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Hardware implementations of spiking neurons can be extremely useful for a large variety of 

applications, ranging from high-speed modeling of large-scale neural systems to real-time 

behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions 

used to implement silicon neurons depend on the application requirements. In this paper we 

describe the most common building blocks and techniques used to implement these circuits, 

and present an overview of a wide range of neuromorphic silicon neurons, which implement 

different computational models, ranging from biophysically realistic and conductance-based 

Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We 

compare the different design methodologies used for each silicon neuron design described, 

and demonstrate their features with experimental results, measured from a wide range of 

fabricated VLSI chips.

Keywords: analog VLSI, subthreshold, spiking, integrate and fire, conductance based, adaptive exponential, log-domain, 

circuit

of the physics of neural computation that are fundamentally dif-

ferent from digital principles in traditional computing, initiated 

the investigations in the field of neuromorphic engineering (Mead, 

1989). Silicon neurons (SiNs) are hybrid analog/digital very large 

scale integration (VLSI) circuits that emulate the electrophysiologi-

cal behavior of real neurons and conductances. Hardware emula-

tions of neural systems that use SiNs operate in real-time, and the 

speed of the network is independent of the number of neurons or 

their coupling. SiNs offer a medium in which neuronal networks 

can be emulated directly in hardware rather than simply simulated 

on a general purpose computer. They are much more energy effi-

cient than simulations executed on general purpose computers, so 

they are suitable for real-time large-scale neural emulations (Silver 

et al., 2007; Schemmel et al., 2008). On the other hand, SiN circuits 

provide only a qualitative approximation to the exact performance 

of digitally simulated neurons, so they are not ideal for detailed 

quantitative investigations. Where SiN circuits provide a tangible 

advantage is in the investigation of questions concerning the strict 

real-time interaction of the system with its environment (Indiveri, 

2000; Le Masson et al., 2002; Vogelstein et al., 2008; Indiveri et al., 

2009; Mitra et al., 2009). And the  technology developed to build 

1 INTRODUCTION

Spike-based models of neurons have recently become very popular, 

for both investigating the role of spike-timing in the computational 

neuroscience field, and for implementing event-driven computing 

systems in the neuromorphic engineering field. Several spike-based 

neural network simulators have been developed within this context, 

and much research has focused on software tools and strategies 

for simulating spiking neural networks (Brette et al., 2007). Digital 

tools and simulators are convenient and practical for exploring the 

quantitative behavior of neural networks. However they are not 

ideal for implementing real-time behaving systems, or detailed large-

scale simulations of neural systems. Even the largest supercomputing 

systems to date are not capable of obtaining real-time performance 

when running simulations large enough to accommodate multiple 

cortical areas, yet detailed enough to include distinct cellular proper-

ties. Custom digital systems that exploit parallel graphical processing 

units (GPUs) or field programmable gate arrays (FPGAs) may offer 

such capabilities in due time, but it is not clear that such systems will 

be able to approach the density, energy efficiency, and resilience of 

neurons and synapses that they model in the central nervous sys-

tem. The observation that the brain operates on analog  principles 

http://www.frontiersin.org/neuromorphic_engineering/archive
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2011.00073/abstract
http://www.frontiersin.org/people/giacomoindiveri/1395
http://www.frontiersin.org/people/bernabelinares_barranco_1/12772
http://www.frontiersin.org/people/tarahamilton/21622
http://www.frontiersin.org/people/ralphetienne_cummings/14713
http://www.frontiersin.org/people/tobidelbruck/2614
http://www.frontiersin.org/people/shih_chiiliu/14463
http://www.frontiersin.org/people/philipph%c3%a4fliger/14711
http://www.frontiersin.org/people/sylvierenaud/765
http://www.frontiersin.org/people/johannesschemmel/1075
http://www.frontiersin.org/people/gertcauwenberghs/12771
http://www.frontiersin.org/people/johnarthur/25676
http://www.frontiersin.org/people/sylvainsa%c3%afghi/3865
http://www.frontiersin.org/people/jayawanwijekoon/25672
http://www.frontiersin.org/people/kwabenaboahen/2586


Frontiers in Neuroscience | Neuromorphic Engineering  May 2011 | Volume 5 | Article 73 | 2

Indiveri et al.  Neuromorphic silicon neurons

one or more of the following stages: A (linear or non-linear) 

temporal integration block, a spike generation block, a refrac-

tory period block and a spike-frequency or spiking threshold 

adaptation block. Each of these functional sub-blocks can be 

implemented using different circuit design techniques and styles. 

Depending on which functional blocks are used, and how they 

are combined, the resulting SiN can implement a wide range of 

neuron models, from simple linear-threshold units to complex 

multi-compartmental models.

The dendrites and axon circuit blocks can be used to implement 

the cable equation, for modeling signal propagation along pas-

sive neuronal fibers (Koch, 1999). These circuits allow the design 

of multi-compartment neuron models that take into account the 

neuron spatial structure. We will describe examples of such circuits 

in Section 3.5.

Design styles Table 1 summarizes the relevant computational 

sub-blocks useful for building SiNs and the possible design styles 

that can be used to implement them. Each computational block 

can be implemented with circuits that adopt any of the design 

strategies outlined in the bottom part of the table. The terms weak 

and strong inversion in that table refer to the region of operation 

of individual MOSFETs: In the weak-inversion (or sub-threshold) 

region the transistor current flow mechanism is diffusion, while 

in the strong-inversion (or above threshold) region, it is drift. The 

voltage-mode and current-mode design styles refer to the way 

input and output signals are represented (i.e., with voltages or 

currents respectively). S-C designs implement discrete time signal 

processing strategies, by using clocked switches (MOSFETs) to 

move charge from one capacitor to the next. Conversely in non-

clocked systems, signals are continuous and no global clock circuit 

is necessary. Biophysical and phenomenological models refer to the 

level of detail used in the SiN circuit, to implement a model of a real 

neuron. And the last two design styles, real- and accelerated-time 

refer to the range of time scales that can be emulated in hardware. 

Circuits that can operate with time-constants that are biologically 

plausible are said to be real-time, while circuits that can only run 

at time scales which are a factor to 10 or more faster, are said to 

be accelerated-time.

In the next Section we will describe some of the more common 

circuits used as basic building blocks for building SiNs which cover 

all design strategies outlined in Table 1.

these real-time, low-power neuromorphic systems can be used to 

engineer brain-inspired computational solutions for practical appli-

cations. The term “neuromorphic” was coined by Carver Mead in the 

late ’eighties to refer to artificial neural systems whose architecture 

and design principles are based on those of biological nervous sys-

tems (Mead, 1990). SiN circuits represent therefore one of the main 

building blocks for implementing neuromorphic systems. Although 

in the original definition, the term neuromorphic was restricted to 

the set of analog VLSI circuits that operate using the same physics 

of computation used by the nervous system (e.g., silicon neuron 

circuits that exploit the physics of the silicon medium to directly 

reproduce the bio-physics of nervous cells), the definition has now 

been broadened to include analog/digital hardware implementa-

tions of neural processing systems, as well as spike-based sensory 

processing systems. Within this context, many different types of SiNs 

have been proposed, that emulate real neurons at many different 

levels: From complex biophysical models that emulate ion channel 

dynamics and detailed dendritic or axonal morphologies to basic 

integrate-and-fire (I&F) circuits. Depending on the application 

domain of interest, SiN circuits can be more or less complex, with 

large arrays of neurons all integrated on the same chip, or single 

neurons implemented on a single chip, or with some elements of 

the neuron distributed across multiple chips.

In this work we describe a wide range of circuits commonly 

used to design SiNs, spanning multiple design strategies and tech-

niques that range from current-mode, sub-threshold to voltage-

mode, switched-capacitor (S-C) designs. Moreover we present an 

overview of the most representative silicon neuron circuit designs 

recently proposed, compare the different approaches followed, and 

point out advantages and strengths of each design.

2 SILICON NEURON COMPUTATIONAL BLOCKS

From the functional point of view, silicon neurons can all be 

described as circuits that have one or more synapse blocks, respon-

sible for receiving spikes from other neurons, integrating them over 

time and converting them into currents, as well as a soma block, 

responsible for the spatio-temporal integration of the input sig-

nals and generation of the output analog action potentials and/or 

digital spike events. In addition both synapse and soma blocks can 

be interfaced to circuits that model the neuron’s spatial structure 

and implement the signal processing that takes place in dendritic 

trees and axons respectively.

The synapse circuits of a SiN can carry out linear and non-linear 

integration of the input spikes, with elaborate temporal dynam-

ics, and short and long-term plasticity mechanisms. The temporal 

integration circuits of silicon synapses, as well as those responsible 

for converting voltage spikes into excitatory or inhibitory post-syn-

aptic currents (EPSCs or IPSCs respectively) share many common 

elements with those used in the soma integration and adaptation 

blocks. Therefore in this paper we restrict our analysis of synapse cir-

cuits only to those circuits that implement the basic functionalities of 

voltage-spike to current conversion and temporal integration, while 

their complex non-linear features and their spike-timing depend-

ent plasticity mechanisms will be the focus of a subsequent paper.

The soma block of a SiN can be further subdivided into several 

functional blocks that reflect the computational properties of 

the theoretical models they implement. Typically SiNs comprise 

Table 1 | Main SiN computational blocks, and circuit design styles.

COMPUTATIONAL BLOCKS

Temporal integration block 

Spike/event generation block 

Refractory period mechanism 

Spike-frequency adaptation block 

Spiking threshold adaptation block 

DESIGN STYLES

Weak inversion Strong inversion

Voltage mode Current-mode

Non-clocked Switched-capacitor

Biophysical model Phenomenological model

Real-time Accelerated-time
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(spikes) arriving at the V
in 

node are integrated to produce an output 

current I
syn

 with exponential rise and decay temporal dynamics. 

The circuit time-constant can be set by adjusting the V
t
 bias, and 

the maximum current amplitude (e.g., corresponding to synaptic 

efficacy) depends on both V
t
 and V

w
. A recent current-mode circuit 

that implements temporal dynamics using this log-domain LPF cir-

cuit coupled to a wide-range transconductance amplifier has been 

proposed in Rachmuth and Poon (2008). This circuit allows robust 

emulation of emergent iono-neuronal dynamics, reproducing also 

chaotic bursting as observed in pacemaker cells. A detailed analysis 

of the synaptic and neural dynamics that can be obtained with 

the log-domain LPF circuit is presented in Bartolozzi and Indiveri 

(2007). In Bartolozzi and Indiveri (2007) the authors propose also 

additional circuits for implementing synaptic dynamics, including 

a novel differential pair integrator (DPI) circuit (see Figure 1C). 

Similar to the LPF pulse integrator, the DPI circuit integrates volt-

age pulses, following a current-mode approach. However, rather 

than using a single pFET to generate the appropriate I
w
 current, 

via the translinear principle (Gilbert, 1975), it uses a differential 

pair in negative feedback configuration. This allows the circuit to 

achieve LPF functionality with tunable dynamic conductances: 

Input voltage pulses are integrated to produce an output current 

that has maximum amplitude set by V
w, 

V
t
, and V

thr
. In all circuits 

of Figure 1 the V
w
 bias (the synaptic weight) can be set by local 

circuits to implement learning and plasticity (Fusi et al., 2000; Mitra 

et al., 2009). However, the DPI offers an extra degree of freedom via 

the V
thr

 bias. This parameter can be used to implement additional 

adaptation and plasticity schemes, such as intrinsic or homeostatic 

plasticity (Bartolozzi and Indiveri, 2009). A complete analysis of 

the DPI and its modes of operation is provided in (Bartolozzi and 

Indiveri, 2007). The DPI will be used in Section 4.2 to implement 

the DPI-neuron.

Thermodynamically equivalent models

Many of the membrane channels that shape the output activity of a 

neuron exhibit dynamics that can be represented by state changes of 

a series of voltage-dependent gating particles, which must be open 

for the channel to conduct. The state-transitions of these particles 

can be understood within the context of thermodynamic equivalent 

3 SILICON NEURON CIRCUIT BLOCKS

3.1 CONDUCTANCE DYNAMICS

Temporal integration

It has been shown that an efficient way of modeling neuron conduct-

ance dynamics and synaptic transmission mechanisms is by using 

simple first-order differential equations of the type t y y x= − + ,  

where y represents an output voltage or current, and x the input 

driving force (Destexhe et al., 1998). For example, this equation gov-

erns the behavior of all passive ionic channels found in nerve mem-

branes. In the classical silicon neuron implementation proposed by 

Mahowald and Douglas (1991) the circuit used to implement the 

equation described above for modeling the neuron’s passive leak 

conductance is the follower–integrator circuit. The follower–integra-

tor comprises a transconductance amplifier configured in negative 

feedback mode with its output node connected to a capacitor. When 

used in the weak-inversion domain, as a voltage mode circuit, the 

follower–integrator behaves as a first-order low-pass filter with a 

tunable conductance. A detailed description of this circuit is pro-

vided in Liu et al. (2002). Conversely, in current-mode designs, 

an efficient strategy for implementing the first-order differential 

equations described above, is to use log-domain circuits (Tomazou 

et al., 1990). For example, the log-domain “Bernoulli-Cell” is a 

circuit that can implement synaptic and conductance dynam-

ics (Drakakis et al., 1997). The circuit operates in current-mode 

and in the weak-inversion (or sub-threshold) domain. It has been 

fully characterized in Drakakis et al. (1997), and has been used to 

implement Hodgkin–Huxley VLSI models of neurons (Toumazou 

et al., 1998). A similar log-domain circuit is shown in Figure 1A: 

This circuit, called the “Tau-Cell,” was first proposed in Edwards 

and Cauwenberghs (2000) as a BiCMOS log-domain filter; it was 

fully characterized in van Schaik and Jin (2003) as a sub-threshold 

log-domain circuit, and used in Yu and Cauwenberghs (2010b) to 

implement conductance-based synapses. This circuit is used also in 

the tau-cell neuron, described in Section 4.2. Another sub-threshold 

log-domain circuit is the low pass filter (LPF) described in Arthur 

and Boahen (2004, 2007), and shown in Figure 1B. This circuit 

is based on the standard log-domain low pass filter (Frey, 1993) 

originally implemented using bipolar transistors, but has been 

simplified to act as a voltage pulse integrator: Input voltage pulses 
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FIGURE 1 | (A) “Tau-cell” circuit: log-domain circuit used to implement a first-order low-pass filter (LPF); (B) Sub-threshold first-order LPF circuit; (C) “DPI” circuit: 

non-linear current-mode LPF circuit.
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sub-threshold circuits described above, and integrators are typically 

implemented using classical filter design techniques or S-C tech-

niques. Examples of integrators implemented using these design 

strategies are described in Section 4.4.

3.2 SPIKE-EVENT GENERATION

Biophysically realistic implementations of neurons produce analog 

waveforms that are continuous and smooth in time, even for the 

generation of action potentials (we will describe examples of these 

types of circuits in Section 4.1). In many other neuron models, 

however, the action potential is a discontinuous and discrete event 

which is generated whenever a set threshold is crossed.

One of the original circuits proposed for generating discrete 

events in VLSI implementations of silicon neurons is the Axon-

Hillock circuit (Mead, 1989). Figure 3A shows a schematic diagram 

of this circuit. The amplifier block A is typically implemented 

using two inverters in series. Input currents I
in

 are integrated on 

the membrane input capacitance C
mem

, and the analog voltage V
mem

 

increases linearly until it reaches the amplifier switching threshold 

(see Figure 3B). At this point V
out

 quickly changes from 0 to V
dd

, 

switching on the reset transistor and activating a positive feedback 

through the capacitor divider implemented by C
mem

 and the feedback 

capacitor C
fb
. If the reset current set by V

pw
 is larger then the input 

current, the membrane capacitor is discharged, until it reaches the 

amplifier’s switching threshold again. At this point V
out

 swings back 

to 0 and the cycle repeats. The inter-spike interval t
L
 is inversely 

proportional to the input current, while the pulse duration period 

t
H
 depends on both the input and reset currents. A comprehensive 

description of the circuit operation is presented in Mead (1989).

One of the main advantages of this self-resetting neuron circuit 

are its excellent matching properties: mismatch is mostly depend-

ent on the matching properties of the two capacitors of the circuit 

rather than any of its transistors. As low mismatch is especially 

desirable in imagers and photoreceptor arrays, this circuit has been 

applied to the design of a spiking (or event-based) vision sensor 

(Azadmehr et al., 2005; Olsson and Häfliger, 2008). In this case, 

rather than using the reset voltage V
pw

 as an analog bias, the design-

ers used it as a digital signal externally controlled, and exploited its 

good matching properties.

models (Destexhe and Huguenard, 2000): The membrane voltage 

creates an energy barrier which a gating particle (a charged mol-

ecule) must overcome to change states (e.g., to open). Changes in 

the membrane voltage modulate the size of the energy barriers, 

altering the rates of opening and closing of a gating particle. The 

average conductance of a channel is proportional to the percentage 

of the population of individual channels that are open.

Since transistors also involve the movement of a charged particle 

through an electric field, a transistor circuit can directly represent 

the action of a population of gating particles (Hynna and Boahen, 

2007). Figure 2 shows a thermodynamic model of a gating variable 

in which the drain current of transistor M2 in Figure 2A represents 

the gating particle’s rate of opening, while the source current of M1 

represents the rate of closing. The voltage V
O
 controls the height 

of the energy barrier in M2: Increasing V
O
 increases the opening 

rate, shifting u
V
 toward u

H
. Increasing V

C
 has the opposite effect: 

The closing rate increases, shifting u
V
 toward u

L
. Generally, V

O
 and 

V
C
 are inversely related; that is, as V

O
 increases, V

C
 should decrease.

The source of M2, u
V
 is the log-domain representation of the 

gating variable u. Attaching u
V
 to the gate of a third transistor (not 

shown) realizes the variable u as a modulation of a current set by 

u
H
. Connected as a simple activating channel – with V

O
 propor-

tional to the membrane voltage (Hynna and Boahen, 2007) – the 

voltage dependence of the steady-state and time-constant of u, as 

measured through the output transistor, match the sigmoid and 

bell-shaped curves commonly measured in neurophysiology (see 

Figure 2B). This circuit will be used in Section 4.1 to implement 

the Thalamic relay neuron.

Phenomenological models

It is also possible to model conductance and channel dynamics by 

abstracting their behavior, describing it with sets of differential 

equations, and solving them using analog circuits. One can resort 

to using systematic synthesis methods for mapping non-linear dif-

ferential equations onto analog circuits. For example, using this 

strategy it was possible to design circuit implementations for the 

FitzHugh-Nagumo neuron model (FitzHugh, 1961), as proposed 

in Linares-Barranco et al. (1991). These methods typically use volt-

age mode above-threshold circuits rather than the current-mode 
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FIGURE 2 | Thermodynamic model of a gating variable. (A) Gating variable circuit. (B) Voltage dependence of the steady-state and time-constant of the variable 

circuit in (A). See Hynna and Boahen (2007) for details.
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potassium conductance creates the downswing. In the circuit this 

is modeled as follows: As V
mem

 rises above V
thr

, the output voltage of 

the comparator will rise to the positive power supply. The output 

of the following inverter will thus go low, thereby allowing the 

sodium current I
Na

 to pull up the membrane potential. At the same 

time however, a second inverter will allow the capacitance C
K
 to 

be charged at a speed which can be controlled by the current I
Kup

. 

As soon as the voltage on C
K
 is high enough to allow conduction 

of the nFET M2, the potassium current I
K
 will be able to discharge 

the membrane capacitance. Two different potassium channel cur-

rents govern the opening and closing of the potassium channels: 

The current I
Kup

 controls the spike width, as the delay between the 

opening of the sodium channels and the opening of the potassium 

channels is inversely proportional to I
Kup

. If V
mem

 now drops below 

V
thr

, the output of the first inverter will become high, cutting off 

the current I
Na

. Furthermore, the second inverter will then allow C
K
 

to be discharged by the current I
Kdn

. If I
Kdn

 is small, the voltage on 

C
K
 will decrease only slowly, and, as long as this voltage stays high 

enough to allow I
K
 to discharge the membrane, it will be impossible 

to stimulate the neuron for I
ex

 values smaller than I
K
. Therefore I

Kdn
 

controls the refractory period of the neuron.

The principles used by this design to control spiking thresholds 

explicitly have been used in analogous SiN implementations (Indiveri, 

2000; Indiveri et al., 2001; Liu et al., 2001). Similarly, the principle 

of using starved inverters1 and capacitors to implement refractory 

periods is used also in the DPI neuron described in Section 4.2.

3.3 SPIKING THRESHOLDS AND REFRACTORY PERIODS

The Axon-Hillock circuit produces a spike event when the mem-

brane voltage crosses a voltage threshold that depends on the geom-

etry of the transistors and on the VLSI process characteristics. In 

order to have better control over the spiking threshold, it is possible 

to use a five-transistor amplifier, as shown in Figure 4A. This neu-

ron circuit, originally proposed in (van Schaik, 2001) comprises 

circuits for both setting explicit spiking thresholds and implement-

ing an explicit refractory period. Figure 4B depicts the various 

stages that the membrane potential V
mem

 is involved in, during the 

generation of an action potential.

The capacitance C
mem

 of this circuit models the membrane of 

a biological neuron, while the membrane leakage current is con-

trolled by the gate voltage V
lk
, of an nFET. In the absence of any 

input the membrane voltage will be drawn to its resting potential 

(ground, in this case), by this leakage current. Excitatory inputs 

(e.g., modeled by I
in

) add charge to the membrane capacitance, 

whereas inhibitory inputs (not shown) remove charge from the 

membrane capacitance. If an excitatory current larger than the leak-

age current is injected, the membrane potential V
mem

 will increase 

from its resting potential. The voltage V
mem

 is compared with the 

threshold voltage V
thr

, using a basic transconductance amplifier (Liu 

et al., 2002). If V
mem

 exceeds V
thr

, an action potential is generated. 

The generation of the action potential happens in a similar way as 

in the biological neuron, where an increased sodium conductance 

creates the upswing of the spike, and a delayed increase of the 
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V
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V
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t
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t
L

V

t

FIGURE 3 | Axon-hillock circuit. (A) Schematic diagram; (B) Membrane 

voltage and output voltage traces over time.
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FIGURE 4 | Voltage-amplifier I&F neuron. (A) Schematic diagram; (B) 

Membrane voltage trace over time.

1Inverting amplifier circuits in which the current is limited by a MOSFET in series 

appropriately biased.
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with the individually separated dendritic branches, allowing for 

parallel processing of different sets of inputs on different branches 

before their outputs are combined (Mel, 1994).

Early VLSI dendritic systems included the passive cable circuit 

model of the dendrite specifically by implementing the dendritic 

resistance using S-C circuits (Elias and Northmore, 1999; Rasche 

and Douglas, 2001). Other groups have subsequently incorporated 

some active channels into VLSI dendritic compartments [e.g., 

(Arthur and Boahen, 2004)]. Farquhar and Hasler applied their 

transistor channel approach for building ion channels (Farquhar 

et al., 2004) to building active dendrite models in which ions were 

able to diffuse both across the membrane and axially along the 

length of the dendrite (Hasler et al., 2007). They used sub-threshold 

MOSFETs to implement the conductances seen along and across the 

An additional advantage that this circuit has over the Axon-

Hillock circuit is power consumption: The Axon-Hillock circuit 

non-inverting amplifier, comprising two inverters in series, dis-

sipates large amounts of power for slowly varying input signals, 

as the first inverter spends a significant amount of time in its fully 

conductive state (with both nFET and pFET conducting) when 

its input voltage V
mem

 slowly crosses the switching threshold. The 

issue of power consumption has been addressed also in other SiN 

designs, and will be discussed in Section 4.1.

3.4 SPIKE-FREQUENCY ADAPTATION AND ADAPTIVE THRESHOLDS

Spike-frequency adaptation is a mechanism observed in a wide vari-

ety of neural systems. It acts to gradually reduce the firing rate of a 

neuron in response to constant input stimulation. This mechanism 

may play an important role in neural information processing, and 

can be used to reduce power consumption and bandwidth usage 

in VLSI systems comprising networks of silicon neurons.

There are several processes that can produce spike-frequency 

adaptation. Here we will focus on the neuron’s intrinsic mechanism 

which produces slow ionic currents with each action potential that 

are subtracted from the input. This “negative feedback mechanism” 

has been modeled differently in a number of SiNs.

The most direct way of implementing spike-frequency adapta-

tion in a SiN is to integrate the spikes produced by the SiN itself 

(e.g., using one of the filtering strategies described in Section 3.1) 

and subtract the resulting current from the membrane capacitance. 

This would model the effect of calcium-dependent after-hyperpo-

larization potassium currents present in real neurons (Connors 

et al., 1982) and introduce a second slow variable in the model, in 

addition to the membrane potential variable, that could be effec-

tively used to produce different spiking behaviors. Figure 5A shows 

measurements from a SiN with this mechanism implemented 

(Indiveri, 2007), in response to a constant input current.

Spike-frequency adaptation and other more complex spiking 

behaviors can also be modeled by implementing models with 

adaptive thresholds, as in the Mihalas–Niebur neuron model 

(Mihalas and Niebur, 2009). In this model a simple first-order 

equation is used to update the neuron’s spiking threshold voltage 

based on the membrane voltage variable itself: For high mem-

brane voltage values, the spiking threshold adapts upwards, 

increasing the time between spikes for a constant input. Low 

membrane voltage values, on the other hand, result in a decrease 

of the spiking threshold voltage. The speed at which the threshold 

adapts in this model is dependent on several parameters. Tuning 

of these parameters determines the type of spiking behavior that 

is exhibited by the SiN. Figure 5B shows spike-frequency adap-

tation using an adaptive threshold. Here each time the neuron 

spikes the threshold voltage resets to a higher value so that the 

membrane voltage must grow by a larger amount and hence the 

time between spikes increases.

Examples of two-state variable SiNs that use either of these 

mechanisms will be presented in Section 4.

3.5 AXONS AND DENDRITIC TREES

Recent experimental evidence suggests that individual dendritic 

branches can be considered as independent computational units. 

A single neuron can act as a multi-layer computational network, 
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 demonstrate that the response of a dendritic component can be 

described as a non-linear sigmoidal function of both input temporal 

synchrony and spatial clustering (Wang and Liu, 2010). This response 

function means that linear or non-linear computation in a neuron 

can be evoked depending on the input spatio-temporal pattern.

3.6 ADDITIONAL USEFUL BUILDING BLOCKS

Digi-MOS

Circuits that operate like a MOS transistor but with a digitally adjust-

able size factor W/L are very useful in neuromorphic SiN circuits, 

for providing a weighted current or for calibration to  compensate 

for mismatch. Figure 7 shows a possible circuit implementation 

membranes and model diffusion as the macro-transport method 

of ion flow. The resulting single dimensional circuit is analogous 

to the diffuser circuit described in Hynna and Boahen (2006), but 

allows the conductances of each of the MOSFETs to be individually 

programmed to obtain the desired neuron properties. In Hasler 

et al. (2007) they showed how an aVLSI active dendrite model could 

produce action potentials down a cable of uniform diameter with 

active channels every five segments.

The authors in Wang and Liu (2010) have recently constructed 

an aVLSI neuron with a reconfigurable dendritic architecture which 

includes both individual computational units and a different spa-

tial filtering circuit (see Figure 6). Using this VLSI prototype, they 
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4 SILICON NEURON IMPLEMENTATIONS

We will now make use of the circuits and techniques introduced in 

Section 3 to describe silicon neuron implementations. We organized 

the various circuit solutions in the following way: sub-threshold 

biophysically realistic models; compact I&Fcircuits for event-based 

systems; generalized I&F neuron circuits; above threshold, acceler-

ated-time, S-C, and digital designs.

4.1 SUB-THRESHOLD BIOPHYSICALLY REALISTIC MODELS

The types of SiN designs described in this section exploit the 

biophysical equivalence between the transport of ions in bio-

logical channels and charge carriers in transistor channels. In 

the classical conductance-based SiN implementation described 

in Mahowald and Douglas (1991), the authors modeled ionic 

conductances using five-transistor transconductance amplifier 

circuits (Liu et al., 2002). In Farquhar and Hasler (2005), the 

authors showed how it is possible to model ionic channels using 

single transistors, operated in the sub-threshold domain. By 

using two-transistor circuits Hynna and Boahen (2007) showed 

how it is possible to implement complex thermodynamic mod-

els of gating variables (see also Section 3.1). By using multiple 

instances of the gating variable circuit of Figure 2A it is possible, 

for example, to build biophysically faithful models of thalamic 

relay neurons.

The thalamic relay neuron

Thalamic relay neurons possess a low-threshold calcium chan-

nel (also called a T-channel) and a slow inactivation variable, 

which turns off at higher voltages and opens at low voltages. The 

T-channel can be implemented using a fast activation variable, 

and implemented using the gating variable circuit of Figure 2. 

Figure 8A shows a simple two-compartment neuron circuit with 

a T-channel current, which can reproduce many response proper-

ties of real Thalamic relay cells (Hynna and Boahen, 2009). In the 

based on MOS ladder structures (Linares-Barranco et al., 2003). In 

this example, the five-bit control word b
4
b

3
b

2
b

1
b

0
 is used to set the 

effective (W/L)
eff 

ratio. As the currents flowing through each sub-

branch differ significantly, this circuit does not have unique time-

constants. Furthermore small currents flowing through the lower 

bit branches will settle to a steady state value very slowly, therefore 

such a circuit should not be switched at high-speeds, but should 

rather be used to provide DC biasing currents. This circuit has been 

used in spatial contrast retinas [18] and charge packet I&F neurons 

within event-based convolution chips (Serrano-Gotarredona et al., 

2006, 2008) for mismatch calibration.

Alternative design schemes, using the same principle but different 

arrangement of the transistors can be used for applications in which 

high-speed switching is required (Leñero-Bardallo et al., 2010).

Very low current mirrors

Typically, the smallest currents that can be processed in conven-

tional circuits are limited by the MOS “off sub-threshold current,” 

which is the current a MOS transistor conducts when its gate-

to-source voltage is zero. However, MOS devices can operate well 

below this limit (Linares-Barranco and Serrano-Gotarredona, 

2003). To make MOS transistors operate properly below this limit, 

one needs to bias them with negative gate-to-source voltages, as 

illustrated in the current mirror circuit of Figure 7C. Transistors 

M1–M2 form the current mirror. Current I
in

 is assumed to be very 

small (pico or femto amperes), well below the “off sub-threshold 

current.” Consequently, transistors M1 and M2 require a negative 

gate-to-source voltage. By using the voltage level shifter M4–M5 

and connecting the source voltage of M1–M2 to V
nsh

 = 0.4 V, the 

mirror can be biased with negative gate-to-source voltages. This 

technique has been used to build very low frequency compact 

 oscillators and filters (Linares-Barranco and Serrano-Gotarredona, 

2003), or to perform in-pixel direct photo current manipulations 

in spatial contrast retinas (Costas-Santos et al., 2007).
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inhibitory current is input into the cell, lowering the initial mem-

brane voltage, then the T-channel deactivates prior to the step (see 

Figure 8B). Once the step occurs, V
mem

 begins to slowly increase 

until the T-channel activates, which excites the cell and causes it 

to burst. Since V
mem

 is now much higher, the T-channel begins to 

inactivate, seen in the decrease of spike frequency within the burst 

on successive spikes, leading eventually to a cessation in spiking 

activity. In addition to the behavior shown here, this simple model 

also reproduces the Thalamic response to sinusoidal inputs (Hynna 

and Boahen, 2009).

The approach followed for this Thalamic relay SiN can be 

extended by using and combining multiple instances of the basic 

building blocks described in Section 3.1.

A sub-threshold Hodgkin–Huxley based neuron

In Yu and Cauwenberghs (2010a) the authors proposed a sub-thresh-

old Hodgkin–Huxley (H–H) based SiN model by combining instances 

of the tau-cell circuit shown in Figure 1 with sub-threshold circuits of 

the type shown in Figure 9, which implement the non-linear func-

tions typically used with the H–H model gating variables m, h, and n 

(Hodgkin and Huxley, 1952). Specifically, in Yu and Cauwenberghs 

(2010a) the authors presented a mixed-signal VLSI chip integrating a 

biophysical network of four H–H neurons and twelve conductance-

based synapses, with programmable detailed kinetics of channel gat-

ing variables. The voltage dependence profile of closing and  opening 

neuron circuit of Figure 8A the first block (on the left) integrates 

input spikes and represents the dendritic compartment, while the 

second block (on the right) produces output voltage spikes, and 

represents the somatic compartment.

The dendritic compartment contains all active membrane com-

ponents not involved in spike generation – namely, the synapses 

(e.g., one of the low-pass filters described in Section 3.1) and the 

T-channel – as well as common passive membrane components 

– a membrane capacitance (C
mem

) and a membrane conductance 

(the nFET M1).

The somatic compartment, comprising a simple I&F neuron 

such as the Axon-Hillock circuit described in Section 3.2, receives 

input current from the dendrites through a diode-connected tran-

sistor (M2). Though a simple representation of a cell, relay neurons 

respond linearly in frequency to input currents (McCormick and 

Feeser, 1990), just as an I&F cell. Due to the rectifying behavior of 

the diode (the pFET M2 in Figure 8A), current only passes from 

the dendrite to the soma. As a result, the somatic action potential 

does not propagate back to the dendrite; only the hyperpolarization 

(reset) that follows is evident in the dendritic voltage trace (V
mem

). 

This is a simple approximation of dendritic low-pass filtering of 

the back-propagating signal.

When V
mem

 rests at higher voltages, the T-channel remains inac-

tivated, and a step change in the input current simply causes the 

cell to respond with a constant frequency (see Figure 8C). If an 
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rent between V
dd

 and ground (GND) to flow when the transistors 

are both on and in saturation, which is the case at threshold. This 

is further compounded by the fact that the membrane potential 

usually changes very slowly, on time scales of milliseconds to sec-

onds, which means that the spike generator remains in the high 

power consumption regime. Positive feedback, either capacitive- or 

current-based, can accelerate its transition. Capacitive feedback is 

already used in the Axon-Hillock circuit, however current-based 

feedback is more effective for reducing power consumption. Hence 

the octopus neuron has four interesting properties: (1) It uses cur-

rent feedback to accelerate the membrane potential transition when 

threshold is reached by adding an additional input current to the 

neuron. (2) It efficiently re-uses the short-circuit current in the 

spike generator to generate the feedback current. (3) The membrane 

capacitor (C
mem

 of Figure 10) is not completely discharged to GND 

during spike production by disconnecting it from the feedback 

current and the input of the spike generator. The input of the spike 

generator, however, accelerates to G
nd

. This reduces power during 

spike production by a factor of approximately 25, accelerates the 

transition at threshold by a factor of approximately 100, and reduces 

power consumption during reset (Culurciello et al., 2003). (4) It 

only consumes power during spike generation and reset, which 

typically lasts for a few nano-seconds. The net effect is a total energy 

consumption of less than 4 pJ/spike in the 0.6 µm CMOS process 

in which the chip was implemented.

The dynamic vision sensor differencing neuron

Another compact neuron circuit is the one used in the dynamic 

vision sensor (DVS) silicon retina (Lichtsteiner et al., 2008). This cir-

cuit is optimized to reduce mismatch across cells. The DVS has pixels 

that produce an ON or OFF event signifying quantized increases and 

decreases of log intensity since the last event from the pixel. In the 

DVS, the input to the ON/OFF neuron comes from a logarithmic 

photoreceptor, but this same circuit could be used with any input 

that can drives the capacitive input. This circuit is nearly a perfect 

rates for each of the 24 channel gating variables are individually 

digitally programmable using on-chip digital-to-analog converters 

(DACs) and analog spline regression functions implemented with the 

seven-point additive spline (Yu and Cauwenberghs, 2010a) sigmoidal 

function circuit of Figure 9. Tau-cell based dynamic and cascaded 

translinear circuits (Figure 1A) implement first-order rate kinetics in 

the channel variables and their non-linear gating of the correspond-

ing membrane channel conductances. The comparison between the 

experimental silicon and modeled (experimental neuroscience) equi-

librium values of the channel gating variables is given in Figure 9B. 

The temporal scale of the dynamics both in the membrane and the 

channel variables can be uniformly scaled, for a global speedup of 

the analog simulation, by tuning a single current bias parameter (Yu 

and Cauwenberghs, 2010a).

4.2 COMPACT INTEGRATE-AND-FIRE CIRCUITS FOR EVENT-BASED 

SYSTEMS

We have shown examples of circuits used to implement faithful 

models of spiking neurons. These circuits can require significant 

amounts of silicon real-estate. At the other end of the spectrum are 

compact circuits that implement basic models of I&F neurons. A 

common goal is to integrate very large numbers of these circuits 

on single chips to create large arrays of spiking elements, or large 

networks of neurons densely interconnected (Merolla et al., 2007; 

Vogelstein et al., 2007; Schemmel et al., 2008). In these systems, 

the strategy used to transmit spikes off-chip is to use the address-

event representation (AER; Lazzaro et al., 1993; Deiss et al., 1998; 

Boahen, 2000): Each spiking neuron is assigned an address and 

when a neuron fires its address is instantaneously put on a digi-

tal bus, using asynchronous digital circuits that map and route 

the spikes to other nodes on different chips (Chicca et al., 2007; 

Schemmel et al., 2008). In this representation time represents itself, 

and analog signals are encoded by the inter-spike intervals between 

the addresses of their sending neurons. It is therefore important to 

develop compact low-power circuits that implement useful abstrac-

tions of real neurons, but that can also produce very fast digital 

pulses required by the asynchronous circuits that manage the AER 

communication infrastructure.

A common application of basic I&F spiking circuits is their use 

in neuromorphic vision sensors. In this case the neuron is respon-

sible for encoding the signal measured by the photoreceptor, and 

transmitting it off-chip using the AER. In Azadmehr et al. (2005) 

and Olsson and Häfliger (2008), the authors used the Axon-Hillock 

circuit described in Section 3.2 to produce AER events. In Olsson 

and Häfliger (2008) the authors showed how this circuit can be 

interfaced to the AER interfacing circuits in a way to minimize 

device mismatch. Conversely, in Culurciello et al. (2003) the authors 

developed an imager inspired by the octopus retina, in which the 

spiking neuron circuit was optimized for minimum power con-

sumption. In Lichtsteiner et al. (2008), the authors developed a 

retina for sensing changes in brightness, using a compact ON/OFF 

neuron with good threshold matching properties.

The octopus retina neuron

The neuron used in the octopus retina (Culurciello et al., 2003) is 

shown in Figure 10. As mentioned in Section 3.2, any neuron that 

uses inverters (starved or otherwise) will allow the short-circuit cur-

Vdd

Vdd

Vreset

Cmem

Vspike

FIGURE 10 | The octopus retina neuron. The input current is generated by a 

photodetector, while the spike generator uses positive current feedback to 

accelerate input and output transitions to minimize short-circuit currents 

during spike production. The membrane capacitance (C
mem

) is disconnected 

from the input of the spike generator to further accelerate transition and to 

reduce power during reset.
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approaches can be obtained by implementing conductance-based 

or generalized I&F models (Jolivet et al., 2004). It has been shown 

that these types of models that capture many of the properties of 

biological neurons, but require less and simpler differential equa-

tions compared to H–H based models (Izhikevich, 2003; Jolivet et al., 

2004; Brette and Gerstner, 2005; Mihalas and Niebur, 2009; Naud 

et al., 2009). In addition to being efficient computational models 

for software implementations, these models lend themselves to effi-

cient hardware implementation as well (Wijekoon and Dudek, 2008; 

Folowosele et al., 2009a; Livi and Indiveri, 2009; Indiveri et al., 2010; 

Rangan et al., 2010; van Schaik et al., 2010a, 2010b).

The tau-cell neuron

The circuit shown in Figure 12, dubbed as the “Tau-Cell neuron” 

been used as the building block for implementations of both 

the Mihalas–Niebur neuron (van Schaik et al., 2010a) and the 

Izhikevich neuron (Rangan et al., 2010; van Schaik et al., 2010b). 

The basic leaky I&F functionality is implemented using the tau-

cell log-domain circuit described in Section 3.1. This approach 

uses current-mode circuits, so the state variable, which is normally 

the membrane voltage, V
mem

, is transformed to a current I
mem

. A 

tau-cell, configured as a first-order low-pass filter, is used to model 

the leaky integration. In order to create a spike, I
mem

 is copied by 

pFETs M5 and M8 and compared with the constant threshold cur-

rent I
u
. Since I

mem
 can be arbitrarily close to I

u
, a current limited 

inverter (M12, M13) is added to reduce power consumption while 

converting the result of the comparison into a digital value V
nspk

. 

A positive voltage spike V
spk

 is generated with inverter M14, M15 

with a slight delay with respect to V
nspk

. pFET M5–M7 implement 

positive feedback based on V
nspk

 while nFET M16 resets I
mem

 to a 

value determined by V
el
. This reset causes the end of the positive 

feedback and the end of the spike and the membrane is ready to 

start the next integration cycle.

The log-domain LPF neuron

The log-domain LPF neuron (LLN) is a simple yet reconfigurable 

I&F circuit (Arthur and Boahen, 2004, 2007) that can reproduce 

many of the behaviors expressed by generalized I&F models. Based 

integrator: The corner frequency is about 0.05 Hz and is limited 

by the off-state leakage of the reset transistor. The pixel circuit is 

shown in Figure 11. Each time the pixel outputs an event (either 

ON or OFF), a reset pulse from the AER communication circuits 

memorizes the last log intensity value across capacitor C
1
. Changes 

in log intensity are capacitively coupled to the input of the invert-

ing capacitive-feedback amplifier A
1
, which has a gain of about −20. 

The A
1
 output V

d1
 is then compared to two reference levels by the 

high gain amplifiers A
ON

 and A
OFF

. When V
ON

 or V
OFF

 crosses the 

logic threshold, transmission of the ON or OFF event is initiated, 

resulting finally in a pulse on V
reset 

that starts the cycle over again.

The matching behavior of this circuit is the key to the success of 

the DVS, which is the first event-based silicon retina that has been 

commercialized and sold to other institutions. Because the DC 

mismatch in the log intensity value is blocked by C
1
, and because A

1
 

inserts a high gain element that appears before the poorly matched 

comparators A
ON

 and A
OFF

, the mismatch referred back to the signal 

of interest (dlogI) is reduced by the gain of A
1
. For example, if the 

mismatch of A
ON

/A
OFF

 are 20 mV and the gain A
1
 = 20, then the 

mismatch at the logI output is reduced to 1 mV, which corresponds 

to a visual contrast of about 3.5%. This relatively good matching 

allows the DVS to be used with natural visual input, which often has 

rather low contrast. This circuit is an example of the general princi-

ple of removing static mismatch and amplifying before comparing 

for improving precision using imprecise elements. Measurements 

show that across an array of 16k pixels the one-sigma matching is 

equivalent to about 2% contrast. The five-sigma matching (which 

applies across a large array of cells) is then about 10%, in agree-

ment with practical contrast threshold settings of about 15% that 

we routinely use (Lichtsteiner et al., 2008).

4.3 GENERALIZED INTEGRATE-AND-FIRE NEURON CIRCUITS

The simplified I&F neuron circuits described in the previous Section 

require far less transistors and parameters than the biophysically 

realistic models of Section 4.1. But they do not produce a rich 

enough repertoire of behaviors useful for investigating the com-

putational properties of large neural networks (Izhikevich, 2003; 

Brette and Gerstner, 2005). A good compromise between the two 
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dimensionless membrane potential v, and adaptive conductance g 

variable (proportional to I
n
 and I

g
 of Figure 13A respectively), can 

be described by the following set of equations:

 

t n n n

n

t

d

dt
g

d

dt
g g g r tg

= − + + +

= − +

∞
( )

( )

1
3

3

max

 

(1)

where n∞ is v’s steady state level in the absence of positive feedback 

and g = 0; t and t
g
 are the membrane and adaptive conductance 

time-constants, respectively; and g
max

 is the adaptive conductance’s 

absolute maximum value. When v reaches a high level (>>10), a 

spike is emitted, and r(t) is set high for a brief period, T
R
. r(t) is 

a reset–refractory signal, driving v low (not shown in equation).

The LLN is composed of four sub-circuits (see Figure 13): A 

membrane LPF (M
L1–3

), a spike event generation and positive-

feedback element (M
A1–6

), a reset–refractory pulse generator  

(M
R1–3

), and an adaptation LPF (M
G1–4

). The membrane LPF realizes 

I
n
(∝n)’s first-order (resistor–capacitor) dynamics in response to I

in
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FIGURE 12 | The tau-cell neuron circuit.
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FIGURE 13 | The log-domain LPF neuron (LLN). (A) The LLN circuit comprises a membrane LPF (yellow, M
L1−3

), a spike-event generation and positive-feedback 

element (red, M
A1−6

), a reset-refractory pulse generator (blue, M
R1−3

), and a spike-frequency adaptation LPF (green, M
G1−4

). (B) Recorded and normalized traces from a 

LLN fabricated in 0.25 µm CMOS, exhibits regular spiking, spike-frequency adaptation, and bursting (top to bottom).

on the LPF of Figure 1B, the LLN benefits from the log-domain 

design style’s efficiency, using few transistors, operating with low-

power (50–1000 nW), and requiring no complex configuration. 

The LLN realizes a variety of spiking behaviors: Regular spiking, 

spike-frequency adaptation, and bursting (Figure 13B). The LLN’s 
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where I
mem

 is the sub-threshold current analogous to the state vari-

able v of Eq. (1) and I
g
 corresponds to the slow variable g of Eq. 

(1) responsible for spike-frequency adaptation. The term f(I
mem

) 

accounts for the positive-feedback current I
a
 of Figure 14 and 

is an exponential function of I
mem 

(Indiveri et al., 2010; see also 

Figure 14B). As for the LLN, the function r(t), is unity for the 

period in which the neuron spikes, and null in other periods. The 

other parameters in Eq. 2 are defined as: t t
k k
t t

 CU
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C Up T

g
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By changing the biases that control the neuron’s time-constants, 

refractory period, spike-frequency adaptation dynamics and leak 

behavior (Indiveri et al., 2010) the DPI-neuron can produce a wide 

range of spiking behaviors ranging from regular spiking to bursting.

Indeed, given the exponential nature of the generalized I&F 

neuron’s non-linear term f (I
mem

), the DPI-neuron implements an 

adaptive exponential I&F model (Brette and Gerstner, 2005). This 

I&F model has been shown to be able to reproduce a wide range of 

spiking behaviors, and explain a wide set of experimental measure-

ments from pyramidal neurons (Brette and Gerstner, 2005). For 

comparison the LLN uses a cubic term, while the tau-cell based 

neuron circuits proposed in (Rangan et al., 2010; van Schaik et al., 

2010b) and the quadratic and the S-C SiNs described in Section 

4.4 use a quadratic term (implementing the I&F computational 

models proposed by Izhikevich, 2003).

4.4 ABOVE THRESHOLD, ACCELERATED-TIME, SWITCHED-CAPACITOR, 

AND DIGITAL DESIGNS

The SiN circuits described up to now have transistors that operate 

mostly in the sub-threshold or weak-inversion domain, with cur-

rents ranging typically between fractions of pico to hundreds of 

nano-amperes. These circuits have the advantage of being able to 

emulate real neurons with extremely low power requirements and 

with realistic time-constants (e.g., for interacting with the nervous 

system, or implementing real-time behaving systems with time-

constants matched to those of the signals they process). However, in 

the weak-inversion domain mismatch effects are more pronounced 

than in the strong-inversion regime (Pelgrom et al., 1989), and 

often require learning, adaptation or other compensation schemes.

It has been argued that in order to faithfully reproduce compu-

tational models simulated on digital architectures, it is necessary 

to design analog circuits with low mismatch and high precision 

(Schemmel et al., 2007). For this reason, several SiN circuits that 

operate in the strong-inversion regime have been proposed. In 

this regime however, currents are four to five orders of magnitude 

larger. With such currents, the active circuits used to implement 

resistors decrease their resistance values dramatically. As passive 

resistors cannot be easily implemented in VLSI to yield large resist-

ance values, it is either necessary to use large off-chip capacitors 

(and small numbers of neurons per chip), to obtain biologically 

realistic time-constants, or to use “accelerated” time scales, in 

(∝n
∝
). The positive-feedback element drives the membrane LPF 

in proportion to the cube of v, analogous to a biological sodium 

channel population. When the membrane LPF is sufficiently driven, 
n n

3

3 > , resulting in a run-away potential, i.e., a spike. The digital 

representation of the spike is transmitted as an AER request (REQ) 

signal. After a spike (upon arrival of the AER acknowledge signal 

ACK), the refractory pulse generator creates a pulse, r(t) with a 

tunable duration. When active r(t) turns M
G1

 and M
R3

 ON, reset-

ting the membrane LPF (toward V
DD

) and activating the adaptation 

LPF. Once activated the adaptation LPF inhibits the membrane 

LPF, realizing I
g
 (∝ g), which is proportional to spike frequency.

Implementing LLN’s various spiking behaviors is a matter of 

setting its biases. To implement regular spiking, we set g
max

 = 0 (set 

by M
G2

’s bias voltage V
wahp

) and T
R
 = 1 ms (long enough to drive v 

to 0, set by M
R2

’s bias voltage V
ref

). Spike-frequency adaptation can 

be obtained by allowing the adaptation LPF (M
G1–4

) to integrate 

the spikes produced by the neuron itself. This is done by increasing 

g
max

 and setting t
g
 = 100 ms (i.e., by adjusting V

lkahp
 appropriately). 

Similarly, the bursting behavior is obtained by decreasing the dura-

tion of the r(t) pulse such that v is not pulled below 1 after each spike.

The DPI neuron

The DPI neuron is another variant of a generalized I&F model (Jolivet 

et al., 2004). This circuit has the same functional blocks used by LLN 

of Figure 13, but different instantiations of low-pass filters and cur-

rent-based positive-feedback circuits: The low-pass filter behavior is 

implemented using instances of the tunable Diff-Pair Integrator circuit 

described in Section 3.1, while the positive feedback is implemented 

using the same circuits used in the Octopus Neuron of Figure 10. These 

are small differences from the point of view of transistor count and 

circuit details, but have an important effect on the properties of the SiN.

The DPI-neuron circuit is shown in Figure 14A. It comprises an 

input DPI filter (M
L1

 − M
L3

), a spike event generating amplifier with 

current-based positive feedback (M
A1

 − M
A6

), a spike reset circuit 

with AER handshaking signals and refractory period functionality 

(M
R1

 − M
R6

), and a spike-frequency adaptations mechanism imple-

mented by an additional DPI filter (M
G1

 − M
G6

). The input DPI filter 

M
L1

 − M
L3

 models the neuron’s leak conductance, producing exponen-

tial sub-threshold dynamics in response to constant input currents. 

The integrating capacitor C
mem

 represents the neuron’s membrane 

capacitance, and the positive-feedback circuits in the spike-genera-

tion amplifier model both sodium channel activation and inactivation 

dynamics. The reset and refractory period circuit models the potassium 

conductance functionality. The spike-frequency adaptation DPI circuit 

models the neuron’s calcium conductance, and produces an after hyper-

polarizing current (I
g
) proportional to the neuron’s mean firing rate.

By applying a current-mode analysis to both the input and the 

spike-frequency adaptation DPI circuits (Bartolozzi et al., 2006; Livi 

and Indiveri, 2009), it is possible to derive a simplified analytical 

solution (Indiveri et al., 2010), very similar to the one described 

in Eq. (1), of the form:
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circuits that implement the exact equations of Hodgkin–Huxley 

conductance models offer the opportunity to select and tune pre-

cisely each of the parameters appearing in the set of non-linear 

differential equations. These circuits need to model conductances 

for channels of the following types: voltage-gated, voltage and 

concentration-gated, passive leak, and synaptic voltage-gated. It 

is possible to reproduce a large variety of neural activity patterns 

by using a small set of bipolar and above threshold analog circuits 

and adjusting their parameters to represent different biophysical 

properties. Such types of circuits have been designed following a 

current-mode approach, fabricated using SiGe 0.8 and 0.35 µm 

technologies, and fully characterized in Renaud et al. (2007) and 

Saighi et al. (2011).

which the  time-constants of the SiNs are a factor of 103 or 104 

smaller than those of real neurons. Alternatively, one can use S-C 

for implementing small conductances (and therefore long time-

constants) by moving charge in and out of integrated capacitors 

with clocked switches. Taking this concept one step further, one 

can implement SiNs using full-custom clocked digital circuits. All 

of these approaches are outlined in this section.

Above threshold Hodgkin–Huxley models

As mentioned in Section 4.1, Hodgkin–Huxley (H–H) conduct-

ance-based models describe faithfully the biophysics of excit-

able cells and are helpful to capture the main intrinsic firing and 

response properties of neurons. Above-threshold and bipolar 
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FIGURE 14 | The DPI neuron circuit. (A) Circuit schematic. The input DPI 

low-pass filter (yellow, M
L1

 − M
L3

) models the neuron’s leak conductance. A spike 

event generation amplifier (red, M
A1

 − M
A6

) implements current-based positive 

feedback (modeling both sodium activation and inactivation conductances) and 

produces address-events at extremely low-power. The reset block (blue, 

M
R1

 − M
R6

) resets the neuron and keeps it in a reset state for a refractory period, 

set by the V
ref

 bias voltage. An additional DPI filter integrates the spikes and 

produces a slow after hyper-polarizing current Ig responsible for spike-frequency 

adaptation (green, M
G1

 − M
G6

). (B) Response of the DPI neuron circuit to a 

constant input current. The measured data was fitted with a function comprising 

an exponential ∝e−t/tK at the onset of the stimulation, characteristic of all 

conductance-based models, and an additional exponential ∝e+t/tNa (characteristic 

of exponential I&F computational models; Brette and Gerstner, 2005) at the 

onset of the spike (Indiveri et al., 2010).
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costly in terms of silicon area and time-to-fabrication, due to the 

full-custom design mode and to the open parameter space that 

necessitates above-threshold design with bipolar and MOS transis-

tors. To improve the design flow, the analog circuits are designed 

as library items which form a database. The database is used as a 

platform for automated design (Lévi et al., 2008): an automatic 

exploration process searches the database and helps a designer re-

use library circuits for new designs, according to the specifications 

provided (e.g., from a conductance equation).

Neuron membrane voltages are obtained by summing currents 

chosen from a set of “generator” library circuits and summed on 

a capacitance representing a membrane capacitance. The currents 

are selected by a system of configurable switches, and a maximum 

of five generators can be selected for a single neuron. This covers 

most of the point neuron models used in computational neuro-

science. External inputs and synaptic currents from pre-synaptic 

neurons can be injected on the membrane capacitance. The results 

presented in Figure 15B were measured on an VLSI chip designed 

using the AMS 0.35 µm SiGe technology, simulating a four-con-

ductance model (sodium, potassium, calcium, and leak; Saighi 

et al., 2011). The time-constants of the activation and inactivation 

variables in the sodium, potassium and calcium current-models 

were approximated by constants. These simplifications have only 

minor consequences on the model’s behavior (Zou et al., 2006), as 

they essentially change only the shape of the spikes. These types of 

devices are unique tools for experiments on hybrid living–artificial 

neural networks. Silicon neurons represent the artificial part, con-

nected via artificial synapses to intra- or extra-cellular electrodes to 

a living neural network (in vitro acute preparation or cultures). The 

living–artificial system acts as a single network, useful to explore 

cellular or synaptic mechanisms. In these types of experiments 

(Le Masson et al., 2002), real-time processing is mandatory to 

ensure a correct dialog between living and artificial neurons, and 

analog integrated-circuit computation simplifies the communica-

tion between the circuits and the living neurons, as the electrodes 

measure analog signals and inject analog currents on the living cells.

The quadratic integrate-and-fire neuron

As for the sub-threshold case, implementations of biophysically 

detailed models such as the one described above can be com-

plemented by more compact implementations of simplified 

I&F models.

The quadratic I&F neuron circuit (Wijekoon and Dudek, 2008), 

shown in Figure 16A, is an example of an above-threshold gener-

alized I&F circuit. It was inspired by the adapting quadratic I&F 

neuron model proposed by Izhikevich (2003). The required non-

linear oscillatory behavior is achieved using differential equations 

of two-state variables and a separate after-spike reset mechanism, 

as explained in Izhikevich (2003). However, the circuit implemen-

tation does not aim to accurately replicate the non-linear equa-

tions described in Izhikevich (2003). Instead it aims at using the 

simplest possible circuitry of the analog VLSI implementation that 

can reproduce the functional behavior of the coupled system of 

non-linear equations.

The two-state variables, “membrane potential” (V) and “slow 

variable” (U), are represented by voltages across capacitors C
v 
and C

u
 

respectively. The membrane potential circuit consists of  transistors 

Figure 15A shows the schematic of the analog library circuit 

implementing a two-parameter sigmoidal function used to imple-

ment conductance models. As the kinetics in the circuit equations 

are identical to the H–H model ones, ionic currents have dynamics 

with biologically realistic time-constants.

Each mathematical function used in the H–H neuron model, 

implemented using its analog equivalent circuit, is controlled by 

tunable analog variables which correspond to the model param-

eters. All parameters are stored on-chip on dynamically reconfigu-

rable and analog DRAM cells. This implementation approach is 
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FIGURE 15 | (A) Schematic of a “sigmoid” circuit. The I
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 biasing current is set 

by the V
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 voltage input. From the multiplier Q
1
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2
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Q

Sig
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(V
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sh
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4
 differential pair, I

h8
 and I

h( )
\

1 8−
 are complementary 

sigmoidal functions of V
sig

, used for inactivation and activation variables, 

respectively. (B) A 600-ms simulation of a four-conductance silicon neuron 

with an input stimulation current pulse: (a) Membrane voltage V
m
(t). (b) 

Calcium current I
Ca

(t). (c) Stimulation current I
S
(t). Sodium and potassium and 

leak conductances generate the action potentials; a calcium conductance with 

a slow kinetic modulates the action potential occurrence. Individual ionic 

currents are available for monitoring. Voltage and current scales are the 

biological model scales. Hardware and biological time scales are identical, as 

the simulation runs in continuous and real time. When the stimulation current 

is applied, the neuron starts oscillating and the calcium current increases, 

which in turn raises the oscillation frequency. At the end of the stimulation 

pulse, oscillations continue until the calcium current is low enough. Finally, the 

neuronal activity ceases.
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An accelerated current-controlled conductance neuron

A design that is in-between the detailed H–H neuron circuits 

and the quadratic neuron circuit, in terms of transistor count 

and circuit complexity is the above-threshold current-controlled 

conductance neuron.

This circuit is also an accelerated neuron model, which uses 

transistors operated in the strong-inversion regime to emulate 

the properties of neuron membrane conductances. Together with 

on-chip bias-generation circuits such a model can be calibrated 

to quantitatively reproduce numerical simulations. Figure 17A 

shows an exemplary neuron circuit which is part of a 100k syn-

apse network chip (Schemmel et al., 2006). The neuron emulates 

three ion-channels and a spike-generation circuit consisting of a 

high-speed comparator using positive feedback and an adjustable 

refractory period.

Functionally the ion-channels are realized by current-controlled 

conductances. The inhibitory and excitatory channels receive a cur-

rent-sum representing the total neuro-transmitter density in the 

synaptic cleft of the inhibitory and excitatory synapses respectively. 

Thereby, the time course of the synaptic conductance is generated 

outside of the neuron circuit and may differ for each synapse. Using 

a current-mode input is mandatory at the high acceleration factor 

of the neuron (104–105). A rise-time of 1 ms in biology translates 

to 10 ns. Considering a voltage swing of 1 V and a total capacitance 

of 5 pF for the neuron input2 the current needed is 500 µA. If 

the voltage swing can be limited to 20 mV, the maximum current 

generated by a single synapse would be reduced to a much more 

manageable 10 µA.

The low input impedance necessary at the neuron inputs is gen-

erated by wide cascode transistors (M
6
 and M

9
). The circuits for 

the leakage and the inhibitory conductances are standard opera-

tional transconductance amplifiers (OTA1 and 2). In case of the 

inhibitory conductance, the linear input range is extended by using 

a voltage-divider chain at the input of the OTA built from long 

transistors. This is feasible since the additional leakage generated 

by these transistors can be compensated by reducing the static leak-

age current I
leak

.

The excitatory conductance has to react very quickly to changes 

in the input current, as shown in Figure 17B. For the post-synaptic 

pulse of a single synapse a current in the order of 10 µA must be 

sourced with a rise-time below 10 ns. Using an OTA would exceed 

the available silicon area and quiescent power envelope. A simple 

but effective solution is the usage of a current mirror (M
7
 and 

M
8
) with low output impedance, realized by utilizing transistors 

with minimum channel length. A comparison between the meas-

ured neuromorphic circuit response and a numerical simulation 

is shown in Figure 17B. As shown, the spike-times are in good 

agreement with each other. The network is in a high-conductance 

state throughout the stimulation.

The switched-capacitor Mihalas–Niebur neuron

Switched-capacitors have long been used in integrated circuit 

design to enable the implementation of variable resistors whose 

sizes can vary over several orders of magnitude. This technique can 

M1–M5 and membrane capacitor C
v
. The membrane capacitor 

integrates post-synaptic input currents the spike-generating pos-

itive-feedback current of M3, and the leakage current generated 

by M4 (mostly controlled by the slow variable U). The positive-

feedback current is generated by M1 and mirrored by M2–M3 and 

depends approximately quadratically on the membrane potential. 

If a spike is generated, it is detected by the comparator circuit (M9–

M14), which provides a reset pulse on the gate of M5 that rapidly 

hyperpolarizes the membrane potential to a value determined by 

the voltage at node c. The slow variable circuit is built using transis-

tors M1, M2, and M6–M8. The magnitude of the current provided 

by M7 is determined by the membrane potential, in a way similar 

to the membrane circuit. The transistor M6 provides a non-linear 

leakage current. The transistors and capacitances are scaled so that 

the potential U will vary more slowly than V. Following a mem-

brane potential spike, the comparator generates a brief pulse to 

turn on transistor M8 so that an extra amount of charge, controlled 

by the voltage at node d, is transferred onto C
u
. The circuit has 

been designed and fabricated in a 0.35-µm CMOS technology. It 

is integrated in a chip containing 202 neurons with various circuit 

parameters (transistor sizes and capacitances). As the transistors in 

this circuit operate mostly in strong inversion, the firing patterns 

are on an “accelerated” time scale, about 104 faster than biological 

real time (see Figure 16B). The power consumption of the circuit is 

below 10 pJ/spike. A similar circuit, but operating in weak inversion 

and providing spike timings on a biological time scale, has been 

presented in Wijekoon and Dudek (2009).
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FIGURE 16 | The Izhikevich neuron circuit (A) schematic diagram, (B) data 

recorded from the 0.35 µm CMOS VLSI implementation: spiking patterns 

in response to input current step for various parameters of bias voltages 

at node c and node d: regular spiking with adaptation, fast spiking, 

intrinsically bursting, chattering (top to bottom).

2This is a realistic estimate considering the high number of synapses connected to 

this line.

http://www.frontiersin.org/neuromorphic_engineering/
http://www.frontiersin.org/neuromorphic_engineering/archive


www.frontiersin.org May 2011 | Volume 5 | Article 73 | 17

Indiveri et al  Neuromorphic silicon neurons

be used as a method of implementing resistors in silicon neurons, 

which is complementary to the methods described in the previous 

sections. More generally, S-C implementations of SiNs produce 

circuits whose behaviors are robust, predictable and reproduc-

ible (properties that are not always met with sub-threshold SiN 

implementations).

The circuit shown in Figure 18A implements a leaky I&F neu-

ron implemented with S-Cs (Folowosele et al., 2009a). Here the 

post-synaptic current is input onto the neuron membrane, V
m

. The 

S-C, SW
1
, acts as the “leak” between the membrane potential, V

m
, 

and the resting potential of the neuron, E
L
. The value of the leak 

is varied by changing either the capacitor in SW
1
 or the frequency 

of the clocks w1 and w2. A comparator (not shown) is used to 

compare the membrane voltage V
m

 with a reset voltage Θ
r
. Once 

V
m

 exceeds Θ
r
 a “spike” voltage pulse is issued and V

m
 is reset to 

the resting potential E
L
.

The Mihalas–Niebur S-C neuron (Mihalas and Niebur, 2009) 

is built by combining the I&F circuit of Figure 18A with the vari-

able threshold circuit shown in Figure 18B. The circuit blocks are 

arranged in a way to implement the adaptive threshold mecha-

nism described in Section 3.4. As the circuits used for realizing the 

membrane and the threshold equations are identical, the density 

of arrays of these neurons can be doubled, when simple I&F with 

fixed threshold properties are desired. The main drawback of this 

approach is the need for multiple phases of the S-C clocks which 

must be distributed (typically in parallel) to each neuron.

Experimental results measured from a fabricated integrated cir-

cuit implementing this neuron model (Folowosele et al., 2009b) are 

shown in Figure 19. The ease with which these complex behaviors 

can be evoked in S-C neurons, without extensive and precise tuning, 

demonstrates their utility in large silicon neuron arrays.

The digitally modulated charge packet input neuron

The S-C principle of using discrete time and clocked signals can be 

extended to use high-speed pulsing current mirrors for building 

weight-modulated charge packet driven leaky I&F neurons.

In this framework, spikes produced by a source neuron act as 

asynchronous clock signals that selectively activate a set of binary 

weighted high-speed pulsing current mirrors at the destination 

neurons. The selection of which current mirror branch is activated 

depends on a digital word that represents the neuron’s synaptic 

weight. To implement the neuron leak conductance, an opposite 

sign pulsing current mirror is driven by spikes generated by a peri-

odic signal from a global on chip clock. Figure 20A shows a circuit 

diagram representing this concept. Spikes may have a duration 

of down to about 100 ns for currents in the order of one nano 
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FIGURE 17 | Accelerated current-controlled conductance neuron. 

(A) Schematic diagram: excitatory and inhibitory synaptic inputs can be 

connected as an array of current-sinks to the I
inhib

 or I
exc

 nodes. The passive 

leak behavior is controlled via the I
leak

 node. (B) Measured response of the 

membrane potential to 256 Poisson distributed input spike trains, compared 

to an equivalent software simulation. The chip is calibrated to an acceleration 

factor of 104. Top: input spike trains with 8 Hz mean firing rate in biological 

time. Middle: membrane voltage calculated with the software simulator NEST 

(Eppler et al., 2008). Bottom: membrane voltage recorded from the 

hardware neuron.
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amperes (Serrano-Gotarredona et al., 2006). This idea has been 

exploited to build arrays of I&F neurons in AER convolution chips 

(Serrano-Gotarredona et al., 2006). Each high-speed current mir-

ror input branch is biased by a digitally calibrated current, using 

a digi-MOS (see Section 3.6), to compensate for transistor mis-

match. Also, since the I&F neurons have to handle signed charge 

packages, both NMOS and PMOS high speed digitally calibrated 

pulsing current mirrors are required (see top and bottom part 

of Figure 20A). The neuron produces both positive (Pulse+) and 

negative (Pulse−) spikes, depending on the (excitatory or inhibi-

tory) destination synapse, and integrates both positive and negative 

input pulses until it reaches corresponding positive and negative 

spiking thresholds. After generating an output spike, the neuron 

is reset to an intermediate reset level between the two thresholds. 

The leakage is also signed, depending on whether the actual neuron 

state is above or below the reset level. As both NMOS and PMOS 

 calibrated pulsing current mirrors are available, there is no need to 

implement extra mirrors for the leak, but simply activate a special 

leak-weight when a leak-pulse (PulseF) is received. Figure 20 shows 

the overall neuron circuit diagram. These techniques were used in 

an AER convolution chip (Serrano-Gotarredona et al., 2006), for 

achieving an overall precision of 3 bits (plus sign). With weights 

and spike durations down to about 100 ns, each mirror bit branch 

required 5 bit calibration using transistor dimensions of 1.2/4 µm. 

Overall neuron size was 90 × 90 µm2 in a 0.35 µm CMOS process.

Full-custom digital I&F neuron

An alternative option requiring approximately the same area usage, 

but with much higher precision, is to implement the I&F neuron 

using all digital techniques. This idea was explored in Camuñas 

Mesa et al. (2008) where the authors proposed the circuit shown in 

Figure 21. In this implementation a digital adder and accumulator 

A

B

FIGURE 20 | (A) Digitally weight-modulated and calibrated charge packet driven leaky I&F neuron schematic. The neuron handles positive and negative charge 

packets to emulate excitatory and inhibitory synapses, and has input for a periodic global signal PulseF to implement a programmable constant rate leak. Neuron can 

deliver positive or negative output events. (B) Detail of logic block in (A).
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are used together with digital comparing circuits, for implementing 

the integration and spike-generation operations of the I&F model. 

Using the same technology used for the digitally modulated neuron 

described above, and for a similar area usage of 100 × 100 µm2, it 

was possible to use accumulators and adders with 18-bit precision 

and synaptic weights with 5-bit (plus sign) precision. The I&F leak 

was implemented by stimulating an inhibitory synapse with a fixed 

weight at a periodic global rate. In this implementation spikes can 

have a duration as small as 50 nano-seconds.

Digital VLSI I&F neurons

Digital VLSI implementations of neurons and neural systems are 

also being evaluated, without resorting to full-custom VLSI designs. 

Examples include solutions using FPGAs (Mak et al., 2006; Cassidy 

and Andreou, 2008), multi-core based architectures using multiple 

ARM cores (Jin et al., 2010), and conventional graphical processing 

units (GPUs; Fidjeland et al., 2009). These approaches allow the 

development of large-scale spiking neural network simulations, 

without having to resort to powerful and power-hungry general 

purpose computing architectures.

5 DISCUSSION

While the digital processing paradigm, ranging from standard com-

puter simulations to custom FPGA designs, is advantageous for its 

stability, fast development times, and high precision properties, full-

custom VLSI solutions can often be optimized in terms of power 

consumption, silicon area usage, and speed/bandwidth usage. We 

anticipate that future developments in large-scale neuromorphic 

circuits and systems designs will increasingly combine full-custom 

analog and synthesized digital designs, in order to optimize both 

core and peripheral neural and synaptic functions in a highly pro-

grammable and reconfigurable architecture. The relative merits and 

the right mix of analog versus digital in neuromorphic computing 

(Sarpeshkar, 1998) remain a subject for further investigation and 

will likely require highly application dependent optimization. We 

expect such carefully tailored combinations of silicon neurons and 

custom analog/digital VLSI neural networks to offer solutions to a 

large variety of applications, ranging from the efficient implementa-

tion of large-scale and real-time spike-based computing systems, 

to the implementation of compact microelectronic brain–machine 

interfaces. In particular, even though sub-threshold current-mode 

circuits are reputed to have higher mismatch than above-threshold 

circuits, they have lower noise energy (noise power times band-

width), and superior energy efficiency (bandwidth over power; 

Sarpeshkar et al., 1993; Shi, 2009). Indeed, the sources of inho-

mogeneities (e.g., device mismatch) which are often considered a 

problem, can actually be exploited in networks of SiNs for compu-

tational purposes (similar to how real neural systems exploit noise; 

Chicca and Fusi, 2001; Chicca et al., 2003; Merolla and Boahen, 

2004). Otherwise, sources of mismatch can be minimized at the 

device level with clever VLSI layout techniques (Liu et al., 2002), 

and at the system level by using the same strategies used by the 

nervous system. In particular, adaptation and learning at multiple 

spatial and temporal scales are important mechanisms to com-

pensate for variability in the environment, as well as in the neural 

hardware operating on the environment, which includes mismatch 

and other sources of analog imprecision in the implementation 

(Cauwenberghs and Bayoumi, 1999). Furthermore, by combining 

the advantages of synchronous and asynchronous digital technol-

ogy with those of analog circuits, it is possible to efficiently calibrate 

component parameters and (re)configure SiN network topologies 

both for single chip solutions, and for large-scale multi-chip net-

works (Linares-Barranco et al., 2003; Silver et al., 2007; Basu et al., 

2010; Yu and Cauwenberghs, 2010a; Sheik et al., 2011).

In this paper we described some of the most common circuits 

and techniques used to implement silicon neurons, and described 

a wide range of neuron circuits that have been developed over the 

years, using different design methodologies and for many differ-

ent application scenarios. In particular, we described circuits to 

implement leaky I&F neurons (Mead, 1989), adaptive threshold 

neurons (Mihalas and Niebur, 2009), quadratic (Izhikevich, 2003), 

and adaptive exponential (Brette and Gerstner, 2005) I&F neurons, 

as well as conductance-based and Hodgkin–Huxley models. Table 2 

lists all the SiNs described, pointing out their main features and 

characteristics.

Obviously, there is no absolute optimal design. As there is a 

wide range of neuron types in biology, there is a wide range of 

design and circuit choices for SiNs. While the implementations of 

FIGURE 21 | Block diagram of a fully digital I&F neuron. Calibrated current source, pulsing current mirrors, and integration capacitors of Figure 20, are replaced by 

digital adder and accumulator circuits.
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a small numbers of SiNs are required (as in hybrid systems where 

real neurons are interfaced to silicon ones), the compact AER I&F 

neurons and log-domain implementations (such as the quadratic 

Mihalas–Niebur neurons, the tau-cell neuron, the LPF neuron, or 

the DPI neuron) can be integrated with event-based communica-

tion fabric and synaptic arrays for very large-scale reconfigurable 

networks. Indeed, both the sub-threshold implementations and 

their above-threshold “accelerated-time” counterpart are very ame-

nable for dense and low power integration with energy efficiencies 

of the order of a few pico-Joules per spike (Wijekoon and Dudek, 

2008; Livi and Indiveri, 2009; Rangan et al., 2010). In addition to 

continuous time, non-clocked sub-threshold and above-thresh-

Table 2 | Summary of SiN implementations described in this paper and 

main characteristics.

Sub-threshold SiN implementations

Thalamic relay pg. 8 Conductance-based, thermodynamically 

equivalent, compact.

H–H model pg. 9 Conductance-based, biologically realistic, 

not compact.

Octopus retina pg. 10 Basic I&F model, low power, compact.

DVS pg. 10 Basic I&F model, low mismatch, compact.

tau-cell pg. 11 Log-domain, modular.

LLN pg. 11 Log-domain, cubic two-variable model, low 

power, compact.

DPI pg. 13 Current-mode, exponential adaptive 

model, low power, compact.

Bipolar and above-threshold SiN implementations

H–H model pg. 14 Bipolar, voltage-mode, real-time, not 

compact.

Quadratic I&F pg. 15 Voltage-mode, accelerated-time, low 
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Current-controlled pg. 16 Voltage-mode, conductance-based, 

accelerated-time.
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The designs are subdivided into two main classes, according to the region of 

operation used by the main transistors in each circuit. All sub-threshold designs 

can be biased to have real-time response characteristics and biologically 

plausible time-constants.

old design techniques, we showed how to implement SiN using 

 digitally modulated charge packet and S-C methodologies. The S-C 

Mihalas–Niebur SiN circuits is a particularly robust design which 

exhibits the model’s generalized linear I&F properties and can 

produce up to ten different spiking behaviors. The specific choice 

of design style and SiN circuit to use depends on its application. 

Larger and highly configurable designs that can produce a wide 

range of behaviors are more amenable to research projects in which 

scientists explore the parameter space and compare the VLSI device 

behavior with that of its biological counterpart. Conversely, the 

more compact designs will be used in specific applications where 

signals need to be encoded as sequences of spikes, and where size 

and power budgets are critical.

The sheer volume of silicon neuron designs proposed in the 

literature demonstrates the enormous opportunities for innova-

tion when inspiration is taken from biological neural systems. The 

potential applications span computing and biology: neuromorphic 

systems are providing the clues for the next generation of asyn-

chronous, low-power, parallel computing that could breach the 

gap in computing power when Moore’s law runs its course, while 

hybrid, silicon-neuron systems are allowing neuro-scientists to 

unlock the secrets of neural circuits, leading one day, to fully inte-

grated brain–machine interfaces. New emerging technologies (e.g., 

memristive devices) and their utility in enhancing spiking silicon 

neural networks must also be evaluated, as well as maintaining a 

knowledge-base of the existing technologies that have been proven 

to be successful in silicon neuron design. Furthermore, as larger 

on-chip spiking silicon neural networks are developed questions 

of communications protocols (e.g., AER), on-chip memory, size, 

programmability, adaptability, and fault tolerance also become very 

important. In this respect, the SiN circuits and design methodolo-

gies described in this paper provide the building blocks that will 

pave the way for these extraordinary breakthroughs.
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