

Neuromorphic scaling advantages for energy-

efficient random walk computations

J. Darby Smith, Aaron J. Hill, Leah E. Reeder, Brian C. Franke, Richard B. Lehoucq, Ojas Parekh, William

Severa, James B. Aimone*

Neural Exploration & Research Laboratory

Sandia National Laboratories

Albuquerque, NM 87185

* To whom correspondence should be addressed: jbaimon@sandia.gov

Computing stands to be radically improved by neuromorphic computing (NMC) approaches inspired by

the brain’s incredible efficiency and capabilities. Most NMC research, which aims to replicate the brain’s

computational structure and architecture in man-made hardware, has focused on artificial intelligence;

however, less explored is whether this brain-inspired hardware can provide value beyond cognitive

tasks. We demonstrate that high-degree parallelism and configurability of spiking neuromorphic

architectures makes them well-suited to implement random walks via discrete time Markov chains.

Such random walks are useful in Monte Carlo methods, which represent a fundamental computational

tool for solving a wide range of numerical computing tasks. Additionally, we show how the

mathematical basis for a probabilistic solution involving a class of stochastic differential equations can

leverage those simulations to provide solutions for a range of broadly applicable computational tasks.

Despite being in an early development stage, we find that NMC platforms, at a sufficient scale, can

drastically reduce the energy demands of high-performance computing (HPC) platforms.

The efficiency of biological nervous systems has intrigued even the earliest designers of computing

systems [24, 39], but the theoretical value of neuromorphic hardware remains unclear. While quantum

computing offers clear fundamental advantages at scale [36], the advantages of NMC are more subtle, a

fact that has muted enthusiasm despite the increasing ability to develop large scale neural processors

today [9, 13, 26]. Nonetheless, in addition to the advanced cognitive capabilities, there are several

architectural features of most nervous systems that may yield advantages including the high degree of

connectivity between neurons, the colocation of processing and memory, and the use of action potentials

(i.e., spikes) to communicate.

Algorithms research for spiking neuromorphic hardware has primarily focused on its suitability for deep

learning and other emerging AI algorithms [31, 35]. This application is straight-forward, given the

alignment of neural architectures with neural networks, and it can be expected that the value of NMC will

grow as AI algorithms derive further inspiration from the brain [1]. However, the impact of NMC beyond

cognitive applications is less clear. Quantum computing provides a precedent for emerging hardware to

have impact beyond its original inspiration: while quantum computing was conceived as a means for

efficient chemistry simulations [11, 22], it is now recognized that it can impact a much broader range of

computing applications [4, 18, 36]. Along these lines, there is growing evidence that neuromorphic

hardware can provide theoretical complexity advantages on a growing set of non-cognitive, non-AI

applications [2, 3, 7, 12, 25, 27-29, 33, 37]. Unlike quantum computing, which still faces technical

challenges in scaling up to sizes necessary for real-world impact (as noted by the recent findings

concerning quantum supremacy [4]), NMC platforms can already be scaled to non-trivial sizes, with several

multi-chip spiking NMC systems achieving scales of over a hundred million neurons. Nevertheless, NMC

systems remain smaller and less efficient than the human brain, and the critical scales for NMC remain

unknown since the appropriateness of an analogous concept of neuromorphic supremacy remains

unclear.

Identifying NMC’s value for an application is complicated by the fact that its advantage primarily derives

from its energy-efficiency as opposed to a promise of faster computation (although speed benefits remain

a possibility, and because NMC is an immature technology compared to conventional von Neumann (VN)

systems, which have been optimized and advanced over decades in both hardware and software. We

define an algorithm as having a neuromorphic advantage if that algorithm shows a demonstrable

advantage (compared to a VN architecture) in one resource (e.g., energy) while exhibiting comparable

or better scaling in other resources (e.g., time). Given NMC’s currently realized advantages in power

consumption, we are seeking algorithms that show comparable or better time-scaling compared to a VN

architecture while still requiring less total energy (i.e., “energy efficiency”) to perform the same

computation.

Observing a neuromorphic advantage for non-cognitive applications should not be taken as a given, as the

specialization of computer architectures to improve performance on a subset of tasks (in the case of NMC,

towards the brain) will result in degraded performance in other tasks [41]. Therefore, observing a

neuromorphic advantage on non-cognitive applications would demonstrate that NMC can have a broader

impact than previously assumed and provide a concrete framework by which to develop the technology.

In this paper, we identify for the first time an explicit neuromorphic advantage for large-scale spiking

neuromorphic hardware on a fundamental numerical computing task: solving partial integro-differential

equations (PIDEs) that have probabilistic representations involving a jump-diffusion stochastic differential

equation (SDE). The solutions to these PIDEs can be approximated by averaging over many independent

random walks (RWs), a process often referred to as Monte Carlo. Diffusion is a quintessential component

of the underlying SDEs used in the probabilistic solution of the PIDEs. We can show our NMC algorithm

for generating RW approximations to diffusion satisfies our neuromorphic advantage criteria on two

current large-scale neuromorphic platforms: the IBM Neurosynaptic system [26], also known as TrueNorth

and introduced in 2014, and the Intel Loihi system [9], introduced in 2018. While distinct neural

architectures, both directly implement a large number of neurons in silicon (1 million and 128 thousand

per chip, respectively), are readily-scalable to multi-chip platforms, and are reflective of the long-term

technology trends in spiking neuromorphic hardware. We then show that our NMC algorithm for random

walks can be extended to account for more sophisticated jump-diffusion processes that are useful for

addressing a wide range of applications, including financial economics (e.g., option pricing models),

particle physics (e.g., radiation transport), and machine learning (e.g., diffusion maps).

Spiking Neuromorphic Hardware Shows Neuromorphic Advantage on Simulating Random

Walks

Random walk solutions are often an attractive option for large scale modeling efforts since independent

RWs can readily be computed in parallel. Countering these benefits is the large number of RWs required

to approximate solutions via a Monte Carlo method, and translating large-scale RW-based particle codes

to GPU-heavy computing platforms is an active area of research [16, 17]. Our approach leverages two key

features of spiking neuromorphic hardware – the parallel computation of neurons and the event-driven

spiking communication between them – to perform a highly efficient mapping of stochastic processes.

While deterministic numerical solutions of PIDEs often rely on relatively few large complex calculations,

RWs typically rely on many simple computations. As we show, these computations can be efficiently

implemented within circuits of spiking neurons.

Figure 1: Neuromorphic hardware can efficiently implement random walks. (A) Leaky integrate-and-fire (LIF) neurons

on spiking neuromorphic hardware integrate activity from many inputs, generate a ‘spike’ if an internal threshold is

crossed, and only communicate to targets if the spike exists. (B) Random walk transitions can be performed and

tracked by a counter circuit combined with a stochastic output. Each circuit typically comprises of between 10 and

20 LIF neurons, depending on the number of edges. (C) Random walk transition circuits are repeated for every mesh

point, and the graph of mesh points equates to the state transition matrix of a discrete time Markov chain. The NMC

algorithm implements both the stochastic and deterministic state transitions of all random walkers at all mesh points

in parallel. (D) Demonstration of simple diffusion on a 30x30 torus on the Intel Loihi platform. Aside from reading out

intermediate states for visualization, the entire random walk process was performed within the NMC system. (E)

Simulating additional walkers on Intel Loihi and IBM TrueNorth increases time efficiency, whereas additional walkers

have same cost on single CPU core. (F) Random walk processes can be distributed over multiple meshes on IBM

TrueNorth or multiple cores on CPUs. (G) The NMC platforms, TrueNorth and Loihi, have a considerably higher

energy-efficiency (walker updates per Joule) than CPUs Legend the same as panels E and F. All scaling experiments

had 10 replicates with standard errors below 0.5%, so error bars are not shown.

Our neural algorithm for RWs is based on a previously described circuit to model diffusion, in which we

demonstrated that neural circuits can simulate random walks, but did not show how this process could

extend to efficiently solve PDEs [34]. In this algorithm, each mesh-point consists of a simple neural circuit

that uses common leaky-integrate and fire (LIF) neurons (Fig. 1A) to count the number of incoming spikes

and a circuit to stochastically distribute spikes to output nodes (Fig. 1B). These nodes are then assembled

into a graph whose edges represent the transition probabilities from one state to another (Fig. 1C). An

initial count of walkers is set at the appropriate starting location mesh point (either through input spikes

or an initial voltage condition), and once the supervisor circuit initiates the model, the spikes’ propagation

through this mesh directly reflects the movement of RWs through the corresponding state space. Stated

differently, the NMC hardware implements both the stochastic and deterministic components of the

stochastic process.

Importantly, this neural algorithm can be generally configured to represent any time-homogeneous

Discrete-Time Markov Chain (DTMC) by configuring the shape of this graph and setting the output

probabilities within each node to represent the problem description. For instance, a nearest-neighbor

mesh with uniform probabilities would lead to Brownian motion in the limit as the mesh and time step go

to zero (Fig. 1D). More sophisticated RWs, including those with non-local and jump diffusion, walker

absorption and creation, can readily be implemented with location-dependent transition probabilities in

this framework, allowing the algorithm to realize the processing-in-memory advantages of NMC.

We first performed scaling studies to assess the computational costs inherent in simulating RWs on two

NMC platforms, IBM TrueNorth and Intel Loihi, relative to a commodity server-class Intel Xeon E5-2662

CPU. The benchmark task, uniform diffusion on a small torus, was selected to be a simple “best-case” for

conventional platforms; we expect any added complexity, such as non-uniform transition probabilities

and larger mesh, to preferentially benefit the NMC implementations. For single-threaded

implementations of the benchmark task, the CPU is faster than both Loihi and TrueNorth, however

Increasing the density of RWs on the NMC platforms required relatively less additional time, whereas

additional walkers scale linearly on the CPU (Fig. 1E). Distributing the RWs over multiple threads showed

comparable time-scaling on multiple cores on CPUs and replicated meshes on TrueNorth (Fig. 1F).

Despite the slower base clock-rates of these less technologically mature NMC platforms, TrueNorth and

Loihi exhibit better single-mesh scaling than conventional platforms and similar multi-threaded

capabilities compared to conventional platforms (Fig. 1G). Combined, these scaling results satisfy our

weaker condition for a neuromorphic advantage.

We next compared the total energy cost of the RW calculations on NMC and conventional platforms for

equivalent amounts of computational work. To estimate energy, we scaled the top power estimates for

each platform by the relative percentage of the chip used (e.g., number of cores or threads) and integrated

over the total simulation time. TrueNorth and Loihi implementations show both a considerable absolute

advantage and preferential scaling in total walker-updates-per-Joule compared to the CPU (Fig. 1g),

satisfying our strong condition for a neuromorphic advantage. Notably, Loihi and TrueNorth appear to

occupy different places on the energy-time trade space, possibly in part due to Loihi’s incorporation of

conventional processors on chip.

Neuromorphic-compatible random walks apply to broad class of PIDEs

While RW solutions to PIDEs have mixed appeal to conventional computing programmers, they have been

utilized to provide solutions in a variety of fields, including computer science, physics, medicine, and

operations research [23].* The decision between using a deterministic approach and a random walk

approach is a complicated and important question. However, this question is beyond the scope of this

paper. Rather, we aim to demonstrate that NMC can efficiently implement random walks and,

consequently, are able to solve a variety of PIDEs, while potentially mitigating some of the disadvantages

of RW solutions (such as the high costs associated with the required number of walkers).

The connection between RWs and the heat equation is well-known. Einstein’s 1905 work posits that

there exist particles small enough that they may be viewed (with a microscope) but large enough that

their Brownian motion is measurable, further arguing that such particles exert a measurable

thermodynamic force [10]. Langevin related the mean squared displacement of Einstein’s particles to a

differential equation describing the particle’s motion [21]. A more detailed discussion of the history of

this fundamental relationship can be found in [14].

To motivate the probabilistic solution for a larger class of PIDEs, we explore the heat equation. Consider

the one-dimensional heat equation with initial condition given by 𝑓𝑓(𝑥𝑥):

* Due to their broad relevance, terminology such as “Monte Carlo”, “random walks”, and other terms may
have specific meanings in some fields, so to give clarity to the methods that follow, we emphasize that we
are employing discrete-time, finite state space Markov chain approximations to stochastic processes
underlying particular PIDEs. These Markov chains are used to generate several random walks. These
random walks are evaluated in a Monte Carlo fashion to estimate an expectation.

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑢𝑢 =

1
2
𝜕𝜕2

𝜕𝜕𝑥𝑥2 𝑢𝑢,𝑥𝑥 ∈ ℝ

𝑢𝑢(0, 𝑥𝑥) = 𝑓𝑓(𝑥𝑥).

Equation 1

Let 𝑊𝑊(𝑡𝑡) be a standard Brownian motion on ℝ. The key relationship relates an expectation (i.e. expected

or average value) involving 𝑊𝑊(𝑡𝑡) with the solution 𝑢𝑢:

𝔼𝔼�𝑓𝑓�𝑊𝑊(𝑡𝑡)��𝑊𝑊(0) = 𝑥𝑥� =
1

√2𝜋𝜋𝜋𝜋
�𝑓𝑓(𝑦𝑦) exp �−

(𝑦𝑦 − 𝑥𝑥)2

2𝑡𝑡
�d𝑦𝑦 = 𝑢𝑢(𝑡𝑡,𝑥𝑥).

Equation 2

In words, the expectation of a function evaluated at Brownian motion is exactly the solution to the one-

dimensional heat equation. This probabilistic representation allows us to approximate the function 𝑢𝑢(𝑡𝑡, 𝑥𝑥)

using RWs. Traditionally, this is accomplished by employing some sampling procedure to generate sample

paths of 𝑊𝑊(𝑡𝑡), typically involving a discretization of time and value sampling over a continuous space[15].

Discussed in detail later, in order to make this process amenable to our neural RW algorithm, we must

sample our paths through a DTMC 𝑋𝑋(𝑗𝑗Δ𝑡𝑡) that approximates the process 𝑊𝑊(𝑡𝑡). For each spatial location

𝑥𝑥𝑖𝑖, several RWs starting at 𝑥𝑥𝑖𝑖 are generated from the Markov chain. Letting 𝑋𝑋𝑚𝑚,𝑖𝑖 represent the 𝑚𝑚th RW

generated starting from location 𝑥𝑥𝑖𝑖, the Monte Carlo approximation gives

𝑢𝑢(𝑗𝑗Δ𝑡𝑡,𝑥𝑥𝑖𝑖) = 𝔼𝔼�𝑓𝑓�𝑊𝑊(𝑗𝑗Δ𝑡𝑡)��𝑊𝑊(0) = 𝑥𝑥𝑖𝑖� ≈
1
𝑀𝑀
� 𝑓𝑓�𝑋𝑋𝑚𝑚,𝑖𝑖(𝑗𝑗Δ𝑡𝑡)�
𝑀𝑀

𝑚𝑚=1

.

Equation 3

Regardless of modifications needed for NMC implementation, this simple result can be extended to a

more computationally challenging set of problems. Consider the family of PIDEs defined by the equation

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑢𝑢

(𝑡𝑡,𝒙𝒙) =
1
2�

(𝒂𝒂𝒂𝒂⊤)𝑖𝑖,𝑗𝑗(𝑡𝑡,𝒙𝒙) 𝜕𝜕2

𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗
𝑢𝑢(𝑡𝑡 ,𝒙𝒙) +�𝑏𝑏𝑖𝑖(𝑡𝑡,𝒙𝒙) 𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
𝑢𝑢(𝑡𝑡, 𝒙𝒙)

𝑖𝑖𝑖𝑖,𝑗𝑗

+𝜆𝜆(𝑡𝑡,𝒙𝒙)� �𝑢𝑢�𝑡𝑡,𝒙𝒙 +𝒉𝒉(𝑡𝑡 ,𝒙𝒙,𝑞𝑞)� − 𝑢𝑢(𝑡𝑡, 𝒙𝒙)�𝜙𝜙𝑄𝑄(𝑞𝑞; 𝑡𝑡, 𝒙𝒙)d𝑞𝑞

𝒬𝒬

+𝑐𝑐(𝑡𝑡, 𝒙𝒙)𝑢𝑢(𝑡𝑡,𝒙𝒙) + 𝑓𝑓(𝑡𝑡, 𝒙𝒙),𝑥𝑥 ∈ ℝ𝑑𝑑 , 𝑡𝑡 ∈ [0,∞).

Equation 4

As with Eq. 1, there is an underlying stochastic process, albeit slightly more complicated than just

Brownian motion. The stochastic process related to this PIDE is

d𝑿𝑿(𝑡𝑡) = 𝒃𝒃�𝑡𝑡,𝑿𝑿(𝑡𝑡)�d𝑡𝑡+ 𝒂𝒂�𝑡𝑡,𝑿𝑿(𝑡𝑡)�d𝑾𝑾(𝑡𝑡) +𝒉𝒉(𝑡𝑡,𝑿𝑿(𝑡𝑡),𝑞𝑞)d𝑃𝑃�𝑡𝑡;𝑄𝑄,𝑿𝑿(𝑡𝑡)�.

Equation 5

The process 𝐗𝐗(t) is defined by a drift, diffusion, and a non-local jump. In this form, 𝒃𝒃 gives the drift and 𝒂𝒂

gives the diffusion. The process 𝑾𝑾(𝑡𝑡) is a Brownian motion with respect to the underlying space, in this

case ℝ𝑑𝑑. The term 𝑃𝑃�𝑡𝑡;𝑄𝑄,𝑿𝑿(𝑡𝑡)� is a Poisson process with parameter given by −∫ 𝜆𝜆�𝑠𝑠,𝑿𝑿(𝑠𝑠)�d𝑠𝑠𝑡𝑡
0 and the

function 𝒉𝒉 describes the non-local jump awarded whenever the Poisson process fires. This stochastic

process is readily visualized in Figs. 2a-c for constant values of 𝒃𝒃, 𝒂𝒂, and 𝒉𝒉. The jump value 𝒉𝒉 need not be

constant and can even be random as seen in Fig. 2d (𝑄𝑄 can be interpreted as a random variable

corresponding to the random jump mark amplitude of a compound Poisson process). The final two panels

showcase when the jump value is drawn uniformly over {−3,−2, … , 2, 3}. We note that while 𝑐𝑐 does not

appear in Eq. 5, it can often be interpreted as an absorption or killing term, demonstrated in Fig 2e. A

discussion on this interpretation can be found in SN2.

Pairing Eq. 4 with the initial condition 𝑢𝑢(0, 𝒙𝒙) = 𝑔𝑔(𝒙𝒙), under certain conditions the solution to the initial

value problem can be represented as

𝑢𝑢(𝑡𝑡, 𝒙𝒙) = 𝔼𝔼�𝑔𝑔�𝑿𝑿(𝑡𝑡)� exp �� 𝑐𝑐�𝑠𝑠,𝑿𝑿(𝑠𝑠)�d𝑠𝑠
𝑡𝑡

0
� +� 𝑓𝑓�𝑠𝑠,𝑿𝑿(𝑠𝑠)� exp �� 𝑐𝑐�ℓ,𝑿𝑿(ℓ)�dℓ

𝑠𝑠

0
�d𝑠𝑠

𝑡𝑡

0
�𝑿𝑿(0) = 𝒙𝒙�.

Equation 6

A proof for the one-dimensional case can be found in SN2.

Various special cases of this result exist. A particular interesting special case arises when considering the

steady-state version of Eq. 4, where 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢 = 0 and 𝑡𝑡 does not appear as an argument in all functions. Setting

𝑐𝑐 = 0 and considering this case as a boundary-value problem with 𝑢𝑢(𝒙𝒙) = 𝑣𝑣(𝒙𝒙) on the boundary of some

domain 𝐷𝐷, the solution can be shown to take the form

𝑢𝑢(𝒙𝒙) = 𝔼𝔼 �𝑣𝑣�𝑿𝑿(𝑇𝑇𝒙𝒙)�+� 𝑓𝑓�𝑿𝑿(𝑠𝑠)�d𝑠𝑠
𝑇𝑇𝒙𝒙

0
�𝑿𝑿(0) = 𝒙𝒙�.

Equation 7

Here, 𝑿𝑿(𝑡𝑡) is the process given by Eq. 5 with 𝑡𝑡 omitted as the first argument in 𝑎𝑎, 𝑏𝑏, and ℎ. Since time is

still an argument for the process, the probabilistic solution requires the use of the stopping time 𝑇𝑇𝒙𝒙, or

the time for which the random process 𝑿𝑿(𝑡𝑡), starting at 𝑿𝑿(0) = 𝒙𝒙 exits the domain 𝐷𝐷. A proof for the

one-dimensional case can be found in SN2.

Figure 2: Random walk processes are well-suited for NMC, and the inclusion of different terms in the stochastic

process yields random walks with differing behavior. For (A)-(E), left panel shows three illustrative random walks for

2 seconds (100 time steps); right panel shows density of 1000 random walkers run on Loihi. The range shown in the

density plots is highlighted in overlaid onto the process examples. (A) Including only an 𝑎𝑎 term yields basic diffusion;

(B) Including 𝑎𝑎 and 𝑏𝑏 yields diffusion with drift. (C-D) The inclusion of 𝜆𝜆 and ℎ allows the random walk to ‘jump’ for

discontinuous movements. (E) The 𝑐𝑐 term under some conditions can yield walker removal.In all plots, the finite range

is applied by imposing an upper and lower bound for the walks. (F) Sources of discretization in all stochastic processes

(of either conventional or neuromorphic sources) impacts the accuracy and convergence of expectation solution for

the PIDE. The first row details the Monte Carlo order of convergence; the second row is the order of convergence for

the Euler-Maruyama discretization method; the third row is a best-case scenario estimate for error accrued due to

discretizing space; the fourth and final rows merely indicate that some problems could have additional error due to

enforcing a finite state space or due to reduced precision on neuromorphic platforms. For further discussion, see

Methods.

Non-Zero Terms in Eq. 4 Example Application

Time-dependent problems

𝑎𝑎,𝑏𝑏, 𝑐𝑐, 𝑓𝑓 Stock Option Pricing [5]

𝜆𝜆,𝑏𝑏, 𝑐𝑐,𝑓𝑓,ℎ
Boltzmann Flux Density SN3
Reduced Problem, Fig. 3A-D.

𝑎𝑎,𝑐𝑐 Heat Equation with Dissipation (See Fig. 4C)

Steady-state problems

𝑎𝑎,𝑓𝑓
Electrostatic Scalar Potential, Heat Transport, or

Simple Beam Bending [38]

𝜆𝜆,𝑏𝑏, 𝑐𝑐,𝑓𝑓,ℎ
Particle Fluence SN3

Reduced problem, Fig. 3E-I.

Table 1: Examples of applications involving a PIDE in the form of Eq. 4. This table is not exaustive and includes only

a sample of possible applications. In this paper, we utilize a random walk method to solve two heat transport

problems and a reduced problem for both the Boltzmann particle angular flux density problem and the angular

fluence problem.

These PIDEs are important within many application domains, including particle physics, quantitative

finance, and molecular dynamics, among others. When viewed probabilistically, the steady-state

problems are particularly interesting for neuromorphic because the long run-times required for RWs to

reach steady-state solutions are often computationally prohibitive on conventional hardware.

The preceding discussion on the two families of PIDEs and their probabilistic solution representations are

largely known results – we merely reformulate these results in forward time (see SN2). The new

contribution we provide is the use of well-understood DTMC approximations to SDEs in order to make the

probabilistic sampling of paths viable on the NMC diffusion algorithm.

A DTMC approximating Eq. 5 is compatible with the neural algorithm we described for diffusion (Fig 1D).

In particular, the drift 𝑏𝑏 and non-local diffusion terms 𝜆𝜆 and h can naturally be reflected within the

definition of the mesh and transition probabilities (Fig 1C), in effect providing those extensions to

diffusion. Similarly, non-conservation of walkers (walker absorption or creation) can be easily integrated

into the system we described. Such a situation may be desirable when the form of 𝑐𝑐 lends itself towards

an absorption interpretation.

To approximate Eq. 5 with a DTMC, one must employ some sort of temporal and spatial discretization

scheme. Having NMC approximate the DTMC introduces additional sources of uncertainty (Fig 2F).

Specifically, the finite node structure of NMC architectures forces the DTMC to have a finite state space.

In one dimension, this equates to having a maximum and minimum value in the state space. The error of

enforcing a finite state space for the DTMC would vary from application to application. The discrete state

space arising from the DTMC also introduces error depending on the problem at hand. If the state space

of the random walk is already discrete, it introduces no error. In the continuous case, it could introduce

error on the order of 1
2
Δ𝑡𝑡Δ𝑠𝑠 on each time step in a special best-case scenario (see Methods). Additional

error could arise from hardware specific limitations. For instance, the IBM’s TrueNorth and Intel’s Loihi

pseudo-random number generators that we use are effectively limited to 8 bits.

Both conventional simulations, which model each random walker independently and track the evolution

of state variables, and our neuromorphic simulations, which model the parallel evolution of random

walkers over a state-space represented by the neural circuit, are impacted by each of these error sources.

However, the high numerical precision of conventional processing minimizes the impacts of discretizing

the values and ranges of state variables, making the dominant errors due to time discretization and the

number of random walkers. In contrast, our neuromorphic implementation enables a very large number

of walkers at negligible cost, but the dedication of neurons to explicitly representing state variables raises

the cost of reducing the meshing error. The implication of these errors will differ considerably across

applications in practice.

Results/Examples

To demonstrate the ability of neuromorphic hardware to implement the DTMCs required for solving these

PIDEs, we provide a handful of examples. These are grouped into two main categories: particle equations

and geometries. The results of our simulations on hardware and spiking neuron simulators can be found

in Fig. 3 and Fig. 4. We cover the more salient points of these examples in the next two subsections and

relegate the remaining details to SN3.

Neuromorphic hardware can simulate particle transport

First, we showcase two examples of particle transport equations with probabilistic representations

suitable for our spiking algorithm. The first is an initial-value time-dependent problem detailing the

angular flux density of a hypothetical particle (Fig. 3A). Consider a hypothetical particle that has a property

called ‘direction’. This direction property takes on the value +1 or −1. According to a Poisson process

with rate 𝜎𝜎𝑠𝑠, the particle can experience a ‘scattering’ event. When a scattering event occurs, the particle

chooses a new direction with uniform probability. A second Poisson process with rate 𝜎𝜎𝑎𝑎 controls when

the particle is absorbed and ceases to exist. These rates correspond to 𝜆𝜆 and 𝑐𝑐, respectively, in Eq. 4. The

function ℎ is represented by the change in direction the particle experiences after a scattering event.

Coupled with an initial condition 𝑔𝑔, a population of these particles is assumed to obey the Boltzmann

equation for angular flux density (see SN3).

The angular flux density, Φ(𝑡𝑡,Ω), is a function of both time 𝑡𝑡 and direction Ω. We will leave the PIDE in

SN3, but it takes the form of Eq. 3 with 𝑎𝑎,𝑏𝑏, and 𝑓𝑓 all equal to zero. Assigning some initial condition 𝑔𝑔, the

solution is given by

Φ(𝑡𝑡,Ω) = 𝔼𝔼�𝑒𝑒−𝜎𝜎𝑎𝑎𝑡𝑡𝑔𝑔�𝑌𝑌(𝑡𝑡)��𝑌𝑌(0) = Ω�,

d𝑌𝑌(𝑡𝑡) = 𝜔𝜔𝑌𝑌(𝑡𝑡)d𝑃𝑃(𝑡𝑡).

Equation 8

The SDE almost behaves like our hypothetical particle. The ‘direction’ at time 𝑡𝑡 is given by 𝑌𝑌(𝑡𝑡). 𝑃𝑃(𝑡𝑡) is a

Poisson process with parameter 𝜎𝜎𝑠𝑠𝑡𝑡, and 𝜔𝜔𝑌𝑌(𝑡𝑡) is the random change in direction of the random walk after

a scattering event given the previous direction. The direction remains the same until the Poisson process

fires (signaling a scattering event). Once this occurs, the value of 𝑌𝑌(𝑡𝑡) increments by the random change

in direction 𝜔𝜔𝑌𝑌(𝑡𝑡). Notably, the random process differs from the hypothetical particle in that it does not

account for absorption. Instead, absorption is resolved through the exponential term in the expectation.

We deployed a neural circuit of a DTMC approximating the dynamics of the stochastic process 𝑌𝑌(𝑡𝑡) on

TrueNorth. The description of the random walk and the parameter values used can be found in SN3. In

this scenario, an analytic solution exists. Fig. 3C shows that the true solution is well approximated by

sampling just 1000 random walks per each starting condition. Moving to 10,000 RWs per starting position

(Fig 3D), we see notable improvement in approximation.

This simplified example of particle transport has broad implications. Directly, if we can well-approximate

the analytic solution for this reduced particle transport problem, then it will be possible to approximate

more complicated particle transport problems where no solution is available. To that end, we have

examined a second particle transport inspired example for which no analytical solution is readily available.

Figure 3: Monte Carlo particle transport simulations on neuromorphic hardware. (A) Non-spatial Boltzmann

transition/absorption model (top). Corresponding DTMC approximation for underlying SDE (bottom). (B) Evolution of

particles through Boltzmann transitions on TrueNorth. Pink represents higher density of walkers and blue represents

lower density for the case where 1000 walkers start in +1 state (top) or -1 state (bottom) and equilibrate due to

Boltzmann transitions. (C) PIDE solution calculated through TrueNorth spike data starting 1000 random walkers on

each direction. (D) PIDE solution calculated through TrueNorth spike data starting 10000 random walkers on each

direction. (E) Spatial particle transport model. Particles travel at fixed speed in measured dimension. At position ‘0’

(red dot), the particles scatter at a random angle preserving their total velocity. At the next time step, the particles

will have a different position and direction of movement. (F) MATLAB approximate solution from DTMC

implementation of spatial particle model, 1 million walkers at each starting location (G) Intel Loihi approximate

solution from DTMC implementation of spatial particle model, 6250 walkers per starting location (H) absolute error

between Loihi and numerical simulation, (I) average percent error between Loihi and numerical simulation as a

function of increasing random walkers per starting location.

In our second example, we consider a similar particle. This hypothetical particle is subject to scattering

events according to a Poisson process with rate 𝜎𝜎𝑠𝑠, however the direction can assume any value in [−1, 1]

with a uniform distribution. We assume that this particle is not subject to absorption. In addition to

direction, this hypothetical particle also has a spatial coordinate. The particle travels at a speed 𝑣𝑣 in the

direction Ω updating its position (Fig 3E). We seek to find the angular fluence Ψ, or time-integrated flux,

in the spatial domain [−1, 1] subject to the source term 𝑆𝑆(𝑥𝑥,Ω).

In terms of Eq. 4 (and detailed in SN3), 𝜆𝜆 = 𝑣𝑣𝑣𝑣𝑠𝑠, 𝑓𝑓 = 𝑣𝑣𝑣𝑣(𝑥𝑥,Ω), 𝑏𝑏 = 𝑣𝑣Ω, and ℎ is the change in direction

after a scattering event given the current direction of travel. The remaining terms, 𝑎𝑎 and 𝑐𝑐, are zero for

this example.

Enforcing absorbing conditions on the boundaries, the angular fluence Ψ(𝑥𝑥,Ω) is a function of position 𝑥𝑥

and direction Ω, and obeys the PIDE in SN3. The solution may be represented as

Ψ(𝑥𝑥,Ω) = 𝔼𝔼 �� 𝑣𝑣𝑣𝑣�𝑋𝑋(𝑢𝑢),𝑌𝑌(𝑢𝑢)�d𝑢𝑢
𝑇𝑇

0
�𝑋𝑋(0) = 𝑥𝑥, 𝑌𝑌(0) = Ω� ,

d𝑋𝑋(𝑡𝑡) = −𝑣𝑣𝑣𝑣(𝑡𝑡)d𝑡𝑡 ,

d𝑌𝑌(𝑡𝑡) = ωY(t)d𝑃𝑃(𝑡𝑡),

𝑇𝑇𝑥𝑥 = inf{𝑡𝑡 > 0|𝑋𝑋(𝑡𝑡) ∉ [−1,1], 𝑋𝑋(0) = 𝑥𝑥}.

Equation 9

Both 𝑃𝑃(𝑡𝑡) and 𝜔𝜔𝑌𝑌(𝑡𝑡) are the same as in the previous example. The SDE in this case describes a process

with a position given by 𝑋𝑋(𝑡𝑡) and direction given by 𝑌𝑌(𝑡𝑡). The position updates with velocity −𝑣𝑣𝑣𝑣(𝑡𝑡).

The direction only changes by 𝜔𝜔𝑌𝑌(𝑡𝑡) whenever the Poisson process 𝑃𝑃(𝑡𝑡) fires.

We deployed a RW approximation from a DTMC of this joint process on Intel’s Loihi platform. Details on

the DTMC and parameters used are in SN3. We completed a 1M walker/location simulation in MATLAB

to use as a baseline comparison. One interpretation of the angular fluence is the cumulative density of

particles traveling from the source location. From the MATLAB simulation, we see that these particles

appear to have mostly traveled with speed 𝑣𝑣 in their original direction assigned by the source, with

lessening bands of deviations due to scattering events (Fig 3F). Similar to the Boltzmann example on

TrueNorth, implementing this simulation on Loihi was able to replicate the numerical examples (Fig. 3G)

with a low overall error (Fig. 3H-I). This low error in the neuromorphic implementation is of particular

importance since the low output probabilities due to the high-fan out in this model (up to 30 output

nodes) are potentially at risk due to the relatively low 8-bit precision of Loihi’s random number generator.

Neuromorphic approach to simulating on non-Euclidean geometries

The particle examples above are straightforward demonstrations of RWs with non-local jumps on a simple

domain. We next demonstrated neuromorphic RWs over non-Euclidean domains, solving two heat

equations. By carefully defining a mesh and calculating transition probabilities, PIDEs over large complex

geometries are no problem for the neuromorphic RW method. To demonstrate the ability of this method

to solve problems on non-Euclidean domains, we present two examples involving spheres. While the non-

Euclidean shapes we consider are by no means ‘complex,’ we merely showcase that the method is mostly

agnostic to the domain.

Consider a basic heat equation on the unit sphere. We let 𝕊𝕊2 represent the unit sphere and take 𝒂𝒂(𝑡𝑡,𝒙𝒙)

to be the positive scalar 𝛼𝛼 for all 𝑡𝑡 ∈ [0,∞) and 𝒙𝒙 ∈ 𝕊𝕊2. Set the remaining coefficients in Eq. 4 to zero.

Paired with an initial condition 𝑔𝑔(𝒙𝒙), the probabilistic solution to the heat equation on the sphere is given

by

𝑢𝑢(𝑡𝑡,𝒙𝒙) = 𝔼𝔼�𝑔𝑔�𝑿𝑿(𝑡𝑡)��𝑿𝑿(0) = 𝒙𝒙�,

d𝑿𝑿(𝑡𝑡) = √2𝛼𝛼d𝑾𝑾(𝑡𝑡),

Equation 10

where 𝑾𝑾(𝑡𝑡) represents Brownian motion on the surface of the sphere. By choosing a particular initial

condition, this problem has a tractable analytic solution (SN3). The initial condition selected resembles a

soccer ball pattern (Fig. 4A).

To employ our neuromorphic approach, we must be able to approximate Brownian motion on the surface

of the sphere with a DTMC. There are several ways to describe Brownian motion on the sphere, including

using the von-Mises Fisher distribution [40], employing representations with spherical coordinates [6], or

limiting from higher dimensions [8]. Since it is applicable to other curved shapes, we elect to use a tangent

plane approximation. Setting 𝛼𝛼 = 42, we deploy a RW approximating the process 𝑿𝑿(𝑡𝑡) on Intel’s Loihi

platform. Starting 3000 RWs on each position yields the approximate solution found in Fig. 4A for a

collection of time points. We would expect better agreement with a greater number of nodes and walkers

per starting location. Further, as shown in Fig. 4B, we see that the low precision of probability transition

has acutely increased the amount of error accrued for this example when compared to a MATLAB

simulation.

This example provides compelling evidence that complex geometries where analytic methods are less

tractable represent an opportunity for NMC impact. These could arise where domains are more

complicated than just a single sphere. One could imagine an object with many spines or with several

crevices. To start down this path, we present an initial-value problem on the surface of a barbell shaped

object.

Figure 4: NMC random walk algorithm can implement random walks over non-Euclidean geometries. (A) Time-

course of random walks simulated on Loihi to model heat diffusion on the surface of a sphere. Red locations

represent higher initial temperature relative to yellow locations. Heat is conserved on this simulation. (B) Absolute

norm of error is higher on NMC relative to MATLAB simulation at initial timepoints, but approaches conventional

error levels as simulation progresses. (C) Time-course of random walks run on neural simulator for heat diffusion on

two spheres connected by a tube (“barbell”). Heat was allowed to dissipate from the surface. (D) Average

temperature of the left sphere decreases rapidly during the simulation. (E) Temperature gradually increases sharply

for small time on the right sphere. As time increases, this rate of increase slows as cooling begins to take effect. For

large time, the temperature on the right sphere will decrease to zero.

Consider the heat flow on a barbell with cooling and an initial condition. Let 𝔹𝔹 represent the surface of

the barbell shape. Again, we set 𝒂𝒂(𝑡𝑡,𝒙𝒙) = 𝛼𝛼, some positive scalar. Then, to account for cooling, we take

𝑐𝑐(𝑡𝑡, 𝒙𝒙) = 𝜅𝜅, another positive scalar. All other coefficients in Eq. 4 are assumed to be zero. Again letting

𝑔𝑔(𝒙𝒙) be an initial condition, the probabilistic solution is

𝑢𝑢(𝑡𝑡,𝒙𝒙) = 𝔼𝔼�𝑒𝑒−𝜅𝜅𝜅𝜅𝑔𝑔�𝑿𝑿(𝑡𝑡)��𝑿𝑿(0) = 𝒙𝒙�,

d𝑿𝑿(𝑡𝑡) = √2𝛼𝛼d𝑾𝑾(𝑡𝑡),

Equation 11

where 𝑾𝑾(𝑡𝑡) now represents Brownian motion on 𝔹𝔹. Our discretization of the shape required 748 mesh

points (more details on the mesh construction and DTMC are in SN3). Due to the mesh-size relative to

the currently limited neuromorphic chip sizes available to us, we deployed this example on a spiking net

simulator. We implemented a random walk approximating the stochastic process. The results of

simulation for various time points can be found in Fig 4C. The temperature equilibration of the left (Fig.

4D) and right (Fig 4E) sides of the barbell proceed as one would expect from thermodynamics.

Discussion

The results here demonstrate that spiking neuromorphic hardware technology is suitable for

implementing a scalable energy-efficient approach to solving an important set of numerical computing

problems. Neuromorphic hardware is still immature relative to conventional hardware in terms of both

physical scale and clock speed, although it already demonstrates considerable power advantages. Here,

we show that our neural RW algorithm scales comparably to a parallel CPU approach, allowing us to

observe a significant energy advantage in current neuromorphic platforms today while being positioned

to take full advantage of large-scale neuromorphic hardware once realized. We further focus our

exploration on demonstrating the broad application impact of our algorithm approach, showing that

with simple extensions this approach can apply to a wide range of complex application domains.

Notably, the approach taken here does not leverage all the brain-inspired features present in many

emerging neuromorphic hardware technologies. For instance, our approach does not leverage learning;

however, we expect that the neural formulation of stochastic processes may make them more

amenable to model calibration against experimental observations, and in situ neuromorphic learning

may make this process more efficient. Likewise, we focused our demonstrations on large-scale digital

spiking platforms, such as Loihi and TrueNorth, because they exist at the requisite neural scales for our

algorithms. There is considerable interest in analog neuromorphic approaches that should similarly be

compatible with this approach [19, 30, 32], although we would have to consider the precision

implications of analog devices alongside the other approximation considerations (Fig. 2b).

One important consideration of this work is that the numerical accuracy of our neural approach is

relatable to typical numerical precision considerations in conventional computing. Stated differently,

this approach avoids the approximation pitfalls associated with many AI algorithms, wherein the

implications of numerical precision and interpretability is still an open question. While understanding

and accounting for these approximation errors will be critical for any application, the graph-based

approach taken here provides several well-understood design choices to tailor the algorithm and

hardware solution appropriately given precision concerns. For instance, in applications with clearly

defined state spaces, such as diffusion over a social network, the mesh can directly map to the system,

and resources can be dedicated to adding more walkers. Alternatively, in complex geometries or

unbounded systems, it may be necessary to commit considerable neuromorphic hardware to a larger

mesh.

Whatever the eventual set of capabilities that future neuromorphic platforms have, we expect that

neuromorphic hardware will eventually exist primarily in heterogeneous system architectures alongside

CPUs, GPUs, and other accelerators [20]. The neuromorphic algorithms for solving PIDEs described here

complement AI as an application for brain-inspired hardware, and they strengthen the long-term value

proposition for neuromorphic hardware in future computing systems. Further, in contrast to neural

network applications, where neuromorphic hardware has struggled to match the speed of GPUs and

linear algebra accelerators, our work shows that in the realm of numerical computing, neuromorphic

hardware not only can deliver concrete energy advantages today, but is capable of scaling effectively in

terms of processing time and overall efficiency.

Acknowledgments

We thank Steve Plimpton and Andrew Baczewski for reviewing an early version of the manuscript and

Adam Moody, Suma Cardwell, and Craig Vineyard for managing access to the TrueNorth and Loihi

platforms. The authors acknowledge financial support from Sandia National Laboratories’ Laboratory

Directed Research and Development Program and the DOE Advanced Simulation and Computing

Program. Sandia National Laboratories is a multiprogram laboratory managed and operated by National

Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell

International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under

contract DE-NA0003525.

This article describes objective technical results and analysis. Any subjective views or opinions that

might be expressed do not necessarily represent the views of the U.S. Department of Energy or the U.S.

Government.

Contributions

JDS, BF, RL derived mathematical results, JDS and BF designed particle experiments, JDS, WS, and JBA

designed geometry experiments, OP, WS and JBA developed the neuromorphic algorithm and

performed theoretical neuromorphic complexity analysis, AJH and JBA performed neuromorphic

simulations, JDS, LR, and WS performed software simulations, and all authors wrote the paper.

Data Availability Statement

The computational scaling data generated and analyzed in this study are included in the published

article as Extended Data.

References

1. Aimone, J.B. Neural algorithms and computing beyond Moore's law. Communications of the
ACM, 62 (4). 110-110.

2. Aimone, J.B., Hamilton, K.E., Mniszewski, S., Reeder, L., Schuman, C.D. and Severa, W.M., Non-
neural network applications for spiking neuromorphic hardware. in 3rd International Workshop
on Post-Moore’s Era Supercomputing (PMES 2018), Dallas, TX, (2018).

3. Aimone, J.B., Parekh, O., Phillips, C.A., Pinar, A., Severa, W. and Xu, H., Dynamic Programming
with Spiking Neural Computing. in Proceedings of the International Conference on Neuromorphic
Systems, (2019), ACM, 20.

4. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao,
F.G.S.L., Buell, D.A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney, W.,
Dunsworth, A., Farhi, E., Foxen, B., Fowler, A., Gidney, C., Giustina, M., Graff, R., Guerin, K.,
Habegger, S., Harrigan, M.P., Hartmann, M.J., Ho, A., Hoffmann, M., Huang, T., Humble, T.S.,
Isakov, S.V., Jeffrey, E., Jiang, Z., Kafri, D., Kechedzhi, K., Kelly, J., Klimov, P.V., Knysh, S.,
Korotkov, A., Kostritsa, F., Landhuis, D., Lindmark, M., Lucero, E., Lyakh, D., Mandrà, S., McClean,
J.R., McEwen, M., Megrant, A., Mi, X., Michielsen, K., Mohseni, M., Mutus, J., Naaman, O.,
Neeley, M., Neill, C., Niu, M.Y., Ostby, E., Petukhov, A., Platt, J.C., Quintana, C., Rieffel, E.G.,
Roushan, P., Rubin, N.C., Sank, D., Satzinger, K.J., Smelyanskiy, V., Sung, K.J., Trevithick, M.D.,
Vainsencher, A., Villalonga, B., White, T., Yao, Z.J., Yeh, P., Zalcman, A., Neven, H. and Martinis,
J.M. Quantum supremacy using a programmable superconducting processor. Nature, 574
(7779). 505-510.

5. Bossy, M. and Champagnat, N. Markov processes and parabolic partial differential equations. in
Cont Rama. Encyclopedia of Quantitative Finance, John Wiley & Sons, Chichester, UK, 2010,
1142-1159.

6. Brillinger, D.R. A Particle Migrating Randomly on a Sphere. in Guttorp, P. and Brillinger, D.R. eds.
Selected Works in Probability and Statistics, Springer, New York, NY, 2012.

7. Buesing, L., Bill, J., Nessler, B. and Maass, W. Neural dynamics as sampling: a model for
stochastic computation in recurrent networks of spiking neurons. PLoS Comput Biol, 7 (11).
e1002211.

8. Carlsson, T., Ekholm, T. and Elvingson, C. Algorithm for generating a Brownian motion on a
sphere. Journal of physics A: Mathematical and theoretical, 43 (50). 505001.

9. Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S.H., Dimou, G., Joshi, P., Imam,
N. and Jain, S. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro, 38
(1). 82-99.

10. Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung
von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der physik, 4.

11. Feynman, R.P. Quantum mechanical computers. Foundations of physics, 16 (6). 507-531.
12. Fonseca Guerra, G.A. and Furber, S.B. Using stochastic spiking neural networks on spinnaker to

solve constraint satisfaction problems. Frontiers in neuroscience, 11. 714.
13. Furber, S.B., Galluppi, F., Temple, S. and Plana, L.A. The spinnaker project. Proceedings of the

IEEE, 102 (5). 652-665.
14. Gardiner, C. Stochastic methods: a handbook for the natural and social sciences 4th ed.,

Springer Berlin, Heidelberg, Germany, 2009.
15. Grigoriu, M. Stochastic calculus: applications in science and engineering. Springer Science &

Business Media, 2013.
16. Hamilton, S.P. and Evans, T.M. Continuous-energy Monte Carlo neutron transport on GPUs in

the Shift code. Annals of Nuclear Energy, 128. 236-247.
17. Hamilton, S.P., Slattery, S.R. and Evans, T.M. Multigroup Monte Carlo on GPUs: Comparison of

history-and event-based algorithms. Annals of Nuclear Energy, 113. 506-518.
18. Harrow, A.W. and Montanaro, A. Quantum computational supremacy. Nature, 549 (7671). 203.
19. Indiveri, G., Linares-Barranco, B., Legenstein, R., Deligeorgis, G. and Prodromakis, T. Integration

of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology,
24 (38). 384010.

20. Krichmar, J.L., Severa, W., Khan, S.M. and Olds, J.L. Making BREAD: Biomimetic strategies for
artificial intelligence now and in the future. Frontiers in neuroscience, 13. 666.

21. Langevin, P. Sur la théorie du mouvement brownien. Compt. Rendus, 146. 530-533.
22. Lanyon, B.P., Whitfield, J.D., Gillett, G.G., Goggin, M.E., Almeida, M.P., Kassal, I., Biamonte, J.D.,

Mohseni, M., Powell, B.J. and Barbieri, M. Towards quantum chemistry on a quantum computer.
Nature chemistry, 2 (2). 106.

23. Masuda, N., Porter, M.A. and Lambiotte, R. Random walks and diffusion on networks. Physics
reports, 716. 1-58.

24. McCulloch, W.S. and Pitts, W. A logical calculus of the ideas immanent in nervous activity. The
bulletin of mathematical biophysics, 5 (4). 115-133.

25. Mendat, D.R., Chin, S., Furber, S. and Andreou, A.G., Markov Chain Monte Carlo inference on
graphical models using event-based processing on the SpiNNaker neuromorphic architecture. in
2015 49th Annual Conference on Information Sciences and Systems (CISS), (2015), IEEE, 1-6.

26. Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J., Akopyan, F., Jackson, B.L.,
Imam, N., Guo, C. and Nakamura, Y. A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science, 345 (6197). 668-673.

27. Mniszewski, S.M., Graph Partitioning as Quadratic Unconstrained Binary Optimization (QUBO)
on Spiking Neuromorphic Hardware. in Proceedings of the International Conference on
Neuromorphic Systems, (2019), ACM, 4.

28. Parekh, O., Phillips, C.A., James, C.D. and Aimone, J.B., Constant-Depth and Subcubic-Size
Threshold Circuits for Matrix Multiplication. in Proceedings of the 30th on Symposium on
Parallelism in Algorithms and Architectures, (2018), ACM, 67-76.

29. Pecevski, D., Buesing, L. and Maass, W. Probabilistic inference in general graphical models
through sampling in stochastic networks of spiking neurons. PLoS Comput Biol, 7 (12). e1002294.

30. Pickett, M.D., Medeiros-Ribeiro, G. and Williams, R.S. A scalable neuristor built with Mott
memristors. Nature materials, 12 (2). 114-117.

31. Roy, K., Jaiswal, A. and Panda, P. Towards spike-based machine intelligence with neuromorphic
computing. Nature, 575 (7784). 607-617.

32. Schemmel, J., Briiderle, D., Griibl, A., Hock, M., Meier, K. and Millner, S., A wafer-scale
neuromorphic hardware system for large-scale neural modeling. in Proceedings of 2010 IEEE
International Symposium on Circuits and Systems, (2010), IEEE, 1947-1950.

33. Schuman, C.D., Hamilton, K., Mintz, T., Adnan, M.M., Ku, B.W., Lim, S.-K. and Rose, G.S., Shortest
path and neighborhood subgraph extraction on a spiking memristive neuromorphic
implementation. in Proceedings of the 7th Annual Neuro-inspired Computational Elements
Workshop, (2019), ACM, 3.

34. Severa, W., Lehoucq, R., Parekh, O. and Aimone, J.B., Spiking neural algorithms for markov
process random walk. in 2018 International Joint Conference on Neural Networks (IJCNN),
(2018), IEEE, 1-8.

35. Severa, W., Vineyard, C.M., Dellana, R., Verzi, S.J. and Aimone, J.B. Training deep neural
networks for binary communication with the Whetstone method. Nature Machine Intelligence,
1 (2). 86.

36. Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM review, 41 (2). 303-332.

37. Siu, K.-Y., Roychowdhury, V. and Kailath, T. Discrete neural computation: a theoretical
foundation. Prentice-Hall, Inc., 1995.

38. Smith, J.D., Severa, W., Hill, A.J., Reeder, L., Franke, B., Lehoucq, R.B., Parekh, O.D. and Aimone,
J.B., Solving a steady-state PDE using spiking networks and neuromorphic hardware. in
International Conference on Neuromorphic Systems 2020, (2020), 1-8.

39. Von Neumann, J. The Computer and the Brain. Yale University Press, 2000.
40. Watson, G.S. Distributions on the circle and sphere. Journal of Applied Probability. 265-280.
41. Wolpert, D.H. and Macready, W.G. No free lunch theorems for optimization. IEEE transactions

on evolutionary computation, 1 (1). 67-82.

A B

G

D

F

C

E

Time

Time Time

Time

TimeTime

Ra
nd
om
 W
al
k

A
pp
ro
xi
m
at
io
ns

N
um
be
r o
f

Su
rv
iv
in
g
W
al
ke
rs

0 5 10 15 20 25

1000
900
800
700
600
500
400400

1024

256

64

16

4

0

A B

DC

E

F

E F

A B C D

G H I

A B

C D

E
0 4 8 12 16 20

T = 1
T = 0.00

T = 0.00 T = 3.20

T = 9.00
T = 2 T = 3 T = 4

T =0.3 T =0.7 T =1.1 T =1.5

T =1.9 T =2.3 T =2.7 T =3.1

T = 5 T = 6 T = 7 T = 8

	Arxiv_DOCX
	Spiking Neuromorphic Hardware Shows Neuromorphic Advantage on Simulating Random Walks
	Neuromorphic-compatible random walks apply to broad class of PIDEs
	Results/Examples
	Neuromorphic hardware can simulate particle transport
	Neuromorphic approach to simulating on non-Euclidean geometries

	Discussion
	Acknowledgments
	Contributions
	Data Availability Statement
	References

	Figure1
	Figure2
	Figure3
	Figure4
	arxiv_appendix_print_image

