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Abstract

Neuronal activity differs between wakefulness and sleep states. In contrast, an attractor state, called self-organized critical
(SOC), was proposed to govern brain dynamics because it allows for optimal information coding. But is the human brain
SOC for each vigilance state despite the variations in neuronal dynamics? We characterized neuronal avalanches –
spatiotemporal waves of enhanced activity - from dense intracranial depth recordings in humans. We showed that
avalanche distributions closely follow a power law – the hallmark feature of SOC - for each vigilance state. However,
avalanches clearly differ with vigilance states: slow wave sleep (SWS) shows large avalanches, wakefulness intermediate, and
rapid eye movement (REM) sleep small ones. Our SOC model, together with the data, suggested first that the differences are
mediated by global but tiny changes in synaptic strength, and second, that the changes with vigilance states reflect small
deviations from criticality to the subcritical regime, implying that the human brain does not operate at criticality proper but
close to SOC. Independent of criticality, the analysis confirms that SWS shows increased correlations between cortical areas,
and reveals that REM sleep shows more fragmented cortical dynamics.
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Introduction

Distinct patterns of neuronal dynamics are observed across

vigilance states as the brain transitions from wakefulness to sleep

[1]. In contrast, a specific attractor state, called self-organized

critical (SOC), has been proposed to govern brain dynamics,

because models suggest that the SOC state allows the brain to

operate both flexibly and reliably, and allows for optimal

information coding, processing and storage [2–4]. But does the

brain always operate in the SOC state, despite wide variations in

the neuronal dynamics across vigilance states, or does the brain –

in the framework of critical dynamics – undergo a state transition

away from the critical to subcritical or supercritical states [5–9]?

The critical state may be optimal for information processing and

storage; however, during sleep the brain might not be in a state of

optimal processing capacities, since sleep dynamics might equally

be optimized to save energy, to restore tissue, for synaptic

homeostasis, for thermoregulation, or for plasticity, learning and

memory [10–14]. Thus there are many reasons why the brain

might not be in a critical state during sleep.

An observation of deviations from the critical state for certain

vigilance states would also imply phase transitions between

vigilance states in the context of SOC. Evidence for phase

transitions has been found in vitro and in silicio [5–9,15–17]. These

findings demonstrate that a neural network is in principle capable

to undergo such transitions. However, we have no evidence yet for

phase transitions to sub- or supercriticality in vivo.

An investigation of such phase transitions, and the critical state

proper, requires sufficient temporal and spatial sampling, since

SOC dynamics involves the entire system and not just a subset. As

a consequence, power law relationships – the hall mark feature of

SOC - are only reliably recovered under sufficient sampling [18].

Thus, classifying sub-, supercritical and critical states in heavily

subsampled system becomes difficult. Therefore, we here used

local field potentials (LFP) recorded with intracranial depth

electrodes from epileptic patients. These recordings sampled

activity with up to 61 contacts distributed across the entire brain.

In contrast to conventional electroencephalography (EEG) or

electrocorticography (ECoG) which sample from the surface of the

head or brain, the LFP electrodes extended into deep brain

structures and sample the activity locally from the surrounding

tissue. These recordings allowed us to sample not only superficially

(as with EEG) or locally from a single brain area (as with

implanted electrode arrays), but to record activity from many

brain areas in parallel.

To estimate whether the neuronal dynamics in the human brain

operated close to criticality, or in sub- or supercritical states, one

has to extract spatio-temporal clusters of enhanced activity, called
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neuronal avalanches [19]. The size distribution of these neuronal

avalanches reflects the spatio-temporal correlation structure

between recording sites. This correlation structure can be

organized in various ways (Figure 1A): Units can be independent

or highly correlated. The correlation structure can form specific

clusters (e.g. showing high correlations between brain areas of the

same modality), or it can be anywhere between these extremes.

For each of these classes, the event distributions over time

(Figure 1A) and the resulting avalanche size distributions f(s) look

very different (Figure 1B). Notably, only for very specific

correlation structures, the avalanche distributions show a power

law (black). In this case, f(s) shows more large avalanches than a

system of uncorrelated units, however, it does not prefer any

specific avalanche size. Therefore, power law distributions are

termed scale free. A power law indicates that the activity between

the units is correlated, but the units don’t form strongly

interconnected subgroups. Thus, only under very specific condi-

tions, the avalanche distributions follow a power law, which is then

indicative for the SOC state.

To assess SOC across vigilance states in humans, we evaluated

neuronal avalanches from five patients, two nights each and for

each vigilance state separately. We found that neuronal avalanches

across brain areas indeed were best described by a power law,

indicative of the SOC state. This even held for each of the

vigilance states separately, although each state is characterized by

distinct neuronal dynamics. However, the avalanche distributions

differed slightly but consistently between vigilance states. Slow

wave sleep (SWS) showed the largest avalanches, wakefulness

showed intermediate ones, and rapid eye movement sleep (REM)

showed the smallest. These differences in avalanche distributions

implied that not all vigilance states can be SOC. In fact, the data

together with modeling results indicated that the human brain

operates close to criticality but within the subcritical regime.

Within the subcritical regime, the differences between vigilance

states may be mediated by tiny changes in effective synaptic

strength. These changes tune the brain closer to criticality (SWS)

or farther away (REM). – Independent of the framework of

criticality, the avalanche measures confirmed that SWS shows

increased correlations between cortical areas [20], and they

revealed a new phenomenon, namely that REM sleep is

characterized by more fragmented cortical dynamics than SWS

and wakefulness.

Results

Neuronal avalanche distributions across the human brain
are close to a power law
Neuronal avalanches are spatio- temporal clusters of enhanced

activity that can span the entire system but can also be restricted to

a single site only (Figure 2). The size s of a neuronal avalanche is

defined as the total number of recording sites that show enhanced

activity during one avalanche [19]. We sampled LFP with up to 61

intracranial depth recording sites (Figure 2). The intracranial

depth electrodes are shaft electrodes with several spatially

separated contacts per shaft. Each shaft was placed separately in

the brain and targeted areas such as the hippocampus and the

amygdala, depending on the specific clinical needs. For the LFP,

Figure 1. The global correlation structure between units is
reflected in the avalanche distribution. A. Each of the four raster
plots depicts events from a different stochastic process with 44 units
each. Each process had the same event rate (JHz) but different
correlations structures between its 44 units: independent Poisson
processes (green), stochastic input to two different subsets of the units
(pink), and high correlation between units (orange). The black dots
represent events recorded from the human brain (44 electrodes, JHz
event rate). The horizontal gray line depicts the bin size applied to get
the p(s) in (B). B. Each of the avalanche size distributions p(s)
corresponds to one of the processes in (A). p(s) reflects the correlation
structure of the data. High correlations resulted in more large
avalanches (orange, pink), while the Poisson processes show f(s) close
to an exponential (green). However, here only p(s) from the human data
(black) showed a power law.
doi:10.1371/journal.pcbi.1002985.g001

Author Summary

Brain activity shows complex dynamics, even in the
absence of external stimulation. In fact, most brain activity
is generated internally. Therefore, it is crucial to under-
stand the generation principles of internal activity. One
hypothesis is that complex brain dynamics emerges from
simple local interactions if the network is in a specific state,
called ‘‘self-organized critical’’ (SOC). SOC indeed can
account for dynamics in slices of brain tissue. However,
we lack evidence that human brain dynamics is SOC. In
addition, we wondered whether SOC can account for brain
activity from wakefulness to deep sleep, despite clear
changes in brain dynamics with vigilances states. To
answer these questions, we analyzed intracranial depth
recordings in humans. We found evidence that the human
brain indeed operates close to criticality from wakefulness
to deep sleep. However, we found deviations from
criticality with vigilance states. These deviations, together
with our modelling results, indicated that the human brain
is close to SOC, but in a subcritical regime. In the
subcritical regime complex dynamics still emerges from
purely local interactions, but are more stable than the SOC
state. In fact, operation the subcritical regime allows for a
safety margin to supercriticality, which was linked to
epilepsy.

Neuronal Avalanches in Humans
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which is supposed to reflect mainly synaptic currents [21,22], we

extracted neuronal avalanches on the base of the size of the LFP

deflection lobes (see Methods, see Figure 2) and estimated their

sizes s, their duration d, and their characteristic branching

parameter s as described in [19].

Figure 3A shows the avalanche size distributions f(s) for all

patients, recording nights and vigilance states combined. f(s)

consistently resembled a power law independent of the underlying

event rate (Figure 3A). Note that imposing an event rate is

basically equivalent to the common application of a threshold,

however, it allows for more precise control over the contribution of

each site to the avalanches. The avalanche distributions extended

until s<50 and showed a drop for larger s. Based on previous

work, we expect the drop to occur at around the total number of

sampling sites, which here is at N<50 [18,19,23]. The function,

which accounted best for the distributions with the drop, was a

power law with cutoff (supplementary material S1):

f̂f (s)*e{a
:s:st ð1Þ

We applied maximum likelihood estimation [24], to estimate the

parameters t and a. t= 1.4160.06 (mean 6 std) and

a=0.02860.009. When fitting a power law proper, we obtained

t= 1.5860.06. The slope t of f(s) did hardly change despite a

tenfold change in the event rate (Figure 3C). This apparent

invariance of t against a change in event rate shows that the

threshold proper does not influence the avalanche dynamics, or

stating it differently, there are no characteristic deflection lobe

sizes which introduce their own dynamics or pattern sizes to the

avalanche distribution.

The above results were evaluated at one specific temporal scale

or bin size (bs), namely at a bin size of one average inter event

interval (IEI ), i.e bs = 1NIEI . A change of the temporal scale – in

contrast to the rate – had a clear influence on the slope of f(s)

(Figure 3B, evaluated for r =J Hz). This is a trivial effect, since

larger bs allowed to combine more events to a single avalanche,

thereby reducing the number of small and increasing the number

of large avalanches. Nonetheless, it was surprising to find that the

power law behaviour was not destroyed over the more than 100

fold change of time scales (Figure 3B). Fitting a power law to f(s)

showed a clear decrease of the slope from t<3.1 to t<1.3 with the

bs (Figure 3C). The dependence of t on the bs was similar across all

rates for both model functions - fitting a power law proper and a

power law with cutoff. This indicated again that the temporal scale

has a major influence on the avalanche distribution, while the

threshold has little impact. A power law distribution for the

avalanche sizes across a wide range of parameters (bs and r)

suggests that cortical dynamics across brain areas are close to the

critical state.

Another parameter which characterizes neuronal avalanches is

the branching parameter s. The branching parameter is a

measure to quantify whether a process expands (s.1) or

diminishes (s,1). More precisely, s is defined as the expected

number of events which are triggered by a single event [15]. We

found that s clearly changed with the temporal scale (bs), while it

changed only little with the rate (Figure 3D). This is in line with

previous studies [19]. However, while these studies reported s to

be close to one for bs = 1?IEI , we here found s to be a little smaller

than one at bs = 1?IEI , hinting at a slightly subcritical state of

operation.

As mentioned above, the electrodes were placed individually in

each patient. Most contacts were placed in the neocortex (NC)

while a few contacts in each patient recorded from the amygdala

and the hippocampus (AH). To understand whether NC contacts

contributed differently to the avalanches compared to AH

contacts, we tested whether the contribution of a single contact

to avalanches of size s depended on the electrode location. Or

saying it differently, for the events of each contact we estimated the

probability to participate in avalanches of size s. The contributions

to avalanches of size s did not differ between NC and AH contacts

(cluster based randomization test, p = 0.30 T-metric [25]). Thus

the AH contacts contributed in the same way to avalanches of

each size as the NC contacts. This, to our knowledge, is the first

report that non- neocortical brain areas also contribute to

neuronal avalanches.

Comparison of the experimental results with a simple
SOC model
To better understand our results concerning approximate

power law distributions in the brain, we simulated model

Figure 2. Definition of neuronal avalanches. Black traces show LFP from 44 parallel intracranial depth recording sites in one patient. For each
recording site the area under the deflection lobe between two zero crossings was calculated (see green box – blue indicates the area under the
deflection lobe). A binary event (red dot) was counted by selecting the biggest area values such, that each recording site during each phase of
constant sleep stage had an event rate of exactly J Hz (in this example). The binary events across recording sites occurred in clusters (yellow
background). These clusters are called neuronal avalanches. The avalanches were separated by pauses of no activity (white background). The
avalanche size s is defined as the total number of binary events in one cluster. As examples, the sizes s of three avalanches were indicated above the
raw traces.
doi:10.1371/journal.pcbi.1002985.g002

Neuronal Avalanches in Humans
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avalanches to study effects of finite size and subsampling. We

chose an integrate- and- fire SOC model (SOCM) [26] that shows

recurrent activity, runs in a 3D volume, has a refractory period,

and is capable of reproducing neuronal avalanches recorded in

monkeys [18]. In this model the activity propagates via next

neighbor connections: A unit ‘‘integrates’’ all ‘‘energy’’ it receives

from its next neighbors until the energy level crosses a certain

threshold. It then releases the energy to its next neighbors without

loss (it ‘‘fires’’). The total number of subsequent ‘‘firing’’ events is

defined as the avalanche size (see Methods). Although this SOCM

is very simple, it bears similarity to the brain: first, its threshold

action resembles the ‘‘integrate and fire’’ mechanism that

characterizes neural signal generation, and second, its local

connectivity resembles the dominance of local connections in the

brain [27,28]. Most importantly, this particular model allowed us

to control the signal propagation efficacy (representing effective

synaptic strength), which tunes the model to sub- and supercritical

states, for comparison to the data.

The SOCM in its critical state produced avalanche distributions

that closely resembled those observed in the data, which is, f(s)

approximated a power law for avalanche sizes up to the number of

sampled sites (N=253=15625), then showed a drop off (Figure 4D

black trace). This drop off is due to the finite size of the model

[26]. To better compare the modeling results to our experimental

data, where up to 61 sites were sampled, we adjusted the number

of recording sites in the model, i.e. we took into account only the

activity of a small subset of the model sites (46464= 64) and

dismissed the activity of all the other sites (‘subsampling’). In this

case, f(s) from the subsampled model had a drop off at around

s= 64, the total number of sampled sites (Figure 4C, black trace).

By analogy, we expect the drop off of the neuronal f(s) to be caused

by the limited number of recording sites [18]. With even more

recording sites, we expect the distribution of the neuronal

avalanches to extend over more orders of magnitude.

SOC models showed power laws with cutoff for their avalanche

distributions [26,29,30]. This is well known, however, we still

wanted to test this statistically [24]. Indeed, we confirmed that a

power law with cutoff provided a better fit than alternative

functions for both, the fully sampled and the subsampled model

f(s) (supplementary table S1). However, though the power law with

Figure 3. The neuronal avalanche size distribution f(s) for
humans approximated a power law. A. The colored line shows f(s)
for all avalanches across all 10 nights, evaluated at different event rates
and at bs = 1?IEI . The gray lines show f(s) at r=JHz separately for each
of the nights to indicate the variability between recording nights and
patients. For better visibility, the gray distributions have some offset,
while the colored distributions all are in absolute counts. f(s)
approximated a power law (t= 1.5 was indicated by the dotted line).
The cut off around s= 50 is known to coincide with the number of
recording electrodes, 51 on average. B. The slope of f(s) changed with
the temporal scale or bin sizes (bs). The bs was between 1/32IEI and
4IEI , while here r was fixed at r=J Hz. With larger bs, the slope of f(s)
became flatter, but the distributions always resembled a power law. C.
The slope t of f(s) depended on the bin size (bs), but little on the rate
(colored lines). The full lines show t from fitting a power law, while the
dashed lines show t and a for a power law with cutoff (see inset for a). t
and a for small bs at high rates are not defined, because the bs there
became smaller than the time resolution from sampling (2.5 ms).
Estimation errors for t and a scale with n2K where n is the number of
samples [24]. Here, n<106, and thus the error is of the order 1023, and
thus error bars are close to line thickness. For details on the fitting
parameters and quality, see also Supplementary Table S1 and Figure S1.
D. The branching parameter s was plotted over the bs. s changed with
the bs, but was similar across event rates (colored lines). The (+) depicts
[s= 1, bs = 1] for visual guidance.
doi:10.1371/journal.pcbi.1002985.g003

Neuronal Avalanches in Humans
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cutoff provided the best fit, it was not sufficient to pass a statistical

test proposed by Clauset and colleagues. The same results were

obtained for f(s) from the human brain (supplementary table S1).

Thus, neither the neuronal avalanches from the human brain, nor

the avalanches from the SOC model followed a power law with

cutoff in the strict sense.

We here compared neuronal avalanches from LFP recordings in

humans to avalanches of a spiking neuronal model, as this latter

model is known to be SOC [26]. We may still ask, whether both

scales may reflect the same phenomenon. To answer this question

we sampled activity in our spiking model with virtual LFP

electrodes. Each electrode sampled activity from multiple sites

(Figure 5A). We then analyzed the virtual LFP in the same way as

the human LFP. Indeed, just like the spiking model, the virtual

LFP activity showed a power law for its avalanche dynamics,

although with a steeper slope (Figure 5B). Hence, the simplest

explanation is that scale-free LFP dynamics reflect the underlying

SOC dynamics of spike avalanches.

Figure 4. Avalanche distributions differed with vigilance states and synaptic strength dE. A. The avalanche size distribution f(s) for the
neuronal avalanches was evaluated for each vigilance state separately. f(s) was similar for all vigilance states, however, it showed fewer large
avalanches for REM sleep than for SWS (s2 and s3/s4). All f(s) were normalized such that f(s = 1): = 1. B Here, we showed the same results as in A,
however, f(s) was plotted separately for each of the 10 recording nights to show that the differences in f(s) with vigilance states were present in each
night. (Logarithmic binning to smooth the curves; the offset between the sets is two orders of magnitude.) C. The avalanche distribution for the
subsampled SOC model was close to a power law for the critical state (black line). To deviate from the critical state, the synaptic strength dE was
varied systematically by up to 0.6% (colored lines). Technically, for dE,1 the model is subcritcal and for dE.1 it is supercritical. With larger dE, f(s)
showed an increased number of large avalanches. For the supercritical state (dE.1) a significant amount of avalanches was larger than 64, the
number of sampling sites. D. The results for the fully sampled model look similar to the subsampled model, except that the cutoff is, as expected, at
larger s.
doi:10.1371/journal.pcbi.1002985.g004

Neuronal Avalanches in Humans
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Scaling laws for neuronal avalanche and subsampled
model avalanches
The above mentioned avalanche size distribution f(s) is only one

of a set of scaling laws that characterize the dynamics of a system

near criticality [8,31–33]. Thus, a statement on the putative

criticality of a system should be based on more than the scaling law

for avalanche sizes. Therefore, we tested whether additional

scaling laws held for neural avalanches and the subsampled SOC

model. If both systems are near criticality, such additional scaling

laws hold for the avalanche duration d, the inter avalanche

intervals (IAI), and the shape function of an avalanche F(t/d).

F(t/d) describes the scaled number of events at time t within a single

avalanche of duration d, and is expected to relate to the total

number of events S(t,d) within an avalanche as follows:

S(t,d)*F(t=d):db

where b is the critical exponent. The critical exponents of all these

scaling laws follow certain relationships (for more details about

scaling laws and their interrelations see [32–34]).

Interestingly, the results for f(d), f(IAI), and S(t,d) were similar for

the neuronal avalanches and the subsampled model avalanches

(Figures S2, S3, S4). However, none of the distributions scaled as a

power law. The deviations from power law scaling in the model

were due to subsampling, since the fully sampled model follows the

scaling laws [34,35], and therefore subsampling may have caused

the observed deviations from scaling laws in neuronal avalanches

as well.

As a consequence the observed deviation from scaling laws for

the neuronal avalanches does not allow us to reject the hypothesis

that the human brain operates near criticality. In contrast - since

the results for the neuronal avalanches and the subsampled model

avalanches were qualitatively similar - we expect the neuronal

avalanches to follow the scaling laws if sampled with even more

electrode contacts.

Neuronal avalanche size distributions differ between
vigilance states
As mentioned before, the neuronal dynamics across vigilance

states differed substantially (Figure S5). Indeed, vigilance states are

classified into wake state, REM sleep, and non-REM (NREM)

sleep stages by the characteristics of their neural mass signal, e.g.

the sleep spindles, the slow waves, and sawtooth waves. For each

vigilance state we therefore also calculated the avalanche

distribution f(s) separately. We found that each of the avalanche

distributions closely followed a power law with cutoff (Figure 4A),

suggesting that neuronal dynamics of each of the vigilance states

was close to the SOC state. Fitting of f(s) of each vigilance state to

a power law with cutoff (eq. 1) resulted in t={1.52, 1.46, 1.24,

1.32} with a={0.0064, 0.0169, 0.0573, 0.0415} from deep sleep

to wakefulness.

It is remarkable that the avalanche distribution f(s) approxi-

mated a power law for each of the vigilance states, given the

differences in neuronal dynamics between these states. However,

we also found that the avalanche distributions varied systemati-

cally across different vigilance states (Figure 4A,B). The distribu-

tions for REM decayed faster than those for SWS (s3/s4, and s2).

This can be seen in f(s) for each single recording night (Figure 4B).

To quantify these differences systematically, we calculated the

normalized mean avalanche size �ss for each of the vigilance states at

each parameter combination (r, bs). We used �ss as a measure, since

any change in �ss implies a change in f(s). Figure 6A shows �ss

separately for each night and each state (colored) over the

temporal scale (bs). �ss was always larger during SWS, and smaller

during REM sleep. The same results held for the relative mean

avalanche duration d- (Figure 6B), and the relative branching

parameter s (Figure 6C). All these results held across all event

rates and temporal scales (Figure S6). To test these results for

significance across all rates and temporal scales, we used a

randomization statistic with cluster-based corrections for multiple

comparisons [25]. We found that indeed all these three measures,

�ss, d-, and the relative s, were significantly larger for SWS than for

REM and the wake state (Figure 7). Thus, with deep sleep, the

brain showed larger and longer neuronal avalanches with a larger

branching parameter than during wakefulness and REM. Larger

and longer avalanches correspond to stronger correlations

between sites.

Independently of the framework of SOC, the differences in

avalanche distributions with vigilance states reflected changes in

the underlying correlation structure between brain areas. SWS

thus showed stronger correlations between brain areas, in

Figure 5. Avalanches from virtual LFP signals of the ‘‘spiking’’ SOC model showed a power law. A. We sampled virtual LFPs from the
SOC model with 46464 = 64 virtual electrodes. Each virtual electrode sampled from a 3D sphere centred on the electrode tip. The sampling weights
for a slice with 464 electrodes are indicated here in colour. B. The avalanche size distributions p(s) on the 64 virtual electrodes showed a power law
for a wide range of thresholds (coloured traces). For the virtual LFP, avalanches were calculated the same way as for the real LFP: Whenever the area
under a deflection lobe exceeded a certain threshold, a binary event was attributed. p(s) was more noisy for higher thresholds since less events
contributed to the distribution.
doi:10.1371/journal.pcbi.1002985.g005

Neuronal Avalanches in Humans
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agreement with previous results [20], while REM to our surprise

showed weaker correlations compared to wakefulness. The

decrease of correlation strength with REM, compared to

wakefulness and SWS, indicated more fragmented patterns of

neuronal activity across cortical areas.

Here we showed that differences in neuronal activity between

vigilance states were reflected in the avalanche distributions,

although each of the distributions stayed close to a power law. In

sum, the brain may operate close to SOC for any brain state from

wakefulness to deep sleep, but still undergoes small but clear

transitions with vigilance states. This naturally leads to the

question about the underlying mechanisms that may change �ss, d-

, and s.

Changes in neuronal avalanche distributions reflect
deviations from criticality
We observed changes in the neuronal avalanche measures �ss, d-

and s with vigilance states, implying systematic changes in the

avalanche distributions. Changes in the avalanche distributions

can either be caused by deviations from power law scaling or by

changes in the critical exponent t (larger t would lead to smaller �ss).

While the first indicates deviations from the criticality to sub- or

supercritical regimes, the second indicates different critical states.

Note that this also holds for high dimensional systems with

‘‘critical manifolds’’ instead of critical states: On these critical

manifolds power law scaling holds while deviations from the

critical manifolds are reflected in deviations from power law

scaling [32,33].

The first case, deviations from power law scaling, might occur in

neural networks by changing the effective synaptic strength

between units. For example, weakening the effective synaptic

strength would impede avalanche propagation and tune a critical

network to the subcritical regime. The second case, changes in critical

exponents, can occur with changes in the topology of the model

[8,18]. For example, if one changes the topology of the 2D SOC

model from next neighbor connectivity to random connectivity,

while keeping the number and strength of connections fixed, t

increases from 1.1 to 1.4 [18].

To distinguish these two alternatives – deviations from power

law scaling versus power law scaling with different exponents – we

fitted f(s) to the following function:

f̂f (s)*e{a
:s:s{t

If a= 0, f̂f (s) is a power law proper (with its best fitting t), while

a?0 indicates deviations from a power law. In this sense, a serves

as a measure of criticality, since a quantifies the deviation from a

power law distribution. Thus, a systematic change in a with

vigilance states indicates systematic deviations from power law

scaling.

We fitted f(s) to f̂f (s) for each recording night, vigilance state,

rate and bin size and found that the observed a was small

(a= 0.04360.065), but it significantly depended on the vigilance

state (cluster based randomization test on F-metric, p,0.001 [25]).

In detail, a was smallest for deep sleep (s3/s4 and s2), and largest

Figure 6. The avalanche measures all were larger with SWS in humans. A–C The avalanche measures (�ss, d-, and s) were plotted over the bin
size separately for each vigilance state (colours) and each night (traces). (+) indicate the mean measure across nights for each vigilance state. For SWS
(s3/s4 and s2), neuronal avalanches were larger, longer and showed a larger branching parameter. The results here were shown for r =JHz, however,
the same results held for other rates (Supplementary Figure S6). D–F The same avalanche measures were plotted for the subsampled model. The
model was varied from critical (black traces) to various degrees of subcriticality (dE,1). Subcritical models (dE,1) that were closer to the critical state
(dE = 1) showed larger and longer avalanches, and larger branching parameter.
doi:10.1371/journal.pcbi.1002985.g006
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for REM. These results are in line with the previous results on �ss, d-

and s (Figure 7). Differences in a were significant for all pairs of

vigilance states except for s3/s4 versus s2 and REM versus

wakefulness which both only showed a trend (trend: p,0.08; for all

the other pair wise comparisons: p,0.05; post hoc cluster based

randomization on T-metric [25], all p values were corrected for

multiple comparison). Thus f(s) showed systematic deviations from

power laws with vigilance states, indicating that brain dynamics

indeed deviated from criticality.

The variations in �ss, d-, and s may arise from tiny changes in
synaptic strength
For the neuronal avalanche size distribution in humans, we

found small deviations from power law scaling with vigilance

states, which were also reflected in the avalanche measures �ss, d-,

and s. These deviations from power law scaling likely reflect

transitions away from criticality as pointed out above. Here we

want to investigate how such changes in �ss, d-, and s arise from a

SOC model. In our model, transitions from sub- to supercriticality

can be mediated by changes in effective synaptic strength dE

[36,37]. Such changes in dE during sleep were shown to have a

direct impact on LFP dynamics in a large scale model [38]. In our

model, we applied very tiny changes of dE around the critical state

(dE=1). Indeed, an increase in dE resulted in more large and

longer avalanches with a larger branching parameter

(Figure 4C,D). We quantified these effects systematically, using

the relative measures �ss, d-, and s (Figure 6D–F). These measures

all became smaller with smaller dE, independent of the bin size.

Qualitatively, the changes of the relative measures in our model

avalanches and in the neuronal avalanches from humans were

similar (Figure 6). Thus the differences in neuronal avalanches

between vigilance states may be mediated by tiny changes in the

effective synaptic strength dE.

Note that the changes in dE in the model were very small, less

than 1%, but nevertheless caused major changes in the avalanche

measures, as expected near criticality. This in turn suggests for the

human brain that the effective synaptic strength remains within a

very narrow range from wakefulness to deep sleep.

Discussion

For the neuronal avalanches from humans, we found on the one

hand approximate power law scaling for each of the vigilance

states, on the other hand we found significant differences between

the f(s), f(d) and s with vigilances states. These differences reflected

deviations from criticality rather than different critical states (see

results section). This naturally leads to the question, how the

vigilance states are mapped on critical, sub- and supercritical

dynamics.

An ad hoc hypothesis may be that SWS was slightly supercritical,

because it showed the largest avalanche measures; the wake state

might then be closest to criticality, and REM, which showed the

smallest avalanche measures, was in the subcritical regime.

Supercritical states were observed for cortical slices and manifested

as increased fraction of avalanches which span all recording sites

(s<N) [8], and in SOCM and supercritical branching processes they

were characterized by an increased number of large avalanches with

s.N (Figure 4C, red traces) [39]. However, for SWS we did not

observe any of the characteristic features of the supercritical regime.

We neither observed a peak in f(s) around s<N<50 nor an

increased number of large avalanches with s.50 (Figure 4A).

Therefore, we suggest that in the context of criticality, the human

brain still operates very close to the critical state but in a subcritical

regime. Supporting evidence for this interpretation is provided by

the subcritical branching parameter (Figure 3D).

The above hypothesis is fully in line with results on a, a measure

for the deviation from power law scaling: a was closest to zero for

SWS, indicating that SWS was closest to the critical state. a was

larger (and positive) for REM and wakefulness, indicating

deviations from criticality to the subcritical regime. More precisely,

a was largest for REM, intermediate for wakefulness and smallest

for SWS, which is in agreement with the results for the avalanche

measures discussed above. Based on a, the avalanche measures

and the lack of evidence for supercriticality, we suggest that the

human brain operates very close to the critical state but in a

subcritical regime, where SWS is most close to criticality,

wakefulness is slightly more subcritical, and REM sleep is even

more subcritical.

One may argue that biological systems are not physical models

and in real world biological systems small changes between

subcritical and critical states, based on putative changes in dE of

,0.1% might be negligible. However, these small changes in dE

had major impact on the avalanche dynamics in the modified

SOC models (manifested in �ss, d-, and s). Moreover, in our data,

the differences with vigilance states were highly consistent across

the ten recording nights (Figure 4B). Therefore, we do not

attribute them to biological variability.

The differences in avalanche measures were not caused by a

trivial change in the amplitude of the LFP with vigilance states. An

increase in LFP amplitude is indeed observed from wakefulness to

deep sleep, and it would directly result in larger avalanches if a

constant threshold across all vigilance states had been applied.

Figure 7. The avalanche measures differed between vigilance
states. Each of the three measures (�ss, d-, and s) was larger for SWS (s3/
s4, s2) and smaller for REM sleep and wakefulness. For illustration
purpose, we here combined the values of each measure across all
patients, temporal bin sizes, and rates, although the statistical test
distinguished between these parameters. Boxes indicate the median,

and error bars indicate the 25th and 75th percentiles. The error bars are
relatively wide, since the parameters (bs and r) influenced the avalanche
measures. All three avalanche measures showed similar test results in
the statistical test, therefore test results were indicated only once (*
p,0.05, ** p,0.001, after sequential Bonferoni correction; s indicates
‘‘significant for �ss only’’, and s,d ‘‘significant for �ss and d-, but not for s’’).
doi:10.1371/journal.pcbi.1002985.g007
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However, we adjusted the threshold for each vigilance state

separately such that each electrode contributed with same event

rate r. Putative changes in the LFP amplitude are therefore not the

cause for changes in avalanche measures with vigilance states.

Instead, the avalanche measures directly reflect the global correlation

structure of enhanced activity between recording sites or brain areas.

Since the differences in avalanche measures were highly

systematic and our results point to a slightly subcritical mode of

operation, we may ask how to reconcile this with theoretical

considerations that stress the computational optimality of the

critical state [2,4,40]. In this respect it is important to note that

some of these studies actually argue for a mode of operation that is

close to critical and thereby in line with our findings. Moreover,

one recent study demonstrated optimal task performance in the

subcritical regime, although network evolution started out in a

critical state [41]. One explanation for the differences between the

theoretical models is that Lazar’s model [41] incorporated

learning and structured input, which was missing from the earlier

works. As learning and structured input are relevant to the brain,

this suggest that a slightly subcritical regime for neuronal dynamics

is in fact optimal.

In addition, computational optimality may not have been the

only evolutionary constraint, but stability might have been an

additional goal. Stability is compromised in the supercritical state

as the supercritical state was linked to epileptic behaviour

[19,42,43]. It may well be that the brain in all its vigilance states

maintains a safety margin to the supercritical state, because

supercriticality allows for runaway activity, which is pathological,

energy demanding and may induce erroneous learning [42].

The idea that the brain maintains a safety margin to the critical

state was also brought forward by Pearlmutter and Houghton

[44]. In addition they proposed that during wakefulness the brain

approaches the critical state, while during sleep the safety margin

is re-established again. This is in line with Tononi’s proposal of

synaptic downscaling during sleep [13]. We tested on our data

whether we find any evidence for synaptic re- scaling in the

avalanche measures over the course of the night or within a single

sleep cycle, but did not find any systematic effect across patients

(results not shown). This can have a multitude of reasons, but for

now our avalanche analyses could not confirm the synaptic

rescaling hypothesis.

Despite our claim that the brain operates in the subcritical

regime, the main differences of our study to previous ones are

minor regarding the main findings with respects to avalanche

distributions. We found that among the available distributions a

power law distribution with cutoff best described the empirical

avalanche distribution - in line with previous findings in vivo

[23,45–47]. However, the availability of brain states with distinct

dynamics and the observation of small but consistent differences in

their avalanche measures forced us to conclude that the brain

cannot always operate in the critical state. Furthermore, detailed

analysis of the avalanche distributions, the branching parameter

and a comparison to modeling results led us to the conclusion that

the brain in fact operates in the subcritical regime.

Our study differs from two previous studies in rats and humans

which evaluated different vigilance states but did not report

differences in avalanche dynamics [48,49]. The differences with

vigilance states may have remained hidden in the variability of the

recordings, since the number of recording sites, neurons, and their

firing rates have impact on the avalanche measures, and differences

only became obvious after proper normalization (Figure 6).

While the differences between vigilance states were highly stable

across recording nights and patients, we can only speculate about

their underlying physiological mechanisms. A potential mecha-

nism, suggested by our SOCM, is a change in effective synaptic

strength. This change may well be mediated by the global action of

neuromodulators, since neuromodulators, such as acetylcholine

(ACh), influence vigilance states [50–52] and supposedly modify

the correlation structure between brain areas [53]. In fact, basal

forebrain ACh release showed the same dependence on vigilance

states in other studies [54] as the avalanche sizes reported here:

REM sleep showed the highest ACh levels and the largest

avalanches, wakefulness intermediate ones, and SWS the smallest.

We hypothesize that the observed fragmentation of avalanches in

REM sleep was mediated by increased levels of ACh, as proposed

in a model by Avella-Gonzalez and colleagues [53]. Regarding the

observed increase in avalanche sizes with SWS, this may be linked

to up- and down-states, which are typically synchronized across

brain areas [55]. However, the precise action and especially the

interaction of various neuromodulators in sleep have not been

sorted out. In fact, their precise role has not even been fully

understood in small systems with less then 30 cells [56], and it

would be premature to draw strong conclusion on the relationship

between neuromodulators and neuronal avalanches.

Independent of the details of modulator actions, our results

suggest that the effective synaptic strength dE stays tuned to a very

narrow range of operation from wakefulness to deep sleep.

Remember that in the model a change in dE of 0.2% resulted in

changes in the avalanche measures of ,5% - an effect of a size

that was similar to what we observed in our human data. The

question how the neural network maintains itself in this very

narrow dynamical range remains open.

Independent of the context of SOC, the analysis of neuronal

avalanches serves as a very useful measure to characterize the

global correlation structure in massively parallel recordings

(Figure 1). It captures the spatio-temporal dynamics beyond

pairwise interactions and therefore may become increasingly

important for the analysis of multisite recordings. Applying these

avalanche measures, we could confirm that LFP activity across

brain areas shows enhanced correlations during SWS [20,57,58].

In contrast, and to our surprise, REM showed a decrease in global

correlation strength compared to wakefulness. The association of

REM with decreased correlations is to the best of our knowledge

new. A decrease in correlation strength during some phase of

sleep, however, has been proposed by theoretical studies about

learning [59,60]. We propose that this decorrelation takes place

during REM sleep. In sum, the analysis of neuronal avalanches

confirmed correlated dynamics across brain areas in SWS and

revealed a new phenomenon, namely the fragmented dynamics of

REM sleep. Interestingly, wakefulness did not take an extreme

value but its brain dynamics stayed just between the ‘‘fragmented’’

REM and the ‘‘correlated’’ SWS.

To conclude, our analyses of avalanche dynamics from human

intracranial depth recordings indicated that the human brain

operates close to criticality from wakefulness to deep sleep, as

indicated by a power-law like distribution of avalanche sizes for

each vigilance state. However, the sizes of neuronal avalanches

changed with vigilance states: SWS showed larger and longer

avalanches, wakefulness showed intermediate ones, and REM

showed smaller and shorter ones. The larger avalanches of SWS

confirm the correlated character of SWS dynamics across brain

areas, while the smaller avalanches of REM revealed a fragmented

organization of brain dynamics compared to wakefulness and

SWS. Comparisons to a SOC model composed of integrate and

fire units suggest that these differences may arise from tiny changes

in effective synaptic strength, and that – in the context of criticality

– the brain undergoes transitions within the subcritical regime

close to but not including the critical state proper.
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Methods

Experimental procedures
Data recording and preprocessing. We analyzed data

from five subjects (3 females (aged 21, 23, and 27), two males;

(aged 25 and 48)) with refractory partial epilepsy undergoing

presurgical evaluation. The subjects were hospitalized between

February 2005 and March 2007 in the epilepsy unit at the Pitié-

Salpêtrière hospital in Paris. All patients gave their informed

consent and procedures were approved by the local ethical

committee (CCP). Each patient was continuously recorded during

several days (duration range, 9–20 days; mean duration, 16 days)

with intracranial and scalp electrodes (Nicolet acquisition system,

CA, US). Depth electrodes were composed of 4 to 10 cylindrical

contacts 2.3-mm long, 1-mm in diameter, 10-mm apart center-to-

center, mounted on a 1 mm wide flexible plastic probe. Pre and

post implantation MRI scans were evaluated to anatomically

locate each contact along the electrode trajectory. The placement

of electrodes within each patient was determined solely by clinical

criteria. Signals were digitized at 400 Hz. For sleep data, two

seizure-free nights with at least two complete sleep cycles were

chosen from each of the subjects; in addition, for wakefulness data,

between one and four seizure free recording hours were chosen

preceding or following the night (for eight out of the ten nights).

For each night, sleep stages were scored using the software

Somnologica Studio (Embla Systems, Inc, CO, USA) and scores

were visually confirmed by a time-frequency analysis. The four

sleep stages were: REM, s1, s2, and s3/s4. (Sleep stages s3 and s4

were combined to s3/s4 to adapt to the AASM standards (REM,

N1, N2, N3) [61], and s1 could not be used for the analysis

because not all patients showed sufficiently long s1 sleep intervals).

These three sleep stages together with the wake state made up the

four vigilance states.

The five subjects were implanted with (44, 48, 50, 50, and 63)

intracranial LFP recording sites. In total 7 recording sites were

excluded from the analysis due to artifacts and thus we used (44,

48, 45, 50, and 61) recordings sites for data evaluation. All LFP

were lowpass filtered at 40 Hz (4th order butterworth, MATLAB)

to reduce the impact of line noise.

Event definition for avalanches. Neuronal avalanches are

spatiotemporal clusters of events which are separated by phases of

quiescence. In the following, we define the events, the phases of

quiescence between avalanches and several avalanche measures,

following closely the procedures of Beggs and Plenz [18,19]. For

the event definition, we calculated the area under the positive

deflection lobes between two zero crossings of the LFP (Figure 2,

box) [18]. As LFP-voltages reflect current flows via Ohm’s law, this

time integral, the area under the voltage curve, is proportional to

the total amount of displaced charges and hence describes the

departure from equilibrium (charge neutrality) quantitatively – in

contrast to simple voltage peaks. To obtain binary events from the

LFP, we applied a threshold to the area values under the LFP

deflection lobe. The threshold was selected such that each

recording site in each interval of constant vigilance state had the

same event rate r. Thereby each site at each vigilance state had the

same ‘‘chance’’ to contribute to the avalanches. We chose to fix

the event rate and not the threshold, because a fixed threshold is

sensitive to changes in the LFP on one electrode, while we were

interested in the propagation pattern of waves of enhanced activity –

independent of the precise LFP shape that depends on vigilance

states and also might depend on local tissue properties. With

imposing a fixed event rate, we can distinguish whether the

avalanches are rather fragmented or span the entire system. To

demonstrate that our results did not depend on a specific choice

for the event rate, we used a range of rates r={1/10 Hz; 1/4 Hz;

1/2 Hz; 1 Hz}.
Avalanches and avalanche measures. Avalanches com-

posed of the events defined above were extracted separately for

each phase of constant vigilance state that lasted at least 150 s.

More specifically, to extract avalanches, we applied temporal

binning. The time bins were defined in units of ‘‘average inter

event intervals’’ IEI . The IEI is a function of the event rate r

defined above and the total number of recording sites N:

IEI~
1

r:N

As an example, for r= 1Hz and N= 50 electrodes, this resulted in

IEI =20 ms, while for r= 0.1Hz and N= 50, IEI =200 ms. We

applied a large range of bin sizes bs= [1/32; 1/16; 1/8; 1/4; 1/2;

1; 2; 4] IEI .

Using this binning, an avalanche is defined as the cluster of

events in subsequent non-empty time bins, and subsequent

avalanches are separated by empty time bins. The avalanche size

s is then the total number of binary events in an avalanche, and the

avalanche duration d is the number of time bins it covers. The

avalanche size distribution f(s) is the frequency distribution of

avalanche sizes, as the avalanche duration distribution f(d) is the

frequency distribution of durations. The corresponding probability

distributions are p(s) and p(d).

The above definitions of the bin size imposed practical limits on

its range. The bs was limited on the lower end by the sampling rate

resolution (2.5 ms) and on the upper end by the lack of pauses. In

addition, for bs.1IEI , subsequent avalanches are ‘‘glued’’

together and one starts implicitly analyzing the temporal

distribution of avalanches instead of the size distribution of single

avalanches.

The avalanche size distribution f(s) was calculated for each night

and for each sleep stage separately. To compare f(s) between sleep

stages, we calculated the normalized mean avalanche size �ss for

each vigilance state,

�ss~
1

J

:mean(s)~
1

J

:
X

N

s~1

s:f (s)

 !

=
X

N

s~1

f (s)

 !

where N is the number of recording sites and J is the

normalization factor, namely the mean avalanche size over all

vigilance states of one night:

J~Smean(s)Tv

S:Tv denoted the mean over all vigilance states v. The

normalization J accounted for the difference in N across patients.
�ss was calculated for each recording night, bs and r separately. The

same was done to calculate the normalized mean avalanche

duration d-.

In addition to the avalanche size and durations, we estimated

the branching parameter s. It describes whether activity expands

(s.1) or dies out (s,1). For a single transition, s9 was defined as

the number of events in one time bin divided by the number of

events in its preceding time bin. s then is the average over all s9

with non-zero preceding time bins. The normalized s for each

vigilance state v was calculated separately for each night, rate and

bs. It was defined analog to �ss and d- as s/,s.v.

Further, the IEI was defined as the time interval between two

subsequent events, taking into account all events across all

channels. The distribution of IEI is denoted as f(IEI). The relation
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between the IEI to the Inter Avalanche Interval (IAI) depends on

the bs as follows: All IEI which are larger than bs?IEI contribute to

the f(IAI).

Near criticality, the activity profile during a single avalanche is

expected to show a characteristic shape F(t/d), which simply scales

with the avalanche duration d as follows: S(t,d) = F(t/d) db, where

S(t,d) is the number of events at time t in an avalanche of duration

d, and b is a critical exponent (note that in criticality literature

b = 1/snz-1 [31–33], but for simplicity we use b here). To test

whether this relationship holds for the experimental data, we first

obtained S(t,d) for each d (applying temporal bins). From these

S(t,d) we obtained a collapse of all S(t,d) by rescaling the time axes

to t/d, and rescaling the amplitude with a scaling factor x(d) which

was defined such that it minimized the absolute differences

between the curves. If then the scaling factor x(d) followed a power

law relationship, x(d),db, this indicates that the system is close to

criticality [8,31].

We did the same analysis on the SOC model. For the fully

sampled model it is straight forward to estimate avalanche size and

duration. However, for the subsampled model a single ‘‘real’’

avalanche can appear, disappear and reappear on the subset of

sites, leading to an observed time series of events, which showed

pauses. On this time series, we applied temporal bins, just like for

the experimental data, aligning the bins to random starting points

to avoid any bias. We then analyzed these events the same way as

for the experimental data: after applying temporal binning, we

extracted the avalanche shapes S(t,d), and estimated the scaling

factor x(d). We analyzed this measure only for d$8 samples (which

equals 20 ms at a rate of 400 Hz in the experiment), since shorter

d have too few time points to derive the shape function F(t/d).

In each patient, most electrode contacts were placed in the

neocortex (NC), while a few were in the amygdala or hippocampus

(AH). To test whether these groups of contacts contributed

differently to the avalanches, we calculated for each contact c the

probability pc(s) to participated in an avalanche of size s for s = {1,

N}, where N is the total number of contacts. We then tested

whether pc(s) for the NC contacts differed from pc(s) for the AH

contacts across patients. We applied cluster based randomization

on the T-metric as described by Maris and colleagues [25], (see

below).

Statistical test. We tested whether the measures �ss, d-, and the

relative s varied with vigilance states. Since all these measures

depended continuously on bs and r, we therefore analyzed the

measures for all values for bs and r, and applied a cluster based

correction for the arising multiple comparisons and randomization

testing following Maris and colleagues [25]. Furthermore we

separately analyzed both the normalized and non- normalized

measures, and found the same qualitative results.

Simulation procedures
Model description. The self-organized critical model

(SOCM) we used here is the Bak-Tang-Wiesenfeld model [26].

It was run on a 3D grid of 25625625= 15625 sites. Each site is

connected with its six next neighbors. Each site (x,y,z) carries a

certain level of energy, E(x,y,z,t) at time t, and if that level exceeds

a threshold of six, it distributes dE=1 to each of its six next

neighbors in a process referred to as a toppling:

if E(x,y,z,t)§6, then

E(x,y,z,tz1)~E(x,y,z,t){6

E(x+1,y+1,z+1,tz1)~E(x+1,y+1,z+1,t)zdE

with dE=1. (x61,y61,z61) denote the 6 next neighbors of (x,y,z).

In the subsequent step after the toppling the E of the next

neighbors may cross threshold and this neighbor will topple. This

chain reaction triggers a spatiotemporal wave or avalanche which

propagates through the 3D grid. Outside the grid E=0 holds, i.e.

open boundary conditions. If all sites on the grid have energy

levels below threshold the avalanche terminates. A new avalanche

can be triggered by adding one energy unit to a randomly selected

site.

For this model, the size s of an avalanche is defined as the total

number of topplings during a single avalanche. The frequency

distribution f(s) of avalanche sizes shows a power law distribution

[26]. We modified the SOCM as follows: We systematically

changed the signal propagation efficacy dE (representing synaptic

strength) between the model sites. When changing dE, the next

neighbors received dE,1 or dE.1. This shifted the dynamics of

the model to subcritical and supercritical states, respectively.

Mimicking incomplete sampling of the brain in the model

analysis. To increase model similarity to brain recordings,

where we have only a limited number of recording sites, we in

analogy sampled only a fraction of the sites of the SOC model,

namely a centered, regular cube of 46464= 64 units with

distance 2 between the sites. When subsampling, the avalanche

size s was defined as the total number of events that occurred on

the 46464 selected sites during a single avalanche on the entire

model.

Simulation of avalanche size distributions from 44 units

with various types of correlations. The avalanche size

distribution in a neural network depends on the correlation

structure between the units. To demonstrate this effect, we ran

N=44 units with varying correlation structures between their

activity. All four examples are realizations of stochastic processes

with an event rate of r =JHz per unit. The stochastic processes

were realized as follows: For the ‘‘independent’’ units, we ran

N=44 independent Poisson processes with r =JHz. For the

‘‘clustered’’ units, we defined two subsets with N1=11 and N2=33

units. Each of these subsets received independent stochastic

‘‘stimuli’’ with rate r at times t. The ‘‘stimuli’’ consisted of a

transient rate increase described by a Gaussian probability

distribution with (25 ms)2 variance, centered on randomly drawn

times t. For the ‘‘correlated’’ processes we realized a Poisson

process with rate r for the first unit. Each subsequent unit had 99%

the same spike times as the previous and 1% new spike times. The

fourth process was not simulated but contained events of the

recordings in humans, namely from the first patient (N=44

electrodes, r =JHz). To estimate f(s), we applied a bin size of

bs = 1IEI = 1/(r?44) = 0.91 s.

Fitting of models to the avalanche distributions. We

fitted all f(s) from the SOCM and the neuronal recordings to a

power law proper, f (s)*s{t, or a power law with cutoff

f̂f (s)*e{a
:s:s{t

using maximum likelihood estimation (MLE) for the parameters t

and a based on the methods proposed by Clauset et al. [24], and

modified for functions with cutoff by Klaus et al. [23]. As proposed

by Clauset et al., we also tested alternative models to the power

law proper, namely exponential, and Poisson, and as alternative

models for the power law with cutoff, we used a log- normal

distribution and a stretched exponential. To estimate, which of

these models provided the highest model evidence, we calculated

the maximum likelihood ratio R with respect to the likelihood of

the power law proper [24].
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Virtual LFP avalanches from the spiking SOC

model. We sampled virtual LFP signals from the spiking SOC

model (50650650 sites). We sampled with 46464 virtual

electrodes with distance 15 between the electrode tips. The virtual

electrodes sampled from all sites of the model, weighted with a

Gaussian kernel with variance 5, centered on the electrode tip

(figure 5A). The analog signal on the virtual electrodes was

processed similar to the LFP: We calculated the area under the

deflection lobes between zeros and applied a range of thresholds

[1024,1023,1022,1021,1,10]. The resulting binary events formed

avalanches which were extracted as described above.

Supporting Information

Figure S1 This figure relates to figure 3 and demonstrates the

quality of power law fits to f(s). The black trace depicts as one

example the neuronal avalanche distributions f(s) for human data,

with r =JHz at bs = 1IEI , and the colored traces show the

resulting best fits to f(s) on the interval s = [1,50], for various

functions as indicated in the legend. Most functions resulted in a

close fit, only the Poisson and exponential showed strong

deviations. The power law with cutoff (pink), however, provided

the best fit (maximum likelihood ratio [Clauset et al., 2009], see

also supplementary table S1).

(EPS)

Figure S2 A. The distribution of the inter avalanche interval

(IAI) changed with the underlying event rate. With higher rate, the

IAI became smaller, since more events were distributed within the

same recording time. f(IAI) is in absolute counts for both the

combined data (colored), and for each individual recording night

(grey). B. The IAI distribution for the subsampled SOC model was

similar to the one from the human data.

(EPS)

Figure S3 The avalanche duration distribution f(d) did not show

a power law neither for the human data nor for the subsampled

SOC model. A. f(d) from the human patients was similar for each

event rate r (colored lines; bs=1IEI ). f(d) was in absolute counts,

therefore, the offset between the f(d) reflected the higher number of

events with higher r. The gray lines depict f(d) for each of the 10

recording nights separately with some offset to show that the

variability between patients was very small. B. The avalanche

duration f(d) changed with the bin size from bs=1/32IEI to

bs= 4IEI (at r =JHz). However, for all bs,1IEI , the maximal

observed duration was ,22, while larger bs also showed longer

avalanche durations. The same was observed for the avalanche

size distributions (figure 3). C. f(d), sampled from 46464= 64 sites

of the SOC model, did not show a power law, however, the

distribution resembled the one for the experimental data,

especially for small bs. For larger bs, the avalanches became

shorter. This is due to the separation of time scales which is

implemented in SOC models but not prominent in neuronal data.

(EPS)

Figure S4 Renormalization analysis on neuronal avalanches and

model avalanches. A. The number of events S(t,d) within a single

neuronal avalanche changed with time t (relative to the start of an

avalanche) and depended on the avalanche duration d. Here we

plotted S(t,d) for each vigilance states for three different durations d

(40 ms, 80 ms and 120 ms; at bs =JIEI<20 ms and event rate

r =JHz). B. The estimated shape functions F(t/d) were collapsed

optimally using the same data as in A (shown for wakefulness). C.

From the optimal collapse (B), the scaling factor x(d) was

estimated. From renormalization theory, x(d) is expected to follow

x(d),db, which is a straight line in the double logarithmic plot.

However, this scaling broke down for larger d. This indicates that

with larger d the amplitude of S(t,d) increased less than expected

from the scaling relationship. Error bars in all plots indicate 25%

and 75% percentiles from boot strapping. D–F The same as in A–

C, however, for the subsampled model, using the usual subset

(46464 sites with distance 2). The scaling in the subsampled

model showed similar results like the experiment: The collapse of

the S(t,d) to the estimated shape function F(t,d) worked well (E),

however, the estimated scaling factor x(d) dropped for large d (F).

This reflected subsampling effects in the model. G–I. The same as

in A–C but for the fully sampled model. Here x(d) followed a

straight line for avalanches up to d,100. This indicated that the

fully sampled model obeyed scaling relationships, while the

deviations for d.100 may be due to finite size effects.

(EPS)

Figure S5 This figure relates to the main figure 4 and shows how

neuronal activity differs between vigilance states. A. The

hypnogram indicates the sleep stage at each time during a

complete night. The sleep stages occur normally in a characteristic

order, called sleep cycle, which goes from s1 to s2, s3/s4, back to

s2 and then REM. B. The corresponding time-frequency plot for

one scalp EEG electrode shows the different frequency activities

related to each vigilance state. C. The wake state shows

pronounced a rhythm (8–13 Hz). D. The light sleep stages

(s1,s2) show sleep spindles and K-complexes. E. The deep sleep

(s3/s4) shows synchronized slow waves (,4 Hz). F. The REM

stage is characterized rapid eye movements (not shown) and by

low-voltage activity.

(EPS)

Figure S6 This figure relates to the main figure 6. It shows the

same measures, namely the relative mean size and duration, and

the relative branching parameter, however, it shows the measures

for all event rates (top to bottom: 0.1Hz, 0.25Hz 0.5Hz and 1Hz).

All the three measures were here plotted for each recording night,

bin size (x-axes), and rate separately. (+) indicate the mean across

all recording nights. For better visualization, we plotted the relative

measures, which were defined as relative change in a measure

across vigilance states for each patient at a certain bin size and

rate. For most parameters, SWS showed larger avalanche

measures than REM sleep. Wakefulness tended to show

intermediate values. (Note that for large event rates (bottom two

rows), values at small bin sizes are not defined, because the bin

width was smaller than the sampling rate interval.)

(EPS)

Table S1 This table relates to the main figure 3 and to the

supplementary figure S1, and provides information on the quality

of fits to f(s). To test, whether a power law or an alternative

function provided the best fit to the avalanche distributions f(s), we

fitted various functions (power law, Poisson, exponential, log-

normal, stretched exponential, and power law with cutoff) to f(s)

from the human data and the self- organized critical model

(SOCM). The fit quality relative to the power law proper is

indicated by R, the log likelihood ratio. A negative R indicates a

better fit than the power law proper. For each f(s), R was smallest

for the power law with cutoff (last column, marked bold),

indicating that the power law with cutoff provided the best fit.

However, not even the power law with cutoff provided a

sufficiently good fit to f(s) (Kolmogorov-Smirnov goodness of fit

test (KS test), indicated in the last column: ‘none’ indicates p,0.01

for the KS test). This held for all f(s), being it from the human data

or the SOC model. That the SOC model did not pass the test was

very much to our surprise since the SOC model is ‘‘known’’ to

show a power law for f(s). In principle, finding a function that
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would pass the KS test could have been achieved by using more

functions with more free parameters. However, this might not

teach us more about neuronal avalanches. To keep it simple, and

since the differences between the bivariate fits were small (figure

and table), we opted to use both, a power law proper and a power

law with cutoff as model functions for the characterization of the

avalanche distributions – keeping in mind that neither the

neuronal avalanches nor the SOC model avalanches followed a

power law in the strict sense.

(EPS)
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