementations. For single-threaded 

implementations of the benchmark task, the CPU is faster than both Loihi and TrueNorth, however 

Increasing the density of RWs on the NMC platforms required relatively less additional time, whereas 

additional walkers scale linearly on the CPU (Fig. 1E).   Distributing the RWs over multiple threads showed 

comparable time-scaling on multiple cores on CPUs and replicated meshes on TrueNorth (Fig. 1F).   

Despite the slower base clock-rates of these less technologically mature NMC platforms, TrueNorth and 

Loihi exhibit better single-mesh scaling than conventional platforms and similar multi-threaded 

capabilities compared to conventional platforms (Fig. 1G). Combined, these scaling results satisfy our 

weaker condition for a neuromorphic advantage. 

We next compared the total energy cost of the RW calculations on NMC and conventional platforms for 

equivalent amounts of computational work.  To estimate energy, we scaled the top power estimates for 

each platform by the relative percentage of the chip used (e.g., number of cores or threads) and integrated 

over the total simulation time.  TrueNorth and Loihi implementations show both a considerable absolute 

advantage and preferential scaling in total walker-updates-per-Joule compared to the CPU (Fig. 1g), 

satisfying our strong condition for a neuromorphic advantage.  Notably, Loihi and TrueNorth appear to 

occupy different places on the energy-time trade space, possibly in part due to Loihi’s incorporation of 

conventional processors on chip.   



Neuromorphic-compatible random walks apply to broad class of PIDEs 

While RW solutions to PIDEs have mixed appeal to conventional computing programmers, they have been 

utilized to provide solutions in a variety of fields, including computer science, physics, medicine, and 

operations research [23].* The decision between using a deterministic approach and a random walk 

approach is a complicated and important question. However, this question is beyond the scope of this 

paper. Rather, we aim to demonstrate that NMC can efficiently implement random walks and, 

consequently, are able to solve a variety of PIDEs, while potentially mitigating some of the disadvantages 

of RW solutions (such as the high costs associated with the required number of walkers).  

The connection between RWs and the heat equation is well-known.  Einstein’s 1905 work posits that 

there exist particles small enough that they may be viewed (with a microscope) but large enough that 

their Brownian motion is measurable, further arguing that such particles exert a measurable 

thermodynamic force [10]. Langevin related the mean squared displacement of Einstein’s particles to a 

differential equation describing the particle’s motion [21]. A more detailed discussion of the history of 

this fundamental relationship can be found in [14].   

To motivate the probabilistic solution for a larger class of PIDEs, we explore the heat equation. Consider 

the one-dimensional heat equation with initial condition given by 𝑓𝑓(𝑥𝑥):  

 
* Due to their broad relevance, terminology such as “Monte Carlo”, “random walks”, and other terms may 
have specific meanings in some fields, so to give clarity to the methods that follow, we emphasize that we 
are employing discrete-time, finite state space Markov chain approximations to stochastic processes 
underlying particular PIDEs. These Markov chains are used to generate several random walks. These 
random walks are evaluated in a Monte Carlo fashion to estimate an expectation. 
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𝑢𝑢(0, 𝑥𝑥) = 𝑓𝑓(𝑥𝑥). 

Equation 1 

Let 𝑊𝑊(𝜕𝜕) be a standard Brownian motion on ℝ. The key relationship relates an expectation (i.e. expected 

or average value) involving 𝑊𝑊(𝜕𝜕) with the solution 𝑢𝑢: 
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Equation 2 

In words, the expectation of a function evaluated at Brownian motion is exactly the solution to the one-

dimensional heat equation. This probabilistic representation allows us to approximate the function 𝑢𝑢(𝜕𝜕, 𝑥𝑥) 

using RWs. Traditionally, this is accomplished by employing some sampling procedure to generate sample 

paths of 𝑊𝑊(𝜕𝜕), typically involving a discretization of time and value sampling over a continuous space[15]. 

Discussed in detail later, in order to make this process amenable to our neural RW algorithm, we must 

sample our paths through a DTMC 𝑋𝑋(𝑗𝑗Δ𝜕𝜕) that approximates the process 𝑊𝑊(𝜕𝜕). For each spatial location 

𝑥𝑥𝑖𝑖, several RWs starting at 𝑥𝑥𝑖𝑖 are generated from the Markov chain. Letting 𝑋𝑋𝑚𝑚,𝑖𝑖  represent the 𝑚𝑚th RW 

generated starting from location 𝑥𝑥𝑖𝑖, the Monte Carlo approximation gives 

𝑢𝑢(𝑗𝑗Δ𝜕𝜕,𝑥𝑥𝑖𝑖) = 𝔼𝔼�𝑓𝑓�𝑊𝑊(𝑗𝑗Δ𝜕𝜕)��𝑊𝑊(0) = 𝑥𝑥𝑖𝑖� ≈
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𝑀𝑀
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𝑚𝑚=1

. 

Equation 3 

Regardless of modifications needed for NMC implementation, this simple result can be extended to a 

more computationally challenging set of problems. Consider the family of PIDEs defined by the equation 
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+𝑐𝑐(𝜕𝜕, 𝒙𝒙)𝑢𝑢(𝜕𝜕,𝒙𝒙) + 𝑓𝑓(𝜕𝜕, 𝒙𝒙),𝑥𝑥 ∈ ℝ𝑑𝑑 , 𝜕𝜕 ∈ [0,∞). 

Equation 4 

As with Eq. 1, there is an underlying stochastic process, albeit slightly more complicated than just 

Brownian motion. The stochastic process related to this PIDE is 

d𝑿𝑿(𝜕𝜕) = 𝒃𝒃�𝜕𝜕,𝑿𝑿(𝜕𝜕)�d𝜕𝜕+ 𝒂𝒂�𝜕𝜕,𝑿𝑿(𝜕𝜕)�d𝑾𝑾(𝜕𝜕) +𝒉𝒉(𝜕𝜕,𝑿𝑿(𝜕𝜕),𝑞𝑞)d𝑃𝑃�𝜕𝜕;𝑄𝑄,𝑿𝑿(𝜕𝜕)�. 

Equation 5 

The process 𝐗𝐗(t) is defined by a drift, diffusion, and a non-local jump. In this form, 𝒃𝒃 gives the drift and 𝒂𝒂 

gives the diffusion. The process 𝑾𝑾(𝜕𝜕) is a Brownian motion with respect to the underlying space, in this 

case ℝ𝑑𝑑. The term 𝑃𝑃�𝜕𝜕;𝑄𝑄,𝑿𝑿(𝜕𝜕)� is a Poisson process with parameter given by −∫ 𝜆𝜆�𝑠𝑠,𝑿𝑿(𝑠𝑠)�d𝑠𝑠𝑡𝑡
0  and the 

function 𝒉𝒉 describes the non-local jump awarded whenever the Poisson process fires. This stochastic 

process is readily visualized in Figs. 2a-c for constant values of 𝒃𝒃, 𝒂𝒂, and 𝒉𝒉. The jump value 𝒉𝒉 need not be 

constant and can even be random as seen in Fig. 2d (𝑄𝑄 can be interpreted as a random variable 

corresponding to the random jump mark amplitude of a compound Poisson process). The final two panels 

showcase when the jump value is drawn uniformly over {−3,−2, … , 2, 3}. We note that while 𝑐𝑐 does not 

appear in Eq. 5, it can often be interpreted as an absorption or killing term, demonstrated in Fig 2e. A 

discussion on this interpretation can be found in SN2. 

Pairing Eq. 4 with the initial condition 𝑢𝑢(0, 𝒙𝒙) = 𝑔𝑔(𝒙𝒙), under certain conditions the solution to the initial 

value problem can be represented as 
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Equation 6 

A proof for the one-dimensional case can be found in SN2. 

Various special cases of this result exist. A particular interesting special case arises when considering the 

steady-state version of Eq. 4, where 𝜕𝜕
𝜕𝜕𝑡𝑡
𝑢𝑢 = 0 and 𝜕𝜕 does not appear as an argument in all functions. Setting 

𝑐𝑐 = 0 and considering this case as a boundary-value problem with 𝑢𝑢(𝒙𝒙) = 𝑣𝑣(𝒙𝒙) on the boundary of some 

domain 𝐷𝐷, the solution can be shown to take the form 

𝑢𝑢(𝒙𝒙) = 𝔼𝔼 �𝑣𝑣�𝑿𝑿(𝑇𝑇𝒙𝒙)�+� 𝑓𝑓�𝑿𝑿(𝑠𝑠)�d𝑠𝑠
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0
�𝑿𝑿(0) = 𝒙𝒙�. 

Equation 7 

Here, 𝑿𝑿(𝜕𝜕) is the process given by Eq. 5 with 𝜕𝜕 omitted as the first argument in 𝑎𝑎, 𝑏𝑏, and ℎ. Since time is 

still an argument for the process, the probabilistic solution requires the use of the stopping time 𝑇𝑇𝒙𝒙, or 

the time for which the random process 𝑿𝑿(𝜕𝜕), starting at 𝑿𝑿(0) = 𝒙𝒙 exits the domain 𝐷𝐷. A proof for the 

one-dimensional case can be found in SN2. 



 



Figure 2: Random walk processes are well-suited for NMC, and the inclusion of different terms in the stochastic 

process yields random walks with differing behavior. For (A)-(E), left panel shows three illustrative random walks for 

2 seconds (100 time steps); right panel shows density of 1000 random walkers run on Loihi. The range shown in the 

density plots is highlighted in overlaid onto the process examples. (A) Including only an 𝑎𝑎 term yields basic diffusion; 

(B) Including 𝑎𝑎 and 𝑏𝑏 yields diffusion with drift. (C-D) The inclusion of 𝜆𝜆 and ℎ allows the random walk to ‘jump’ for 

discontinuous movements. (E) The 𝑐𝑐  term under some conditions can yield walker removal.In all plots, the finite range 

is applied by imposing an upper and lower bound for the walks. (F) Sources of discretization in all stochastic processes 

(of either conventional or neuromorphic sources) impacts the accuracy and convergence of expectation solution for 

the PIDE. The first row details the Monte Carlo order of convergence; the second row is the order of convergence for 

the Euler-Maruyama discretization method; the third row is a best-case scenario estimate for error accrued due to 

discretizing space; the fourth and final rows merely indicate that some problems could have additional error due to 

enforcing a finite state space or due to reduced precision on neuromorphic platforms. For further discussion, see 

Methods. 

 

Non-Zero Terms in Eq. 4 Example Application 

Time-dependent problems 

𝑎𝑎,𝑏𝑏, 𝑐𝑐, 𝑓𝑓 Stock Option Pricing [5] 

𝜆𝜆,𝑏𝑏, 𝑐𝑐,𝑓𝑓,ℎ 
Boltzmann Flux Density SN3 
Reduced Problem, Fig. 3A-D. 

𝑎𝑎,𝑐𝑐 Heat Equation with Dissipation (See Fig. 4C) 

Steady-state problems 

𝑎𝑎,𝑓𝑓 
Electrostatic Scalar Potential, Heat Transport, or 

Simple Beam Bending [38] 

𝜆𝜆,𝑏𝑏, 𝑐𝑐,𝑓𝑓,ℎ 
Particle Fluence SN3 

Reduced problem, Fig. 3E-I. 

Table 1: Examples of applications involving a PIDE in the form of Eq. 4. This table is not exaustive and includes only 

a sample of possible applications. In this paper, we utilize a random walk method to solve two heat transport 



problems and a reduced problem for both the Boltzmann particle angular flux density problem and the angular 

fluence problem. 

These PIDEs are important within many application domains, including particle physics, quantitative 

finance, and molecular dynamics, among others. When viewed probabilistically, the steady-state 

problems are particularly interesting for neuromorphic because the long run-times required for RWs to 

reach steady-state solutions are often computationally prohibitive on conventional hardware. 

The preceding discussion on the two families of PIDEs and their probabilistic solution representations are 

largely known results – we merely reformulate these results in forward time (see SN2).  The new 

contribution we provide is the use of well-understood DTMC approximations to SDEs in order to make the 

probabilistic sampling of paths viable on the NMC diffusion algorithm. 

A DTMC approximating Eq. 5 is compatible with the neural algorithm we described for diffusion (Fig 1D). 

In particular, the drift 𝑏𝑏 and non-local diffusion terms 𝜆𝜆 and h can naturally be reflected within the 

definition of the mesh and transition probabilities (Fig 1C), in effect providing those extensions to 

diffusion. Similarly, non-conservation of walkers (walker absorption or creation) can be easily integrated 

into the system we described. Such a situation may be desirable when the form of 𝑐𝑐 lends itself towards 

an absorption interpretation. 

To approximate Eq. 5 with a DTMC, one must employ some sort of temporal and spatial discretization 

scheme. Having NMC approximate the DTMC introduces additional sources of uncertainty (Fig 2F). 

Specifically, the finite node structure of NMC architectures forces the DTMC to have a finite state space. 

In one dimension, this equates to having a maximum and minimum value in the state space. The error of 

enforcing a finite state space for the DTMC would vary from application to application. The discrete state 

space arising from the DTMC also introduces error depending on the problem at hand. If the state space 

of the random walk is already discrete, it introduces no error. In the continuous case, it could introduce 



error on the order of 1
2
Δ𝜕𝜕Δ𝑠𝑠 on each time step in a special best-case scenario (see Methods). Additional 

error could arise from hardware specific limitations. For instance, the IBM’s TrueNorth and Intel’s Loihi 

pseudo-random number generators that we use are effectively limited to 8 bits. 

Both conventional simulations, which model each random walker independently and track the evolution 

of state variables, and our neuromorphic simulations, which model the parallel evolution of random 

walkers over a state-space represented by the neural circuit, are impacted by each of these error sources. 

However, the high numerical precision of conventional processing minimizes the impacts of discretizing 

the values and ranges of state variables, making the dominant errors due to time discretization and the 

number of random walkers. In contrast, our neuromorphic implementation enables a very large number 

of walkers at negligible cost, but the dedication of neurons to explicitly representing state variables raises 

the cost of reducing the meshing error. The implication of these errors will differ considerably across 

applications in practice.  

Results/Examples 

To demonstrate the ability of neuromorphic hardware to implement the DTMCs required for solving these 

PIDEs, we provide a handful of examples. These are grouped into two main categories: particle equations 

and geometries. The results of our simulations on hardware and spiking neuron simulators can be found 

in Fig. 3 and Fig. 4. We cover the more salient points of these examples in the next two subsections and 

relegate the remaining details to SN3. 

Neuromorphic hardware can simulate particle transport 

First, we showcase two examples of particle transport equations with probabilistic representations 

suitable for our spiking algorithm. The first is an initial-value time-dependent problem detailing the 

angular flux density of a hypothetical particle (Fig. 3A). Consider a hypothetical particle that has a property 

called ‘direction’. This direction property takes on the value +1 or −1. According to a Poisson process 



with rate 𝜎𝜎𝑠𝑠, the particle can experience a ‘scattering’ event. When a scattering event occurs, the particle 

chooses a new direction with uniform probability. A second Poisson process with rate 𝜎𝜎𝑎𝑎 controls when 

the particle is absorbed and ceases to exist. These rates correspond to 𝜆𝜆 and 𝑐𝑐, respectively, in Eq. 4. The 

function ℎ is represented by the change in direction the particle experiences after a scattering event. 

Coupled with an initial condition 𝑔𝑔, a population of these particles is assumed to obey the Boltzmann 

equation for angular flux density (see SN3). 

The angular flux density, Φ(𝜕𝜕,Ω), is a function of both time 𝜕𝜕 and direction Ω. We will leave the PIDE in 

SN3, but it takes the form of Eq. 3 with 𝑎𝑎,𝑏𝑏, and 𝑓𝑓 all equal to zero. Assigning some initial condition 𝑔𝑔, the 

solution is given by 

Φ(𝜕𝜕,Ω) = 𝔼𝔼�𝑒𝑒−𝜎𝜎𝑎𝑎𝑡𝑡𝑔𝑔�𝑌𝑌(𝜕𝜕)��𝑌𝑌(0) = Ω�, 

d𝑌𝑌(𝜕𝜕) = 𝜔𝜔𝑌𝑌(𝑡𝑡)d𝑃𝑃(𝜕𝜕). 

Equation 8 

The SDE almost behaves like our hypothetical particle. The ‘direction’ at time 𝜕𝜕 is given by 𝑌𝑌(𝜕𝜕). 𝑃𝑃(𝜕𝜕) is a 

Poisson process with parameter 𝜎𝜎𝑠𝑠𝜕𝜕, and 𝜔𝜔𝑌𝑌(𝑡𝑡) is the random change in direction of the random walk after 

a scattering event given the previous direction. The direction remains the same until the Poisson process 

fires (signaling a scattering event). Once this occurs, the value of 𝑌𝑌(𝜕𝜕) increments by the random change 

in direction 𝜔𝜔𝑌𝑌(𝑡𝑡). Notably, the random process differs from the hypothetical particle in that it does not 

account for absorption. Instead, absorption is resolved through the exponential term in the expectation. 

We deployed a neural circuit of a DTMC approximating the dynamics of the stochastic process 𝑌𝑌(𝜕𝜕) on 

TrueNorth. The description of the random walk and the parameter values used can be found in SN3. In 

this scenario, an analytic solution exists. Fig. 3C shows that the true solution is well approximated by 

sampling just 1000 random walks per each starting condition. Moving to 10,000 RWs per starting position 

(Fig 3D), we see notable improvement in approximation. 



This simplified example of particle transport has broad implications. Directly, if we can well-approximate 

the analytic solution for this reduced particle transport problem, then it will be possible to approximate 

more complicated particle transport problems where no solution is available. To that end, we have 

examined a second particle transport inspired example for which no analytical solution is readily available. 

 

Figure 3: Monte Carlo particle transport simulations on neuromorphic hardware. (A) Non-spatial Boltzmann 

transition/absorption model (top). Corresponding DTMC approximation for underlying SDE (bottom). (B) Evolution of 

particles through Boltzmann transitions on TrueNorth. Pink represents higher density of walkers and blue represents 

lower density for the case where 1000 walkers start in +1 state (top) or -1 state (bottom) and equilibrate due to 

Boltzmann transitions. (C) PIDE solution calculated through TrueNorth spike data starting 1000 random walkers on 

each direction. (D) PIDE solution calculated through TrueNorth spike data starting 10000 random walkers on each 

direction. (E) Spatial particle transport model. Particles travel at fixed speed in measured dimension.  At position ‘0’ 

(red dot), the particles scatter at a random angle preserving their total velocity. At the next time step, the particles 

will have a different position and direction of movement. (F) MATLAB approximate solution from DTMC 

implementation of spatial particle model, 1 million walkers at each starting location (G) Intel Loihi approximate 

solution from DTMC implementation of spatial particle model, 6250 walkers per starting location (H) absolute error 



between Loihi and numerical simulation, (I) average percent error between Loihi and numerical simulation as a 

function of increasing random walkers per starting location. 

In our second example, we consider a similar particle. This hypothetical particle is subject to scattering 

events according to a Poisson process with rate 𝜎𝜎𝑠𝑠, however the direction can assume any value in [−1, 1] 

with a uniform distribution. We assume that this particle is not subject to absorption. In addition to 

direction, this hypothetical particle also has a spatial coordinate. The particle travels at a speed 𝑣𝑣 in the 

direction Ω updating its position (Fig 3E). We seek to find the angular fluence Ψ, or time-integrated flux, 

in the spatial domain [−1, 1] subject to the source term 𝑆𝑆(𝑥𝑥,Ω).  

In terms of Eq. 4 (and detailed in SN3), 𝜆𝜆 = 𝑣𝑣𝜎𝜎𝑠𝑠, 𝑓𝑓 = 𝑣𝑣𝑆𝑆(𝑥𝑥,Ω), 𝑏𝑏 = 𝑣𝑣Ω, and ℎ is the change in direction 

after a scattering event given the current direction of travel. The remaining terms, 𝑎𝑎 and 𝑐𝑐, are zero for 

this example. 

Enforcing absorbing conditions on the boundaries, the angular fluence Ψ(𝑥𝑥,Ω) is a function of position 𝑥𝑥 

and direction Ω, and obeys the PIDE in SN3. The solution may be represented as 

Ψ(𝑥𝑥,Ω) = 𝔼𝔼 �� 𝑣𝑣𝑆𝑆�𝑋𝑋(𝑢𝑢),𝑌𝑌(𝑢𝑢)�d𝑢𝑢
𝑇𝑇

0
�𝑋𝑋(0) = 𝑥𝑥, 𝑌𝑌(0) = Ω� , 

d𝑋𝑋(𝜕𝜕) = −𝑣𝑣𝑌𝑌(𝜕𝜕)d𝜕𝜕 , 

d𝑌𝑌(𝜕𝜕)  = ωY(t)d𝑃𝑃(𝜕𝜕), 

𝑇𝑇𝑥𝑥 = inf{𝜕𝜕 > 0|𝑋𝑋(𝜕𝜕) ∉ [−1,1], 𝑋𝑋(0) = 𝑥𝑥}. 

Equation 9 

Both 𝑃𝑃(𝜕𝜕) and 𝜔𝜔𝑌𝑌(𝑡𝑡) are the same as in the previous example. The SDE in this case describes a process 

with a position given by 𝑋𝑋(𝜕𝜕) and direction given by 𝑌𝑌(𝜕𝜕). The position updates with velocity −𝑣𝑣𝑌𝑌(𝜕𝜕). 

The direction only changes by 𝜔𝜔𝑌𝑌(𝑡𝑡) whenever the Poisson process 𝑃𝑃(𝜕𝜕) fires. 



We deployed a RW approximation from a DTMC of this joint process on Intel’s Loihi platform. Details on 

the DTMC and parameters used are in SN3. We completed a 1M walker/location simulation in MATLAB 

to use as a baseline comparison. One interpretation of the angular fluence is the cumulative density of 

particles traveling from the source location. From the MATLAB simulation, we see that these particles 

appear to have mostly traveled with speed 𝑣𝑣 in their original direction assigned by the source, with 

lessening bands of deviations due to scattering events (Fig 3F). Similar to the Boltzmann example on 

TrueNorth, implementing this simulation on Loihi was able to replicate the numerical examples (Fig. 3G) 

with a low overall error (Fig. 3H-I). This low error in the neuromorphic implementation is of particular 

importance since the low output probabilities due to the high-fan out in this model (up to 30 output 

nodes) are potentially at risk due to the relatively low 8-bit precision of Loihi’s random number generator.  

Neuromorphic approach to simulating on non-Euclidean geometries 

The particle examples above are straightforward demonstrations of RWs with non-local jumps on a simple 

domain. We next demonstrated neuromorphic RWs over non-Euclidean domains, solving two heat 

equations. By carefully defining a mesh and calculating transition probabilities, PIDEs over large complex 

geometries are no problem for the neuromorphic RW method. To demonstrate the ability of this method 

to solve problems on non-Euclidean domains, we present two examples involving spheres. While the non-

Euclidean shapes we consider are by no means ‘complex,’ we merely showcase that the method is mostly 

agnostic to the domain. 

Consider a basic heat equation on the unit sphere. We let 𝕊𝕊2 represent the unit sphere and take 𝒂𝒂(𝜕𝜕,𝒙𝒙) 

to be the positive scalar 𝛼𝛼 for all 𝜕𝜕 ∈ [0,∞) and 𝒙𝒙 ∈ 𝕊𝕊2. Set the remaining coefficients in Eq. 4 to zero. 

Paired with an initial condition 𝑔𝑔(𝒙𝒙), the probabilistic solution to the heat equation on the sphere is given 

by  

𝑢𝑢(𝜕𝜕,𝒙𝒙) = 𝔼𝔼�𝑔𝑔�𝑿𝑿(𝜕𝜕)��𝑿𝑿(0) = 𝒙𝒙�, 



d𝑿𝑿(𝜕𝜕) = √2𝛼𝛼d𝑾𝑾(𝜕𝜕), 

Equation 10 

where 𝑾𝑾(𝜕𝜕) represents Brownian motion on the surface of the sphere. By choosing a particular initial 

condition, this problem has a tractable analytic solution (SN3). The initial condition selected resembles a 

soccer ball pattern (Fig. 4A). 

To employ our neuromorphic approach, we must be able to approximate Brownian motion on the surface 

of the sphere with a DTMC. There are several ways to describe Brownian motion on the sphere, including 

using the von-Mises Fisher distribution [40], employing representations with spherical coordinates [6], or 

limiting from higher dimensions [8]. Since it is applicable to other curved shapes, we elect to use a tangent 

plane approximation. Setting 𝛼𝛼 = 42, we deploy a RW approximating the process 𝑿𝑿(𝜕𝜕) on Intel’s Loihi 

platform. Starting 3000 RWs on each position yields the approximate solution found in Fig. 4A for a 

collection of time points. We would expect better agreement with a greater number of nodes and walkers 

per starting location. Further, as shown in Fig. 4B, we see that the low precision of probability transition 

has acutely increased the amount of error accrued for this example when compared to a MATLAB 

simulation. 

This example provides compelling evidence that complex geometries where analytic methods are less 

tractable represent an opportunity for NMC impact. These could arise where domains are more 

complicated than just a single sphere. One could imagine an object with many spines or with several 

crevices. To start down this path, we present an initial-value problem on the surface of a barbell shaped 

object. 



 

Figure 4: NMC random walk algorithm can implement random walks over non-Euclidean geometries. (A) Time-

course of random walks simulated on Loihi to model heat diffusion on the surface of a sphere. Red locations 

represent higher initial temperature relative to yellow locations. Heat is conserved on this simulation. (B) Absolute 

norm of error is higher on NMC relative to MATLAB simulation at initial timepoints, but approaches conventional 

error levels as simulation progresses. (C) Time-course of random walks run on neural simulator for heat diffusion on 

two spheres connected by a tube (“barbell”). Heat was allowed to dissipate from the surface. (D) Average 

temperature of the left sphere decreases rapidly during the simulation. (E) Temperature gradually increases sharply 

for small time on the right sphere. As time increases, this rate of increase slows as cooling begins to take effect. For 

large time, the temperature on the right sphere will decrease to zero. 

Consider the heat flow on a barbell with cooling and an initial condition. Let 𝔹𝔹 represent the surface of 

the barbell shape. Again, we set 𝒂𝒂(𝜕𝜕,𝒙𝒙) = 𝛼𝛼, some positive scalar. Then, to account for cooling, we take 



𝑐𝑐(𝜕𝜕, 𝒙𝒙) = 𝜅𝜅, another positive scalar. All other coefficients in Eq. 4 are assumed to be zero. Again letting 

𝑔𝑔(𝒙𝒙) be an initial condition, the probabilistic solution is  

𝑢𝑢(𝜕𝜕,𝒙𝒙) = 𝔼𝔼�𝑒𝑒−𝜅𝜅𝑡𝑡𝑔𝑔�𝑿𝑿(𝜕𝜕)��𝑿𝑿(0) = 𝒙𝒙�, 

d𝑿𝑿(𝜕𝜕) = √2𝛼𝛼d𝑾𝑾(𝜕𝜕), 

Equation 11 

where 𝑾𝑾(𝜕𝜕) now represents Brownian motion on 𝔹𝔹. Our discretization of the shape required 748 mesh 

points (more details on the mesh construction and DTMC are in SN3). Due to the mesh-size relative to 

the currently limited neuromorphic chip sizes available to us, we deployed this example on a spiking net 

simulator. We implemented a random walk approximating the stochastic process. The results of 

simulation for various time points can be found in Fig 4C. The temperature equilibration of the left (Fig. 

4D) and right (Fig 4E) sides of the barbell proceed as one would expect from thermodynamics.   

Discussion 

The results here demonstrate that spiking neuromorphic hardware technology is suitable for 

implementing a scalable energy-efficient approach to solving an important set of numerical computing 

problems. Neuromorphic hardware is still immature relative to conventional hardware in terms of both 

physical scale and clock speed, although it already demonstrates considerable power advantages. Here, 

we show that our neural RW algorithm scales comparably to a parallel CPU approach, allowing us to 

observe a significant energy advantage in current neuromorphic platforms today while being positioned 

to take full advantage of large-scale neuromorphic hardware once realized. We further focus our 

exploration on demonstrating the broad application impact of our algorithm approach, showing that 

with simple extensions this approach can apply to a wide range of complex application domains. 

Notably, the approach taken here does not leverage all the brain-inspired features present in many 

emerging neuromorphic hardware technologies. For instance, our approach does not leverage learning; 



however, we expect that the neural formulation of stochastic processes may make them more 

amenable to model calibration against experimental observations, and in situ neuromorphic learning 

may make this process more efficient. Likewise, we focused our demonstrations on large-scale digital 

spiking platforms, such as Loihi and TrueNorth, because they exist at the requisite neural scales for our 

algorithms. There is considerable interest in analog neuromorphic approaches that should similarly be 

compatible with this approach [19, 30, 32], although we would have to consider the precision 

implications of analog devices alongside the other approximation considerations (Fig. 2b).  

One important consideration of this work is that the numerical accuracy of our neural approach is 

relatable to typical numerical precision considerations in conventional computing. Stated differently, 

this approach avoids the approximation pitfalls associated with many AI algorithms, wherein the 

implications of numerical precision and interpretability is still an open question. While understanding 

and accounting for these approximation errors will be critical for any application, the graph-based 

approach taken here provides several well-understood design choices to tailor the algorithm and 

hardware solution appropriately given precision concerns. For instance, in applications with clearly 

defined state spaces, such as diffusion over a social network, the mesh can directly map to the system, 

and resources can be dedicated to adding more walkers. Alternatively, in complex geometries or 

unbounded systems, it may be necessary to commit considerable neuromorphic hardware to a larger 

mesh. 

Whatever the eventual set of capabilities that future neuromorphic platforms have, we expect that 

neuromorphic hardware will eventually exist primarily in heterogeneous system architectures alongside 

CPUs, GPUs, and other accelerators [20]. The neuromorphic algorithms for solving PIDEs described here 

complement AI as an application for brain-inspired hardware, and they strengthen the long-term value 

proposition for neuromorphic hardware in future computing systems. Further, in contrast to neural 

network applications, where neuromorphic hardware has struggled to match the speed of GPUs and 



linear algebra accelerators, our work shows that in the realm of numerical computing, neuromorphic 

hardware not only can deliver concrete energy advantages today, but is capable of scaling effectively in 

terms of processing time and overall efficiency. 
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