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Neuromorphic vision sensor is a new passive sensing modality and a frameless sensor with a number of advantages over traditional
cameras. Instead of wastefully sending entire images at �xed frame rate, neuromorphic vision sensor only transmits the local pixel-
level changes caused by the movement in a scene at the time they occur. �is results in advantageous characteristics, in terms of low
energy consumption, high dynamic range, sparse event stream, and low response latency, which can be very useful in intelligent
perception systems for modern intelligent transportation system (ITS) that requires e	cient wireless data communication and
low power embedded computing resources. In this paper, we propose the �rst neuromorphic vision based multivehicle detection
and tracking system in ITS. �e performance of the system is evaluated with a dataset recorded by a neuromorphic vision
sensor mounted on a highway bridge. We performed a preliminary multivehicle tracking-by-clustering study using three classical
clustering approaches and four tracking approaches. Our experiment results indicate that, by making full use of the low latency
and sparse event stream, we could easily integrate an online tracking-by-clustering system running at a high frame rate, which far
exceeds the real-time capabilities of traditional frame-based cameras. If the accuracy is prioritized, the tracking task can also be
performed robustly at a relatively high rate with di
erent combinations of algorithms. We also provide our dataset and evaluation
approaches serving as the �rst neuromorphic benchmark in ITS and hopefully can motivate further research on neuromorphic
vision sensors for ITS solutions.

1. Introduction

Neuromorphic vision sensors, inspired by biological vision,
use an event-driven frameless approach to capture tran-
sients in visual scenes. In contrast to conventional cameras,
neuromorphic vision sensors only transmit local pixel-level
changes (called “events”) caused by movement in a scene at
the time of occurrence and provide an information rich stream
of events with a latency within tens of microseconds. To be
speci�c, a single event is a tuple (�, �, �, �), where x, y are the

pixel coordinates of the event in 2D space, t is the time-stamp
of the event, and � is the polarity of the event, which is
the sign of the brightness change (increasing or decreasing).
Furthermore, the requirements for data storage and compu-
tational resources are drastically reduced due to the sparse
nature of the event stream. Apart from the low latency and
high storage e	ciency, neuromorphic vision sensors also
enjoy a high dynamic range of 120 dB. In combination, these
properties of neuromorphic vision sensors inspire entirely
new designs of intelligent transportation systems. In order
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to elucidate the mechanism of neuromorphic sensors more
clearly, a comparison between standard frame-based cameras
and neuromorphic vision sensors is shown in Figure 1.

Traditionally, frame-based vision sensors serve as the
main information sources for vision perception tasks of
ITS, which results in well-known challenges, such as the
limited real-time performance and substantial computational
costs. �e key problem lies in the fact that conventional
cameras sample their environment with a �xed frequency
and produce a series of frames, which actually contain
enormous amounts of redundant information but lost all the
information between two adjacent frames. Hence, traditional
vision sensors waste memory access, energy, computational
power, and time on the one hand and also discard sig-
ni�cant information between continuous frames on the
other hand. �ese properties bring about great limitations
on its applications. For an intelligent transportation system
equipped with conventional cameras, appearance feature
extraction based on learning methods is the major strategy
of environment perception tasks, which is acknowledged to
be computationally demanding [3]. Moreover, in order to
get good detection and tracking performance, large amounts
of labeled data as well as dedicated and expensive hardware
such as GPU are indispensable for the training and learning
process.

In this paper, a novel approach for the tracking system of
the intelligent transportation systems (ITS) is proposed based
on the neuromorphic vision sensor. And we will publish our
dataset and evaluation approaches as well, aiming to provide
the �rst neuromorphic benchmark in ITS and motivate
further research on neuromorphic vision sensors for ITS
solutions. To fully demonstrate the feasibility and potential
of the approach, di
erent detection and tracking algorithms
are presented and compared in this paper. In detection stage,
we utilize and evaluate three classical clustering approaches:
mean-shi� clustering (MeanShi�) [4], density based spatial
clustering of applications with noise (DBSCAN) [5], and
WaveCluster [6]. In terms of tracking stage, we carry out
online multitarget tracking via four di
erent algorithms: sim-
ple online and real-time tracking (SORT) [7], the Gaussian
mixture probability hypothesis density �lter (GM-PHD) [8],
the cardinalized probability hypothesis density �lter (GM-
CPHD) [9], and probabilistic data association �lter (PDAF)
[10].

In combination, we propose the �rst neuromorphic
vision based multivehicle detection and tracking system in
ITS, with the unique properties of neuromorphic vision
sensors mentioned above. �e performance of the system
is evaluated with a dataset recorded by a neuromorphic
vision sensor mounted on a highway bridge. According to
the experiment results, the tracking-by-clustering system can
run at a rate of more than 110Hz, which far exceeds the
real-time performance of traditional frame-based cameras.
With priority given to accuracy, the tracking task can also be
performed more robustly and precisely using di
erent algo-
rithm combinations. �iswork is extended from a conference
paper which is published on the Joint German/Austrian
Conference on Arti�cial Intelligence, 2017 [11]. We extended
it from 4 aspects. First, we extend the testing data sequences

to 3 sequences for the experiment section. Second, we
evaluate 3 detection-by-clustering approaches instead of 2
in [11]. �ird, we extend to evaluate 4 tracking approaches
instead of 1 in [11]. Finally, based on these di
erences, we
analyze the results in di
erent views with new outcomes
[11].

�e rest of this paper is organized as follows. In Section 2,
we list the relatedwork in the context of previousmultivehicle
detection and tracking methods. In Section 3, we introduce
the variety of neuromorphic vision sensors and dataset. �e
algorithms utilized for detection and tracking are illustrated,
respectively, in Section 4.�e experiment results are analyzed
and discussed in Section 5. In Section 6, we draw the
conclusion and point out the possible further work.

2. Related Work

In the past decade, detecting and tracking multiple vehicles
in tra	c scenes for tra	c surveillance, tra	c control, and
road tra	c information systems is an emerging research
area for intelligent transport systems [12–15]. Most of the
existing vehicle tracking systems are based on the video
cameras [16]. Previous approaches of vision based multiple
vehicles detection and tracking could be subdivided into four
categories: frames di
erence and motion based methods [17–
19], background subtraction methods [15, 20], and feature
based methods [21, 22]. Meanwhile, a few camera-based
datasets for vehicle detection and tracking come to light in
recent years [23–25], which promote the research for ITS.

All previousmultivehicle detection and tracking methods
leverage images acquired by traditional frame-based cameras.
Conventional cameras may su
er from various motion-
related issues (motion blur, rolling shutter, etc.) which may
impact performance for high-speed vehicles detection and
tracking. Neuromorphic vision sensors are widely applied
to robotics [26–29] and vehicles [30–32]. A few relevant
neuromorphic vision datasets [33, 34] have been released
in recent years, which facilitate the neuromorphic vision
application for object detection and tracking. Recent years
also witness the various applications for detection and
tracking tasks with neuromorphic vision sensor such as
feature tracking [35, 36], line tracking [37], and microparticle
tracking [38].

However, there is still a lack of neuromorphic datasets and
relevant applications with neuromorphic vision sensors in
intelligent transport system, albeit such sensors instinctively
enjoy superiority in high-speed motion recording, which can
correspondingly facilitates the high-speed multiple vehicle
detection and tracking in ITS systems. �us, it is meaningful
to apply neuromorphic vision techniques to ITS systems.

3. Neuromorphic Vision Sensor and Dataset

3.1. Neuromorphic Vision Sensor. A short description of
di
erent versions of neuromorphic vision sensors is provided
in this section which is also mentioned in [11]. �e purpose
is to encourage researchers who are not familiar with neuro-
morphic vision sensors to explore the potential applications
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Figure 1: Visualization of the output from a neuromorphic vision sensor and a standard frame-based camera when facing a rotating disk with
a black dot. Comparing to conventional frame-based camera which transmitted complete images at �xed latency, the neuromorphic vision
sensor [1] emitted events individually and asynchronously at the time they occur.�is �gure is adopted from [2].

in the intelligent system. Figure 2 shows di
erent versions of
neuromorphic vision sensors.

Dynamic Vision Sensor (DVS). Dynamic Vision Sensors
(DVS) are a new generation of cameras that are sensitive to
intensity change, more speci�cally, to intensity logarithmic
change. A DVS pixel typically generates one to four events
(spikes) when an edge crosses it. DVS output consists of
a continuous �ow of events (spikes) in time, each with
submicrosecond time resolution, representing the observed
moving reality as it changes, without waiting to assemble or
scan arti�cial time-constrained frames (images).

EmbeddedDynamicVision Sensor (eDVS). For embedded sys-
tems in mobile robotics such as unmanned aerial vehicle, an
USB interface to transmit raw events is not desirable, nor is a
desktop PC for event processing acceptable. For this purpose,
a small embedded DVS (eDVS) is developed consisted of
a DVS chip and a compact 64MHz 32bit microcontroller
directly connected to the DVS chip.

Miniature Embedded Dynamic Vision Sensor (meDVS). �e
miniaturized version of the eDVS(meDVS) has minimum
size (18cm×18cm) and lightest weight (2.2g) of DVS so far.
�e typical power consumption is 300mW. �e strengths
of meDVS make it desirable to any applications on the
limited storage, bandwidth, and low latency of the on-board
embedded system of the intelligent system.

Dynamic and Active Pixel Vision Sensor (DAVIS). In this
paper we use a new neuromorphic vision sensor which is
named the Dynamic and Active Pixel Vision Sensor (DAVIS)
[39].�emodel DAVIS240 camera has a higher resolution of
240x180, higher dynamic range, and lower power consump-
tion and allows a concurrent readout of global shutter image
frames, which are captured using the same photodiodes as for

the DVS event generation. In this work, we only use the event
data.

3.2. Dataset and Benchmark. We present a labeled dataset
for the evaluation of an online multivehicle detection and
tracking system in ITS domain. �e raw event data are
collected by a neuromorphic vision sensor which is mounted
on the bridge in a highway scenario. �e neuromorphic
vision sensor used in this paper is called dynamic and
active pixel sensor (DAVIS) with a model No. DAVIS240C.
We have labeled three event sequences in this work.
�e �rst event sequence (named EventSeq-Vehicle1) is of
length 45.4� having 110.7��V�	�� and on average contains
2, 438
��� (Kilo events per second). �e second event
sequences (named EventSeq-Vehicle2) is of length 32.4� with
79.4��V�	�� and on average contains 2, 450
���. �e third
event sequence (named EventSeq-Vehicle3) is of length 21.8�
having 53.4��V�	�� and on average contains 2, 450
���.�e
vehicles are moving in both the directions, i.e., towards and
away from the camera in multiple lanes. �e vehicles in the
dataset range from small cars to the trailers and trucks, which
makes the dataset diverse and challenging in nature.

We manually annotated all the vehicles’ positions and
unique identity in three event sequences using the openly
available video annotation tool called ViTBAT [40]. For
annotation, the video was created from the binary events
data �le. We accumulated events data into video frames at
three di
erent time intervals: 10��, 20��, and 30��. �e
description and data format of our dataset can be seen from
Table 1.

4. Online Multitarget Detection and Tracking

We illustrate our multiobject tracking-by-clustering system
in this section. In contrast to traditional object detection
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Figure 2: Di
erent versions of neuromorphic vision sensors: (a) Dynamic Vision Sensor 128 (DVS128). (b) Embedded Dynamic Vision
Sensor (eDVS). (c) Miniature Embedded Dynamic Vision Sensor (meDVS). (d) Dynamic and Active Pixel Vision Sensor (DAVIS). �is
�gure is adopted from [11].

Table 1: �e standard �le format in our benchmark. In event.txt, timestamp recodes the timestamp of each raw event, x and y are the
coordinates of the event’s origin, and p is the event’s polarity. In det.txt, box x and box y are x and y coordinates of the bounding box and
box width and box height are the width and height of each bounding box. �e events which fall into a bounding box from start timestamp
to end timestamp are accumulated to a cluster. Each cluster has an ID. �e items’ de�nitions in gt.txt and track.txt are similar to det.txt �le,
except that the gt.txt shows the ground truth and track.txt shows the result of tracking.

File name Description Format

event.txt One event per line (timestamp, x, y, p)

det.txt One detection measurement per line (starttimestamp, endtimestamp, box x, box y, box width, box height)

gt.txt One ground-truth measurement per line (starttimestamp, endtimestamp, ID, box x, box y, box width, box height)

track.txt One tracking measurement per line (starttimestamp, endtimestamp, ID, box x, box y, box width, box height)

approaches, we generate our object hypothesis directly from
the measurements with a classic clustering method. �e
advantage is that we can skip the background modeling
step (dynamic foreground segmentation), as most events
transmitted by the dynamic vision sensor are generated by
dynamic objects. In order to estimate the states of the actual
objects, we integrate an online multitarget tracking method
into our system. It is our opinion that only highly e
ective
and online tracking methodology can take full advantage of
neuromorphic vision cameras.

4.1. Vehicle Detection by Clustering. As neuromorphic sen-
sors only transmit relative light intensity changes for each
pixel, methods using appearance features, such as color and
texture as input, cannot be utilized. Clustering methods, on
the contrary, are very suitable for this situation. Hence we
present three di
erent clustering algorithms in this section,
which do not depend upon the prior knowledge of the
number and shape of the clusters. In addition, only dynamic
information in the form of sparse streams of asynchronous
time-stamped events can be gained from neuromorphic
vision sensors. In order to arrive at a meaningful interpre-
tation and make the most of neuromorphic vision sensors’
advantages, it is necessary to accumulate event streams before
applying clustering algorithms. We accumulate event data
for di
erent time intervals (10ms, 20ms, and 30ms), making
it synchronized and more informative, a�er which three

classic clustering approaches, MeanShi� [4], DBSCAN [5]
and WaveCluster [6], are carried out and compared. �e
following subsections illustrate these clustering approaches
brie�y.

Detection by MeanShi� [11]. Estimation of the gradient of
a density function via MeanShi� and the iterative mode
seeking procedure was developed by Fukunaga and Hostetler
in [41]. �e mean-shi� algorithm has been exploited in low
level computer vision tasks, including image segmentation,
color space analysis, face tracking, etc., by reason of its
properties of data compaction and dimensionality reduction
[4]. Speci�cally, the mean-shi� algorithm considers the input
as a probability density function and the objective of the
algorithm is to �nd the modes of this function. �ese modes
represent the centers of the discovered clusters. �e input
points are fed to the kernel density estimation and then the
gradient ascent method is applied to the density estimate.�e
density estimation kernel uses two inputs: the total amount of
points and the bandwidth or the size of the window.�emain
disadvantage of the mean-shi� algorithm lies in its iterative
nature and di	culty of �ltering out noise.

Detection by DBSCAN [11]. DBSCAN uses density based
spatial clustering for applications with noise. For each point
�, the associated density is calculated by counting the number
of points in a search area of speci�ed radius, Eps (the
maximum radius of the neighbourhood from point), around
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the point. �e points with density higher than the speci�ed
threshold value, MinPts (the minimum number of points
required to form a dense region), are classi�ed as core points
while the rest are classi�ed as noncore points. A cluster is
yielded if � is a core point; otherwise, if � is a border point,
thennopoint is density-reachable from� andDBSCAN takes
the next point from the database [5]. �e main advantage of
DBSCAN is that it can �nd the clusters of arbitrary shapes.

Detection by WaveCluster. �e basic idea of WaveCluster is
to quantize the feature space of the image �rstly and then
apply discrete wavelet transform on it, a�er which we can
�nd the connected components (clusters) in the subbands
of transformed feature space [6]. For best clustering result,
the quantization scale as well as the component connection
algorithm should be applied according to the raw data. In
the context of this paper, the accumulated event data can be
regarded as 2-dimensional data. With selected interval � in

each dimension, we can now divide the event data into �2
grids, and each grid � contains 
� data point. Considering
the multiresolution property of wavelet transform, di
erent
grid sizes can be adopted at di
erent scales of transform. In
the second step of WaveCluster algorithm, discrete wavelet
transform will be applied on the quantized feature space
[6]. A�erwards, a new feature space �� is acquired. We can
also �lter out the noise in �� with a selected threshold.
With the new set of units ��, connected components in the
transformed feature space can be detected as clusters. Details
of the algorithm can refer to [6].

4.2. Online Multitarget Tracking. In order to make full use
of the advantages of event data, we have chosen four classic
tracking algorithms, which are relatively small in computa-
tion and highly e
ective. Our online multitarget tracking is
a simple and standard method which is widely explored in
traditional camera-based multiobject tracking [42]. As the
event data have no texture information, we use the bounding
box overlap as a simple association metric for the data
association problem. All these tracking algorithms are brie�y
described in the following sections.

Tracking by SORT [11]. We utilize a single hypothesis tracking
methodology with standard Kalman �lter and data associa-
tion using Hungarian method [7]. In order to assign detected
clusters to existing targets, each target’s geometry and image
coordinates are estimated by predicting its new state in the
current frame. �e cost matrix for each detected cluster
and each existing target is calculated as the intersection
over union distance (IOU). �e Hungarian algorithm is
used to optimally solve the assignment problem. We also
de�ne a minimum IOU to reject assignments where the
detected cluster to target cluster overlap is less than the
threshold. When a new cluster enters into the camera �eld
of view or when an existing target leaves the camera view,
target identities get updated, either by adding new IDs or
by according deletion. �e same methodology for tracking
has been used in this work as presented in [7]. Instead of
solving for detection for tracking in a global assignment

problem, we choose an early deletion of lost targets policy,
which prevents unbounded growth of the number of track-
ers.

Tracking by GM-PHD. GM-PHD �lter is a recursive algo-
rithm which jointly estimates the time-varying number of
targets and their states from the observation sets in the pres-
ence of data association uncertainty, noise, false alarms, and
detection uncertainty. �e algorithm models the respective
collection of targets and measurements as random �nite sets
and applies the probability hypothesis density (PHD) recur-
sively for posterior intensity propagation, which is basically
the �rst order-statistic of the random �nite set in time. With
linear and Gaussian assumptions, the target dynamics and
birth process and the posterior intensity at any time step
are considered to be Gaussian mixture. �e recursions with
number of Gaussian components management increase the
e	ciency. In tracking world, the intensity is also known as
probability hypothesis density [8]. �e further mathematical
insights into the algorithm and its recursive linear Gaussian
version can be studied in [8]. As stated in the previous section,
the birth model for the targets is chosen to be linear in this
work, which also stands for this and upcoming approaches
for tracking.

Tracking by GM-CPHD. In probability hypothesis density
(PHD) �lter, the posterior intensity of the random �nite set
of targets is propagated, recursively. In cardinalized PHD
(CPHD) �lter, both the posterior intensity and posterior car-
dinality distribution are propagated jointly, hence making it a
generalization of PHD recursion. �e accuracy and stability
are increased by incorporating the cardinality information
[9].�is work is basically the implementation of closed-form
solution to CPHD recursion under the assumption of linear
Gaussian target dynamics and birthmodel.�e algorithmcan
also be extended to nonlinear models using linearization and
unscented transformation techniques. While comparing with
standard PHD �lter, CPHD �lter not only side steps the need
of data association task in conventional tracking methods
but also improves the accuracy of the individual target state
estimates and the variance of the estimated number of targets
[9].

Tracking by PDAF. �e probabilistic data association �lter
(PDAF) computes the probabilities for target being tracked
for each valid measurement. �is measurement origin uncer-
tainty is accounted by this probabilistic or Bayesian infor-
mation. As the linear models for the targets birth dynamics
and measurement equations are assumed, therefore, the
developed PDAF algorithm is based on Kalman �lter. PDAF
works on the validated measurements at the current time
and for each measurement, an association probability is
calculated for computing the weight of current measurement
in a combined innovation. �is combined innovation helps
in updating the estimation of the state. And �nally, the state
covariances are updated for computing the measurement
origin uncertainty [10]. �e detailed mathematical insights
into the PDAF algorithm with its extensions can be studied
from [10].
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Table 2: Evaluation metrics for vehicle detection, TP is the total
number of true positives, FP is the total number of false positives,
and GT indicates ground truth.

Metrics Better Perfect Description

Precision higher 100% Ratio of TP / (TP+FP)

Recall higher 100%
Ratio of correct detections to total

number of GT boxes

5. Experiments and Results

We evaluate the performance of various tracking-by-
clustering implementations on our dataset. �e evaluation
results are provided by following the standard MOT
challenge metrics [43]. We analyze the performance and
runtime of the three classical clustering algorithms, as well
as the four tracking algorithms for multivehicle tracking-
by-clustering task, where stream inputs are accumulated at
di
erent intervals (10ms, 20ms, and 30ms time intervals).

5.1. Metrics. For performance evaluation, we follow the
current evaluation protocols for visual object detection and
multiobject tracking. Although these protocols are designed
for frame-based vision sensors, they are still suitable for
quantitative evaluation of our tracking method. In this work,
we accumulate events to frames in di
erent time intervals. In
this work we have two evaluation metrics (see Table 2) which
are de�ned in [44].

Since our detection results from clustering methods have
no probability score, we are not able to provide the mean
precision to summarize the shape of the precision/recall
(ROC) curve which is widely adopted in object detec-
tion evaluation in computer vision. �e evaluation metrics
for multivehicle tracking used in this work is de�ned in
[43], well-known as the MOT challenge metrics. Evaluation
scripts are available on MOT Challenge o	cial website
(https://motchallenge.net). More details are as follows:

(i) MOTA(↑): Multiple Object Tracking Accuracy. �is
measure combines three error sources: false positives,
missed targets, and identity switches.

(ii) MOTP(↑): Multiple Object Tracking Precision. �e
misalignment between the annotated and the pre-
dicted bounding boxes.

(iii) MT(↑): mostly tracked targets. �e ratio of ground-
truth trajectories that are covered by a track hypothe-
sis for at least 80% of their respective lifespan.

(iv) PT(↑): number of partially tracked trajectory.

(v) ML(↓): mostly lost targets. �e ratio of ground-truth
trajectories that are covered by a track hypothesis for
at most 20% of their respective lifespan.

(vi) FP(↓): the total number of false positives.

(vii) FN(↓): the total number of false negatives (missed
targets).

(viii) IDs(↓): the total number of identity switches.

(ix) FM(↓): the total number of times a trajectory is
fragmented (i.e., interrupted during tracking).

5.2. Performance Evaluation. In this section, we report the
performance and runtime of the selected approaches for
multivehicle detection and tracking. Firstly, we compare
the detection performance of the three clustering methods
(DBSCAN, MeanShi�, and WaveCluster). �en the impacts
of di
erent sampling time intervals on detection results are
studied. Finally, the tracking performance and runtime for
di
erent tracking methods are evaluated.

5.2.1. Online Multivehicle Detection. In this work, event
data are considered as pure 2D point data. �e clustering
technique is applied to generate object proposals. �e event
data for di
erent time intervals (10ms, 20ms, and 30ms) are
accumulated and can be seen in Figure 3. It is straightforward
to see that clusters of event data re�ect moving vehicles. �e
noise events surrounding each cluster are mainly generated
by the environmental changes and sensor noise. �erefore,
prior to generating object hypotheses, a background activity
�ltering step is performed to �lter out the noise from the
events. For each event, background activity �lter checks
whether one of the 8 (vertical and horizontal) neighbouring
pixels has had an event within the last “us Time” microsec-
onds. If not, the event being checked will be considered as
noise and removed. In other words, whether a new event is
considered as “signal” or “noise” is determined by whether
there is a neighbouring event generated within a set interval
(us Time). Figure 4 shows the accumulated events frame
before and a�er the application of activity �lter.

Figure 5(a) shows DBSCAN clustering results. For
DBSCAN, the search radius, Eps, is chosen as 5 and the
density, MinPts, is chosen as 10. �e points with density
higher than the speci�ed threshold value, MinPts, are clas-
si�ed as core points while the rest are classi�ed as noncore
points. �ose noncore points are also classi�ed as noise
points. Seven clusters including noise events have been
detected. Figure 5(b) shows the MeanShi� clustering results,
with a chosen bandwidth of 20. �e MeanShi� algorithm
successfully detected six clusters. And we can see many
clusters were detected using WaveCluster from Figure 5(c).
MeanShi� divides many noises and objects into one cluster,
and WaveCluster treats many noises as a single cluster.
�eir common shortcoming is that they cannot distinguish
between object (here is car) and noise well.

�e detection performance is assessed by clustering
approach in terms of the metrics of recall and precision. �e
evaluation of DBSCAN, MeanShi�, and WaveCluster on our
neuromorphic data with di
erent time intervals is shown
in Table 3. We can see that the performance of clustering
algorithms increases signi�cantly from 10ms time interval to
20ms time interval, which shows that detection-by-clustering
methods, used in this work, perform better with more events
per time interval. But, from the performance of 30 ms
interval, we can also know that, with the accumulation of
events, more and more noise points appear, and the accuracy
of the detection algorithm decreases. �e results indicate

https://motchallenge.net
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(a) (b) (c)

Figure 3: (a) Events accumulated in 10ms time interval. (b) Events accumulated in 20ms time interval. (c) Events accumulated in 30ms time
interval.

(a) (b)

Figure 4: Background activity �lter. (a) Events accumulated in 20ms time interval prior to �ltering. (b) Events accumulated in 20ms time
interval a�er �ltering. �is �gure is adopted from [11].

that the detection performance is highly dependent on the
number of events during the accumulated time. �is points
out an alternative way of accumulating a constant number
of events instead of constant time intervals may increase the
robustness of our detection-by-clustering approach. Among
the three algorithms, MeanShi� performs the worst. �e
reason behind it is that the density estimation of MeanShi� is
a
ected by the randomnoise fromDAVIS. Secondly, since the
MeanShi� is aiming at globular clustering, itmaymerge some
small targets when detecting as illustrated in Figure 5. Lastly,
the kernel bandwidth and window size remain the same in
detection, resulting in bad performance when detecting fast
moving and size-changing vehicles in our scenario. From
Table 3, the detection accuracy of WaveCluster is higher
overall. But, the detection e
ect of WaveCluster at 10ms time
interval is relatively poor, noise cannot be eliminated, and
the detection performance is greatly a
ected by the number
of events. In order to make the tracking algorithms get a
better performance in di
erent time intervals of the three
datasets.We chooseDBSCANas detection algorithmused for
comparing the tracking results.

5.2.2. Online Multivehicle Tracking. In this part, the four
tracking algorithms have been implemented, i.e., simple

online and real-time tracking (SORT), GM-PHD �lter, GM-
CPHD �lter, and the PDA �lter. �e tracking performance
for the four trackers applied to the three vehicle sequences
datasets is presented below.

Figure 6 shows the tracking results of SORT, GM-PHD
�lter, GM-CPHD �lter, and the PDA �lter using a series of
input events for 20ms time interval. It can be seen from
the continuous �gures, such as Figures 6(a), 6(b), and 6(c),
that our tracking algorithms perform better with moving
vehicles when a new vehicle enters into the camera �eld
of view or when an existing target leaves the camera view,
target identities get updated, either by adding new IDs or by
according deletion.

If any detected target in the current event frame had an
overlap with an untracked detected target in previous frame,
it would be registered with a new ID. As can be seen from
Figure 6, most of the targets are well tracked. Especially, in
the same continuous time interval, SORT tracks 29 targets,
which is the largest number of targets tracked in the four
algorithms. And the GM-PHD tracks 19 targets, followed by
GM-CPHD with 15. However ID switching or target missing
errors can also be witnessed from Figures 6(d)–6(l), PDAF
performs the worst in terms of the problems of the number
of targets, ID assignment and missed targets. And it can be
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Figure 5: Detection-by-clustering results of (a) DBSCAN clustering applied to the events data accumulated at 20ms time interval. (b)
MeanShi� clustering applied to the events data accumulated at 20ms time interval. (c) WaveCluster clustering applied to the events data
accumulated at 20ms time interval (best viewed in color).

Table 3: �e performance of clustering algorithm.

Dataset Tis
DBSCAN MeanShi� WaveCluster

Recall Precision Recall Precision Recall Precision

EventSeq-Vehicle1 10ms 53.1% 60.6% 44.5% 41.9% 44.4% 49.2%

EventSeq-Vehicle1 20ms 62.8% 64.5% 46.6% 40.7% 63.1% 64.4%

EventSeq-Vehicle1 30ms 61.9% 61.9% 44.3% 40.7% 61.8% 64.9%

EventSeq-Vehicle2 10ms 46.4% 51.9% 39.8% 38.0% 38.7% 41.4%

EventSeq-Vehicle2 20ms 52.3% 53.3% 38.3% 35.0% 51.9% 53.0%

EventSeq-Vehicle2 30ms 46.2% 47.2% 33.2% 33.5% 47.2% 52.1%

EventSeq-Vehicle3 10ms 41.1% 54.4% 35.1% 40.1% 32.1% 41.8%

EventSeq-Vehicle3 20ms 49.7% 59.4% 35.5% 36.8% 49.6% 58.0%

EventSeq-Vehicle3 30ms 47.7% 55.6% 33.5% 35.3% 49.0% 57.5%

clearly seen from Figures 6(k) and 6(l) that the same target
is given di
erent ID at di
erent times, indicating that target
lost occurs. Hence, the performance of our algorithms shows
the limitations of the tracking-by-clustering system to some
extent.

Table 4 shows the tracking performance metrics, i.e.,
MOTA, MOTP, MT, PT, ML, FP, FN, IDs, and FM for all
the four trackers, i.e., SORT, GM-PHD �lter, GM-CPHD
�lter, and the PDA �lter for each 10ms, 20ms, and 30ms
time intervals fed with EventSeq-Vehicle1. As the tracking
component is highly dependent on the detection results,
the number of times an ID-switched (IDs) is pretty large
due to the inconsistent detection results. From the overall
tracking performance evaluation results in Table 4, the value
ofMOTAandMOTP for four tracking algorithms is relatively
higher. A�er applying these frame-by-frame-based tracking
approaches, it is not surprising that we get large number
of false detection, missed detection, ID switch, and frag-
mentation (FM). One possible way to decrease the number
of missed detection, ID switch, and fragmentation (FM) is
replacing the simple associationmetric in this paper to amore
informed metric including motion information; it is able to
track objects through longer periods of occlusions and disap-
pearances. Tables 5 and 6 present the tracking performance
metrics for EventSeq-Vehicle2 and EventSeq-Vehicle3, which
are not as good as that of EventSeq-Vehicle1. It is especially

obvious in EventSeq-Vehicle2 with 30ms time interval, where
the evaluation metrics of MOTA for tracking algorithms are
very low.�emain reason behind it lies in the occasional �ash
of huge amount of noise as shown in Figure 7, which would
seriously obscure the tracking targets, resulting in periodic
�uctuation in the performance of the algorithm. �is “noise
�ash” phenomenon can attributed to the unstable working
state of the sensor and variable environmental conditions. It
also indicates that our three datasets are very representative
and challenging. Such limitation of the neuromorphic vision
sensor will also be discussed in Section 6.2.

As the �rst work of multitarget tracking based on neuro-
morphic vision sensor, we are not able to compare to state-
of-the-art tracking algorithms. Instead, we provide our eval-
uation results as a baseline tracker for future neuromorphic
vision based multiobject tracking methods.

Runtime. �e experiment is carried out on a laptop with Intel
Core�i7-6700HQ CPU with 2.60GHz quad core processor
and 8.00 GB of RAM. Table 7 shows that the average FPS of
the DBSCAN algorithm is 36, 17, and 8 for 10ms, 20ms, and
30ms time intervals, respectively. �e decreasing frame rate
is due to the increased number of events in the density search
area, resulting in a more iterative process. Of course, the
runtime performance is related to the selection of algorithms;
for example, WaveCluster has almost the same frame rate at
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Figure 6: Tracking results from Frame 28 to Frame 44 for SORT, GM-PHD, GM-CPHD, and PDAF tracker.�e numbers in black font near
to cluster show the tracking ID (each object hypothesis is associated a tracker with a unique ID). �e ID switching and lost IDs can also be
witnessed from those sequences of input data (best viewed in color).

di
erent time intervals. Additionally, in spite of the ordinary
computer resources, MeanShi� has a high running e	ciency.
For the tracking component, SORT is able to reach 552 FPS as
shown inTable 8. Such a high frame rate indicates a promising

application of the sensors. According to the experimental
results, our tracking-by-clustering system can run at a rate of
more than 110 Hz when our tracking algorithms is combined
with e	cient detection algorithms, such as MeanShi�. In
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Table 4: �e tracking performance for EventSeq-Vehicle1 using di
erent tracking methods (SORT, GM-PHD, GM-CPHD, and PDAF) with
detection through DBSCAN clustering. �e impact of time intervals from 10ms to 30ms was studied.

Tis Tracker MOTA↑ MOTP↑ MT↑ PT↑ ML↓ FP ↓ FN↓ IDs↓ FM↓
10ms SORT 36.2% 69.2% 8 79 20 2891 16369 146 1302

10ms GM-PHD 24.0% 69.1% 1 85 21 4924 16649 1541 4097

10ms GM-CPHD 21.1% 69.2% 3 89 15 7480 15621 900 3616

10ms PDAF 20.9% 69.1% 0 86 21 5653 18228 158 4678

20ms SORT 35.0% 70.2% 18 71 18 2905 6893 92 444

20ms GM-PHD 35.1% 70.6% 18 70 19 2523 7019 323 770

20ms GM-CPHD 25.7% 70.5% 12 75 20 3974 7180 152 716

20ms PDAF 24.5% 70.4% 4 80 23 3576 7815 95 1371

30ms SORT 28.5% 70.4% 12 69 26 1950 5190 94 265

30ms GM-PHD 23.6% 70.8% 14 67 26 2323 5224 190 478

30ms GM-CPHD 18.3% 70.7% 8 76 23 2870 5259 135 481

30ms PDAF 19.3% 70.5% 1 76 30 2402 5701 66 900

Table 5: �e tracking performance for EventSeq-Vehicle2 using di
erent tracking methods (SORT, GM-PHD, GM-CPHD, and PDAF) with
detection through DBSCAN clustering. �e impact of time intervals from 10ms to 30ms was studied.

Tis Tracker MOTA↑ MOTP↑ MT↑ PT↑ ML↓ FP ↓ FN↓ IDs↓ FM↓
10ms SORT 24.4% 70.2% 3 53 29 2170 14929 183 942

10ms GM-PHD 13.4% 69.4% 0 60 25 3807 14994 1000 2524

10ms GM-CPHD 7.8% 69.7% 2 69 14 7452 13084 528 2524

10ms PDAF 13.8% 69.8% 0 57 28 4403 15206 100 3050

20ms SORT 5.7% 68.1% 7 49 28 3304 7393 81 331

20ms GM-PHD 15.6% 70.6% 11 52 21 2839 6524 290 729

20ms GM-CPHD 11.3% 70.6% 10 57 17 3824 6196 118 655

20ms PDAF 11.5% 70.5% 4 58 22 3091 6948 76 995

30ms SORT 0% 67.3% 3 45 37 2069 5496 53 183

30ms GM-PHD 7.6% 70.3% 5 50 30 1888 5001 149 328

30ms GM-CPHD -0.7% 70.1% 4 57 24 2872 4694 100 389

30ms PDAF 5% 69.9% 3 55 27 1969 5216 49 542

comparison, DeepSort method [45] only reaches a runtime
speed of 40 Hz despite the use of high performance GPU.

6. Conclusion and Discussion

6.1. Conclusion. In this paper, the �rst neuromorphic vision
based multivehicle detection and tracking system in ITS
is proposed. We provide our datasets and approaches as
a baseline tracker for future neuromorphic vision based
multiobject tracking methods. A variety of algorithms to
perform the tracking task are presented, of which di
erent
combinations can be chosen for di
erent accuracy and rate
requirements. Hopefully, our preliminary study can motivate
further research in this �eld, considering that the sparse
stream of event data from the sensor captures only motion
and salient information, which is perfect for the intelligent
infrastructure systems. �e proposed event-based online
multiple target tracking-by-clustering system utilizes strik-
ingly simple algorithms while it achieves good detection and
tracking performance with respect to runtime requirement.

Speci�cally, three clustering algorithms, i.e., DBSCAN,
MeanShi�, and WaveCluster, were explored to deal with

the sparse data from neuromorphic sensor. A�er studying
the detection results, the DBSCAN was selected for fur-
ther detection stage due to its more robust and accurate
outcome. Based on the detection results from DBSCAN,
four di
erent trackers were studied and their results were
compared. �e selected trackers were SORT, GM-PHD �lter,
GM-CPHD �lter, and the PDA �lter. From the experimental
results, the tracking algorithm combined with DBSCAN can
achieve higher accuracy, while combined with MeanShi�
can achieve higher frame rate of more than 110Hz. Di
erent
combinations of algorithms can be applied depending on
di
erent requirements of accuracy and real-time perfor-
mance.

6.2. Discussion. To the best of our knowledge, the presented
system is the �rst application of neuromorphic vision sensor
on ITS which makes it well suited as a baseline, allowing for
new researcher to work on intersection of the neuroscience
and intelligent system. In our future work, di
erent event
encoding methods will be tried, adaptive algorithms will be
explored, and the benchmark will be extended to pedestrian
detection and tracking. Di
erent �lters, other than the basic
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Table 6:�e tracking performance for EventSeq-Vehicle3 using di
erent tracking methods (SORT, GM-PHD, GM-CPHD, and PDAF) with
detection through DBSCAN clustering. �e impact of time intervals from 10ms to 30ms was studied.

Tis Tracker MOTA↑ MOTP↑ MT↑ PT↑ ML↓ FP ↓ FN↓ IDs↓ FM↓
10ms SORT 24.6% 69.5% 1 34 24 1258 10838 109 611

10ms GM-PHD 12.9% 68.9% 1 42 16 2484 10956 666 1903

10ms GM-CPHD 12.5% 69.1% 2 41 16 3844 9957 363 1646

10ms PDAF 13.8% 69.0% 0 38 21 2710 11173 70 2166

20ms SORT 10.1% 69.3% 5 33 21 1990 5225 64 235

20ms GM-PHD 21.4% 70.1% 5 38 16 1475 4699 188 490

20ms GM-CPHD 13.4% 70.4% 5 36 18 2218 4698 94 402

20ms PDAF 17.4% 70.2% 1 40 18 1682 4948 59 707

30ms SORT 4.0% 69.0% 1 32 26 1329 3815 41 141

30ms GM-PHD 14.3% 70.3% 7 35 17 1199 3311 120 285

30ms GM-CPHD 6.1% 70.4% 4 34 21 1712 3300 58 240

30ms PDAF 12.9% 70.6% 3 34 22 1112 3548 46 406
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Figure 7: (a), (b), and (c) are the original images with the noise; (d), (e), and (f) are the results of the detection (best viewed in color).

activity �lter, can be exploited to �lter out the noise from
the input data received from neuromorphic vision sensor. As
a baseline, new approaches including recent deep learning
based methods are supposed to improve the detection and
tracking performance, especially the ability to identify vehicle
types, such as trucks and cars and di
erent pedestrians such
as the elderly, children, etc.

Limitation. Admittedly, our algorithm still has some short-
comings. As can be seen in Figure 7, with noise becom-
ing severer, the tracking system will make errors, such

as missed detection, multiple targets detection as one, the
false detection of noise points as the target, and so on.

�e reason mainly lies in the immaturity of neuromorphic
sensor technology. To be speci�c, the inherent defects of the
current neuromorphic sensor lead to instability in collecting
event information, which a
ects the quality of data and thus
degrades the performance of the algorithms. Hence, a devel-
opment of the sensor is indispensable before wide application
of it in intelligent transportation system (ITS). It is also
signi�cant to note that, in order to take full advantage of event
data, completely new neuromorphic vision algorithms are
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Table 7: �e FPS for EventSeq-Vehicle1 using di
erent detection
methods (DBSCAN, MeanShi�, and WaveCluster). �e impact of
time intervals from 10ms to 30ms was studied.

Detector Tis FPS

DBSCAN 10ms 36

MeanShi� 10ms 160

WaveCluster 10ms 17

DBSCAN 20ms 18

MeanShi� 20ms 107

WaveCluster 20ms 19

DBSCAN 30ms 8

MeanShi� 30ms 71

WaveCluster 30ms 15

Table 8: �e FPS for EventSeq-Vehicle1 using di
erent tracking
methods (SORT, GM-PHD, GM-CPHD, and PDAF).

Tracker FPS

SORT 552

GMPHD 3

GMCPHD 4

PDAF 46

required instead of extending existing methods of computer
vision, taking into account the brand new information stream
and the extremely high frame rate of the neuromorphic vision
sensor.
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