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Neuron-Adaptive Higher Order Neural-Network
Models for Automated Financial Data Modeling

Ming Zhang, Senior Member, IEEE, Shuxiang Xu, and John Fulcher, Senior Member, IEEE

Abstract—Real-world financial data is often nonlinear, com-
prises high-frequency multipolynomial components, and is
discontinuous (piecewise continuous). Not surprisingly, it is hard
to model such data. Classical neural networks are unable to
automatically determine the optimum model and appropriate
order for financial data approximation. We address this problem
by developing neuron-adaptive higher order neural-network
(NAHONN) models. After introducing one-dimensional (1-D),
two-dimensional (2-D), and -dimensional NAHONN models, we
present an appropriate learning algorithm. Network convergence
and the universal approximation capability of NAHONNs are also
established. NAHONN Group models (NAHONGs) are also intro-
duced. Both NAHONNs and NAHONGs are shown to be “open
box” and as such are more acceptable to financial experts than
classical (closed box) neural networks. These models are further
shown to be capable of automatically finding not only the optimum
model, but also the appropriate order for specific financial data.

Index Terms—Financial modeling, higher order neural net-
works, neural-network groups, piecewise functions, polynomials.

I. INTRODUCTION

M
ODELING and predicting financial data using tradi-
tional statistical approaches has only been partially

successful [4], [20]. Accordingly, researchers have turned to
alternative approaches in recent times, most notably artificial
neural networks (ANNs) [1]. The last few years have seen the
rise of specialist conferences, special journal issues (and indeed
journals), and books in intelligent financial modeling (e.g., [2],
[23], [25]).

Standard ANN models cannot deal with discontinuities
in the input training data.

Furthermore, they suffer from the following limitations [4], [5].

• They do not always perform well because of the com-
plexity (higher frequency components and higher order
nonlinearity) of the economic data being simulated, and
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• The neural networks function as “black boxes,” and are
thus unable to provide explanations for their behavior (al-
though some recent successes have been reported with rule
extraction from trained ANNs [10], [18]).

This latter feature is viewed as a disadvantage by users, who
would rather be given a rationale for the simulation at hand.

In an effort to overcome the limitations of conventional
ANNs, some researchers have turned their attention to higher
order neural network (HONN) models [14], [16], [21], [32].
HONN models are able to provide some rationale for the
simulations they produce, and thus can be regarded as “open
box” rather than “black box.” Moreover, HONNs are able to
simulate higher frequency, higher order nonlinear data, and
consequently provide superior simulations compared to those
produced by ANNs. Polynomials or linear combinations of
trigonometric functions are often used in the modeling of
financial data. Using HONN models for financial simulation
and/or modeling would lead to open box solutions, and hence
be more readily accepted by target users (i.e., financial experts).

This was the motivation for developing the Polynomial

HONNs (PHONNs) for economic data simulation [27]. This
idea has been subsequently extended into first Group PHONN
(PHONNG) models for financial data simulation [28], and
second trigonometric PHONNG models for financial prediction
[25], [26], [32].

Real-world financial data often comprises high-frequency
multipolynomial components, and is discontinuous (or
piecewise continuous). Not surprisingly, it is difficult to auto-
matically determine the best model for analyzing such financial
data. If a suitable model can be found, it is still very hard to
determine the best order for financial data simulation. Conven-
tional neural-network models are unable to find the optimal
model (and order) for financial data approximation. In order to
solve this problem, autoselection financial modeling software
has been developed [21], likewise adaptive higher order neural
networks have also been studied [22], [23]. Neuron-adaptive
feedforward neural-network groups and neuron-adaptive higher
order neural-network groups have also been applied to this
problem [30], [31]. So far however, the results have been
limited. Hence one motivation for the present study was to
automatically select the optimum higher order neural-network
model (and order) appropriate for analyzing financial data.

Many authors have addressed the problem of approximation
by feedforward neural networks (FNNs) (e.g., [3], [11]–[13],
[17], [19], [20]). FNNs have been shown to be capable of ap-
proximating generic classes of functions. For example, Hornik
established that FNNs with a single hidden layer can uniformly
approximate continuous functions on compact subsets, provided
that the activation function is locally Riemann integrable and

1045–9227/02$17.00 © 2002 IEEE
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nonpolynomial [13]. Park and Sandberg showed that radial basis
function (RBF) networks are broad enough for universal ap-
proximation [20]. Leshno proved that FNNs can approximate
any continuous function to any degree of accuracy if and only if
the network’s activation function is nonpolynomial [17]. Last,
Chen explored the universal approximation capability of FNNs
to continuous functions, functionals and operators [8], [9].

Two problems remain, however.

• The activation functions employed in these studies are sig-
moid, generalized sigmoid, RBF, and the like. One charac-
teristic of such activation functions is that they are all fixed
(with no free parameters), and thus cannot be adjusted to
adapt to different approximation problems.

• In real-world applications such as financial data simula-
tion, the function to be approximated can be a piecewise
continuous one. A continuous function approximation is
unable to deal with nonlinear and discontinuous data, such
as that commonly encountered in economic data simula-
tion.

To date there have been few studies which emphasize the setting
of free parameters in the activation function. Networks which
employ adaptive activation functions seem to provide better fit-
ting properties than classical architectures which use fixed ac-
tivation function neurons. Vecci studied the properties of an
FNN which is able to adapt its activation function by varying
the control points of a Catmull–Rom cubic spline [24]. Their
simulations confirm that this specialized learning mechanism
allows the effective use of the network’s free parameters. Chen
and Chang adjust the real variables (gain) and (slope) in
the generalized sigmoid activation function during learning [7].
Compared with classical FNNs in modeling static and dynam-
ical systems, they showed that an adaptive sigmoid leads to im-
proved data modeling. Campolucci showed that a neuron-adap-
tive activation function built using a piecewise approximation
with suitable cubic splines can have arbitrary shape, and further-
more leads to reduced neural-network size [6]. In other words,
connection complexity is traded off against activation function
complexity. Other authors have also studied the properties of
neural networks with neuron-adaptive activation functions [15],
[24]. The development of a new neural-network model which
utilizes an adaptive neuron activation function, and then uses
this new model to automatically determine both the best model
and appropriate order for different financial data is the second
motivation of this paper.

While Hornik and Leshno proved the approximation ability
of FNNs for any continuous function, Zhang established
neural-network group models to approximate piecewise con-
tinuous functions (as a means of simulating discontinuous
financial data) [28]. A neural-network group is a generalized
neural-network set in which each element is a neural network,
and for which product and addition of any two elements have
been defined. Herein lies a problem though: if the piecewise
continuous function to be approximated comprises an infinite

number of sections of continuous functions, then the neural-net-
work group will need to contain an infinite number of neural
networks! This makes the simulation very complicated, be-
cause each continuous section would have to be approximated
independently and separately. Moreover, no learning algorithm

yet exists for neural-network groups. It is therefore necessary
to consider approximating a piecewise continuous function
with a single neural network (rather than a group). The third
motivation for this paper is thus to develop a methodology for
automatically finding the optimal model (and appropriate order)
for simulating high-frequency multipolynomial, discontinuous
(or piecewise continuous) financial data.

Section I of this paper introduced the background to and mo-
tivations for this research. In Section II, neuron-adaptive higher
order neural network (NAHONN) models with neuron-adaptive
activation functions are developed, in order to approximate any
continuous (or piecewise) function, to any degree of accuracy.
Our work differs from previous studies in the following ways.

• An adaptive activation function learning algorithm is de-
veloped in Section III, which is capable of automatically
determining both the optimal model and correct order for
financial data modeling, and

• In SectionIV, we present a theoretical proof which shows
that a single NAHONN is able to approximate any piece-
wise continuous function, thereby guaranteeing better
modeling results and less error.

In order to simulate some specialized financial functions, we
develop NAHONN group models (NAHONGs) in Section V.
In Section VI, we present specialized NAHONN models,
namely trigonometric (T-NAHONN), polynomial and trigono-
metric (PT-NAHONN), trigonometric exponent and sigmoid
(TES-NAHONN), as well as their group counterparts. These
specialized NAHONN models are appropriate for financial data
simulation involving higher frequency, higher order nonlinear,
multipolynomial, discontinuous, nonsmooth, and other such
features. Experimental results obtained using NAHONNs
and NAHONGs are presented in Section VII, and finally in
Section VIII we present brief conclusions.

II. NAHONN

A. One-Dimensional (1-D) NAHONN Definition

Let

th neuron in layer- ;

th layer of the neural network ( will be used later

in the learning algorithm proof);

th term in the Neural-network Activation Function

(NAF);

maximum number of terms in the NAF;

first neural-network input;

second neural-network input;

input or internal state of the th neuron in the th

layer;

weight that connects the th neuron in layer

with the th neuron in layer will be used in the

two—dimensional NAHONN formula;

value of the output from the th neuron in layer– .

The 1-D NAF is defined as

NAF

(2.1)
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Suppose

(2.2)

The 1-D NAF then becomes

(2.3)

where

are free parameters which can be adjusted (as well as weights)

during training.

Let

The 1-D NAHONN is defined as

NAHONN (1-D):

(2.4)

Let

(2.5)

NAHONN (1-D):

(2.6)

Fig. 1. 1-D NAHONN structure.

where

are free parameters which can be adjusted (as well as weights)

during training.

The network structure of a 1-D NAHONN is the same as that

of a multilayer FNN. That is, it consists of an input layer with

one input-unit, an output layer with one output-unit, and one

hidden layer consisting of intermediate processing units. A typ-

ical 1-D NAHONN architecture is depicted in Fig. 1. Now while

there is no activation function in the input layer and the output

neuron is a summing unit only (linear activation), the activation

function in the hidden units is the 1-D neuron-adaptive higher

order neural-network NAF defined by (2.1). The 1-D NANONN

is described by (2.4).

B. Two-Dimensional (2-D) NAHONN Definition

Let

input of the neuron in the th layer;

input of the neuron in the th layer.

The 2-D NAF is defined as

(2.7)

Suppose

(2.8)
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The 2-D NAHONN then becomes

(2.9)

where

are free parameters which can be adjusted (as well as weights)

during training.

Let

The 2-D NAHONN is defined as

NAHONN (2-D):

(2.10)

Let

(2.11)

NAHONN (2-D)

(2.12)

Fig. 2. 2-D NAHONN structure.

where

are free parameters which can be adjusted (as well as weights)

during training.
The network structure of the 2-D NAHONN is the same as

that of a multilayer FNN. That is, it consists of an input layer
with two input-units, an output layer with one output-unit, and
one hidden layer consisting of intermediate processing units. A
typical 2-D NAHONN architecture is depicted in Fig. 2. Again,
while there is no activation function in the input layer and the
output neuron is a summing unit (linear activation), the activa-
tion function for the hidden units is the 2-D NAHONN defined
by (2.7). The 2-D NANONN is described by (2.10).

C. -Dimensional NAHONN Definition

The -dimensional NAF is

(2.13)

Let

The -dimensional NAHONN is defined as

NAHONN ( -Dimensional):

(2.14)

The network structure of an -dimensional NAHONN is the
same as that of a multilayer FNN. That is, it consists of an input
layer with input-units, an output layer with one output-unit,
and one hidden layer consisting of intermediate processing units.
A typical 2-D NAHONN architecture is depicted in Fig. 2. Again,
while there is no activation function in the input layer and the
output neuron is a summing unit (linear activation), the activation
function for the hidden units is the -dimensional neuron-
adaptive higher order neural network NAF defined by (2.13).
The -dimensional NANONN Fig. 3 is described by (2.14).
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Fig. 3. m-dimensional NAHONN structure.

D. Multi -Dimensional NAHONN Definition

The multi -dimensional NAHONN is defined as follows:

(2.15)

where

: output layer;

: th output in the output layer;

one output of the multi -dimensional NAHONN.

The structure of the multi -dimensional NAHONN is shown

in Fig.4.

III. NAHONN LEARNING ALGORITHM

Our learning algorithm is based on the steepest descent gra-

dient rule [22]. However, as the variables in the hidden layer

activation function are able to be adjusted, NAHONN provides

more flexibility and more accurate approximation than tradi-

tional higher order (and indeed NAHONN includes traditional

higher order FNN (fixed activation function) FNNs as a special

case).

We use the following notations:

input or internal state of the th

neuron in the th layer;

weight that connects the th

neuron in layer with the

th neuron in layer ;

value of the output from the th

neuron in layer ;

adjustable variables in the acti-

vation function;

threshold value of the th

neuron in the th layer;

th desired output value;

iteration number;

learning rate;

total number of output layer

neurons;

total number of network

layers.

Fig. 4. Multim-dimensional NAHONN structure.

The 1-D NAF is defined as

NAF

(3.1)

First of all, the input–output relation of the th neuron in the th

layer can be described by

(3.2)

where is the number of neurons in layer , and

(3.3)

To train the NAHONN, the following energy function is

adopted:

(3.4)

is the sum of the squared errors between the actual network

output and the desired output for all input patterns. In (3.4),

is the total number of output layer neurons, and is the total

number of constructed network layers (here ). The aim of

learning is to minimize this energy function by adjusting both

the weights associated with various interconnections, as well as

the variables in the activation function. This can be achieved

by using the steepest descent gradient rule expressed as follows

[22]:

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
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(3.12)

(3.13)

(3.14)

(3.15)

To derive the gradient of with respect to each adjustable pa-

rameter in (3.5)–(3.15), we define

(3.16)

(3.17)

Now, from (3.2), (3.3), (3.16) and (3.17), we have the partial

derivatives of with respect to the adjustable parameters as

follows:

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

and for (3.16) and (3.17) the following equations can be com-

puted:

(3.29)

Fig. 5. NANONN with one output.

while

(3.30)

and
if

if
(3.31)

We summarize the procedure for performing the above algo-

rithm as follows.

00: Determine the number of hidden units for the net-

work.

10: Initialize all weights , threshold values

and parameters of

the hidden units’ activation functions.

20: Input a learning example from the training data and

calculate the actual outputs of all neurons using the

present parameter values, according to (3.2) and

(3.3).

30: Evaluate and from (3.29), (3.30), (3.31) and

then the gradient values from (3.18)–(3.28).

40: Adjust the parameters according to the iterative for-

mulas in (3.5)–(2.15).

50: Input another learning pattern, go to step 20.

The training examples are presented cyclically until all parame-

ters are stabilized, i.e., until the energy function for the entire

training set is acceptably low and the network converges.

IV. UNIVERSAL APPROXIMATION CAPABILITY OF NAHONN

In this section the variables

are set as piecewise constant functions which will be adjusted

(as well as weights) during training.

Now because a mapping

(where and are positive integers) can be computed by

mappings

(where ), it is theoretically sufficient to focus on

networks with one output-unit only. Such a network is depicted

in Fig. 5.

In Fig. 5, the weights-vector and the threshold value associ-

ated with the th hidden layer processing unit are denoted
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and , respectively. The weights-vector associated with the

single output-unit is denoted . The input-vector is denoted

.

Using these notations, we see that the function computed by

an NAHONN is

(4.1)

where is the number of hidden layer processing units, and

is defined by (3.1).

Lemma 4.1: An NAHONN with a neuron-adaptive activa-

tion function (3.1) can approximate any piecewise continuous

function with infinite (countable) discontinuous points to any

degree of accuracy (see Appendix A for proof of this theorem).

V. NAHONNG

A. Neural-Network Group

The ANN set is a set in which every element is an ANN [29].

The generalized ANN set—NN—is the union of the product set

and the additive set .

A nonempty set is called a neural-network group, if

(the generalized neural-network set as described in [12])

with the product or with addition is defined for

every two elements , and for which the group pro-

duction conditions or group addition conditions hold [29].

An ANN group set is a set in which every element is an ar-

tificial neural-network group. The symbol means:

NNGS is an ANN group set and , which is one kind of artifi-

cial neural-network group, is an element of set NNGS.

In general, the neural-network group set can be written as

(5.1)

where is one kind of neural-network group.

B. NAHONG Neural-Network Group Models

The NAHONG is one kind of neural-network group, in which

each element is an NAHONN [29]. We have:

(5.2)

C. NAHONG Neural-Network Group Feature

Hornik proved the following general result:

“Whenever the activation function is continuous, bounded

and nonconstant, then for an arbitrary compact subset

, standard multilayer feedforward networks can

approximate any continuous function on arbitrarily well

with respect to uniform distance, provided that sufficiently

many hidden units are available” [13].

A more general result was proved by Leshno:

“A standard multilayer feedforward network with a locally

bounded piecewise continuous activation function can ap-

proximate any continuous function to any degree of accu-

racy if and only if the network’s activation function is not

a polynomial” [17].

Furthermore, since NAHONG comprises artificial neural net-

works, we can infer the following from Leshno:

“Consider a neuron-adaptive higher order neural-network

group (NAHONG), in which each element is a standard

multilayer higher order neural network with adaptive neu-

rons, and which has locally bounded, piecewise continuous

(rather than polynomial) activation function and threshold.

Each such group can approximate any kind of piecewise

continuous function, and to any degree of accuracy”.

VI. NANONN AND NANONG EXAMPLES

A. T-NAHONN Model

When

The 2-D NNAF (2.9) becomes the 2-D trigonometric polyno-

mial NAF

(6.1)

where

are free parameters which can be adjusted (as well as weights)

during training.

Let

The 2-D trigonometric polynomial NAHONN is defined as

- (2-D)

(6.2)

where

are free parameters which can be adjusted (as well as weights)

during training.

T-NAHONN is an open-box model, which is capable of han-

dling high-frequency nonlinear data.

B. PT-NAHONN Model

When
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the 2-D NAF (2.9) becomes the 2-D polynomial and trigono-

metric polynomial NAF

(6.3)

where

are free parameters which can be adjusted (as well as weights)

during training.

Let

The 2-D polynomial and trigonometric polynomial NAHONN

is defined as

PT-NAHONN (2-D)

(6.4)

where

are free parameters which will be adjusted (as well as weights)

during training.

PT-NAHONN is appropriate for modeling data which com-

bines both polynomial and trigonometric features.

C. TES-NAHONN Model

When

the 1-D NAF (2.3) becomes the 2-D TES NAF.

The 1-D TES NAF is

(6.5)

where

are free parameters which can be adjusted (as well as weights)

during training.

Let

The 1-D TES NAHONN is defined as

TES- NAHONN (1-D)

(6.6)

where

are free parameters which can be adjusted (as well as weights)

during training.

The TES-NAHONN model is suitable for modeling data

comprising discontinuous and piecewise continuous functions.

D. NAHONG Models

NAHONG is one kind of neural-network group, in which

each element is an NAHONN [29]. We have

NAHONG

If PT- NAHONN then this becomes the

trigonometric polynomial NAHONG

If - NAHONN then this becomes the

polynomial and trigonometric polynomial

NAHONG

If TES-NAHONN then this becomes the

trigonometric/exponent/sigmoid

polynomial NAHONG

NAHONG models are useful for modeling some special piece-

wise continuous functions.

The NAHONG structure is shown in Fig. 6.

VII. FINANCIAL DATA MODELING RESULTS

A. T-NAHONN Model Results

QwikNet and Qnet are two products available for the

financial software market (http://www.kagi.com/cjensen/)

and (www.qnet97.com), respectively. Both are powerful, yet

easy-to-use, ANN simulators. For the purposes of the present

study, the authors developed the MASFinance software package

in order to simulate nonlinear high-frequency real-word

data, comprising multipolynomial components. This practical

implementation of NAHONN models was developed using
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Fig. 6. NAHONG model.

Xview under Solaris. The main features of MASFinance can be

summarized as follows:

Graphical display of data. Both training and test data are

displayed as 3-D curved surfaces.

Creating NAHONNs. The number of layers, number of

neurons per layer and neuron type can all be specified (and

saved as net files in the system).

Graphical display of neural networks. The NAHONN

structure can be displayed exhibit graphically, with

different neurons (i.e., neurons with different activation

functions) marked with different colors; display of weights

(connections between neurons) is optional.

Display of simulation results. An interpolation algorithm

is invoked to smooth simulation results, prior to display.

Display of learned neuron activation function—NAF. After

training, theNAFparametersare shownin themainwindow.

Display of simulation error graph. The updated average

error can be dynamically displayed as training proceeds.

For a well-convergent model, the error plot approaches the

-axis over time (i.e., the auto-scaled number of epochs).

Setting other parameters. Training times and parameters

such as learning rate and momentum can be easily set and

modified. It only takes 5 min for 100 000 epochs when data

points are less than 100. A well-trained model can be saved

as a net file, and the output result saved as a performance

file.

We now proceed to compare the performance of T-NAHONN,

QwikNet, and Qnet. In order to perform this comparison, we

need to establish some ground rules, namely:

• QwikNet demonstration data files are used in all three

programs. There are eight files in total, these being

IRIS4-1.TRN, IRIS4-3.TRN, SINCOS.TRN, XOR.TRN,

XOR4SIG.TRN, SP500.TRN, SPIRALS.TRN and SECU-

RITY.TRN. (Remark: it is possible that QwikNet’s data

files have been optimized for that particular program)

• “Learning Rates” of all three programs are set to the same

value. Usually, the higher the learning rate, the faster the

network learns. The valid range is between 0.0 and 1.0.

A good initial guess is 0.1 when training a new network.

If the learning rate is too high the network may become

unstable, at which time the weights should be randomized

and training restarted.

• “Maximum # Epoch” is set to 100 000.

• The number of “Hidden Layers” is set to one.

TABLE I
COMPARATIVE ANALYSIS SUMMARY (T-NAHONN, QwikNet AND Qnet)

We compared all three programs on each set of input data files

independently, with the results being summarized in Table I.
First, comparing T-NAHONN with QwikNet reveals that the

former yielded smaller simulation errors in the majority of cases
(especially so in the case of XOR and SPIRALS).

Second, comparing T-NAHONN and Qnet reveals similar
performance, with both outperforming QuikNet (especially so
with XOR). These results indicate that polynomial neural net-
works perform better than trigonometric neural networks for this
kind of input data.

In summary, the T-NAHONN model works well for non-
linear, high frequency, and higher order functions. The reason
for this is that T-NAHONN is able to automatically determine
the optimum order (either integer or real number) for such high
frequency data.

B. PT-NAHONN Results

The network architecture of PT-NAHONN combines both
the characteristics of PHONN [27] and THONN [25], [26],
[32]. It is a multilayer network that consists of an input layer
with input-units, output layer with output-units, and two hidden
layers consisting of intermediate processing units. After the
PT-HONN simulator was developed, tests were undertaken to
prove it worked well with real-world data. Subsequently, its
performance was compared with other artificial neural-network
models. More specifically, comparative financial data simu-
lation results were derived using Polynomial Higher Order
Neural Network PT-NAHONN, PHONN, and Trigonometric
polynomial Higher Order neural-network (THONN). Particular
attention is paid here on the degree of the accuracy of the error.

Once again, certain ground rules were adopted to ensure
testing consistency, namely:

• programs were operated within the same environment;
• average percent error was the metric used for comparison

purposes;
• the same test data and environmental parameters (such

as learning rate and number of hidden layers) were used
throughout.

Representative results obtained are shown in Table II. From
these results we see that the PT-NAHONN model always
performs better than both PHONN and THONN. For example,
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TABLE II
PT-NAHONN, PHONN, AND THONN COMPARISON RESULTS

Using All Banks-Credit Card Lending on Total Number of
Accounts data between 96.8–97.6 (Reserve Bank of Aus-
tralia Bulletin 1999.7 P. S18), the error of the PT-NAHONN
model was 0.5208%. By comparison, the PHONN error was
1.8927%, and the THONN error 0.9717%. As it happens, the
All Banks-Credit Card Lending on Total Number of Accounts
data is a mixture of polynomial and trigonometric polynomial.
The PHONN model can only simulate polynomial functions
well, whereas THONN is only able to simulate trigonometric
functions well. Moreover, PT-NAHONN automatically finds
the optimum model (in this case, combined polynomial and
trigonometric polynomial function), and correct order (real
number order), for modeling this data.

C. Finding the Best Model and Order for Financial Data

Using TES-NAHONN

Our next experiment was to simulate nonlinear discontinuous

financial data using NAHONN with NAF (7.3.1) as the neuron

activation function. Reserve Bank of Australia data (Lending

to Persons July 1994 to Dec 1996) is shown in Fig. 7. We ob-

serve that there is a sudden jump between 06/95 and 07/95

(from 32.383 to 36.464). We therefore assume that discontin-

uous points exist here, and accordingly divide the entire time

series into two continuous portions.

Let us simulate this piecewise continuous time series using a

single NAHONN with piecewise NAF. There are 30 data points

in the training data set in this particular sample. After training,

the learned NAF for the NAHONN becomes

(7.3.1)

where
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Fig. 7. Single NAHONN with piecewise NAF used to simulate discontinuous data of Reserve Bank of Australia lending to persons July 1994 to December 1996
(Reserve Bank of Australia Bulletin, 1997).

TABLE III
COMPARISON OF SINGLE TES-NAHONN WITH THONN AND PHONN

With only four hidden processing units and 6000 training

epochs, this NAHONN with piecewise NAF reaches a root-

mean-square (rms) error of only 0.015 31 (see Table III).

We also tried approximating this financial data set using

a single NAHONN with nonlinear continuous NAF. After

training, the learned nonlinear NAF for the TES-NAHONN

becomes

(7.3.2)

With nine hidden units and 20 000 training epochs, this

TES-NANONN with nonlinear NAF reached an rms error of

0.764 97.

With the same numbers of hidden units and training epochs,

the rms errors for PHONN and THONN were 1.201 93 and

1.135 25, respectively. Using the TES-NAHONN model, we

found that (7.3.2) best modeled the data, provided we use a

nonlinear continuous NAF. Moreover, the optimum order was

12.96 for exponent and 1.21 for sigmoid function. Using

PHONN, we would need to choose a polynomial model with

integer order. Thus PHONN cannot model such data very

well. Similarly, using THONN means that the trigonometric

polynomial model must also use an integer number, resulting

in inferior performance. Our results show that the best model

for this data must be a mixture of trigonometric, exponential,

and sigmoid functions (for other data, variable a1 in (2.1)

might be zero, and the trigonometric function would not

be chosen). Furthermore, the orders are real numbers. In

summary, TES-NAHONN can adjust the activation function

and automatically chose the best model and correct order for

financial modeling.

D. NAHONG Results

In the following experiments we consider three kinds of

neural-network group, and compare their approximation

properties:

• traditional fixed sigmoid FNN group (FNNG) in which

each element is a traditional FNN [28];

• Neuron-adaptive FNN group (NAFG) in which each ele-

ment is a neuron-adaptive FNN [31];

• NAHONG.

Some special functions (such as the Gamma-function) pos-

sess significant properties and find application in engineering

and physics. These special functions, defined by integration

or power series, exist as the solutions to some differential

equations that emerge from practical problems, and cannot be
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Fig. 8. Gamma-function.

expressed by elementary functions. As the Gamma-function is

basically a piecewise continuous function, in this section we

attempt to approximate it using neural-network groups. The

Gamma-function (with real variables) is defined as in Fig. 8

It is readily seen from Fig. 8 that the Gamma-function is a

piecewise continuous function and therefore can be approxi-

mated to any degree of accuracy using neural-network groups.

For the sake of simplicity, we only consider the above function

over the range [ 2, 4], i.e., three continuous parts.

The best approximation result using NAHONG was achieved

with 3000 epochs of training and two hidden units in each

neuron-adaptive higher order neural network. The learned

NAFs for the hidden layers are (Figs. 9–11)

A comparison between FNN group, NAF group, and NAHONN

groups is given in the Table IV, from which we see that the

overall rms error for the NAHONG was only 0.001 324.

The results of our experiments confirm that NAHONGs pos-

sess the most outstanding approximation properties—namely

fastest learning, greatly reduced network size, and most accu-

rate fitting for piecewise functions, compared with FNNG and

NAFG. The reason for this is that NAHONG can not only au-

Fig. 9. The learned NAF � (x).

Fig. 10. The learned NAF � (x).

Fig. 11. The learned NAF � (x).

TABLE IV
FNN GROUP, NAF GROUP, AND NAHONN GROUP COMPARISON

tomatically find the best model and correct order, but can also

model higher frequency, multipolynomial, discontinuous, and

piecewise functions.

VIII. CONCLUSION

In this paper, we have presented NAHONN models with

neuron-adaptive activation functions to automatically model

any continuous function (or any piecewise continuous func-

tion), to any desired accuracy. A learning algorithm was derived
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to tune both the free parameters in the neuron-adaptive activa-

tion function, as well as the connection weights between the

neurons. We proved that a single NAHONN can approximate

any piecewise continuous function, to any desired accuracy.

Experiments with function approximation and financial data

simulation indicate that the proposed NAHONN models

offer significant advantages over traditional neural networks

(including much reduced network size, faster learning, and

smaller simulation error). Our experiments also suggest that a

single NAHONN model can effectively approximate piecewise

continuous functions, and offer superior performance compared

with neural-network groups.

We further introduced specialized NAHONN models, in-

cluding trigonometric polynomial NAHONN (T-NAHONN),

polynomial and trigonometric polynomial NAHONN

(PT-NAHONN), trigonometric/exponent/sigmoid polyno-

mial NAHONN (TES-NAHONN), and NAHONN group

(NAHONG) models. These NAHONN and NAHONG models

are open box, convergent models, are able to handle high-

frequency data, model multipolynomial data, simulate dis-

continuous data, and are capable of approximating any kind

of piecewise continuous function, to any degree of accu-

racy. Experimental results obtained using a NAHONN and

NAHONG were presented, which confirm that both models are

also capable of automatically finding the optimum model and

appropriate order for financial data modeling.

Having defined neuron-adaptive higher order neural

networks, there remains considerable scope for further charac-

terization and development of appropriate algorithms. Research

into hybrid neural-network group models also represents a

promising avenue for future investigation. Neuron-adaptive

higher order neural-network models hold considerable promise

for both the understanding and development of complex fi-

nancial systems. Neuron-adaptive higher order neural-network

group research remains open-ended, and holds considerable

potential for developing neural-network group-based models

for complex financial systems.

APPENDIX A

Proof of Lemma 4.1: Let us first consider a piecewise

discontinuous function defined on a compact set

and with only one discontinuous point, which divides

into two continuous parts: and , i.e., (see (4.2) at

the bottom of the page). Now, each of the continuous parts can

be approximated (to any desired accuracy) by an NAHONN

(according to Leshno et al. [17]). In other words, for ,

there exist weight—vector , weights , thresholds

, and real numbers

such that

(A.1)

is a desired approximation to , where is the

required number of hidden units and is the (piecewise) neuron

adaptive activation function.

On the other hand, for , there exist weight vector ,

weights , thresholds , and real numbers

such that

(A.2)

(4.2)
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where is the required number of hidden units and is the

(piecewise) neuron adaptive activation function, is a desired ap-

proximant to .

Now our aim is to prove that both and can be

approximated arbitrarily well using a single neural network. In

order to do this, we rewrite as

(A.3)

If we let

then (A.3) can be rewritten as

(A.4)

Suppose that (without loss of generality), if we define

then (A.2) and (A.4) can be combined as

(A.5)

where and .

It is obvious that (A.5) is a desired approximation to ,

and that it represents an NAHONN with hidden units, weight

vector , weights , thresholds , and

piecewise adaptive activation function . This demonstrates

that a piecewise continuous function with one discontinuous

point can be approximated arbitrarily well by an NAHONN.

Next, suppose that a piecewise continuous function

( a compact set ) with discontinuous points

can be arbitrarily approximated by an NAHONN. We proceed

to prove that a piecewise continuous function with dis-

continuous points
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can also be approximated to any desired accuracy by an NA-

HONN.

Suppose that can be approximated by an NAHONN

with hidden units, weight vector , weights ,

thresholds , and piecewise adaptive activation function

with piecewise constant functions

.

In other words, can be approximated to any degree of

accuracy by

(A.6)

On the other hand, can be approximated arbitrarily

well by an NAHONN. In other words, for there exists

weight vector , weights , thresholds , and

real numbers

such that

(A.7)

where is the required number of hidden units and is the

neuron adaptive activation function, is a desired approximant to

.

Our aim is to prove that both and can be

approximated using a single neural network. To do this, let us

rewrite as

(A.9)

If we define

then (A.8) can be rewritten as

(A.9)
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Now, if , we define

(In the case of , set

all to zero when and

.) Then (A.6) and (A.9) can be combined as

(A.10)

where and .

It can be readily seen that (A.10) is a desired approximation

to , and that it represents an NAHONN with hidden units,

weight vector , weights , thresholds ,

and piecewise adaptive activation function . This demonstartes

that a piecewise continuous function with discontinuous

points can be approximated arbitrarily well by an NAHONN.

Thus, by induction, this completes the proof of Lemma 4.1.
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