
REVIEW
published: 28 May 2019

doi: 10.3389/fnbot.2019.00028

Frontiers in Neurorobotics | www.frontiersin.org 1 May 2019 | Volume 13 | Article 28

Edited by:

Jan-Matthias Braun,

University of Southern Denmark,

Denmark

Reviewed by:

Sio Hoi Ieng,

Université Pierre et Marie Curie,

France

Yulia Sandamirskaya,

University of Zurich, Switzerland

*Correspondence:

Lea Steffen

steffen@fzi.de

Received: 03 January 2019

Accepted: 07 May 2019

Published: 28 May 2019

Citation:

Steffen L, Reichard D, Weinland J,

Kaiser J, Roennau A and Dillmann R

(2019) Neuromorphic Stereo Vision: A

Survey of Bio-Inspired Sensors and

Algorithms. Front. Neurorobot. 13:28.

doi: 10.3389/fnbot.2019.00028

Neuromorphic Stereo Vision: A
Survey of Bio-Inspired Sensors and
Algorithms

Lea Steffen 1*, Daniel Reichard 1, Jakob Weinland 1, Jacques Kaiser 1, Arne Roennau 1 and

Rüdiger Dillmann 1,2

1 FZI Research Center for Information Technology, Karlsruhe, Germany, 2Humanoids and Intelligence Systems Lab, Karlsruhe

Institute of Technology (KIT), Karlsruhe, Germany

Any visual sensor, whether artificial or biological, maps the 3D-world on a

2D-representation. The missing dimension is depth and most species use stereo

vision to recover it. Stereo vision implies multiple perspectives and matching, hence

it obtains depth from a pair of images. Algorithms for stereo vision are also used

prosperously in robotics. Although, biological systems seem to compute disparities

effortless, artificial methods suffer from high energy demands and latency. The crucial

part is the correspondence problem; finding the matching points of two images. The

development of event-based cameras, inspired by the retina, enables the exploitation of

an additional physical constraint—time. Due to their asynchronous course of operation,

considering the precise occurrence of spikes, Spiking Neural Networks take advantage

of this constraint. In this work, we investigate sensors and algorithms for event-based

stereo vision leading to more biologically plausible robots. Hereby, we focus mainly on

binocular stereo vision.

Keywords: bio-inspired 3D-perception, neuromorphic visual sensors, cooperative algorithms, event-based

technologies, brain-inspired robotics, human-like vision

1. INTRODUCTION

As the visual sense and any visual sensor loose one dimension when mapping the 3D-world onto a
2D-representation, the ability to recover depth is crucial for biological and artificial vision systems.
Stereo-vision refers to the method recovering depth information from both eyes, or in the artificial
context, two sensors. In biology this is possible due to the laterally shifted eyes, gaining slightly
different versions of a scene. The brain matches the corresponding points of both images and
computes their disparity.

While biology computes disparities seemingly effortless, current approaches computing stereo
in real-time are too computationally expensive. This is mainly caused by acquiring and processing
huge amounts of redundant data. Hence, frame-based data acquisition implies computational
limitations (Rogister et al., 2012). Furthermore, with increasing complex scenes and noise the
computational expense of commonmachine vision system increases significantly. That has negative
effects on the speed, size, and efficiency of the hardware (Osswald et al., 2017). Finding the
corresponding dots in both images is hereby the bottleneck. This computationally complex issue
is referred to as the correspondence problem. With the development of neuromorphic visual
sensors (Lichtsteiner et al., 2008), a new physical constraint is now also applicable in artificial
vision: time (Kogler et al., 2011a; Rogister et al., 2012; Dikov et al., 2017). Similar to retinal
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output cells, event-based sensors transmit information
asynchronously as a continuous stream of events (Rogister
et al., 2012). A comprehensive scientific investigation of the
neural code of the retina is provided in Meister and Berry (1999).

Spiking Neural Networks are a natural match for event-based
sensors due to their asynchronous operation principle. Thus,
SNNs are a popular choice for many systems using silicon retinas
like the work of Orchard et al. (2013), Orchard et al. (2015),
and Haessig et al. (2017). Examples for event-based stereo vision
applications applying networks with spiking neurons are Dikov
et al. (2017), Osswald et al. (2017), Rebecq et al. (2017), and
Haessig et al. (2019).

As self-driving cars are already a very promising application of
artificial depth perception, they are also an interesting field of use
for event-based 3D-vision. An approach combining event-based
vision and deep learning for steering prediction for autonomous
vehicles is introduced in Maqueda et al. (2018). Furthermore,
event-based vision is changing technologies and algorithms in
fields such as health-care, security, surveillance, entertainment
and industrial automation (Brandli, 2015). In Mafrica (2016),
EBS for robotic and automotive applications are investigated.

Scientists in the field of computer vision and 3D-imaging
strive for the sophisticated model posed by nature. Nevertheless,
a comprehensive review, not only about human inspired sensors
but also biologically plausible algorithms and the synergy of
both, is still missing. This paper surveys the advances of
event-based techniques and algorithms, especially developed for
neuromorphic visual sensors, researchers have made to this day.
As stereo vision is a large topic many different techniques such as
radar, ultrasonic sensors, light section, structured light, and depth
from defocus/focus exist. However, this manuscript is mainly
focusing on binocular stereo vision.

For this purpose, conventional machine stereo vision is
reviewed briefly and vision in nature is elaborated in more depth.
Subsequently, the evolution and a comparison of event-based
sensors is presented, followed by an investigation of cooperative
algorithms and their alternatives for event-driven stereo vision.

2. TECHNICAL AND BIOLOGICAL
BACKGROUND

Machine stereo vision, also referred to as stereoscopic vision,
has been an active field of research for decades. It has been
widely investigated before the arise of event-based sensors.
However, biology understands a scene faster than computers and
at lower energy budget (Martin et al., 2018). It works reliable
in human vision and error robustness and energy efficiency are
sophisticated. Hence, nature can be used as an inspiration for
more efficient and robust sensors and algorithms. This section
covers standard cameras and their mechanics as well as the
human retina and depth perception in nature.

2.1. Conventional Cameras and Their
Principle of Operation
Customary cameras commonly use a sensor constituted of a 2D-
Array of pixels, where each pixel is sensitive to light intensity.

Data is selected synchronously from all pixels at fixed time steps.
The generated pixel data at one time is called frame and thus
the frequency of the read-out is called frame rate (Mahowald,
1992; Akolkar et al., 2015). These sensors are limited in their
performance by their course of action. Imaging and information
transfer at a fixed frame rate, unrelated to the dynamics of the
observed scene, causes two opposed issues. For one, important
information might get lost leading to a decrease in temporal
resolution. This is less crucial but still true for relatively high
frame rates, since events might always occur between these two
time steps. The complementary problem is an inevitably high
redundancy. Data transfer of all pixels, even in case of no or small
local changes, increase the data transfer and volume needlessly.
This problem is magnified as changes usually only affect a small
part of the scene, like a subset of pixels, and rarely the whole
image (Posch et al., 2014).

2.2. Depth Perception in Machine Vision
There are a lot of techniques to obtain 3D-data of a scene. Active
representatives are electro-optical distance measurements such
as LIDAR (light detection and ranging), TOF cameras (time-
of-flight), radar, ultrasonic sensors, light section, and structured
light. In addition there are passive techniques such as SfM
(Structure from motion), shape from shading and stereopsis.
However, most of these technologies are slow, computation-
intensive and resource-gobbling. In case of LIDAR the 3D-
generation itself is rather cheap but it outputs a lot of points that
are expensive to handle. These drawbacks are problematic for
many applications using 3D-data, like navigation, path planning,
and robotic motion control. Cameras are a good option because
they produce dense data in real time. However, since cameras
represent the 3D-environment in 2D-data, depth information
must be gained supplementary. The obvious way is stereoscopy,
a form of sensor fusion in which the same scene is recorded from
at least two different points of view and the data is combined
into a sole representation. If you have the matching dots from
both images, the depth can be determined since it is inversely
proportional to the disparity. Disparity is the displacement along
the epipolar line.

According to Lucas and Kanade (1981) the 3D-position of
an object is reconstructable if enough of its dots can be found
and matched from at least two images, taken from slightly
differing perspectives. This requires four steps; (1) finding of
objects and features in the image, (2) matching the points
found, (3) estimating the camera parameter, and (4) determining
the distance from the camera objects represented by the dots.
This process is called image registration and the basic problem
of finding points that belong together in two images of the
same scene is called the correspondence problem. Figure 1

shows why this problem is not trivial. In this case the solution
is particularly difficult because the four depicted objects are
indistinguishable. Hence, further methods are necessary to
determine correct correspondences.

Stereo vision is a very well-investigated research area in the
field of machine vision. In Marr and Poggio (1976), the authors
laid the foundation for research in this field at an early stage.
In Barnard and Fischler (1982), Dhond and Aggarwal (1989),
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FIGURE 1 | The correspondence problem. The scene comprises four identical

objects, recorded from two perspectives. R is the right and L the left camera.

The rectangles L1–L4 represent the imaging of L and R1–R4 of R. There are

16 possible matches, visualized by dots, showing how the shots of L and R

might correspond to each other. Only four of them, accentuated in red, are

correct matches.

and Scharstein et al. (2002) different approaches to overcome the
stereo correspondence problem are presented and in Scharstein
et al. (2002) a general taxonomy is proposed two-frame stereo
methods regarding comparison of multi-view 3D-reconstruction
methods, differentiating their key properties. In Seitz et al.
(2006), this In Seitz et al. (2006), this taxonomy is expanded and
refined. On this basis six algorithms (Kolmogorov and Zabih,
2002; Pons et al., 2005; Goesele et al., 2006; Vogiatzis et al.,
2007; Furukawa, 2008) for reconstruction of dense objects with
calibrated cameras are calibrated cameras are evaluated. The
authors of Seitz et al. (2006) measure accuracy (how close the
reconstruction truth model) and completeness (how much of the
ground truth model is successfully reconstructed) of all methods
to provide a good comparison. It is stated that except (Goesele
et al., 2006), all evaluated techniques are complete. evaluated
techniques are complete. Hernández Esteban and Schmitt (2004)
achieves the highest accuracy, with 90% of its ground truth mesh.
It is also worth mentioning, that the runtimes vary drastically.
The fastest approach is drastically. The fastest approach is Pons
et al. (2005) and the slowest one is Goesele et al. (2006). A
quite general review about the broad range of 3D-reconstruction
techniques, is provided in Butime et al. (2006). Here, the
camera-based approaches.

Methods for artificial stereoscopy can be divided into two
groups, sparse and dense scene representation. Sparse approaches
include especially early, often feature-based, work. Many of those
use edge detectors or interest operators to detect promising
areas of the image and find their correspondences. Newer
approaches from this area extract very reliable characteristics
and use them as seeds to determine further correspondences
(Szeliski, 2010). The second group, dense methods, although
more complex, are more popular nowadays. In Scharstein et al.

(2002), a taxonomy for these approaches is presented, defining
the four steps, (1) matching cost computation, (2) cost (support)
aggregation, (3) disparity computation/optimization, and (4)
disparity refinement as the basis of such algorithms. Most of the
approaches in this group can be subdivided into these sections,
although a subgroup of these points can already form a full-
fledged algorithm. A further differentiation results in local and
global methods (Szeliski, 2010). With the local approach only
intensity values within a finite range are considered for the
calculation of the disparities of a point. Many local algorithms,
such as the sum-of-squared-differences (SSD), consist of steps
1–3, but a few consist only of steps 1 & 2. In contrast, global
methods are based on smoothness assumptions and usually
refer to the entire image. They usually do not use aggregation
and often consist of steps 1, 3, & 4. To optimize the outcome
simulated annealing, expectation maximization or graph cuts are
often applied. Additionally to global and local methods there
are also iterative algorithms (Scharstein et al., 2002; Szeliski,
2010) including the biologically motivated approach of Marr
and Poggio (1976). In the case of increasingly complex scenes
and in the case of noisy image data, the classical approaches
for stereoscopic vision quickly reach their limits and also the
computational effort is disproportionately large. This has a huge
impact on the size, speed, power consumption, throughput, and
efficiency of the hardware used and makes their integration
difficult (Osswald et al., 2017).

2.3. The Retina
The retina, also known as the fundus, is a highly developed
system consisting of photosensitive cells that contain
approximately 100 million black-and-white photoreceptors
and nearly 4 million color receptors (Boahen, 1996). It is a multi-
layered neuronal network responsible for the acquisition and
preprocessing of visual information. As shown in Figure 2 the
retina is divided into three main layers, the photoreceptor layer,
the outer plexiform layer, and the inner plexiform layer (Posch
et al., 2014). These layers include, with the photoreceptors, the
bipolar cells, and the ganglion cells, the three most important
cell types.

Photoreceptors are the actually light-sensitive cell type of the
retina and can be divided into two types that react to different
wavelengths of light. Cones for color recognition and sharp
vision, as well as rods for vision under bad lighting conditions
(Rodieck, 1998). These sensory cells convert incident light into an
electrical signal which influences the release of neurotransmitters
and thus triggers a chain reaction (Posch et al., 2014). In
darkness, the non-excited normal state, photoreceptors secrete
neurotransmitter exciting the bipolar cells. Subsequently, the
stimulated bipolar cells also release neurotransmitters inhibiting
the ganglion cells. This means that when no light penetrates the
eye, photoreceptors, and bipolar cells are active and ganglion
cells are inactive. If the illumination increases significantly,
the depicted process drives the ganglion cells creating action
potentials that reach the visual center of the brain via the optic
nerve (Ganong, 1972; Goldstein, 2015).

The sensory cells of the outer as well as the inner plexiform
layer, by name the bipolar cells and the ganglion cells, can
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FIGURE 2 | The human retina, reduced to essential layers for neuromorphic

visual sensors. The photoreceptor layer, the outer plexiform layer including

bipolar cells and the inner plexiform layer made up of ganglion cells.

Additionally, horizontal cells and amacrine cells connect these layers.

be divided into ON- and OFF-types. The ON-bipolar cells
code for bright and the OFF-bipolar cells for dark time-
space differences. In the absence of a stimulus both cells
generate a few random spikes. However, if the illumination
is increasing, the ON-cell increases its firing rate when not
stimulated while the OFF-cell no longer generates any pulses
at all. In the case of a negative change in illumination,
if it gets darker, this effect reverses (Rodieck, 1998). This
effect is achieved by comparing individual signals of the
photoreceptors with time-space average values, determined
by means of horizontal cells. Horizontal cells interconnect
photoreceptors and bipolar cells laterally. Respectively, the
diverse amacrine cells mediate signal transmission between
bipolar cells and ganglion cells (Posch et al., 2014). Amacrine
cells are inhibitory interneurons and therefore regulate other
cells by repression. There are at least 33 subgroups which
are mainly characterized by their diameter and thus in their
sphere of influence. The smallest variety, narrow-field amacrine
cell (NA), is only about 70 µm in diameter. In addition,
there are medium-field (MA), with about 70 µm, and wide-
field amacrine cells (WA), with about 350 µm diameter
(Balasubramanian and Gan, 2014).

1. Local automatic gain control (DP 1) at the photoreceptor
and network level is the preprocessing by means of time-space
bandpass filtering and adaptive sampling. As a result, the
receptors are independent of absolute values and instead
measure the changes of illumination with an adaptive
accuracy. This leads to a larger dynamic range of the
input without increasing the output unnecessarily. The
dynamic range is defined as the ratio between maximum
processable signal and background noise in darkness
(Posch et al., 2011).

2. Bandpass spatio-temporal filtering (DP 2) in the outer
plexiform layer limits the frequencies in both directions. By
suppressing low frequencies, redundancies are discarded and
inhibiting high frequencies reduces noise in moving objects.
In addition, high-pass filters of the inner plexiform layer
emphasize this effect.

3. The equalization of the signal (DP 3) by means of
ON- and OFF-types lowers the spike rate. Without this
separation, a significantly higher coding rate would be
required in order to encode positive and negative values on
one channel.

4. High spatial and temporal resolution (DP 4) of the
entire signal is simulated by the distribution of sustainable
parvocellular cells (P-cells) and the volatile magnocellular
cells (M-cells) in the retina. In fact, in the center of the
visual field the spatial resolution is high and the temporal
resolution low. At the edge region it is the other way
around. The effect is further enhanced by precise fast
eye movement.

DP 1 & DP 2 are implemented in the outer and DP 3 & DP 4 in
the inner retinal layer Posch et al. (2014). The retina is responsible
for converting spatio-temporal illumination information into
pulses. This information is then transmitted via the optical
nerve to the visual cortex. The four design principles, above all
adaptive filtering and sampling, allow flexible, high-quality signal
processing, and efficient coding maximizing the information
content (Boahen, 1996, 2000; Posch et al., 2014).

2.4. Biological Depth Perception
In biological imaging, the 3D-environment is projected onto a
2D-representation and thus the precise position of objects in
space is lost. Safe navigation in unknown surroundings, as well as
the estimation of distances is only possible for humans, because
we can reconstruct depth from 2D-information and are thus
capable of 3D-perception.

An important part for depth perception, is a priori knowledge.
That refers to the ability of humans to consider past stimuli.
Hence, the brain can see 3D even if it is not receiving any depth
information just now, but did so a second ago. The principle is
similar to the core idea of event-based vision; to not acquire the
current depth, only changes in local depth.

Apart from a priori knowledge, the techniques for depth
perception can be roughly divided into oculomotor and visual
stimuli (Ganong, 1972; Goldstein, 2015). For oculomotor depth
criteria, also referred to as oculomotor cues the position of the
eyes and the tension of the eye muscles are decisive. The eye
position is used to measure the distance of the focused object.
In addition, the muscles are tense for near objects and relaxed for
distant ones. Oculomotor cues are useful for vision at close range
until approximately one arm’s length from the eye and are created
in two different ways. The first is the convergence (up to 600
cm) resulting from the movement of the eyes toward the center,
when objects located nearby, are observed. On the other hand
it concerns accommodation (20–300 cm) caused by the change
in shape of the eye lens when objects at different distances are
focused (Ganong, 1972; Cutting, 1997).
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Visual depth criteria are further divided monocular and
binocular vision. Monocular refers to all depth information
that can be obtained by one eye alone, and binocular means
that two eyes are required. Monocular vision therefore refers
to all the information we can extract from a simple 2D-signal
in order to understand a scene. For one this concerns static
monocular cues like the knowledge about the common shape
and size of known objects, as well as texture and shadow as
well as the fact that people can segment objects well on the
basis of context. Furthermore, based on the perspective and
scene continuity and the assumption that objects either stay in
place or move according to physical laws we can derive more
information. In addition to static, there is dynamic monocular
vision. It is created by movement-induced depth stimuli, which
are produced by head and eye movements. This includes the
covering and uncovering of objects as well as the parallax.
The latter occurs when several objects are located at different
distances from the observer, who is moving parallel to them.
The near objects move, in the perspective of the observer
faster than the more distant ones (Ganong, 1972; Cutting, 1997;
Goldstein, 2015).

According to Rose (1980), binocular sensitivity is higher than
monocular sensitivity. Additionally, a comparison of monocular
and binocular stimuli states that binocular have shorter latencies
than monocular responses (Adachi-Usami and Lehmann,
1983). Binocular vision distinguishes between simultaneous
vision, fusion and stereopsis. Under simultaneous vision one
understands that certain visual impressions are captured by
both eyes simultaneously. This serves for the suppression of
false visual sensation caused for instance by illnesses related to
strabismus. The dual perception of simultaneous vision helps
to avoid disturbing effects. The merging of the two separately
recorded signals of both eyes, is named fusion and it is necessary
to not permanently see double (Ganong, 1972; Goldstein, 2015).
The basis of stereopsis is disparity and is caused by the fact
that, although both visual fields overlap for the most part,
corresponding points differ slightly due to a view angle shifted
by ∼6 cm. Disparity, the horizontal displacement, is inversely
proportional to the depth. This coherence is the basis of the
correspondence problem in binocular vision shown graphically
in Figure 1 (Julesz, 1960; Ganong, 1972; Goldstein, 2015). Julesz
showed by means of a simple experiment how our brain can
reliably solve the correspondence problem (Julesz, 1960, 1964).
For this purpose, random dot diagrams were shown to a group
of participants. He used two graphics of dots which are identical
except for a slightly shifted square in the center. The participants
were able to see a depth map representing the offset square.
This effect occurs because the brain tries to reconcile both
signals, but there is a difference in elevation. Research based on
random dot diagrams led to one of the most influential books
(Julesz, 1971) in cognitive sciences and the basic work for stereo
vision. How exactly the brain establishes the connection between
two points of the retina, and thus solves the correspondence
problem, is still an active field of research. In Cumming and
Parker (1997), theories are investigated to what extent the
signals of cortical neurons are related to conscious binocular
depth perception.

3. EVENT-BASED VISUAL SENSORS

In Delbrück et al. (2010), the utopian features of a perfect
camera are identified as an infinitely high resolution, an
infinitely wide contrast range and an infinite number of frames
per second. At the same time, this ideal sensor has a pixel size
of zero and effectively no power consumption. Since nature is
much closer to this ideal than conventional cameras, scientists
started to imitate biological systems. Biologically inspired camera
systems absorb light just like their biological counterparts. In
biology, photoreceptors are used therefore and for the artificial
afterimage electrical circuits containing photodiodes are applied.
The data processing of such a perfect sensor would of course
be enormously computationally demanding, but nature also
has a solution for this; retinas take over a large part of the
processing and thus only transmit relevant information to the
brain (Delbrück et al., 2010). Artificial retinas also take this
aspect into account. They acquire and transmit information
according to the dynamics of the recorded scene. They are
asynchronous in their course of transmission, and therefore
do not output a fixed number of data packets per second.
Instead they broadcast information independently for individual
pixels if their illumination changes significantly. This is a great
derivation from the rigid control and transmission mechanisms
of conventional sensors and implies considerable advantages
for many applications. Particularly worth mentioning is the
latency in the microsecond range, the extremely high contrast
range and the avoidance of motion blur. A profound survey of
neuromorphic sensors is given in Posch et al. (2014). Hence,
section 3.1 refers to this work to some extent.

Spiking Neural Networks (SNN) are members of the family of
Artificial Neural Networks (ANN) but spiking neurons provide
a closer and more accurate model of biological neurons. The
unique characteristic of SNNs is continuous input over time
and they are referred to as the third generation of ANNs.
For a comprehensive introduction to SNNs see Maass (1997),
Vreeken (2003), and Grüning and Bohte (2014). However,
their asynchronous principle of operation is perfectly suited for
processing even-based data, as the natural output of EBS is the
required form of input for SNNs. A biological introduction, and
a survey of how SNNs can be used for robotics is given in Bing
et al. (2018). A discussion of the advantages of combining EBS
and SNN is done in Akolkar et al. (2015).

However, as parallelism is a key component of EBS and
SNN, they require dedicated hardware to run efficiently.
Neuromorphic hardware as SpiNNaker (Furber et al., 2006,
2014), ThrueNorth (Merolla et al., 2014), Spikey (Pfeil et al.,
2013), and Loihi (Davies et al., 2018) model the massively parallel
structure of the brain. Algorithms including spike and event-
based communication often enhance their performance when
run on neuromorphic hardware. Energy efficiency, scalability,
and real-time interfacing with the environment caused by high
parallelism are advantages of this technology (Furber et al., 2014;
Davies et al., 2018). Furthermore, fault tolerance is a huge benefit
of this brain inspired hardware. Much like neural structures
in nature, neuromorphic systems cope well with the failure
of single components.
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In the field of machine learning, it was shown several times
that neuromorphic hardware can be applied successfully to
biologically inspired algorithms. For instance, in Neftci et al.
(2014) a Restricted Boltzmann Machine using leaky integrate-
and-fire neurons with STDP synapses is used for learning a
generative model of the MNIST dataset of hand-written digits.
Another example is shown in Bogdan et al. (2018). The authors
implement a technique for topographic map formation on
SpiNNaker. Eventhough stereo vision applications have not been
implemented on neuromorphic systems a lot. Although first
approaches like (Dikov et al., 2017; Andreopoulos et al., 2018)
exist, implying that there is potential. Furthermore, running
event-based stereo vision algorithms on neuromorphic hardware
creates a complete event-based chain from the data acquisition to
the processing.

3.1. The Silicon Retina—Emergence and
Fundamentals
Over the last 50 years, scientists have developed visual sensors,
so-called silicon retinas, modeled after the biological retina
and thus employing neurobiological principles. Many of the
technologies developed are based on the principles of very
large scale integration(VLSI). Pioneers for silicon retinas are
Mahowald and Mead who had already introduced their Silicon
VLSI Retina in 1991 (Mahowald and Mead, 1991; Mahowald,
1994). This sensor has adaptable photoreceptors and a network
capable of spatial smoothing (Lichtsteiner et al., 2008). It is a
sensor chip with a 2D hexagonal grid of pixels. In this sensor
they replicated some cell types of biological retinas. This concerns
the photoreceptors, bipolar cells and horizontal cells discussed in
chapter 2.3. The interaction of the three components and their
affiliation to their biological model is visualized in Figure 3. The
artificial photoreceptor (P) is modeled based on the cone and
consists of two components, a time-continuous light sensor and
an adaptive circuit (Mahowald andMead, 1991; Mahowald, 1992;
Douglas et al., 1995; Posch et al., 2014).

FIGURE 3 | The three components of Mahowalds silicon retina are modeled

on photoreceptor cells, bipolar cells, and horizontal cells. Every module is

marked by the first letter of its biological paragon.

The layer of horizontal cells (H) located between the
photoreceptor layer and the outer plexiform layer (see Figure 2)
is represented by a network of adjustable MOS resistors
(Posch et al., 2014). The circuits representing bipolar cells
(B) amplify differences between the values measured by P
and the local average. The component B additionally converts
these signals into ON- and OFF-values (Mahowald, 1994;
Posch et al., 2014). Since this sensor represents merely
the photoreceptor layer, the outer plexiform layer and their
connecting layer, thus the inner layers of the retina, only DP
3 & DP 4 from chapter 2.3 are converted. This sensor was
used exclusively for test and demonstration purposes proofing
biological theses (Lichtsteiner et al., 2008).

In contrast, the Parvo-Magno Retina by Zaghloul and Boahen
considers five retinal layers. It comprises the three main layers
shown in Figure 2 and both intermediate layers of horizontal
and amacrine cells (Boahen, 2005; Zaghloul and Boahen,
2006). This technology emphasizes the realistic imitation of
P-cells (sustainable parvocellular cells) and M-cells (volatile
magnocellular cells) of both plexiform layers. The Parvo-
Magno Retina is superior to the Silicon VLSI Retina by the
implementation of the outer retinal layers. In addition to DP 3 &
DP4, it implements two further properties of biological retinas:
adaptation to lighting conditions and local contrast (see DP 1 in
chapter 2.3) and flexible spatio-temporal filtering (see DP 2 in
chapter 2.3).

Despite its promising structure, the Parvo-Magno Retina from
Zaghloul and Boahen is difficult to apply for practical use-cases.
This is mainly due to the lack of correspondences between the
response characteristics of the pixels (Posch et al., 2014). This
concerns strongly fluctuating spike rates of the pixels as well
as many non-sensitive pixels which do not react even with
comparatively high stimuli (contrast up to 50%) (Lichtsteiner
et al., 2008). However, this feature does not mark down this
sensor compared to other models of its time. Many early
representatives of the silicon retina are not suitable for any real
applications. This is mostly down to the fact that their developers
weremainly biologists rather than engineers and their motivation
was to verify neurobiological models. Common weaknesses
of these technologies are an extremely complex circuit (see
Figure 4), a large retinal area and a low filling factor. On top
of that they are susceptible to noise and VLSI implementations
tend to have device conflicts. These issues prevented their
use in practice so far (Posch et al., 2014). A few years ago,
however, there was a turnaround. More and more developers
with a technical background, practice-oriented motivation and
the necessary knowledge, became involved. The scientific team
around Ruedi developed one of the first sensors with a stronger
focus on applicability (Ruedi et al., 2003). His team focused
mainly on spatial and only subordinately on temporal contrast.
After a period of global integration the system weighted events
according to the strength of their spatial contrast. This implies
a big advantage since events with high contrast are prioritized
for transmission during a period of high data throughput. This
ensures that despite limited bandwidth and high data volumes,
no important information will be lost. The sensor is characterized
by a large contrast range, but suffers greatly from temporal
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redundancies and a temporal resolution which, due to global
integration, is limited by the frame rate (Lichtsteiner et al., 2008).

The approach of Mallik et al. (2005) goes in a similar
direction. Here, too, typical event-based technologies, such as
the communication protocol presented in chapter 3.2, are used
for synchronous image acquisition. The active pixel sensor
(APS) CMOS is modified in such a way that absolute exposure
changes are detected. The advantages of an APS with small
pixels are put into perspective by the small contrast range and
the absolute exposure measurement. Therefore, good results
can only be achieved with uniform illumination of the scene
(Lichtsteiner et al., 2008).

The sensors of Ruedi et al. (2003) as well as Mallik et al.
(2005) are, regarding their technical implementation, far superior
to the cameras of Mahowald and Mead (1991) and Boahen
(2000). What they gain in practical applicability, however, they
lose in biological plausibility, mainly due to their synchronous
mode of action.

Today’s representatives of the silicon retina, represent a
compromise of biological and technical aspects. They implement
all the design principles of biological retinas presented in
chapter 2.3 at the pixel level, as did the Parvo-Magno
retina. This concerns local gain control (1.DP: amplification),
pre-processing by spatio-temporal bandpass filtering (2.DP:
processing), adaptive sampling (3.DP: detection), and continuous
perception (4.DP: quantification) (Boahen, 1996). Delbrück and
Posch are to be emphasized on their technical achievements.

Their work is discussed in more detail in Chapter 3.3
(Lichtsteiner et al., 2008; Liu and Delbrück, 2010; Chen et al.,
2011; Posch et al., 2011).

In Delbrück et al. (2010) criteria for the classification
of biologically inspired sensors are introduced. These are
summarized in Table 1. Sensors that fall under the category

TABLE 1 | Three criterions to classify EBS.

Criterion Name Benefits

Spatial Spatial contrast (SC) Reducing spatial redundancies

makes it well suited for unsteady

lighting conditions.

Spatial difference (SD) Cheap

Temporal Temporal contrast (TC) Reducing temporal redundancies

makes it well suited for uneven

lighting conditions.

Temporal difference (TD) Easy to implement

Data

acquisition

Frame event (FE) Cheap hardware and easy to

implement

Asynchronous event (AE) Low latency, requires relatively few

computing power

The categories (Spatial) and (Temporal) differentiate between relative contrast and

absolute differences. Its flexible and adaptive nature makes relative contrast beneficial

in case of unsteady and uneven lightning conditions.

FIGURE 4 | Artificial building blocks and their biological models of the Parvo-Magno Retina from Zaghloul and Boahen. The left circuit shows the outer retinal layer. A

phototransistor takes current via an nMOS transistor. Its source is connected to Vc, representing the biological photoreceptor (P). Its gate is connected to Vh,

portraying horizontal cells (H). The circuit in the center represents the amacrine cell modulation. A bipolar terminal B excites a network of wide-field amacrine cells (WA)

and also narrow-field amacrine cells (NA) through a current mirror. The amacrine cells, in turn have an inhibitory effect on B. By the right circuit the spiking ganglion

cells are represented. Current Iin from the inner retinal circuit charges up a membrane capacitor G, based on biological ganglion cells. If its membrane voltage crosses

a threshold a spike (Sp) is emitted and a reset (Rst) discharges the membrane. Inspired by Zaghloul and Boahen (2006).
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spatial contrast (SC) instead of spatial difference (SD) can
handle temporal variations with regard to scene lighting better.
This is because the use of relative intensity ratios instead of
absolute intensity differences suppresses spatial redundancies.
Respectively, cameras from the category temporal contrast (TC),
compared to temporal difference (TD), are better in respect to
dealing with uneven, spatially varying lighting conditions. The
reason for this is that relative instead of absolute intensity
changes are considered and thus temporal redundancies are
suppressed. This criteria is also applied in Table 2 of chapter 3.3,
the comparison of current event-based sensors.

The four design principles of biological vision and their
implementation in conventional and event-based cameras
is as follows:

• Amplification: While automatic gain control is global in
conventional cameras it is realized locally in the retina.

• Preprocessing: Preprocessing is not applied in standard
sensors but the retina uses band-pass filters.

• Detection: Since standard cameras make use of integrating
detectors, such as CCD, resets are often required.

• Quantization: While fixed in standard cameras in retinas
quantization is adaptable to the frequency of change and the

TABLE 2 | Comparison of event-based sensors.

DVS DAVIS ATIS

Major

function

Asynchronous

detection of temporal

contrast

See DVS +

synchronuos

imaging

See DVS +

Intensity

measurement for

every

single event

Resolution 128 × 128 240 × 180 304 × 240

Gray-scale

value

✗ Synchronous Asynchronous

Circuits per

pixel

1 1 2

Exposure time ✗ Uniform Uneven

Latency 15 µs 3 µs 4 µs

Noise Very strong

(2.1%)

Strong

(APS: 0.4%,

DVS: 3.5%)

Medium

(0.25%)

Dynamic range 120 dB 130 dB 143 dB

Pixel size 0.35 × 0.35 µm 0.18 × 0.18 µm 0.30 × 0.30 µm

Costs 2,590/2,250 e 4,140/3,630 e 5,000/4,000 e

Contrast

sensitivity

15% 11% 30%

Date of

publication

2008 2013 2011

Application Dynamic scenes Dynamic scenes Surveillance

Classification regarding Table 1

SC

TD

AE

SC

TD

APS: FE

DVS: AE

SC

TD & TC

AE

As costs the standard and the reduced costs for scientific and educational purpose is

listed. Information originates from Posch et al. (2014), Dong-il and Tae-jae (2015), and

Cohen et al. (2017).

distribution of the input signal. Event-based sensors privilege
time, while classic cameras privilege precise pixel intensity.

The main distinguishing features are the lack of frames, low
latency, low processing power and a high contrast range.

3.2. Address Event Representation
In nature, data transfer from the eye to the brain is carried
out by approximately one million axons of ganglion cells. For a
realistic technical imitation, each pixel of the camera needed its
own cable. Since any practical chip wiring makes this impossible,
VLSI-technologies employ a workaround (Posch et al., 2014).

To bundle the data traffic on these lines, an event-based
data protocol Address Event Representation (AER) is used. The
research and development that is leading to this technology was
largely pioneered in the late 80s by Sivilotti (1990) andMahowald
(1992). Both scientists were part of the Caltech group of Carver
Mead. AER is an event-controlled, asynchronous point-to-point
communication protocol for neuromorphic systems. It allows
spikes to be transferred from neurons of one chip to neurons of a
second chip (Boahen, 1998, 2000). The basic idea is based on the
addressing of pixels or neurons, with their x- and y-value, within
their array (Lichtsteiner et al., 2008).

For a long time, this technology has only been used by a
small group of researchers, such as Boahen (1996) for prototypes
of the Silicon Retina. It was not until after the turn of the
millennium that a broader public took notice of it. In addition to
the development of many more biological camera systems, AER
also found its way into other contexts, such as biological hearing
and wireless networking (Posch et al., 2014).

The basic functionality of AER is implemented, as illustrated
visually in Figure 5, by two address encoder and a digital bus. The
bus system implements a multiplex strategy so that all neurons
and pixels transmit their information, time-coded, on the same
line. The address encoder (AE) of the sending chip generates
a unique binary address for each element in case of a change.
This can be either a neuron that generates a spike or a pixel on
which an event (exposure change) occurs. The AER bus transmits
this address at high speed to the receiving chip, whose address
encoder (AD) then determines the correct position and generates
a spike on the respective neuron. AER uses streams of events
to communicate between chips. An event is defined as a tuple
Event(x, y, t, p), whereby the pixel reference of the event is given
by x and y. The timestamp is given by t and the polarity is
represented by p. The polarity is either positive or negative and
thus indicates whether the lighting intensity has increased or
decreased. The event in question will then be displayed as an
ON-event, in positive, or OFF-event, in negative case.

It is easily possible to extend this technique, since on the
one hand, events from different senders can be combined, and
on the other hand, forwarding to multiple recipients is feasible
(Lazzaro and Wawrzynek, 1995). This means that all connection
types are possible; many to one, one to many, and many to
many. In addition, arbitrary connections and new connections
and transformations can easily be implemented with the help of
this digital address system. An important advantage is that due to
the asynchronous character calculations are fast and efficient.
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3.3. Comparison of the Best-Known
Exponents: DVS—DAVIS—ATIS
All modern, event-based sensors are based on the technology
introduced in section 3.1. They have independent pixels that
generate asynchronous events depending on exposure changes.
In addition, all sensors of this type use AER (see section 3.2)
for communication. The large contrast range of these cameras
is based on the logarithmic compression of the photoreceptor

circuits and the local, event-based quantization (Lichtsteiner
et al., 2008). The best known sensor of this kind, the Dynamic

Vision Sensor (DVS), was developed at ETH Zurich in 2008. The
circuit diagram in Figure 6 introduces the pixel design of the

DVS which forms the basis of all other sensors in this section.
The design decisions are based on the three main objectives;

high contrast range, low error rate, and low latency (Lichtsteiner
et al., 2008). To avoid unwanted oscillations there is a subdivision

FIGURE 5 | The AER-bus-system. Three neurons on the sending chip produce spikes [see (I)]. These are interpreted as binary events [see (II)] and by means of the

address encoder (AE), a binary address is generated. This address is transmitted via the bus-system and the address decoder (AD) determines the correct position on

the receiving chip [see (III)]. Hence a spike is emitted on the affected neuron of the receiver [see (IV)].

FIGURE 6 | The three-layered pixel circuit of the DVS, consisting of a photoreceptor, inspired by the biological cones, a differential circuit, based on the bipolar cell

and a comparator modeled after the ganglion cell.
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into sub-circuits (Brandli, 2015), as shown in Figure 6. Firstly,
the left component represents the cone, a fast, logarithmic
photoreceptor. Due to its logarithmic mode of operation, growth
in individual pixels is effectively controlled without delaying
the reaction time to exposure changes. The disadvantage of
this photoreceptor set-up is that if the output is to be used
without post-processing, calibration is necessary. This is due to
fluctuations between the thresholds of the transistor. Secondly,
the mid-component is based on the bipolar cell. Its task is to
precisely amplify changes and avoid errors, generated by direct
coupling (DC mismatch), through resets after each event. The
third component of the DVS is the comparator consisting of two
transistors. The transistors represent the ON- and OFF-ganglion
cells (Lichtsteiner et al., 2008). The synergy of the components is
as follows; light information is obtained by a photodiode which
thus generates the current intensity I. Photoreceptors (cones)
convert I into a logarithmic voltage Vp. This voltage is inversely
amplified by the factor A = C1/C2. Also a positive or negative
event Vdiff is generated by the differential circuit (bipolar cell),
depending on the polarity of the photocurrent. Subsequently,
the pulses are collected, divided into ON- and OFF-events and
forwarded by the comparator (ganglion cell) (Posch et al., 2014).
The logarithmic effect and the suppression of DC makes the
sensor so sensitive to contrast in the time domain (Lichtsteiner
et al., 2008). Hence, it takes well into account dynamic, fleeting
scene information, just like biological magno-cellular structures.
The functionality of P-cells, necessary for sustainable information
(see chapter 2.3) is neglected (Posch et al., 2011).

Posch and his team developed the Asynchronous Time-Based
Image Sensor (ATIS) Posch et al. (2011). Their exponent is
even closer to the biological model and also a more practically
applicable sensor. The ATIS extends the basic principle of the
DVS by a further photodiode to measure the time difference
between two events and thus gain event-based intensity values
in addition to the temporal contrast values of the event stream.
As visualized in the upper part of Figure 7, the conventional
change detector (CD) circuit is used to detect changes in the
event stream. A circuit for exposure measurement (EM) is added.
From a biological perspective, the CD-component, implemented
in the DVS and the ATIS, is a magno-cellular structure. The
additional EM-component embodies biological P-cells and is
thus responsible to gather sustainable information. In other
words, the magno-cellular CD, answers the question “where?,”
while the parvo-cellular EM is responsible to solve “what?.”
The application of the EM makes it possible to create gray-
scale images from the events. Hereby, the intensity is given by
I = 1/t, implying that the amount of the temporal difference
between two events of a pixel determines its gray-level value.
As visualized under gray-value determination in the lower part
of Figure 7, a big temporal difference leads to a dark gray-
value, and a small difference to a brighter one. The CD circuit
triggers the activity in the EM circuit. Hence, the measurement
of a new exposure time and consequently a new gray-scale value
is initiated if the illumination varies (Posch et al., 2014). In
Figure 7 this coherence is illustrated by the gray arrow with
the label triggers. This process ensures that the EM circuit is
also asynchronous and the corresponding gray-value is updated

for each event (Posch et al., 2011, 2014; Brandli, 2015). The
development of ATIS showed scientists for the first time the
possibility to combine frame-based with frame-free approaches
to obtain static and dynamic image information in parallel.
The resulting duality also opens up a large number of new
processing capabilities, since many conventional machine vision
algorithms do not work with asynchronous event streams. The
special design and operating principle of the ATIS also offers
further advantages, some of which have direct applications; for
example, video compression at sensor level can be achieved by
suppressing temporal redundancies. In addition, the extremely
high temporal resolution and the dynamic range of 143 dB are
remarkable. ATIS owes its wide dynamic range to the fact that it
encodes its intensity values time based. Conventional sensors use
fixed integration times for the complete array and are thus highly
dependent on light levels. Time based encoding naturally leads
to separate integration times for each pixel implying the wide
dynamic range and a more light independent sensor. However,
this leads to uneven exposure times, which causes problems with
near and slow objects (Posch et al., 2014).

It was in this context that the motivation for developing the
Dynamic and Active-pixel Vision Sensor (DAVIS) came about.
Besides the DVS and ATIS it is the third major event-based
sensor. DAVIS, introduced in Berner et al. (2013), is a hybrid of
DVS andAPS. As shown in Figure 8, the DVS-circuit, responsible
for the asynchronous detection of logarithmic intensity changes,
for generating dynamic scene information, is supplemented.
Thus, all threemodern event-based cameras have the same circuit
as a basis. The second component of the DAVIS is an APS and,
similar to the EM of ATIS, responsible for absolute exposure
measurement and generating gray-scale images in addition to
the event stream. In contrast to ATIS, however, the additional
component of DAVIS is not asynchronous. The APS circuit
receives static scene information by frame-based sampling of the
intensities. This makes it very close in its operating principle
to the APS component of conventional cameras. The obvious
advantage of being able to use decades of research, is impaired
by the existing disadvantages of frame-based cameras, such as
redundancy, high latency etc. (Berner et al., 2013; Posch et al.,
2014; Cohen et al., 2017).

Table 2 takes all three sensors into account. In addition to
technical criteria, such as resolution, pixel size and dynamic
range the costs and fields of application are also regarded.
DVS is the predecessor of the other two sensors. It is the
smallest and least expensive one, but has clear disadvantages in
comparison. For example its low resolution of 128 × 128, its
noise problems and its inability to generate intensity or gray-
value information. The other two sensors each have different
strengths and weaknesses. The ATIS convinces with a contrast
range of 143 dB, caused by not mapping intensity values
to a fixed voltage range. However, this also leads to uneven
exposure times and thus to motion artifacts. The DAVIS has less
problems with motion artifacts because it uses even exposure
times. The synchronous mode of operation of the DAVIS, for
intensity measurement and gray-value images, causes a large
redundancy but also leads to independent processes which do
not interfere with each other. ATIS has the highest resolution
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FIGURE 7 | The two-section circuit constituting each ATIS pixel. The change-detector circuit (CD), which is also part of the DVS, is supplemented in the ATIS by the

exposure measurement circuit (EM). In this way the camera is able to obtain, additionally to transient, also sustainable image information. Written informed consent for

publication of the image was obtained from the individual in that graphic.

of 304 × 240, which offers considerable advantages in confusing
scenes with many objects. Since the DAVIS has smaller pixels
it better represents fine granular image areas with a high level
of detail. As a result, ATIS is better suited for monitoring and
the DAVIS for dynamic scenes with fast movements. ATIS, due
to its completely asynchronous character and the fact that the
theoretical basis of P-cells is taken into account, is superior in
biological plausibility. DAVIS leads in practical applicability. On
the one hand this is due to their small pixel size, but on the
other hand also because it is better at handling darkness and near,
slow objects.

3.4. Additional Models of Event-Based
Sensors
Alongside the three best-known representatives of neuromorphic
cameras, discussed in chapter 3.3, there are other models worth

mentioning1. In 2007, long before the development of the ATIS
and virtually at the same time as the DVS was created, Christoph
Posch, a co-developer of DVS and ATIS, invented the Dynamic
Line Sensor (DLS). This sensor was presented in Posch et al.
(2007) and is quite unusual; its resolution is 2 × 256 and thus
it consists of only two series of pixel. Despite this characteristic,
which makes it a niche solution, the sensor has interesting
properties. For example, its pixel size is with 15µm smaller than
that of all the sensors presented in Table 2. Additionally its high
temporal resolution is noteworthy (Posch et al., 2007).

Color perception is a fundamental characteristic of biological
vision. However, for long there have been no applicable event-
based sensors implementing color vision (Delbrück et al., 2010;
Posch et al., 2014). Experiments in this direction suffered

1An overview of neuromorphic sensors and their applications is given here: https://

github.com/biphasic/event-based_vision_resources
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FIGURE 8 | The circuits building up the DAVIS. Each of its pixels is a hybrid of the DVS-circuit and an active-pixel-sensor (APS). Like the ATIS sensor, the additional

component of the DAVIS is capable of generating gray-scale images. However, the principle of operation of the APS is synchronous and thus similar to conventional

vision sensors, distinguishing both sensors severely.

from weak color discrimination (Berner and Delbrück, 2011;
Leñero-Bardallo et al., 2014) and also had either extremely large
circuits (Berner and Delbrück, 2011) or large pixels (Leñero-
Bardallo et al., 2014). This was fundamentally different with the
color dynamic and active-pixel vision sensor (C-DAVIS) from Li
et al. (2015). It combines slightly modified pixel circuits of the
DAVIS with a special type of Bayer sensor, a photosensor with
color filter. The C-DAVIS generates in parallel synchronous color
images and asynchronous event streams that do not receive color
information. Thus, the coloring is created in the conventional
part of the camera.

EBS have been continuously improved in the last years.
Alongside research institutes, private companies, like Prophesee,
Samsung, and HillHouse, contributed to this progress. Therefore,
some of the newer models are less accessible to academia.
With Samsung’s DVS, a representative of neuromorphic cameras,
constructed outside the academic world, was introduced for
the first time in Son et al. (2017). The motivation was clearly
make EBS marketable. The developers focused on reducing the
pixel size to 9 µm and lower the energy consumption (Yaffe
et al., 2017). This VGA dynamic vision sensor embodies a
digital as well as an analog implementation. The resolution
was increased to 640 × 480 and AER was extended to
G-AER (Group Address Event Representation) to compress
data throughput. G-AER handles massive events in parallel
by binding the neighboring 8 pixels into a group. This
technique allows easier control of pixel biases and event
thresholds (Son et al., 2017).

Another recent model is the Celex, developed at Nanyang
Technological University, Singapore (NTU Singapore) (Huang
et al., 2017, 2018) and distributed by the company HillHouse2.
This sensor has a dynamic range of >120 dB and like the ATIS

2More information about HillHouse: http://www.hillhouse-tech.com

the Celex provides absolute brightness with every event. It is
also noteworthy that the Celex IV , an event-based HD sensor
is announced.

4. EVENT-DRIVEN STEREOSCOPY

Although all depth stimuli depicted in section 2.4 are used
in combination to enable 3D-perception in humans, binocular
perception is by far the most revealing one. The other
techniques sometimes provide only relative positions and are
often imprecise. Binocular vision, in contrast, produces
absolute values with very high accuracy (Mallot, 1998). As a
result, the vast majority of event-based approaches to stereoscopy
are based on binocular depth stimuli. A stereo set-up made of
EBS is usually used for this purpose. To obtain disparities and
thus depth information from the event streams, the individual
events of both sensors must be assigned to each other. Despite
the extremely high temporal resolution of EBS (Lichtsteiner
et al., 2008; Posch et al., 2011), noise, faulty calibration, different
contrast sensitivity of the sensors or pixels lead to deviations of
several milliseconds in reality. As a result, determining matching
events of both sensors with exclusively temporal aspects leads, in
addition to the right ones, also to false correspondences. This is
shown in Figure 9.

4.1. Cooperative Algorithms
To suppress false correspondences cooperative algorithms can be
applied. The neurons of a SNN, that implements a cooperative
algorithm, communicate according to certain rules. The research
of Marr and Poggio (1976, 1977, 1979) and Marr (1982) forms
the beginning of these algorithms.

To exploit the advantages of an approach based on SNN and
EBS, the implementations of event-based cooperative algorithms

Frontiers in Neurorobotics | www.frontiersin.org 12 May 2019 | Volume 13 | Article 28

http://www.hillhouse-tech.com
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Steffen et al. Neuromorphic Stereo Vision

FIGURE 9 | Event streams of two sensors for the same point of the real world. The top row shows the deviation of illumination between the two corresponding pixels

of two retinas. The resulting streams of OFF and ON events are shown below. Below it can be seen that events of both sensors occurring within the timeframe δt can

be both, correct and incorrect correspondences.

is compatible with neuromorphic hardware. In the case of Dikov
et al. (2017) and Kaiser et al. (2018) this is SpiNNaker.

4.1.1. Matching Constraints
All approaches based on Marr and Poggio (1977) use two
event-based sensors as input of a neural network and are
therefore confronted with the correspondence problem. The
naming, cooperative algorithms, is derived from the fact that
rules are defined how the neurons of the network communicate
with each other. The purpose of the communication rules is
to solve the correspondence problem. Since the neurons are
able to measure disparities by applying these rules, they are
called disparity sensitive neurons (DSN). According to Marr
and Poggio (1977), there are three steps in measuring stereo
disparities: (S1) Determination of the point of interest (POI)
in the first image; (S2) identification of the POI in the second
image; (S3) measurement of the disparity of the two pixels. Since
wrong correspondences cause problems, physical properties
of solid bodies are considered in order to obtain additional
constraints. These are the following two properties: (P1) is the
uniqueness of each point in a scene at a given time. (P2) is
the continuity of matter meaning it is continuous and divided
into objects. The surfaces of objects are generally perceived
as smooth (Marr, 1982). The three rules for communication
between DSNs, referred to as matching constraints, are derived
from P1 and P2:

• Uniqueness Constraint (C1): Derived from P1, for each point
of the image of the first eye/camera there is at most one
corresponding hit in the image of the second eye/camera.
Therefore C1 inhibits the communication between DSNs in
vertical and horizontal direction (Marr and Poggio, 1979;
Marr, 1982).

• Continuity Constraint (C2): According to P2, physical matter
is cohesive and smooth. Hence, C2 has a stimulating effect
when it comes to communication in diagonal direction with
the same disparity. So if a disparity of neighboring neurons is
consistent, it is more likely to be correct and the corresponding
signal is thus amplified (Marr and Poggio, 1979; Marr, 1982).

• Compatibility Constraint (C3): Is derived from the thesis of
Marr and Poggio (1977), that black dots can only match black
dots. It states that similar characteristics in the same region
are more likely than completely different ones. In practice,
it causes ON-events and OFF-events occurring temporally
and spatially dense to inhibit each other. There is a greater
probability of incorrect correspondences since contrasting
changes in lighting are less common for neighboring pixels
(Marr and Poggio, 1977; Marr, 1982).

4.1.2. Extension to Pulse-Coupled, Event-Based

Technologies
The principles presented in chapter 4.1.1 are transferred into
an event-based implementation in Firouzi and Conradt (2016).
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However, it does not use spiking neurons and is thus not
exploiting the event-based data ideally. In Dikov et al. (2017)
and Osswald et al. (2017), SNNs and the corresponding
neuromorphic hardware are combined with this approach.
Compared to conventional synchronous methods, these models
use a further constraint to suppress false correspondences, time
(Dikov et al., 2017). This brings a great novelty to the old
approach; the network input is not composed of static images but
instead spike-trains containing spatio-temporal information. The
network implemented in Osswald et al. (2017) consists of three
essential parts; retina coordinates, represented by OFF- and ON-
neurons, coincidence detectors and disparity detectors. The aim
is to amplify correct correspondences and to suppress wrong ones
in order to generate a correct disparity measurement. The retina
coordinates generate a spike for each change in illumination at a
specific point in space. The randomdetectors signal simultaneous
spikes for possible layers. The cells are arranged so that each
spike represents the position of a possible disparity. Since
coincidence detectors are sensitive for right but also for wrong
correspondences, all possible hits are gathered here. Within
the connections of the neurons of coincidence detectors and
disparity detectors rules of binocular vision are implemented.
In greater detail, C2 and C3 are realized by stimulating and
inhibiting compounds. The uniqueness rule C1, is implemented
subsequently through recurrent, inhibitory connections of the
disparity detectors.

In Osswald et al. (2017), the effects of this approach are
analyzed. The authors compare the spike rates of the random
detectors with those of the disparity detectors. The conclusion is
that wrong correspondences are detected significantly more often
without matching constraints.

In case, one of the sensors of the stereo set-up is exposed
to high-frequency stimuli, false correspondences can arise. This
is because the DSN, which collects the signals of both retina
coordinates, exceeds its threshold, although only one of the
sensors sends a pulse and the other does not. To overcome this
issue, the basic technique was extended in Dikov et al. (2017)
bymicro-ensembles. Hereby, neuronal micro-ensembles are used
that implement the behavior of a logical &. For this purpose,
as shown in Figure 10, two blocking neurons are connected
between the retinal coordinates and the integrating DSN. In
case the left retina neuron receives a spike, it excites both,
the integrating and the left blocker neuron. At the same time
it inhibits the right blocker neuron. If now the right retina
neuron does not receive a spike and therefore does not inhibit
the left blocker neuron, this prevents the integrating neuron
from generating a spike. This mechanism ensures that the
integrating neuron is only capable of spiking if both blocker
neurons of the ensemble are inhibited. Hence the integrating
neuron only emits a pulse if both retina neurons are spiking
(Dikov et al., 2017; Kaiser et al., 2018). In Dikov et al. (2017)
and Osswald et al. (2017) disparities are calculated merely from
dynamic scenes. This is simply to the fundamental technology
of event-based cameras that perceive only changes in lighting
and are thus not perceiving static scenes continuously. In Kaiser
et al. (2018), this approach, including EBS, is extended to
static scenes by applying synchronous microsaccades. In biology,

microsaccades are extremely fast and very small eye movements
with low amplitude. This artificial dynamic allows the network
to extract disparities from static scenes. For the practical
implementation, a robot head has been constructed which is
capable of carrying out vertical and horizontal tilt movements
independently and simultaneously.

4.1.3. Network Architecture
On an abstract level, the network receives signals from two EBSs
processing the data and extracting the disparities. The simplified
structure of the SNN is as follows; events of two EBS that are on
the same epipolar plane of the real world are input of the same
2D-plane of the network, as shown in Figure 10. These 2D-layers
are stacked to form the 3D-SNN. Each 2D-layer calculates the
disparities for a pixel row of both DVS. The neurons of the output
layer generate a pulse when the corresponding point of the real
world changes from occupied to unoccupied or vice versa (Dikov
et al., 2017; Osswald et al., 2017; Kaiser et al., 2018).

However, the special structure of the network and its
internal connections are essential for solving the correspondence
problem. Therefore, the structure of the network is discussed
in more detail; a disparity is indicated by a DSN that exceeds
its threshold. Each DSN describes, by its x- and y-position in
combination with the disparity for which it is sensitive, a specific
point in space. There are two ways to arrange these neurons
so that they represent the replicated scene of the real world.
The naive way is that each DSN represents a point of the real
world and all neurons are equally distributed, as are their real
counterparts. We call this the dynamic path because the DSNs
are not assigned fixed retina coordinates. For this approach, the
cameras must be calibrated very accurately, their exact position
and orientation must be known, and their focus line must be
taken into account throughout. These conditions are difficult to
implement in practice. Alternatively, each DSN represents a fixed
neuron from both populations of retina coordinates. Thus same
two pixels of the respective sensor are always connected with each
other. This is the static method which is much less error-prone.

4.2. Extensions of Cooperative Algorithms
The formalisms of cooperative algorithms already eliminate the
majority of false correspondences. However, some scientists
found ways to combine this basic approach with an entirely
different approach in order to obtain even more accurate
results. In the following methods are shown that complement
cooperative algorithms.

4.2.1. Gaborfilters
In Camuñas-Mesa et al. (2014a,b) and Reverter Valeiras et al.
(2016), the authors show how to extend cooperative algorithms
extended by a new component, a supplementary constraint. On
top of the known matching constraints such as time and polarity,
the authors use Gabor filters to extract information about the
object edges that generate the events. This is working well because
EBS create events when objects, and thus their edges, move.
Events that belong together refer to the same edge and should
therefore have the same orientation.
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FIGURE 10 | Structure of the network inspired by Dikov et al. (2017) with increasing degree of detail. The network’s 3D-structure is represented in the left part; An

entire row of pixels is mapped from both EBS to one plane of the SNN. This 2D-layer is where the disparities of the affected pixels are calculated. The center shows

the neurons of a 2D-layer, connected according to the constraints of cooperative algorithms, outlines in chapter 4.1.1. Green represents inhibiting and blue exciting

synapses. In the right part the outline of micro ensembles are visualized. The cooperative manner of this network relies on micro-ensembles. The retina coordinates

are visualized as light blue squares, the blocking neurons as blue circles and the collecting neuron as a red circle. Reprinted by permission from Springer Artificial

Neural Networks and Machine Learning (Kaiser et al., 2018).

The authors of Camuñas-Mesa et al. (2014a) use Gabor
filters, with different angles and scales, on the original event
streams of both cameras. The results are used as input for a
cooperative algorithm.

The work of Reverter Valeiras et al. (2016) is based on
the HFirst-approach of Orchard (Orchard et al., 2015), which
uses a hierarchical, h-max-inspired SNN-architecture and a
neuromorphic camera for object recognition. In Reverter Valeiras
et al. (2016), an ATIS (see chapter 3.3) is applied. The approach
describes itself as actually event driven, as each new event renews
the 3D-pose estimation.

4.2.2. Belief Propagation
A new completely event-based approach to depth perception
is presented in Xie et al. (2017). It is based on Belief
Propagation (BP), a subset of the message-passing algorithms.
These algorithms are used to solve derivation, optimization and
condition fulfillment problems. Bayesian networks or Markov
Random Fields are often applied for preprocessing in this
context. BP then calculates the marginal distribution of each
unobserved node. Hence, the correspondence problem is seen
as a labeling problem. The labels refer to the disparity and their
quality is measured as a cost function. By use of maximum
a posteriori probability (MAP), labels are determined that
minimize the cost function. The method consists of four steps;
preprocessing, adjustment, Belief Propagation, and output of
disparities. The pre-processing consists of noise filtering and
correction of the input images. For correction it is transformed
so that each pixel row of the two images refers to the same points.
The matching determines whether two events are potential
partners. Correct matches are from different sensors, occur
within a time window, have the same polarity and occur in
the same or adjacent rows. This implementation of Belief
Propagation is based on Felzenszwalb and Huttenlocher (2004).
The algorithm does not synchronously renew all disparity

estimates, but always the neighborhoods of new events. The
output of the algorithm is a belief vector for each node. The
label, thus the disparity, is then chosen so that it minimizes the
cost function.

Kogler, who tried for a long time to apply classical algorithms
to event-based data, offers in Kogler et al. (2014) an alternative
realization of event-based stereo vision with Belief Propagation.
He complements this with a subsequent filtering in two phases.

4.2.3. Combining Spatial and Temporal Aspects With

Luminance and Motion
In the discussed approaches of this chapter, as well as in
chapter 4.1, the correspondence problem is commonly solved
by spatial constraints and luminance. According to the authors
of Ieng et al. (2018), disparities are thus not reliably detected
in uncontrolled lighting conditions and unstructured scenes.
Therefore, Ieng et al. (2018) presents an entirely time-based
method that exploits the unique characteristics of neuromorphic
sensors, such as high temporal resolution, even more. For this
purpose, the ATIS presented in chapter 3.3 is applied, which
in addition to change events also uses the luminance encoded
in the form of temporal differences. This approach does not
represent a completely new method, but rather an extension
of known approaches. Hereby, the precise timing of Kogler
et al. (2011a) is combined with the local motion consistency
of Benosman et al. (2012) and the temporal consistency of the
luminance from Posch et al. (2011). By additional luminance
information wrong correspondences are reduced. This means
that the unique principle of operation of the ATIS, which
in contrast to DAVIS works completely asynchronously, leads
to new results. Due to the consideration of many different
approaches and theoretical considerations, the algorithm is
extremely complex. Spatial, temporal, generalized temporal, and
motion criteria are combined.
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4.3. Alternatives to Cooperative Algorithms
The approaches presented so far (see chapter 4.1 and 4.2) are all
based on the biological theories of binocular vision investigated
by Marr and Poggio (1979). An alternative implementation of
a cooperative network compatible with their research is given
in Piatkowska et al. (2013). Piatkowska developed an adaptive,
cooperative algorithm adjusting the disparity estimation with
each new event. In Piatkowska et al. (2017), the approach is
enhanced and the error rate, determined by MME, can be
reduced by 50%. For this purpose the normalization is altered and
a noise filter is used. The authors also surrogate the applied DVS
through ATIS.

This chapter introduces other methods for stereo viewing with
event-based cameras, beside cooperative algorithms.

4.3.1. Conventional, Perspective-Based, and Active

Techniques
In Schraml et al. (2007), a conventional, area-based approach
to solving the correspondence problem is transferred to event-
based cameras. Area-based approaches use the neighboring
pixels to find correspondences between the two images for
groups of pixels. The authors tested classical cost functions such
as Normalized Cross-Correlation (NCC), Normalized Sum of
Absolute Differences (NSAD), and Sum of Squared Differences
(SSD). It is questionable whether it makes sense to implement
such an algorithm with EBS because the pre-processing consists
of reconstructing gray-value images from the events. In addition,
such a classical algorithm was compared by Kogler in Kogler
et al. (2011a) to a time-based approach and did much worse,
especially because of its error rate of 4.91%. In Kogler et al.
(2009), the area-based approach is combined with a feature-based
approach for EBS. This work, combining classical algorithms
with event-based technology, is also pursued in Dominguez-
Morales et al. (2011) and Belbachir et al. (2012). The researchers
around around Kogler, however, state in Kogler et al. (2011b) that
classical approaches to stereoscopic vision do not take account
the advantages of silicon retinas and that the reconstruction
of images leads to a loss of temporal accuracy. Based on this
consideration, an algorithm is developed in Kogler et al. (2011b)
focusing on the temporal correlation of events. This approach
is considered by the developers themselves to be far superior to
their previous experiments.

A separate class of algorithms for event-based stereoscopy
are the perspective approaches (Benosman et al., 2011; Rogister
et al., 2012), which are to be clearly separated from the classical
methods and often serve as a basis for advanced algorithms.
Epipolar geometry is used as a constraint in order to allow
to reconstruct 3D-structures. Events are reconstructed, within
a time window, and based on their distance to the epipolar
line. Wrong correspondences are additionally eliminated by
considering polarity, orientation and order. In Carneiro et al.
(2013), this is enhanced by applying a Bayesian filter.

Quite different solutions to recover depth from event-based
data are shown in Martel et al. (2018) and Haessig et al.
(2019). These are active techniques and require additional
hardware, setting them apart from most investigated methods.
In Haessig et al. (2019), the known method to estimate depth

from the amount of defocus at the focal plane is transferred
to neuromorphic sensors and hardware. This is a simple yet
elegant solution, whereby the camera alters its focal distance
in a steady manner and a SNN computes the time of the
best focus for each pixel, creating a depth map. This approach
requires a specific liquid lenses, as an adjustable focal distance
is necessary to allow a variable focus. According to the authors
the low power consumption and computation times guarantee
a real-time application. Complementing the event-based stereo
setup, two mirrors and a mirror-galvanometer driven laser
are used in Martel et al. (2018). This equipment allows the
creation of light spots in the scene, where contrast varies a
lot. Two DAVIS capture these contrast changes, detecting the
laser-induced events enabling a resource-efficient matching.
Events are clustered by space-density, using a simple mean-
shift algorithm, high-density filter and triangulation using a
direct linear transform in the overlap field of both sensors. A
rare feature of this method is that sensor synchronization is
not required.

4.3.2. Event-Based 3D-Perception Through

Monocular Cues
In Rebecq et al. (2017), Rebecq presents a method for Event-
based Multi-View Stereo (EMVS). The approach is based on
densemethods (see chapter 2.2) for conventional cameras. These
approaches, determine dense 3D-structures from known angles.
EMVS, which is based on the work of Space-Sweep Approach
(Collins, 1996), estimates semi-dense 3D-structures with only
one event-based camera. The camera is thereby moved on a
known trajectory. The moving sensor obtains edge detection and
continuous measurement data. The algorithm comprises three
sub-steps; (1) events are projected back in the form of beams. (2)
These beams are counted in a voxel grid to measure the spatial
density of the beams. (3) A semi dense reconstruction of the edges
is possible due to local maxima. A unique characteristic of this
approach is that only one sensor is used for depth perception and
no additional aids are applied. Also, the camera is not fixed but
moves on a given trajectory. The authors report that their method
handles noise, fast movements and poor lighting well.

Further approaches to monocular depth perception are
presented in Brandli et al. (2014) and Matsuda et al. (2015).
These methods distinguish themselves from EMVS by using
complementary hardware and not relying merely on the
data of one camera. In Brandli et al. (2014), a pulsed line
laser is used in railing reconstruction whose asynchronous
operating principle can be easily combined with an event-based
algorithm. In Matsuda et al. (2015), the EBS is supplemented by
Structured Light.

5. CONCLUSION

Neuromorphic systems have enormous potential, yet they are
rarely used in a non-academic context. Particularly, there are
no industrial employments of these bio-inspired technologies.
Nevertheless, event-based solutions are already far superior to
conventional algorithms in terms of latency and energy efficiency.
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Potential consequences and the future of such technologies and
processes are discussed in this chapter.

5.1. Remaining Issues of Silicon Retinas
Although much research with biologically inspired sensors
has taken place in recent decades, there are still plenty of
unresolved issues and open questions in the field. Techniques
based on Mahowald’s VLSI-retina are in some respects
quite similar to the structures of the human brain and
eyes, which they are imitating. At the same time, however,
there are many biological mechanisms and structures that
are not, or only partly, implemented artificially. A popular
example of this is the wiring problem in biological neural
3D-structures (Posch et al., 2014). Although 3D-wiring has
been regarded as the more efficient technology for more
than 20 years (Milenkovic and Milutinovic, 1998), there are
still only a few immature approaches (Kurino et al., 2000;
Culurciello and Andreou, 2005).

Another fundamental feature of biological vision is color
perception. C-DAVIS, a neuromorphic sensor capable of color
recognition, has been available since 2015, but color perception
is only implemented in the synchronous and not in the event-
based part of the camera (Li et al., 2015). Sensors that encode
color information in the events do not yet exist. However, it can
be argued that color and motion perception is also processed
separately in biological vision, by means of cones and rods, and
therefore a division of the mechanisms is justified.

Furthermore, the problem of spatial redundancies and how
they can be effectively reduced remains unsolved. Moreover, even
the relatively high resolution of DAVIS and ATIS is much too
small for industrial purposes and their already strongly reduced
pixel size are still too large (Posch et al., 2014).

5.2. Artificial Stereoscopy—A Comparison
The comparatively low dynamic range and the limited frequency
of conventional camera systems form a bottleneck for classical
approaches to stereoscopy. In addition, these methods are
very unreliable under uncontrolled lighting conditions. In
Akolkar et al. (2015), the advantages of event-based sensors
for pattern recognition are discussed in detail. This can
essentially be transferred to stereoscopy. Motion artifacts and
object displacement of synchronous image acquisition are
the reason why asynchronous imaging is sophisticated in
stereo vision.

However, the use of EBS is not sufficient, which is indicated
by the fact that the algorithms have very different results.
For example, approaches based on classical methods for stereo
vision cannot compete with cooperative algorithms. The authors,
of the methods introduced in section 4.1, state that range-
based and feature-based approaches have significantly worse
results than simple algorithms using temporal correlation. This
is especially interesting since temporal correlation is only the
most basic criterion of the cooperative algorithms in chapter
4.1. Cooperative algorithms are the gold standard, which can
also be seen by the fact that they have been used successfully

by several independent research groups (Dikov et al., 2017;
Osswald et al., 2017; Piatkowska et al., 2017; Kaiser et al.,
2018). The approach of section 4.2.3 introduced in Ieng et al.
(2018) was published in summer 2018 and is therefore quite
new. In addition, it builds on many previous works. As a
result, it is very progressive and combines many benefits of
the research it is based on. Also noteworthy are the results
of Martel et al. (2018) and Haessig et al. (2019). Hereby,
active approaches requiring additional hardware are introduced.
However, these techniques are resource-efficient allowing a real-
time application.

5.3. Outlook
Algorithms are based on SNNs and EBS only develop
their potential when they are applied on neuromorphic
hardware (Khan et al., 2008). Although there are already some
implementations of networks on neuromorphic hardware (Dikov
et al., 2017; Andreopoulos et al., 2018; Kaiser et al., 2018),
research in this area is not that far yet. However, this will probably
change rapidly in the next few years which will make the existing
approaches much more powerful.

The application of DAVIS or ATIS in contrast to DVS has
already significantly improved the outcome of several approaches
like (Reverter Valeiras et al., 2016; Piatkowska et al., 2017;
Andreopoulos et al., 2018; Ieng et al., 2018). In particular
responsible for this progress is the higher resolution of these
sensors. Even though solutions from industry, such as Samsung’s
DVS (Son et al., 2017), are not yet mature, this could alter
drastically within the next few years. A likely consequence is
that the costs of these cameras will decrease. This development
is further strengthened by the fact that several scientists, which
had an important part in the development of DVS, DAVIS
and ATIS, are transferring their expertise to the industry
by founding companies. Examples for this are Insightness3,
Prophesee4, and iniVation5. This trend suggests that many
problems of current algorithms can be solved by better sensors
and respective technologies.
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