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The NEURON simulation program now allows Python to be used, alone or in combination with 

NEURON’s traditional Hoc interpreter. Adding Python to NEURON has the immediate benefi t 

of making available a very extensive suite of analysis tools written for engineering and science. 

It also catalyzes NEURON software development by offering users a modern programming 

tool that is recognized for its fl exibility and power to create and maintain complex programs. At 

the same time, nothing is lost because all existing models written in Hoc, including graphical 

user interface tools, continue to work without change and are also available within the Python 

context. An example of the benefi ts of Python availability is the use of the xml module in 

implementing NEURON’s Import3D and CellBuild tools to read MorphML and NeuroML model 

specifi cations.
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for the purely numerical issue of how many compartments are 

used to represent each of the cable sections. In the early 90’s, Hoc 

syntax was again extended to provide some limited support for 

classes and objects, that is, data encapsulation and polymorphism, 

but not inheritance.

Though Hoc has served well, continuing development and 

maintenance of a general programming language steals signifi cant 

time and effort from neurobiology domain-specifi c improvements. 

Furthermore, Hoc has turned out to be an orphan language limited 

to NEURON users. What is desirable is a modern programming 

language such as Python, which provides expressive syntax, pow-

erful debugging capabilities, and support for modularity, facili-

tating the construction and maintenance of complex programs. 

Python has proved its utility by giving rise to a large and diverse 

community of software developers who are making reusable tools 

that are easy to plug-in to the user’s code, the so-called “batteries 

included” (Dubois, 2007). In the domain of scientifi c computing, 

some examples include Numpy (Oliphant, 2007) and Scipy (Jones 

et al., 2001) for core scientifi c functionality, Matplotlib (Hunter, 

2007) for 2-D plotting, and IPython (Prez and Granger, 2007) for 

a convenient interactive environment.

There are three distinct ways to use NEURON with Python. One 

is to run the NEURON program with Python as the interpreter 

accepting interactive commands in the terminal window. Another 

is to run NEURON with Hoc as the interactive interpreter and 

access Python functionality through Hoc objects and function calls. 

These fi rst two cases we will refer to as embedded Python. The third 

way is to dynamically import NEURON in a running Python or 

IPython instance, which we will refer to as using NEURON as an 

extension module for Python.

In the sections to follow, we describe the steps required to use 

NEURON with Python, from a user’s point of view, and the tech-

niques employed to enable NEURON and Python to work together, 

from a developer’s point of view. We begin in Section “Getting 

INTRODUCTION

The NEURON simulation environment has become widely used 

in the fi eld of computational neuroscience, with more than 700 

papers reporting work employing it as of April, 2008. In large part 

this is because of its fl exibility and the fact that it is continually 

being extended to meet the evolving research needs of its user 

community. Experience shows that most of these needs have a 

software solution that has already been implemented elsewhere in 

the domain of scientifi c computing. The problem is one of interfac-

ing an existing package with NEURON’s interpreter. Some cases 

demand intimate knowledge of NEURON’s internals and consider-

able effort; examples include network parallelization with MPI, and 

adoption of Sundials for adaptive integration. There are many more 

cases in which existing packages could potentially be employed by 

NEURON users. Few people, however, have the specialized exper-

tise required to manually interface an existing software package 

and the creation of such interfaces is tedious. Instead of laborious 

piecemeal adoption of individual packages that requires interven-

tion by a handful of experts, a better approach is to offer Python 

as an alternative interpreter so that a huge number of resources 

becomes available at the cost of only minimal interface code that 

most users can write for themselves.

Since 1984, the NEURON simulation environment has used the 

Hoc interpreter (Kernighan and Pike, 1984) for setup and control 

of neural simulations. Hoc has a syntax for expressions and con-

trol fl ow vaguely similar to the C language. Hoc is not exactly an 

interpreted language since, analogous to Pascal, Java, or Python, 

Hoc statements are fi rst dynamically compiled to an internal stack 

machine representation using a yacc parser and then the stack 

machine statements are executed. A fundamental extension to Hoc 

syntax was made in the late 80’s in order to represent the notion of 

continuous cables, called sections. Sections are connected to form 

a tree shaped structure and their principle purpose is to allow the 

user to specify the physical properties of a neuron without regard 
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Started Using NEURON with Python” by describing how to install 

and run NEURON with Python. We then demonstrate how model-

ling is carried out using Python by comparing it side-by-side with 

Hoc syntax in Section “Writing NEURON Models in Python”. In 

Section “Using Python Code from Hoc”, we describe how Python 

can be accessed from the Hoc interpreter. In Section “Technical 

Aspects”, we discuss some technical aspects of the implementation 

of the Python-NEURON interaction. Finally, in Section “Importing 

MorphML Files — A Practical Example” we give a detailed, practical 

example, from the current NEURON distribution, of combining 

Python and Hoc.

The code listings in Figures 1–3 are available for public down-

load from the ModelDB model repository of the Senselab database, 

http://senselab.med.yale.edu (accession number 116491).

GETTING STARTED USING NEURON WITH PYTHON

INSTALLATION

NEURON works with Python on Windows, Mac OS X, Linux, and-

many other platforms such as the IBM Blue Gene/L/P and Cray XT3 

supercomputers. Detailed installation information can be found 

at http://www.neuron. yale.edu by following the “Download 

and Install” link.

Binary installers are available for Windows, OS X and RPM-based 

Linux systems. The Windows installer contains a large portion of 

Cygwin Python 2.5. On OS X and Linux, the latest version of Python 

2.3–2.5 previously or subsequently installed is dynamically loaded 

when NEURON is launched. The binary installers provide Python 

embedded in NEURON, but do not support using NEURON as an 

extension module for Python or IPython.

If you would like to use NEURON as an extension module 

for Python or IPython, if no installer for your platform exists, 

or if you need to customize the installation (e.g. enable parallel/

MPI support, or change the location of binaries), you should 

instead get the source code for the standard distribution, also 

available from the above “Download and Install” link, and com-

pile it for your machine. Further instructions for this are given 

in the Appendix.

BASIC USE

NEURON may be started without the graphical user interface 

(GUI) using nrniv or with the GUI using nrngui. To use Python 

as the interpreter, rather than Hoc, use the -python option:

$ nrniv -python

NEURON -- VERSION 7.0 (228: fbb244f333a9)

    2008-11-25

Duke, Yale, and the BlueBrain Project -- 

    Copyright 1984-2008

See http://www.neuron.yale.edu/credits.html

>>> from neuron import h

If there are any NEURON NMODL extension mechanisms (Hines 

and Carnevale, 2000) in the working directory, and they have been 

compiled with nrnivmodl, they will be loaded automatically.

Alternatively, you may wish to use NEURON as an exten-

sion to the normal Python interpreter, or to IPython (Prez and 

Granger, 2007), a more interactive variant. To do so, you must build 

NEURON from source and install the NEURON shared library 

for Python, as described in the Appendix. In Python (or IPython) 

then, NEURON is started (and any NMODL mechanisms loaded) 

when you import neuron:

$ ipython

[…]

In [1]: from neuron import h

NEURON -- VERSION 7.0 (228: fbb244f333a9) 

    2008-11-25

Duke, Yale, and the BlueBrain Project -- 

    Copyright 1984-2008

See http://www.neuron.yale.edu/credits.html

and the NEURON GUI is started by importing the neuron.gui 

module:

In [2]: from neuron import gui

The h object that we import from the neuron module is the 

principal interface to NEURON’s functionality. h is a HocObject 

instance, and has two main functions. First, it gives access to the 

top-level of the Hoc interpreter, e.g.:

>>> h('create soma')

>>> h.soma

< nrn.Section object at 0x8194080>

Second, it makes any of the classes defi ned in Hoc available to 

Python:

>>> stim = h.IClamp(0.5, sec=h.soma)

Note that the soma section created through the Hoc inter-

preter appears in Python as a Section object. We can also create 

Sections directly in Python, e.g.

>>> dend = h.Section()

These two section objects are entirely equivalent, the only 

difference being that the name “dend” is not accessible within 

the Hoc interpreter. In addition to the HocObject class (and 

through it, any class defi ned in Hoc) and the Section class, the 

Python neuron module also provides the Segment, Mechanism 

and RangeVariable classes. More in-depth examples of using 

NEURON from Python are given in Section “Writing NEURON 

Models in Python”, while using Python code from Hoc is introduced 

in Section “Using Python Code from Hoc”.

STARTING PARALLEL NEURON

Assuming NEURON was built with parallel support as discussed 

in the Appendix, suitably parallelized Hoc scripts are started using 

the MPI job execution command, typically mpiexec (Hines and 

Carnevale, 2008) or the equivalent for your MPI implementation. 

When Python is used rather than Hoc, the same parallelism features 

are supported, with only slight changes in the execution model. 

Both embedded Python (nrniv -python) and NEURON as an 

extension module to Python are supported. MPI job execution for 

embedded Python is the same as standard NEURON/Hoc, except 
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from itertools import chain

from neuron import h

Section = h.Section

# --------------------- Model specification ---------------------

# topology

noxa,ralisab,lacipa,amosetaerc#)(noitceS=amos

apical = Section()

basilar = Section()

axon = Section()

apical.connect(soma , 1, 0) # connect apical(0), soma(1)

basilar.connect(soma , 0, 0) # connect basilar(0), soma(0)

axon.connect(soma , 0, 0) # connect axon(0), soma(0)

# geometry

# soma {

03=L#03=L.amos

1=gesn#1=gesn.amos

03=maid#03=maid.amos

# }

# apical {

006=L#006=L.lacipa

32=gesn#32=gesn.lacipa

1=maid#1=maid.lacipa

# }

# basilar {

002=L#002=L.ralisab

5=gesn#5=gesn.ralisab

2=maid#2=maid.ralisab

# }

# axon {

0001=L#0001=L.noxa

73=gesn#73=gesn.noxa

1=maid#1=maid.noxa

# }

# biophysics

for sec in h.allsec(): # forall {

001=aR#001=aR.ces

1=mc#1=mc.ces

# }

{amos#)'hh'(tresni.amos

# insert hh

# }

apical.insert('pas ')  # apical {

# insert pas

basilar.insert('pas ')  # g_pas = 0.0002

# e_pas = -65

for seg in chain(apical , basilar): # }

seg.pas.g = 0.0002 # basilar {

saptresni#56-=e.sap.ges

# g_pas = 0.0002

# e_pas = -65

# }

{noxa#)'hh'(tresni.noxa

# insert hh

# }

FIGURE 1 | Code listing for a simple model neuron: building the neuron. The Python code is on the left and the equivalent Hoc code on the right.
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# --------------------- Instrumentation ---------------------

nysferjbo#tupnicitpanys#

syn = h.AlphaSynapse(0.5, sec=soma) # soma syn = new AlphaSynapse (0.5)

5.0=tesno.nys#5.0=tesno.nys

50.0=xamg.nys#50.0=xamg.nys

0=e.nys#0=e.nys

# objref g

)(hparGwen=g#)(hparG.h=g

g.size(0, 5, -80, 40) # g.size(0, 5, -80, 40)

g.addvar('v(0.5)', sec=soma) # g.addvar("soma.v(0.5)")

# --------------------- Simulation control ---------------------

520.0=td#520.0=td.h

5=potst#5=potst

56-=tini_v#56-=tini_v

{)(ezilaitinicorp#:)(ezilaitinifed

h.finitialize(v_init) # finitialize(v_init)

)(tnerrucf#)(tnerrucf.h

# }

{)(etargetnicorp#:)(etargetnifed

)(nigeb.g#)(nigeb.g

while h.t < tstop: # while (t < tstop) {

h.fadvance() # fadvance()

)t(tolp.g#)t.h(tolp.g

# }

)(hsulf.g#

# }

)(hsulf.g

{)(ogcorp#:)(ogfed

)(ezilaitini#)(ezilaitini

)(etargetni#)(etargetni

# }

)(og#)(og

FIGURE 2 | Code listing for a simple model neuron (continued from Figure 1): instrumenting and running the model. The Python code is on the left and the 

equivalent Hoc code on the right.

that an extra -python command line option must be passed to 

nrniv:

$ mpiexec -np 4 nrniv -python -mpi nrn-7.0/\

src/nrnpython/examples/test1.py

numprocs=4

NEURON -- VERSION 7.0 (228: fbb244f333a9) 

    2008-11-25

Duke, Yale, and the BlueBrain Project -- 

    Copyright 1984-2008

See http://www.neuron.yale.edu/credits.html

NEURON thinks I am 0 of 4

NEURON thinks I am 2 of 4

NEURON thinks I am 3 of 4

NEURON thinks I am 1 of 4

For users who prefer to use NEURON as an extension module 

to Python or IPython, execution is as follows:

$ mpiexec -np 4 python nrn-7.0/src/nrnpython/\

examples/test0.py

MPI_Initialized==true, enabling MPI 

    functionality.

numprocs=4

NEURON -- VERSION 7.0 (228: fbb244f333a9) 

    2008-11-25

Duke, Yale, and the BlueBrain Project -- 

    Copyright 1984-2008

See http://www.neuron.yale.edu/credits.html

mpi4py thinks I am 2 of 4, NEURON thinks I am 

    2 of 4

mpi4py thinks I am 1 of 4, NEURON thinks I am 

    1 of 4

mpi4py thinks I am 3 of 4, NEURON thinks I am

    3 of 4

mpi4py thinks I am 0 of 4, NEURON thinks I am

    0 of 4

However, there is one important caveat: The NEURON exten-

sion module does not initialize MPI itself, but rather delegates 

this job to Python. To initialize MPI in Python, one must import a 
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Python MPI module, such as “MPI for Python” (mpi4py) (Dalcín 

et al., 2008), prior to importing neuron:

from mpi4py import MPI

from neuron import h

pc = h.ParallelContext()

s = "mpi4py thinks I am %d of %d,\

 NEURON thinks I am %d of %d\n"

cw = MPI.COMM_WORLD

print s % (cw.rank, cw.size, \

           pc.id(),pc.nhost())

pc.done()

The module mpi4py is available from the Python Package 

Index (http://pypi.python.org).

ONLINE HELP

For new users of NEURON with Python, a convenient starting 

place for help is Python online help, provided through the global 

function help, which takes one argument, the object on which 

you would like help:

>>> import neuron

>>> help(neuron)

Help on package neuron:

NAME

     neuron

FILE

     /usr/lib/python2.5/site-packages/neuron/

         __init__.py

DESCRIPTION

    neuron

    ======

    For empirically-based simulations of 

        neurons and networks of neurons in 

        Python.

    This is the top-level module of the official 

        python interface to the NEURON simulation 

        environment (http://www.neuron.yale.

        edu/neuron/).

    For a list of available names, try 

        dir(neuron).

[…]

For commonly used Hoc classes, such as Vector, APCount, 

NetCon, etc., helpful reminders of constructor arguments, attributes 

and units with Python syntax examples are available at the Python 

prompt:

>>> from neuron import h

>>> help(h.APCount)

NEURON+Python Online Help System

================================

class APCount

pointprocess

apc = APCount(segment)

apc.thresh --- mV

apc.n --

apc.time --- ms

apc.record(vector)

Description:

Counts the number of times the voltage at its 

location crosses a threshold voltage in the 

positive direction. n contains the count and time 

contains the time of last crossing.

[…]

from neuron import h

# create pre- and post -synaptic sections

pre = h.Section()

post = h.Section()

for sec in pre, post:

sec.insert('hh')

# inject current in the pre-synaptic section

stim = h.IClamp(0.5, sec=pre)

stim.amp = 10.0

stim.delay = 5.0

stim.dur = 5.0

# create a synapse in the pre-synaptic section

syn = h.ExpSyn(0.5, sec=post)

# connect the pre-synaptic section to the

# synapse object

nc = h.NetCon(pre(0.5)._ref_v , syn)

nc.weight[0] = 2.0

vec = {}

for var in 'v_pre', 'v_post ', 'i_syn', 't':
vec[var] = h.Vector()

# record the membrane potentials and

# synaptic currents

vec['v_pre '].record(pre(0.5)._ref_v)
vec['v_post '].record(post(0.5)._ref_v)
vec['i_syn '].record(syn._ref_i)
vec['t'].record(h._ref_t)

# run the simulation

h.load_file("stdrun.hoc")

h.init()

h.tstop = 20.0

h.run()

# plot the results

import pylab

pylab.subplot(2,1,1)

pylab.plot(vec['t'], vec['v_pre '],
vec['t'], vec['v_post '])

pylab.subplot(2,1,2)

pylab.plot(vec['t'], vec['i_syn '])

FIGURE 3 | Code listing demonstrating the use of ref and plotting.
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In IPython, the ? symbol is a quick shorthand roughly equivalent 

to online help:

In [3]: ? h.APCount

Type:            HocObject

Base Class:      <type 'hoc.HocObject'>

String Form:     <hoc.HocObject object at 0

    xb79022f0>

Namespace:       Interactive

Length:          0

Docstring:

    class APCount

    pointprocess

[…]

WRITING NEURON MODELS IN PYTHON

To show how a model neuron is implemented using Python, we 

repeat the example described in Chapter 6 of the NEURON Book 

(Carnevale and Hines, 2006), but using Python rather than Hoc. 

The code listing is given in Figures 1 and 2, and has Python code 

on the left and the equivalent Hoc code on the right.

There are only a few syntax and conceptual differences between 

the Python and Hoc versions, and we expect that Hoc users will have 

little diffi culty transitioning to Python, should they wish to do so 

(Hoc will continue to be supported, of course). We now comment 

on the most signifi cant differences.

First are the import statements, absent from the Hoc listing, 

although Hoc does have the xopen() function that has similar 

functionality. Since NEURON is now only one of potentially many 

modules living within the Python interpreter, it must live in its own 

namespace, so that the names of NEURON-specifi c classes and var-

iables do not interfere with those from other modules. Of particular 

importance is the object h, which is the top-level Hoc interpreter, 

and gives access to Hoc classes, functions and variables.

While sections are created using the create keyword in Hoc, in 

Python we instantiate a Section object. Hence the important dis-

tinction in Hoc between sections and objects is removed: Everything 

in Python is an object. Similarly, the connect keyword in Hoc is 

replaced by a method call of the child section object in Python.

In NEURON, each cable section is made up one or more segments, 

and the diameter is a property of each segment. Hoc’s shorthand, 

allowing the diam attribute to be set on all segments by setting it on 

the section is also available in Python. Inhomogeneous values for 

range variables such as diam can also be set on the specifi c Segment 

object, returned by calling the Section object as a function.

The forall keyword in Hoc, which iterates over all sections, is 

replaced by the allsec() method of the top-level Hoc interpreter 

object h. Here again we see, in setting the membrane capacitance 

cm, the Hoc and Python shorthands to set the value for all segments 

at once, without having to explicitly iterate over all Segments.

In instrumenting the model, we see that Python and Hoc objects 

have very similar behaviours. In general, all Hoc classes (Vector, 

List, NetCon, etc) are accessible within Python via the h object. 

Hoc object references must be declared using the objref keyword, 

and objects created using new, but once created, attribute access 

and method calls have near-identical syntax in Python and Hoc. 

There are three major exceptions to this rule. First, many func-

tions and methods act in the context of the ‘currently-accessed 

section’. To support this in Python, these functions take a keyword 

argument sec. Second, certain method calls take Hoc expressions 

as arguments, so, for example, in adding the membrane potential 

of the soma section to the list of variables to plot, in Hoc we use 

g.addvar(“soma.v(0.5)”), but in the Python version the vari-

able soma does not exist on the Hoc side, and so we have to pass 

the soma Section object as the sec keyword argument so that the 

Hoc expression is evaluated in the context of that section. Third, a 

number of functions/methods take Hoc variable references (indi-

cated by preceding the variable name with the ‘&’ character) as 

arguments, the most important being Vector.record(&var) 

and NetCon(&var, target). The equivalent syntax in Python 

is to precede the variable name with _ref_, e.g.: Vector.record

(_ref_var). For example, given ‘pre’ and ‘post’ Section objects and 

a dictionary of Hoc Vector objects addressed by a mnemonic string, 

recording the voltage at the centres of those sections is activated 

by the statements:

# record the membrane potentials and

# synaptic currents

vec['v_pre'].record(pre(0.5)._ref_v)

vec['v_post'].record(post(0.5)._ref_v)

vec['i_syn'].record(syn._ref_i)

vec['t'].record(h._ref_t)

Figure 3 shows the complete listing with the above fragment 

in context and also illustrates the ease with which NEURON 

code can be mixed with third-party code such as the power-

ful Pylab/Matplotlib plotting package (http://matplotlib.

sourceforge.net/): NEURON Vector objects work just as well 

as Python lists or arrays as arguments to the plot() function.

USING USER-DEFINED MECHANISMS

One of NEURON’s most powerful features is the ability to write new 

mechanisms using the NMODL language, and then compile these 

mechanisms into the executable or into dynamic libraries (DLLs). 

The standard behaviour of NEURON is to load any mechanisms 

that have been compiled in the working directory. It is also pos-

sible to load DLLs from elsewhere in the fi lesystem using the Hoc 

function nrn_load_dll(). This has the disadvantage that the full 

path to the shared library fi le must be provided, which can be hard 

to determine, since the fi le is within a hidden folder which itself is 

within a folder with a platform- specifi c name. To simplify this, the 

neuron Python module adds a function load_mechanisms(), 

which takes as an argument the path to the directory containing the 

NMODL source fi les, and searches for shared library fi les below this 

directory. Furthermore, in analogy to the PYTHONPATH environ-

ment variable which contains a list of paths to search for importable 

Python modules, if you have defi ned a NRN_NMODL_PATH environ-

ment variable, NEURON will search these paths for shared libraries 

and load them at import time.

USING USER-DEFINED CLASSES

One of the principal advantages of writing NEURON programs in 

Python rather than Hoc, especially for large, complex programs, 

is that Python is a fully object-oriented language, supporting 
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 encapsulation, polymorphism and inheritance, whereas Hoc sup-

ports only encapsulation and a limited form of polymorphism.

Just as with built-in Hoc classes, access to attributes and meth-

ods of user-defi ned Hoc classes (using the begintemplate/

endtemplate keywords) uses the same syntax in Python as in 

Hoc. For example, if we have the following user-defi ned Hoc class 

in the fi le string.hoc:

begintemplate String

  public s

  strdef s

  proc init() {

     s = $s1

  }

endtemplate String

then we can use it as follows:

>>> from neuron import h

>>> h.xopen("string.hoc")

>>> my_string = h.String("Hello")

>>> my_string.s

'Hello'

It is also possible to subclass both built-in and user-defi ned 

Hoc classes in Python, although with the restriction that multiple 

inheritance from Hoc-derived classes is not possible. Subclassing 

requires the use of the hclass class factory:

>>> from neuron import h, hclass

>>> class MyNetStim(hclass(h.NetStim)):

…      """NetStim that allows setting

…         parameters on creation."""

…

…      def __init__(self, start=50, noise=0,

…                   interval=10, number=10):

…          self.start = start

…          self.interval = interval

…          self.noise = noise

…          self.number = number

…

>>> stim = MyNetStim(start=0, noise=1)

>>> stim.noise

1.0

>>> class MyString(hclass(h.String)):

…     def repeat(self, n):

…       return self.s*n

…

>>> my_string = MyString("Hello")

>>> my_string.repeat(3)

'HelloHelloHello'

NUMERICAL DATA TRANSFER BETWEEN HOC AND PYTHON

The Hoc Vector object provides NEURON with a convenient 

and effi cient container for storing and manipulating collec-

tions of numerical values, such as membrane potential traces or 

spike-times.

In Python, Hoc Vector objects expose iterator and indexing 

methods, such that they can be used in most cases where Numpy 

(Oliphant, 2007), Scipy (Jones et al., 2001), and Matplotlib 

(Hunter, 2007), the most important scientifi c modules, accept 

lists.

To benefi t from the elegant and expressive notation of Numpy 

for N-dimensional array manipulation, and from results computed 

using the large and growing repertoire of scientifi c packages avail-

able for Python, which largely return Numpy arrays, several opti-

mized methods are available for the conversion of Hoc Vectors 

to and from Numpy arrays.

Transferring one-dimensional Numpy arrays and non-nested 

lists with fl oat or integer items to Hoc Vectors is straightfor-

ward, as the Hoc Vector constructor accepts an array or list as 

an argument:

>>> v1 = h.Vector(a)

>>> v2 = h.Vector(l)

Transferring a Hoc Vector to an array or list is equally straight 

forward:

>>> a = array(v1)

>>> print a

[ 3. 2. 3. 2.]

>>> l = list(v2)

>>> print l

[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]

If you would like to transfer between an existing Numpy array 

and a Hoc Vector, there are the Hoc Vector “in-place” member 

functions to_python and from_python:

>>> v3 = h.Vector(len(a))

>>> v3.from_python(a)

>>> print list(v3)

[3.0, 2.0, 3.0, 2.0]

>>> b = zeros_like(a)

>>> v3.to_python(b)

>>> print b

[ 3. 2. 3. 2.]

USING PYTHON CODE FROM HOC

For interacting with Python, Hoc provides the nrnpython() func-

tion and the PythonObject class. nrnpython() takes as its one 

argument a string that can be any Python statement, e.g.:

oc> nrnpython("a = 3.14159")

oc> nrnpython("print a")

3.14159

PythonObject has two main uses. Creating an instance using 

new returns an object that encapsulates the top-level Python inter-

preter, e.g.

oc> objref py

oc> py = new PythonObject()

oc> py.b = "hello"

oc> nrnpython("print b")

hello

Strings and fl oat/double values move back and forth between 

Python and Hoc (although Python integers become double values in 
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Hoc and remain doubles if they are passed back to Python). All other 

Python objects become instances of the PythonObject class:

oc> objref dict

oc> nrnpython("d = {'a':1, 'b':2, 'c':3}")

oc> dict = py.d

oc> print dict

PythonObject [12]

oc> print dict.__getitem__("c")

3.0

For objects (such as lists and tuples) that take integer indices 

or are callable as functions, there is a special method named ‘_’ 

(underscore):

oc> objref lst

oc> nrnpython("c = [7, 8.0, 'nine']")

oc> lst = py.c

oc> for i = 0, lst.__len__() -1 { print lst._[i] }

7.0

8.0

nine

The only other trap for the unwary is that both single and double 

quotes are valid for string defi nitions in Python, but only double 

quotes are accepted by Hoc!

A detailed example of using Python from Hoc, and of the value 

of being able to access its large standard library, is given in Section 

“Importing MorphML Files — A Practical Example” for the case 

of importing 3D morphology from a MorphML fi le.

TECHNICAL ASPECTS

Tools for building Python extensions, such as BOOST.Python 

(Abrahams and Grosse-Kunstleve, 2003) or SWIG (Beazley, 1996) 

might have been useful in more expert hands. However, the ability 

of users to declare variables, objects, and classes in Hoc, the fact 

that many existing C++ classes and class methods were not gen-

erally meant to be directly visible to the user except through the 

intermediation of Hoc syntax, and the fact that the Hoc connection 

to the internal NEURON code was already reasonably uniform, 

of reasonable size, and understood by us in depth, suggested to us 

that a Python interface written using the Python C-API (http://

docs.python.org/c-api/) that reused as much as possible the 

existing Hoc connection to internal data and functions would 

give us the general control we needed, and allow us to accomplish 

the project in reasonable time. It should be emphasized that this 

design decision to reuse a few of the C functions that manipulate 

the Hoc runtime stack neither hinders nor assists any future work 

on development of APIs for major NEURON components, such 

as the numerical solvers, which may be useful to other simulators. 

However, our interface implementation does provide a compact 

example of how an application can communicate with NEURON 

within a shared address space and therefore makes the the process 

of dynamically linking NEURON into a user application much 

simpler.

Since double precision variables, arrays, constant strings, 

functions, and objects have very similar syntax and semantics 

in Hoc and Python, a single PyTypeObject structure called 

HocObjectType associated with a PyHocObject structure for 

a Python object instance containing Hoc Symbol and Object 

fi elds was suffi cient to allow Python access to all these Hoc 

data-types. When a name is given to an attribute method of the 

HocObjectType (the refl exive self PyHocObject is also an argu-

ment to the method), the name is looked up in Hoc’s symbol table 

for the PyHocObject Hoc Object fi eld, and the symbol along with 

the Hoc object calls the same function that the Hoc interpreter 

would call to resolve the attribute at runtime. The attribute, which 

is typically a number, string, or HocObject, is then wrapped in 

a Python object of the proper type and returned. Function calls 

from Python into Hoc consist of pushing the function arguments 

onto the Hoc runtime stack and, again, calling the same function 

the Hoc interpreter would call at runtime. Thus, Python state-

ments involving PyHocObject objects end up generating and 

executing the same Hoc stack machine code at runtime that would 

be accomplished by the corresponding Hoc statement. It should 

be noted that a great deal of interpreter effi ciency can be gained 

in loop body statements by factoring out as much as possible the 

precursor objects. For example:

from neuron import h

vec = h.Vector (1000000)

a = 0

for i in xrange (1000000):

    a += vec.x[i]

can be optimized by avoiding the repeated search for the 

attribute x:

vx = vec.x

for i in xrange (1000000):

    a += vx[i]

The former takes 1.3 s on a 3 GHz machine, while the latter 

takes 1.0 s.

A critical requirement was to have as natural a correspondence 

as possible in Python for the special Hoc syntax for Sections, posi-

tion along a Section, membrane mechanisms, and Range Variables. 

This was achieved through the C++ defi nition of corresponding 

types in Python to create instances for: NPySecObj, NPySegObj, 

NPyMechObj, and NPyRangeVar. For example, the NPySegObj 

segment (compartment) object points to the NPySecObj of which 

it is a part, specifi es its location, x, and also contains a fi eld to 

help in iterating over the mechanisms that exist at that location. 

An NPyRangeVar has, in practice, required only a pointer to the 

compartment (NPySegObj) where it exists and a pointer to its Hoc 

Symbol. A Section represents a continuous cable and evaluation of 

or assignment to a variable associated with a particular location 

always involves specifying both which Section and the relative arc 

length location (0 ≤ x ≤1) along the Section. Internally, NEURON 

employs a Section stack to determine the working Section and 

Hoc syntax provided three ways to specify the top of the Section 

stack. The Hoc Section.variable(x) syntax has a direct cor-

respondence to the Python Section(x).variable syntax and 

the latter perhaps has more clarity. The Hoc Section { Hoc 

statements } syntax is unique to NEURON and for the Python 

side we were reduced to explicit management of the Section stack 

with Section.push() with an explicit h.pop_section() as the 

fi nal statement. This gets tedious for single function calls and so in 
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Python we allow the keyword argument, sec=Section, to push 

and pop the Section during the scope of the Hoc function call. 

The Hoc access Section statement does not require a Python 

counterpart. However, the Python statement, sec = h.cas(), 

returns the top of the Section stack.

There were several cases of syntax mismatch which could only be 

overcome by the addition of new idioms. Hoc syntax does not allow 

an object to be treated as a function, so in Hoc we use po._( …). 

Python does not allow call by reference arguments. Therefore, when 

a Hoc function called from Python requires a reference argument, 

the variable name must be prefi xed by ‘_ref_’. Of course, such 

variables can only be Hoc variables but that is not a diffi culty in 

practice since either the need is to pass a Hoc RangeVariable or 

the Python program can construct a Hoc variable for use in these 

cases. Since all numbers in Hoc are double precision, type errors 

are raised when Python expects an integer. For the case of array 

arguments, the Hoc-to-Python interface converts the doubles 

to integers automatically. Unfortunately, one cannot in general 

call the __getitem__(int) method explicitly but must use the 

[expr] Hoc syntax. If this becomes a problem in practice, it will 

be necessary to supply a set of cast functions that can be explicitly 

invoked by the user.

We have encountered only one problem with freeing object 

memory that has proved resistant to a solution. In some cases there 

is an ambiguity in regard to whether the Hoc or the Python side 

owns a reference to an object. When this situation occurs, a refer-

ence to the object is kept in a list for a deferred call to Py_DECREF 

when it is guaranteed that it is safe to do so.

Assignment of a constant value to a range variable in a Section 

is far more common than assignment of different values within the 

segments of a Section and Hoc provides a simple syntax for that 

case which avoids writing an explicit loop. The latest extension of 

the NEURON Python interface mimics that behavior in Python by 

interpreting Section.RangeVariableName in that fashion instead of 

raising an “AttributeError”. We are also considering extending the 

implicit iteration idea to SectionLists and Cells to allow not only 

assignment of constants but also application of inhomogeneous 

functions.

A list of the principal differences in syntax between Hoc and 

Python is given in Table 1.

IMPORTING MORPHML FILES — A PRACTICAL EXAMPLE

Our fi rst serious use of the NEURON Python interface was to 

extend the Import3D GUI tool to read MorphML specifi ca-

tion fi les. Import3D is structured around a graphical view of 

a list of Import3d_Section objects defi ned in Hoc. Among 

many method and fi eld attributes, the principle data fi eld of the 

Import3d_Section object is the raw x, y, z, diam information 

along an unbranched cable and a list index indicating the parent 

Import3d_Section. The list of Import3d_Section objects 

is constructed by various fi le reader objects that understand a 

specifi c fi le format such as Eutectic, SWC, or NeuroLucida ver-

sions 1 or 3. Since MorphML is an XML format, it was oppor-

tune to employ the XML reader module in the standard Python 

distribution.

The problem of parsing and analyzing the MorphML format is 

similar in diffi culty to that for NeuroLucida V3 fi les. We divided 

the problem into Hoc and Python code portions. In contrast to 

a fi le size of 1180 lines for the NeuroLucida V3 fi le reader, the 

read_morphml.hoc fi le size is 78 lines and the Python portion 

of the problem is carried out by rdxml.py with a fi le size of 370 

lines. Since these fi les are located in the NEURON package default 

search path – …/nrn/lib/hoc for the read_morphml.hoc fi le 

and …/nrn/lib/python for the rdxml.py fi le – the MorphML 

reader extension works wherever the NEURON Python interface 

is installed.

The read_morphml.hoc fi le defi nes an Import3d_MorphML 

Hoc template (class) which interacts with Import3d_GUI in exactly 

the same manner as the other format readers.

When an Import3d_MorphML instance is created, the Python 

helper module we wrote to parse the input fi le is imported with 

nrnpython(“import rdxml”) and p = new PythonObject() 

is defi ned in order to allow access to Python functions.

The proc input() {…} procedure defi nes a sections list 

and populates it with Import3dSection objects indirectly via 

p.rdxml.rdxml($s1, this) which passes the fi lename selected 

earlier by the user along with a reference to the Import3dMorphML 

instance to allow callback from the Python code.

The

def rdxml(fname, ho) :

  xml.sax.parse(fname, MyContentHandler(ho))

module function calls the xml parser with the fi lename and a new 

instance of

class MyContentHandler(xml.sax.ContentHandler):

  def __init__(self, ho):

    self.i3d = ho

    ...

The reference to the Import3d_MorphML instance is stored by 

the initializer for later use at the end of parsing. During fi le reading 

there is no interaction between Hoc and Python, so let it suffi ce 

that the xml parsing style is, at the beginning and end of every xml 

element, to call the MyContentHandler methods

def startElement(self, name, attrs):

  if self.elements.has_key(name):

    if debug: print "startElement:", name

    self.elements[name](self, attrs)

  else :

    if debug:

      print "startElement unknown", name

  def endElement(self, name):

    if self.elements.has_key('end'+name):

      self.elements['end' +name](self)

where the elements literal map associates all possible element 

names with a MyContentHandler method. E.g.

elements = {

  'neuroml':nothing,

  'morphml':nothing,

  ...

  'segments':segments,

  'endsegments':endsegments,
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  'segment':segment,

  'proximal':proximal,

  ...

  }

The methods construct Python lists of Point, Cable, etc, as 

well as maps associating identifi ers with list indices. At the end of 

parsing, the MyContentHandler method

def endDocument(self):

  self.i3d.parsed(self)

is called by the xml parser.

At this point we fi nd ourselves back in the Hoc world with an 

argument that references the MyContentHandler. Through that 

we can obtain the information saved by the MyContentHandler 

in various maps and lists and copy it into new Import3d_Section 

instances.

proc parsed() {…

  cables = $o1.cables_

  points = $o1.points_

  cableid2index = $o1.cableid2index_

  for i=0, cables.__len__() - 1 {

    cab = cables._[i]

    sec = new Import3d_Section(cab.first_,\

       cab.pcnt_)

    sections.append(sec)

    if (cab.parent_cable_id_ >= 0) {

      ip = cableid2index_[cab.parent_cable_id_]

      sec.parentsec = sections.object(ip)

      sec.parentx = cab.px_

    }

    ...

Note the ‘._’ idiom for accessing a Python list element since, 

in Hoc, cables[i] is syntax implying an object reference array 

 created with objref cables[n]. Also, cableid2index is a 

Python map which associates the cable identifi er read from the 

xml input fi le, with the proper element in the Python cables 

list.

DISCUSSION

Python makes available within NEURON a very extensive suite of 

analysis tools written for the general science and engineering com-

munities. All existing models written in Hoc,  including GUI tools, 

continue to work without change. All NEURON objects are acces-

sible to Python via an instance of the HocObject. Within the Hoc 

Table 1 | The principal differences in syntax between Hoc and Python.

Python Hoc Notes

obj() obj._() 

obj[int] obj._[int] 

obj[double] obj.__getitem__(double) or __setitem__

obj['string'] obj.__getitem__("string") or __setitem__

f(_ref_var) f(&var) when storing a persistent pointer

f(h.ref(strvar)) f(strvar) when f changes the string

f(h.ref(obj)) f(obj) when f changes the reference

f(h.ref(var)) f(&var) when f changes var (via $ &1)

sec = Section() create sec 

sec.push() stmt h.pop_section() sec { stmt } 

f(..., sec = section) section { f(...) } 

child.connect(parent, px, cx) connect child(cx), parent(px) 

sec.insert('mechname') sec { insert mechname } 

sec(x).rangevar sec.rangevar(x) 

for sec in h.allsec(): forall { } includes sec.push() and h.pop_section() of 

  currently accessed section.

for sec in h.seclist: forsec seclist { } 

for seg in sec: for (x, 0) the value of x is seg.x

for seg in sec.allseg(): for (x) 

seg.hh.gnabar or seg.gnabar_hh gnabar_hh(x) 

pp = PointProcess(x, sec=section) sec { pp = new PointProcess(x) }

for mech in seg: No direct equivalent. Use

 MechanismType

iteration for iterator Python supplies several styles of iteration and Hoc 

  supplies an iterator idiom. Conversion from one to the 

  other is done via explicit programming but Python cannot 

  use a Hoc iterator directly. Nor can Hoc use generators 

  except by calling the underlying __next__() method.
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interpreter, all Python objects are accessible via the PythonObject. 

Binary installation remains straightforward for the usage case of 

launching NEURON with Python embedded: The MS Windows 

installer contains a large subset of the 2.5 version of Python, and 

the Linux RPM and Mac OS X dmg installations will use the latest 

version of Python, if any, that is already present or subsequently 

installed. The usage case of launching Python, e.g. using IPython, 

and dynamically importing NEURON also works but presently 

requires the extra installation steps described in the Appendix. 

Numpy is not a prerequisite but, if present, copying of vectors 

between Numpy and NEURON is very effi cient. The Python xml 

module is used in the present standard distribution to extend 

NEURON’s Import3D and CellBuild tools to allow reading of 

MorphML (Crook et al., 2007) and NeuroML (Goddard et al., 

2001) model specifi cations. The Hoc portion of the xml readers 

makes heavy use of Python maps and lists.

With the release of NEURON version 7.0, the Python interface 

has largely stabilized, and is ready for general use. We recommend 

that new users of NEURON and those already familiar with Python 

should use Python rather than Hoc to develop new models. Those 

with considerable expertise in Hoc but without Python knowledge 

are likely to be more productive by continuing to develop models 

with Hoc, but accessing Python’s powerful data structures, large 

standard library and external numerical/plotting packages through 

nrnpython() and the PythonObject class. There is no need to 

rewrite legacy code in Python, as it will continue to work using the 

Hoc interpreter or mixed in with new Python code and accessed 

via the h object.

Users are encouraged to submit bug reports and feature requests 

at the NEURON forum (http://www.neuron.yale.edu/

phpBB) in the “NEURON+Python” sub-section, so that we can 

continue to improve the Python interface in response to users’ 

experiences.

APPENDIX

Here we give detailed instructions for building and installing 

NEURON as a Python extension. Note that, as mentioned earlier, 

to use NEURON with Python embedded you can use one of the 

binary installers.

The following assumes a standard GNU build environment, 

and a bash shell. You will need both NEURON (nrn-VERSION.

tar.gz) and InterViews (iv-VERSION.tar.gz) sources, avail-

able through the “Download and Install” link at http://www.

neuron.yale.edu.

First, build and install Interviews:

$ N=  'pwd  '
$ tar xzf iv-17.tar.gz

$ cd iv-17

$ ./configure --prefix=  'pwd  '
$ make

$ make install

Then build and install NEURON:

$ cd..

$ tar xzf nrn-7.0.tar.gz

$ cd nrn-7.0

$ ./configure --prefix=  'pwd  '\
 --with-iv=$N/iv-17 --with-nrnpython

$ make

$ make install

Here, the  “\” at the end of the fourth line, indicates it is con-

tinued on the fi fth. If you want to run parallel NEURON (Hines 

et al., 2008; Migliore et al., 2006), add --with-paranrn to the 

configure options. This requires a version of MPI to be installed, 

for example MPICH2 (Gropp, 2002) or openMPI (Gabriel et al., 

2004).

Now add the NEURON bin directory to your PATH:

$ export PATH=$N/nrn-7.0/i686/bin:$PATH

(Here i686 will be different for different CPU architectures).

Now build and install the NEURON shared library for 

Python:

$ cd src/nrnpython

# python setup.py install

This command installs the neuron package to the Python site-

packages directory, which usually requires root access. If you don’t 

have root access, you can install it locally using --prefix to specify 

a location under your home directory:

$ python setup.py install\

 --prefix=$HOME/local

This will install the neuron package to $HOME/local/lib/

python/site-packages under your home directory. You will 

then have to add this directory to the PYTHONPATH environ-

ment variable:

$ export PYTHONPATH=$PYTHONPATH:\

$HOME/local/lib/python/site-packages
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