
Neuronal behaviors: a control perspective

Guillaume Drion, Timothy O’Leary, Julie Dethier, Alessio Franci, Rodolphe Sepulchre

Abstract— The purpose of this tutorial is to introduce and
analyze models of neurons from a control perspective and to
show how recently developed analytical tools help to address
important biological questions. A first objective is to review the
basic modeling principles of neurophysiology in which neurons
are modeled as equivalent nonlinear electrical circuits that
capture their excitable properties. The specific architecture
of the models is key to the tractability of their analysis: in
spite of their high-dimensional and nonlinear nature, the model
properties can be understood in terms of few canonical positive
and negative feedback motifs localized in distinct timescales. We
use this insight to shed light on a key problem in experimental
neurophysiology, the challenge of understanding the sensitivity
of neuronal behaviors to underlying parameters in empirically-
derived models. Finally, we show how sensitivity analysis of
neuronal excitability relates to robustness and regulation of
neuronal behaviors.

I. INTRODUCTION

Models of neurons have long been a fruitful source of

inspiration in physics and engineering and have revolution-

ized our understanding of nervous system function. Within

neuroscience, models of neurons and neuronal networks

provide a means of mechanistically and quantitatively un-

derstanding nervous system function. In related fields these

models have inspired the development of machine learning, a

most successful branch of engineering intimately connected

to computational neuroscience, as well as many recent de-

velopments in dynamical systems theory that are intimately

connected to mathematical neuroscience. Surprisingly, neu-

roscience and control theory have evolved quite separately,

in spite of their common roots in cybernetics and their shared

terminology of circuit theory. It is therefore timely to redress

this divergence between disciplines and regard models of

neurons as behaviors [43], that is, open systems amenable
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to interconnection, tearing, and zooming, and, above all,

regulated by feedback principles.

The focus of this paper is a threefold message: (i) neuronal

models are nonlinear electrical circuits; as such, they fit

the primary language of behavioral theory prior to being

regarded as high-dimensional sets of nonlinear differential

equations; (ii) neuronal models are excitable behaviors; as

such, they offer a unique modeling substrate for the be-

havioral treatment of a system property that is fundamental

to biology; (iii) the mechanisms of regulation, homeostasis,

robustness, modulation, and sensitivity of neuronal behaviors

underlie key questions of current experimental neurophysiol-

ogy; as such, they match the core questions of control theory

but the lack of answers calls for novel analysis tools tailored

to the excitable nature of neuronal behaviors.

An emphasis of this tutorial paper is on the value of

studying neuronal models at a time of growing interest

in the control community for systems and synthetic bi-

ology. At first sight, studying the electrical activity of a

single excitable cell may appear old-fashioned in the age

of molecular biology. However, while molecular biology has

provided unprecedented scope for studying and manipulat-

ing biological systems, this has perhaps come at the cost

of focussing on dynamics, or, in biological terminology,

physiology. Control theory is to a large extent model-based,

and the landmark modeling paper of Hodgkin and Huxley

in 1952 [23] represents an unparalleled success story of

biological modeling in the 20th century. The biophysical

modeling principles of this paper are mostly unchallenged to

date and have provided a solid foundation for sixty years of

experimental neurophysiology and computational modeling.

Moreover, those principles rely on circuit principles quite

familiar to control engineers, which reduces the terminolog-

ical gap between control theorists and experimental neuro-

physiologists. For this reason, the conductance-based models

of neurophysiology offer a specific yet rich window to the

investigation of model-based biological behaviors and it is

our belief that many of the principles of neuronal behaviors

are quite general in biology.

The research questions that underlie the model-based

investigation of neuronal behaviors share many common

features with research questions that nowadays attract control

theorists in systems biology and synthetic biology. Neuronal

behaviors are biological behaviors of general interest in

that they are excitable behaviors regulated across many

scales. As a behavioral property, excitability is found across

biology, and could even be argued to be one of the few

defining properties of living organisms. Whereas excitability

modeling is relatively scarce in most biological contexts



because of the paucity of reliable spatio-temporal data,

conductance-based models are broadly accepted as adequate

mathematical models of neuronal excitability both qualita-

tively and quantitatively. Conductance based models also

provide a milestone in the modeling of behaviors across

scales. As the interconnection between an electrical circuit

at the cellular scale and a biochemical reaction network

at the molecular scale, conductance based models offer a

unique paradigm for the modeling, analysis, and synthesis

of behaviors organized at a coarser scale by the collective

organization of a population at a finer scale. The need to

understand biology across scales, from the smallest identi-

fiable components to whole organisms, was what motivated

the investigation of neuronal networks in the first place, but

most of the initial questions remain largely open and relevant

beyond the particular context of single-cell neuronal activity.

The organization of the paper is as follows. Section

II revisits the modeling principles of conductance-based

neuronal models, with an emphasis on the model as the

interconnection of an electrical circuit with a biochemical

network. Section III shows that the modulation of positive

and negative feedback in a nonlinear resistive circuit is a

basic mechanism for the regulation of excitable behaviors.

Section IV highlights the importance of local sensitivity

analysis in experimental and computational neurophysiology.

Finally, sections V and VI propose new methodologies

for the analysis of sensitivity, robustness and regulation of

neuron conductance-based models.

II. THE HERITAGE OF HODGKIN AND HUXLEY

A. Neuronal models are electrical circuits

The seminal paper [23] concludes a series of papers that

led the biophysical foundations of modern neuroscience.The

first figure of the paper, reproduced in Figure 1A is the

representation of the neuronal model as an RC electrical

circuit. Neurons have a membrane that can maintain a

voltage difference between the extracellular and intracellular

medium. The cellular membrane is therefore modeled as

a capacitor. The voltage across the membrane can vary

because ions (primarily sodium (Na+), potassium (K+),

and calcium (Ca2+)) can flow through the membrane via

specific transmembrane proteins called ion channels (Figure

2A). Each ionic current is modeled as a resistor in series with

a battery. The battery represents the equilibrium (Nernst)

potential at which there is no flow. This equilibrium potential

is higher than the resting potential of the neuron for sodium

and calcium ions. It is lower than the resting potential

for potassium ions. Therefore an inward flow of sodium

or calcium depolarizes the membrane voltage, whereas an

(outward) flow of potassium is hyperpolarizes the membrane

voltage (Fig. 2B).

1) Circuit equation: Hodgkin-Huxley model only in-

cludes two ionic currents: a depolarizing sodium current and

an hyperpolarizing potassium current (calcium channels were

discovered soon after their seminal work). The remaining

currents are lumped in a passive leakage current. The circuit

equations of Hodgkin-Huxley model are readily derived from

the circuit diagram. Kirchhoff’s law states that all currents

must sum to zero, that is

C
dV

dt
= INa + IK + Il + Iapp (1)

where Iapp is an externally applied current. Ohm’s law states

that each ionic current is proportional to the voltage deviation

from its equilibrium potential:

INa(t) = gNa(t)(V (t)− ENa) (2)

IK(t) = gK(t)(V (t)− EK) (3)

Il (t) = gl(V (t)− El) (4)

A fundamental contribution of Hodgkin and Huxley was

to separate experimentally the contribution of sodium and

potassium currents in order to model the voltage dependence

of their respective conductances. The voltage dependence of

ionic conductances is an essential source of nonlinearity of

the model.

Today’s models of neurons are build upon the same circuit

principles as in the original Hodgkin-Huxley paper. They

often contain many more ionic branches because each ionic

current can flow in many different ways in a specific neuron

and much progress has been achieved in the quantitative

modeling of those conductances (see next section). Figure

1B illustrates the circuit equivalent of a recent model of

midbrain dopaminergic neurons. The model contains two

distinct compartments accounting for different parts of the

neuron: the soma, or cell body; and dendrites, thin structures

that arise from the cell body and receive most of the inputs

from efferent neurons. These structures are distinct in the

model because ionic flows are usually different near the soma

and in dendrites. Each compartment contains several distinct

ionic currents. The soma compartment model in Figure 1.B

contains three different types of calcium currents and three

different types of potassium currents. All those currents obey

an ohmic law, like in Hodgkin-Huxley model, but they differ

in their conductance because they correspond to different

types of ion channels. The switch indicated in the ionic

branch of IK,SK is because the paper [5] studies among

other things the behavior effect of specifically blocking this

SK current with a specific drug.

2) Internal and external currents: The sodium, potassium,

and calcium currents so far discussed are internal currents:

their conductances only depend on the neuron variables

(primarily its voltage potential, and possibly ionic intra-

cellular concentrations). In contrast, the currents IGABA,A,

IAMPA, and INMDA are external synaptic currents (the

terms GABA,A, AMPA and NMDA account for different

types of membrane receptors having specific dynamics).

Those currents result from synaptic interconnections with

other neurons. Their conductances will therefore depend

on external variables, such as the membrane potentials of

connected neurons or the concentration of various external

chemical compounds that are released by the efferent cells,

called neurotransmitters. The switches in the corresponding

branches indicate that such currents can be turned on and off

by neurotransmitters. The circuit modeling principles do not



Fig. 1. Examples of neuronal circuits. A. Electrical circuit of the Hodgkin Huxley model (taken from [23]). B. Modern electrical circuit of a dopaminergic
neuron model (taken from [5]).

differ for internal or external currents, but external currents

are not further considered in the present paper, which for

simplicity focuses on the endogenous behavior of a single

cell.

The pump currents INa,P and ICa,P are included in

Figure 1B because a model that includes the dependence

of conductances in the calcium and sodium intracellular

concentration must include those concentrations as state

variables. The behavior of those concentrations is modeled

by a balance between the corresponding ionic currents and

pump currents, that biochemically restore the equilibrium

concentrations. The simplest electrical analog of a pump

current is a current source (statically) dependent on the ion

concentration.

The important take-home message of this short section is

that neuronal models are electrical circuits before anything

else. Each neuron is primarily a one-port device and Kirch-

hoff’s law provides a scalar equation that describes its I-V

behavior. It could be added that the flow of the capacitive

current is so fast with respect to all active ionic flows that

its dynamics can be safely neglected. From an electrical

viewpoint, a neuronal model can therefore be thought of as

a purely (nonlinear and time-dependent) resistive circuit. In

spite of their nonlinear dynamics, neuronal behaviors satisfy

Kirchhoff’s laws at any instant of time, meaning that the

ionic currents flowing through the cellular membrane always

sum to zero.

B. Conductances model the cellular correlate of molecular

biochemical processes

1) The voltage-clamp experiment: Most of the experi-

mental work of Hodgkin and Huxley went into modeling

the sodium and potassium conductances in the squid axon,

taking advantage of its large (mm scale) dimensions. The

breakthrough came from a novel experimental technique, the

voltage clamp experiment. The experiment uses a feedback

amplifier (the novel “hidden technology” of the time) to

control the steady-state value of the membrane potential.

Neglecting the (fast) capacitive current in the circuit equation

(1), the current change ∆I(t) required to control a voltage

Fig. 2. A flow of ions through the membrane carries changes in

neuron membrane potential. A. Ions have a different concentration across
the membrane of a neuron. Ion channels (in blue) populate the neuronal
membrane and are selectively permeable to one or several ions. The four
main ions involved in cell signaling are sodium Na+, potassium K+,
calcium Ca2+ and chloride Cl− ions (the concentrations shown in the
figure are typical for a mammalian neuron). These concentration gradients
are responsible for a voltage gradient across the membrane, giving rise
to a membrane potential Vm. B. Variations of K+ and Na+ membrane
permeabilities affect the membrane potential in opposite ways. Values are
computed using the Goldman-Hodgkin-Katz (GHK) equation, considering
K+ and Na+ ions only. Ion concentrations are as in A. An increase in K+

permeability hyperpolarizes the cell (Vm decreases), whereas an increase
in Na+ permeability depolarizes the cell (Vm increases). The membrane
potential is always contained in the range VK ≤ V m ≤ VNa. Adapted
from [7].



step ∆V around a nominal voltage V provides an estimate

of the instantaneous conductance g(V, t) through the rela-

tionship

∆I(t) = g(V, t)∆V (5)

In control terms, the voltage-clamp experiment is nothing

but the step input response of a one-port electrical circuit,

and the conductance is nothing but the local gain of the

circuit at a given voltage. Hodgkin and Huxley repeated

that input step experiment for the whole range of voltages

comprised between EK and ENa, thereby obtaining the total

ionic conductance of the circuit. They then repeated the same

experiment in a sodium free solution, obtaining this time the

potassium conductance

∆IK(t) = gK(V, t)∆V (6)

Finally, they subtracted the potassium conductance from the

total conductance to obtain the sodium conductance. The

result of their experiments is illustrated in Figure 3 for two

values of the input voltage.

The authors identified a conductance model from those

step input experiments. The delayed first-order kinetics of

the potassium conductance was modeled as

gK = ḡKn4 (7)

ṅ = αn(V )(1− n)− βn(V )n (8)

where ḡK is now a constant parameter termed the maxi-

mal conductance, that is, the conductance when the gating

variable n reaches its maximum. This variable, normalized

in the range [0, 1], dynamically modulates the conductance

behavior as a function of the voltage. The dynamical equation

is often rewritten in the form

τn(V )ṅ = −n+ n∞(V ) (9)

where τn(V ) and n∞(V ) have the convenient interpretation

of a time-constant and a static gain, respectively, each

dependent on voltage. To model the sodium conductance,

the authors chose the equations

gNa = ḡNam
3h (10)

where the gating variables m and h both obey a first order

differential equation of the same type as (8) or (9). The data

fit chosen by Hodgkin and Huxley is illustrated in Figure 4.

Analytical expressions from the original paper are omitted

here to emphasize that those curves only result from curve

fitting. Only the qualitative properties of those matter for

the neuronal behavior. The static gain curves are sigmoidal

and indicate a monotonic dependence in the voltage. The

slope is positive for m and n, which are therefore called

activation gating variables, whereas it is negative for h,

which is therefore called a inactivation gating variable. The

time constants are also voltage dependent, but their most

important feature is that the time-constant of the sodium

activation m is five to ten times smaller than the time-

constants of the sodium inactivation h and the potassium

activation n. The conductance dynamics therefore exhibit

Fig. 3. Experimental voltage-clamp data illustrating the temporal

evolution of the sodium (A) and potassium conductances (B) for two

values of the membrane potential (green and blue curves, respectivelly)

[23]. Reproduced from [4].

two distinct time scales: a fast sodium activation, and a slow

sodium inactivation and potassium activation.

Sixty years after Hodgkin and Huxley, the voltage-clamp

experiment is still the experiment of choice to model a

specific current type. If a pharmacological blocker is known

to block the current under investigation, its conductance can

be modeled by following the steps of Hodgkin and Huxley

experiment. In today’s publications, a voltage-gated ionic

current typically employs the generic model

gi = ḡim
γ
i h

δ
i (11)

and a first-order kinetics for the activation variable mi and

the inactivation variable hi.

The reader should bear in mind that few conductances are

modeled today with the precision of Hodgkin and Huxley

experiment. This limitation owes to the diversity of current

types, the diversity of cell types, and the strong variability

of experimental results across cells and across labs for a



Fig. 4. Voltage-dependence of the time-constants and the static gains of the Hodgkin-Huxley model [23]. The blue curves correspond to the sodium
steady-state activation m∞(Vm), the sodium steady-state inactivation h∞(Vm) and the potassium steady-state activation n∞(Vm). The green curves
correspond to the sodium activation time-constant τm(Vm), the sodium inactivation time-constant τh(Vm) and the potassium activation time-constant
τn(Vm). The dots represent corresponding experimental data. Reproduced from [4].

given current type and given cell type. For this reason,

conductance-based models should be regarded as qualitative,

and behavioral properties that depend on the quantitative

details of the model should be interpreted with care.

2) Conductances can also depend on intracellular con-

centrations: The ionic currents of Hodgkin and Huxley

model only depend on voltage. They are called voltage-

gated currents. Many current types can also depend on

the intracellular concentration of calcium or sodium. For

instance, the current IK,SK in [5] is a potassium current that

is activated as the intracellular calcium concentration rises.

A simple model for the conductance of this current is

gK,SK = ḡK,SKH([Ca])

with H a sigmoı̈dal gating function. The dynamics of the

conductance will in this case be determined by the dynamics

of the intracellular calcium, which usually obeys a simple

mass-balance equation characterized by a time constant and

the flow of all calcium ionic currents. The difficulty of

measuring intracellular calcium concentrations makes the

modeling of calcium-gated conductances even more quali-

tative than voltage-gated conductances.

It is also common that a conductance depends simultane-

ously on voltage and calcium. For instance, the conductance

of the calcium current ICa,L in [5] combines a voltage-

dependence modeled with an activation gating variable m(V )
and a calcium-dependence modeled with an inactivation

gating variable h([Ca]).
3) From conductances to ion channels: Immediately after

introducing the equations modeling the potassium conduc-

tance, Hodgkin and Huxley discuss their physiological inter-

pretation: these equations may be given a physical basis if

we assume that potassium ions can only cross the membrane

when four similar particles occupy a certain region of the

membrane. n represents the proportion of particles in a

certain position (for instance at the inside of the membrane)

and 1−n represents the proportion that are somewhere else (

for example at the outside of the membrane). αn determines

the transfer from outside to inside, while βn determines the

transfer in the opposite direction [23, p. 507]. This mean-

field interpretation of conductance modeling, provided at

the time when not much was known about the molecular

organization of ion channels, should remind the reader that

conductances connect two distinct scales of biological orga-

nization: the electrical activity of a cell, that occurs at the

microscale, and the biochemical activity of proteins, that oc-

curs at the nanoscale. Ion channels are protein arrangements

that control the gating of individual ions through the cellular

membrane. Their molecular structure has been the focus of

much study in the final decades of the 20th century [22]

and has revealed many different types and a great deal of

molecular organization. Conductance modeling is an attempt

to summarize the collective activity of many ion channels in

a lumped model that only depends on few cell variables,

such as the membrane potential and some ionic intracellular

concentrations or biological signaling molecules.

In short, there are few ionic species that carry current,

but there are many channel types. As an example, Figure

5 illustrates the diversity of potassium channels in terms of

known families of genes that encode them. Channel expres-

sion, the process of biosynthesis and eventual degradation of

ion channels in the neuronal membrane, is itself an adaptive

process (see Section VI). However, restricting attention to the

ion channels present in the membrane at any point in time,

it is good to think of ion channels in control-theoretic terms

as the “actuators” of the electrical circuit. Each current type

corresponds to a population of ion channels characterized

by a specific mean-field gain, acting in a specific voltage

(or calcium) and frequency range. Besides depending on

internal variables, the local gains are also modulated by a

realm of molecular processes that involve external quantities

such as neurotransmitter concentrations, as well as receptor

and channel expression.

C. A one port circuit regulated by a zoo of biochemical

actuators

A fundamental heritage of Hodgkin-Huxley modeling

work is that neuronal behaviors interconnect two behavioral



Fig. 5. Ion channel types are very diverse. A phylogenic tree of known
voltage-gated potassium channel genes. Reproduced from [19].

scales: an electrical behavior at the cellular (micro-) scale and

a biochemical behavior at the molecular (nano-) scale. For

a single cell model, the electrical behavior is the elementary

behavior of a one-port RC circuit. The capacitive behavior

is fast and can be neglected but the resistive behavior is

complex, i.e. nonlinear and time-varying. The biochemical

behavior must account for the dynamics of thousand of ion

channels that, collectively, determine the circuit conductance.

As knowledge accumulates about the molecular processes

that regulate ion channel activity, conductance-based models

include more and more gating variables, leading to high-

dimensional nonlinear models of increasing complexity. The

separation of the electrical behavior from the biochemical

behavior is crucial for the tractability of those models.

For a single cell, the electrical behavior specifies a scalar

relationship F (I, V, t) = 0 which, locally in time and range,

is entirely characterized by the local description ∆I(t) =
g(V, t)∆V (t). In that sense, the instantaneous conductance

g(V, t) is a scalar quantity that completely determines the

electrical behavior.

In turn, the biochemical behavior has a highly parallel

structure. The instantaneous conductance is indeed decom-

posed as the sum of possibly many independent conduc-

tances, each modeling the collective behavior of one type

of molecular process. In particular, the (mean-field) input-

output behavior from any internal state of the cell (voltage

or ionic intracellular concentration) to any gating variable is

nonlinear but elementary, that is, entirely characterized by a

time-constant and a sigmoidal static relationship.

The very particular interconnection structure of a con-

ductance based-model is key to a tractable system analysis.

Each of the possibly many gating variables can be regarded

as shaping the one-port circuit conductance in a specific

temporal and voltage window. The sensitivity window is

determined by the time-constant of the gating variable, and

by the voltage range of its static behavior. Parameters,

receptors, or neurotransmitters should be regarded as many

actuation variables but each having a specific influence on a

few gating variables, that is, in a specific window. Because

of the highly parallel structure of the biochemical process,

the behavior of the one-port circuit in a specific time-voltage

window is determined by the few gating variables and related

biochemical actuators that have non-negligible sensitivity in

that particular window.

In short, the Hodgkin and Huxley heritage is that a

neuronal behavior is the behavior of a simple electrical circuit

but that its actuation is extraordinary diverse, localized, and

adaptive because it is the result of a biochemical behavior at

a finer scale. In that sense, conductance-based models are a

model of control and regulation across scales.

III. EXCITABLE BEHAVIORS

A. Positive and negative feedback

The resistive part of a RC circuit has the interpretation

of a feedback loop around the capacitor, the sign of which

is determined by the slope of the resistive curve, i.e. by

the sign of the (differential) conductance. In a conventional

circuit, positive resistance is synonym of negative feedback

and negative resistance is synonym of positive feedback.

Due to the sign convention in electrophysiology, a positive

conductance in a neuronal model is synonym of negative

feedback for an outward current (such as potassium) but of

positive feedback for an inward current (such as sodium or

calcium).

The experimental results of Hodgkin and Huxley in Figure

3 reveal a fundamental difference between the role of the

sodium and potassium in shaping the local (differential)

conductance of the circuit. For a small step change from a

fixed membrane potential, the local potassium conductance

is always positive, that is, the potassium current is always

a source of negative feedback. In contrast, the local sodium

conductance is initially positive and then becomes negative,

which means that the sodium current acts transiently as a

source of positive feedback and then as a source of negative

feedback.

The conductance model proposed by Hodgkin and Hux-

ley captures this important property: the activation of the

sodium current is modeled as a fast monotone behavior

that accounts for the source of (fast) positive feedback,

whereas its inactivation is modeled as a slower monotone

behavior of the opposite sign, which accounts for the source

of (slow) negative feedback. The potassium conductance



is modeled with a single activation variable whose slow

monotone behavior accounts for the source of (slow) negative

feedback.

The fact that a specific ionic current can be both a source

of positive and negative feedback depending on the voltage

and time window is important if it is to be understood as a

local loop shaper of the circuit feedback gain. This feature is

often a source of confusion in the neurodynamics literature.

For instance, the sodium current of Hodgkin Huxley is both a

source of positive and negative feedback. Its activation makes

it a positive feedback in the fast timescale but its inactivation

makes it a negative feedback in the slow timescale. In the

terminology of [15], the sodium current is fast regenerative

but slow restorative. In the literature, this current will often

be qualified as an excitatory or depolarizing current, because

it is indeed the source of excitability in the neuron, but

this terminology is confusing if ’excitatory’ or ’depolarizing’

is interpreted as a synonym of positive feedback. Figure 6

lists the most common voltage-gated ionic currents found in

the literature. It illustrates for instance that the A-potassium

current can be a source of positive feedback in the slow

time scale, whereas a potassium current would normally

be qualified as inhibitory or hyperpolarizing. But a slow

inactivation of a hyperpolarizing current makes it a source

of positive feedback in the corresponding timescale.

Fig. 6. List of the most common ionic currents shaping the electro-

physiological properties of neurons. The left column lists the name of the
different ionic currents, the center column provides their inward/outward
properties and the right column their regenerative/restorative properties.
Note that both inward and outward currents can be either regenerative or
restorative in different timescales.

B. Feedback amplifiers: switches, regulators, and resonators

The development of the feedback amplifier at the turn of

the 20th century provides an insightful historical account

of how engineers came to appreciate the distinct role of

positive and negative feedback in technology. As described

Fig. 7. Regulating the balance between positive and negative feedback

can switch a system between linear, ultrasensitive and hysteretic states.

Top, sketches of the systems composed of a negative feedback (left), a
positive feedback (right), or both (center). Bottom, input/output relationships
in the three cases. The dashed grey lines show the open-loop relationships,
and the full black lines the closed-loop relationships.

in [41], only positive feedback amplifiers (also called regen-

erative amplifiers) played an important role initially, until

the dramatic invention of the negative feedback amplifier

in 1927 made the latter the pillar of control theory and

turned the former into history. Biology suggests that both are

equally important in the organization of natural behaviors.

The complementary role of negative and positive feedback

shaped the development of cybernetics [1], but the invention

of the computer made digital technology (akin to positive

feedback) more and more separated from analog technology

(akin to negative feedback).

To appreciate the difference between positive and negative

feedback, the static theory of the feedback amplifier is

a useful starting point. The static behavior of the open-

loop amplifier is a finite-range sigmoidal behavior, well

approximated by a linear behavior between two saturation

levels. For the convenience of the discussion, assume that

the amplifier has saturation levels 0 and 1 and a linear gain

k over a range 1/k (Figure 7).

A negative feedback amplifier subtracts to the input the

value of the output multiplied by the feedback gain K > 0.

The closed-loop behavior is a new amplifier with the same

saturation levels but with a new (closed-loop) gain equal to
k

1+Kk
over a range 1+Kk

k
. This means that negative feedback

decreases the open-loop gain and spreads the linear range of

the behavior. Negative feedback linearizes, that is, it spreads

the linear sensitivity of the behavior over a broader range

(Figure 7, right). If the open-loop gain is high, the closed-

loop gain is O( 1

K
) over a range O(K). Over its linear

range, the feedback amplifier is a regulator. The behavior

is exogenous: the output voltage is proportional to the input

voltage, and the gain of the amplifier is insensitive to its

internal behavior. Negative feedback is the essence of control

theory.

A positive feedback amplifier adds to the input the value

of the output multiplied by the feedback gain K. For a value

K > 1

k
, the closed-loop behavior becomes multi-valued



over a range 1+Kk
k

. The two saturation levels coexist in

that range, together with the linear behavior. Because of its

negative slope, the linear behavior is unstable, so that it is not

observed in the presence of dynamics or perturbation. Hence,

positive feedback turns the amplifier into an hysteretic switch

(Figure 7, right). For a large open-loop gain, the range of

the hysteresis is proportional to the feedback gain. Over its

hysteretic range, the amplifier is a switch, that is, a two-state

automaton. The behavior is endogenous: the output voltage

is 0 or 1, regardless of external input voltage variations.

When an amplifier combines a positive feedback loop

of gain K+ with a negative feedback loop of gain K−,

the closed-loop behavior is either a regulator or a switch.

Those two behaviors are separated by a singular behavior

for the particular value K+ − K− = 1

k
. Near this singular

value, the behavior is resonant, characterized by an ultra-

sensitive switch or an ultra-sensitive amplifier over a very

narrow range (Figure 7, center). This ultra sensitive behavior

deserves more attention in control theory than it has received

in the past. It seems to play a fundamental role in the

organization of natural behaviors [39].

C. Excitability as robust ultrasensitivity

The ultra-sensitive behavior obtained when positive feed-

back suitably balances negative feedback may appear as

a fragile construction. But it can be turned into a robust

mechanism by adding a dynamical component to the static

picture. If the negative feedback dominates in static con-

ditions, but the time constant of the positive feedback is

much smaller than the time constant of the negative feedback,

then the dynamical behavior of the closed-loop amplifier is

de facto dominated by positive feedback at high-frequency

and is dominated by negative feedback at low frequency. By

continuity, the behavior must be resonant, or ultra sensitive,

in a specific frequency range and a specific input-range. This

is the essence of excitable behaviors.

The state-space model of the mixed feedback amplifier in

Figure 8 is

τf ẋf = −xf +K+V (12)

τsẋs = −xs +K−V (13)

V = S(u+ xf − xs) (14)

If we assume enough separation between the fast timescale

τf and the slow timescale τs, the mixed feedback amplifier

exhibits a two timescale behavior: the fast behavior, which

assumes that xs is a fixed parameter, is the behavior of a

positive feedback amplifier: the voltage is discrete over a

range O(K+) and insensitive to variations of the input u−xs.

For an ideal amplifier, the static behavior of the mixed

feedback amplifier is the behavior of a negative feedback

amplifier provided that K− > K+. The amplifier has the

exogenous behavior V = (K− − K+)
−1u over its linear

range O(K− − K+). But this behavior is a static approxi-

mation of the dynamical behavior. The dynamical behavior

is a mix of a switch and a regulator. For a fixed input ū,

the steady-state behavior is either a stable equilibrium at

Fig. 8. Block diagram representation of the mixed feedback ampli-

fier. The central block is a sigmoid function. Two feedbacks control the
input/output properties of the mixed feedback amplified: a fast, positive
feedback (gain: K+, time-constant: τf ) and a slow, negative feedback (gain:
K−, time-constant: τs)

x1 = 0 or x1 = 1, or a stable oscillation of amplitude 1
and frequency determined by the filter time constants. The

excitable behavior is determined by the regime where the

resting state x1 = 0 is stable but where (small) transient

inputs can cause (large) transient excursions to the excited

state x1 = 1. In the excitable regime, the behavior is

ultra sensitive, that is, excursions to the excited state can

be triggered by arbitrarily small perturbations in the right

amplitude and frequency range.

D. Neuronal excitability and its organizing singularity

The last part of Hodgkin and Huxley 1952 paper is a sim-

ulation (a formidable task at the time) of the four nonlinear

differential equations to reproduce the action potential, i.e.

the large and brief pulse response to a pulse current input

above threshold. See Figure 9. The circuit mechanism of

the action potential is elementary: the fast activation of the

sodium current acts as a switch (or positive feedback or

autocatalytic process). But this switch is only transient, both

because of the slow inactivation of the sodium current and the

slow activation of the potassium current. Potassium current

activation is responsible for the hyperpolarized transient

following the spike (also called refractory period).

The excitable behavior of Hodgkin-Huxley circuit is

closely related to the behavior of the mixed feedback am-

plifier. The circuit equation

0 = INa(V, h,m) + IK(V, n) + Il(V ) + I

relating the applied current I to the voltage V is analog to

the amplifier equation (14) relating u to V . Its local behavior

has the interpretation of a feedback gain modulated by a two-

timescale system. The sodium activation m is the analog of

the variable xf : it provides a source of positive feedback

in the fast timescale. The sodium inactivation h and the

potassium activation n are the analog of the variable xs: they

provide a source of negative feedback in the slow timescale.



Fig. 9. HH model is an E-I motif. Left, membrane potential variations over time during an action potential generation. Green and red dashed arrows depicts
regenerative and restorative events, respectively. Right, sketch of ion channels embedded in neuron plasma membrane showing ion channel voltage-gating
(top) and corresponding feedback loops (bottom). Adapted from [7].

Fig. 10. Hysteretic relationship between membrane potential and

membrane current in the fast subsystem of the Hodgkin-Huxley

model. The figure shows the steady-states of the circuit equation (0 =
INa(V, h,m) + IK(V, n) + Il(V ) + I) where the fast variable m has
converged to its steady-state m∞(V ) and slow variables h and n are treated
as parameters. Full black lines represent stable fixed points dashed black
lines represent unstable fixed points (saddle points in this case) and the blue
star depicts model steady-state (SS). Neg FB = negative feedback.

Figure 10 illustrates the hysteretic relationship between

the slow current Islow and V in Hodgkin and Huxley model

when the fast variable m has converged to its steady-state

m∞(V ) and the slow variables are treated as parameters. It

is qualitatively similar to the hysteretic relationship between

u and V in the mixed feedback amplifier when the fast

variable xf has converged to its steady-state K+V and the

slow variable xs is treated as a parameter.

The essence of an excitable behavior is thus a modulation

of a scalar behavior from hysteretic on the fast timescale,

when the positive feedback is on, to monotone on the slow

timescale, when the positive feedback is off. The normal form

of this transition is given by

F (x, β, λ) = 0 ≡ 0 = βx− x3 + λ

which, in the language of singularity theory [37] is the

universal unfolding of the hysteresis singularity x3 + λ.

The parameter λ is a control parameter that determines the

system state according to the characteristic F (x, β, λ) = 0.

The parameter β is an unfolding parameter: it organizes

the possible characteristics of the model into two distinct

families: those that correspond to the hysteretic curve (β >
0), and those that correspond to the monotone behavior

(β < 0).

The celebrated Fitzugh Nagumo model [12]

CV̇ = βV −

V 3

3
+ n+ I (15)

ṅ = ǫ(−n+ V ) (16)

is a normal form of excitable behaviors: it is a two-timescale

behavior whose slow dynamics modulate the bifurcation

parameter of a fast behavior organized by a hysteresis

singularity. It captures the qualitative behavior of Hodgkin-

Huxley model and of the mixed feedback amplifier. It is also

equivalent to the negative resistance oscillator of Van der Pol

(with a constant current source) and gives rise to the classical

phase portrait of excitability. In the fast time scale, that is,

for a nearly constant n, the circuit is a bistable switch, a

consequence of the locally positive feedback. In the slow

timescale, the dynamics of the recovery variable n provides

adaptation, a consequence of the global negative feedback.

E. Excitability: mixing the best of two distinct worlds

As a basic element of biological behaviors, the excitable

behavior, defined as a nonlinear resistive circuit that is locally

dominated by positive feedback and globally dominated by

negative feedback, shares features of both the positive and

the negative feedback amplifiers. Like the positive feedback



amplifier, it exhibits the binary nature of a one state au-

tomaton, with a well identified resting state (0) and excited

state (1). But the negative feedback loop regulates the switch

between the high and low state, that is, the transient from

the resting state to the excited state (spike generation),

and the transient from the excited state to the resting state

(after-spike hyperpolarization). Like the negative feedback

amplifier, the excitable behavior exhibits the analog nature

of a continuously regulated modulation between the two

discrete states.

The hybrid nature of the excitable behavior calls for a

modeling framework that is neither the discrete framework

of automata nor the continuous framework of differential

equations, but a mix of both, that is a hybrid model [16].

This should not suggest however, that the excitable behav-

ior is even less tractable than an automaton or a set of

differential equations. Instead, one should acknowledge the

specific property that an excitable behavior is organized by a

singularity, meaning that its analysis is amenable to a local

analysis in state, parameter, and input spaces.

F. Two-level excitability: bursting, pacemaking, tonic firing

The localization of excitable behaviors is key to the

tractability of their analysis because localized behaviors

qualitatively obey a superposition principle. We will illustrate

this property by extending the above analysis of Hodgkin and

Huxley model to the analysis of a circuit that contain two

rather than one local sources of positive feedback surrounded

by global sources of negative feedback. The motif of this

circuit is illustrated in Figure 11A: it consists of a first

source of positive feedback localized in a high voltage range

and high frequency range, like in Hodgkin and Huxley

model, augmented with a second source of positive feedback

localized in a lower voltage range and a lower frequency

range.

This motif can be realized physiologically with two addi-

tional ionic currents with respect to Hodgkin-Huxley model.

Such currents abound in the literature and are in fact a

hallmark of neurons exhibiting bursting, a specific firing

pattern that consists in the alternation of hyperpolarized

resting periods and periods of high frequency spiking. The

T-type calcium current ICa,T in Fig. 1B is an example of

physiological current that qualifies as a second source of

excitability, distinct from the sodium activation: this current

is normally modeled in the same way as the sodium current

of Hodgkin-Huxley model, except that its activation range

is significantly lower (in the literature, it is referred to as

a low-treshold current) and its activation time-constant is

about five to ten time slower. The L-type calcium current

in the dopaminergic neuron of Figure 1B also qualifies for a

similar second source of excitability. Those local sources of

positive feedback are always counteracted by global sources

of negative feedback, coming from their inactivation or

from distinct currents. For instance, the activation of the

current IK,Ca, a calcium-activated potassium current, is a

negative feedback that specifically counteracts the positive

feedback of calcium activation, in a slower timescale than

the activation of the potassium current of Hodgkin-Huxley

model.

How complex can be a circuit behavior that combines

two local sources of excitability? Answering this question

from a bifurcation analysis of the conductance based-model

is not tractable. The number of dimensions and parameters

rapidly rises and makes the analysis complex and fragile. In

contrast, the discrete nature of excitable behaviors suggests

that the new underlying automaton has two discrete states

rather than one. The two-state automaton has four distinct

states: a passive state (0 0), with both sources of positive

feedback turned off, a high excited state (1 0), with the fast

positive feedback turned on and the slow positive feedback

turned off, a low excited state (0 1) with the fast positive

feedback turned off and the slow positive feedback turned

on, and a mixed excited state (1 1), with both sources of

positive feedback turned on. Those four states indeed corre-

late well with the four endogenous states of most neuronal

models: the passive/not excitable state of the early phases of

cell development, the fast sodium spike of Hodgkin-Huxley

model, the slow calcium spike of models deprived from

sodium, and the burst, which superposes fast and slow spikes.

The experimental recording in Figure 11B illustrates two

out of the four endogenous states of a bursting neuron: in

the initial phase of the experiment, the neuron exhibits the

fast spike of the high E-I motif, which is the behavior of

Hodgkin-Huxley model. Following a step of hyperpolarizing

input, the low source of excitability is activated and the

neuron exhibits the mixed fast-slow spike of the high+low

E-I motif. Further hyperpolarization of the neuron leads

to a mixed excitable resting state, with both sources of

excitability latently switched on.

The richness of neuronal behaviors observed in single-

cell electrophysiology does not seem to require more discrete

states. Instead, it is the continuous regulation of the two local

sources of positive feedback by many distinct sources of

negative feedback that provides a continuous interpolation

between the four discrete states of the automaton. Figure

12 illustrates the experimental transition from slow firing

to burst firing in different types of neurons. Different types

of ionic currents are at play in different types of neurons,

resulting in quantitative differences in the different switches,

but the qualitative switch is the same in the four situations:

the burst oscillation results from activation of a low source

of positive feedback.

How tractable is the analysis of such a diversity of

nonlinear behaviors? As for Hodgkin-Huxley model, it is the

localization of the excitable behavior that makes the analysis

of the two state automaton tractable. For the two-level E-I

motif localization is around the balance of the slow positive

and slow negative feedback in the algebraic relationship:

0 = INa(V, h,m) + IK(V, n) + ICa(V,mCa)

+IK,Ca(V, [Ca]) + Il(V ) + I (17)

Figure 13 shows the dependence of the fast steady-state

(V,m) = (V,m∞(V )) on the slow current Islow, as deter-

mined by (17). Variations of the slow current are generated



Fig. 11. An experimental recording exhibiting two of the four-state

automaton of a bursting neuron. (A) Scheme of the four-state automaton
showing the different feedbacks and their localization in frequency (from top
to bottom) and in range (from left to right). Green arrows represent positive
feedbacks and red arrows represent negative feedbacks. Ionic currents re-
sponsible for the described feedbacks are noted inside the respective arrows.
(B) Experimental recording of a subthalamic nucleus neuron [2]. The neuron
switches from tonic spiking to bursting as its membrane is hyperpolarized
via the application of an external current. Further hyperpolarization leads
to the suppression of the oscillatory activity.

by the joint variation of the slow variables h, n,mCa. The

qualitative shape of this curve is a mirrored hysteresis, where

the mirror is placed at the balance between slow positive and

slow negative feedback, that is, where the net slow feedback

gain vanishes.

The static behavior of the extended model is organized by

a novel singularity, the winged cusp x3 + λ2, that captures

the most singular behavior that can occur upon parameter

modulation. This singular behavior is obtained for vanishing

fast positive feedback and at the balance between slow

positive and slow negative feedback. The normal form of

Fig. 12. Routes to bursting in different neuron types. (A) Experimental
recording of a thalamic reticular cell [30] exhibiting a smooth switch
from bursting to tonic firing in response to transient hyperpolarization.
(B) Experimental recordings of a dopaminergic neuron of the substantia
nigra pars compacta [25] exhibiting a switch from tonic firing (left) to
bursting (right) after the blockade of small conductance calcium-activated
potassium (SK) channels. (C) Experimental recordings of a relay cells of
the thalamus [40] exhibiting two different behaviors depending on the cell
resting potential. A depolarized resting potential leads to tonic spiking (left)
whereas a hyperpolarized resting potential leads to bursting (right). (D)

Experimental recording of a subthalamic nucleus neuron [2] exhibiting a
switch from tonic firing to bursting to silence as described in Fig. 11

its universal unfolding is

F (x, α, β, γ, λ) = 0 ≡ 0 = βx− x3 + λ2 + α+ γλx (18)

Mimicking the two-time scale analysis of excitable behav-

iors, the model

CV̇ = kV −

V 3

3
+ (n+ n0)

2 + I − z (19)

ṅ = ǫn(V )(−n+ n∞(V − V0)) (20)

ż = ǫz(V )(−z + z∞(V − V1)) (21)



Fig. 13. Mirrored-hysteretic relationship between membrane potential

and membrane current in the fast subsystem of the Hodgkin-Huxley

model with calcium channels. The figure shows the steady-states of
the circuit equation (0 = INa(V, h,m) + IK(V, n) + ICa(V,mCa) +
IK,Ca(V, [Ca])+Il(V )+I) where the fast variable m has converged to its
steady-state m∞(V ) and slow variables h and n are treated as parameters.
Full black lines represent stable fixed points, dashed black lines represent
unstable fixed points (saddle points in this case) and the blue star depicts
model steady-state (SS). Pos FB = positive feedback and Neg FB = negative
feedback.

introduced in [14] captures all three time scale behaviors

organized by the cusp, and in particular, the three-time scale

behavior of any nonlinear resistive model that combines

two distinct sources of positive feedback in two distinct

timescales.

As detailed in [14], to which the interested reader is

referred for further details, the mathematical model is re-

markably consistent with the experimentally observed en-

dogenous behavior of neurons. In particular, there is a one-

to-one correspondence between the unfolding parameters of

the mathematical model, which capture the continuous mod-

ulation between a discrete family of distinct behaviors that

can be obtained by an arbitrary variation of the parameters

of the scalar relationship (17), and the physiology of the

ionic currents that have been identified as key modulators of

neuronal excitability.

This illustration from neurophysiology is an encourag-

ing indication that the analysis of excitable behaviors is

tractable in nonlinear circuits that combine localized sources

of positive and negative feedback. The few local sources of

positive feedback determine the dimension of a discrete state

automaton of restricted complexity, whereas the possibly

many and global sources of negative feedback provide a

continuous modulation between those few discrete states.

IV. SENSITIVITY ANALYSIS OF NEURONAL BEHAVIORS

A. Experimental puzzles for control theorists: an anecdote

Because the neuronal excitability of a neuron is regu-

lated by possibly many different types of ion channels, an

important experimental question for the electrophysiologist

is to determine the sensitivity of a neuronal behavior to a

change in conductances: which ion channel type is most

critical to a particular behavior? Answering such questions

may for instance help the pharmacologist to design drugs

that will specifically alter a particular ion channel activity

in order to restore the physiological function of a neuronal

behavior. Experimentally, the sensitivity analysis question

is normally addressed through a knock-out experiment: a

specific blocker is designed to block a particular channel

type, and the neuronal behavior is compared in the presence

and in the absence of the blocker.

Our first experimental collaboration was motivated by such

a question: we seeked to help our colleague V. Seutin to

assess the respective role of L-type calcium channels and

sodium channels in the pacemaking activity of midbrain

dopaminergic neurons. In normal in vitro conditions, those

neurons fire very regularly and endogenously at a low

frequency of about 1 Hz. Various labs had tested the outcome

of blocking either combination of sodium and/or L-type

calcium channels, two distinct sources of positive feedback,

with outcomes that often led to conflicting conclusions. For

instance, the authors of [20] observed no significant alteration

of the rhythm under blockade of L-type calcium channels,

concluding that those channels are not involved in the

pacemaker activity, whereas the authors of [36] observed that

the rhythm was completely disrupted in similar conditions,

concluding to the essential role of L-type calcium channels in

pacemaking. Such conflicting interpretations of experiments

are not rare in electrophysiology.

Can modeling assist experimentation in resolving such

questions? The conventional computational way to assist

experimentalists in the sensitivity question is to mimic the

knock-out experiment in silico: the experimental protocol of

blocking the activity of a channel type translates into the

computational protocol of reducing the maximal conductance

parameter of the corresponding ionic current. Matching the

experimental observation with a computational model re-

quires a sufficiently realistic model of the studied neuron.

In our study, we were recommended to use a state-of-the

art model of the dopaminergic neuron, which contained

130 nonlinear differential equations and more than 500

parameters [5], [8]. In order to shed light on the experimental

controversy, we first (empirically) reduced the model to six

differential equations and about 20 parameters [10]. Then

we used bifurcation analysis to study the transition from

pacemaking (slow oscillation) to rest (stable equilibrium) and

produced the conceptual diagram in Figure 14. The diagram

suggests that the transition from rest (white) to pacemaking

(blue) is neatly defined by a (almost linear) combination of

the sodium conductance and the L-type calcium conductance.

This means that the two currents cooperate to achieve the

required neuronal excitability of pacemaking (both currents

contribute a positive feedback activation). This cooperation

provides a straightforward hypothesis to explain the fragility

of the knock-out experiment: small deviations of the nominal

point in the parametric plane (ḡCa,L, ḡNa) are sufficient to

generate the four possible outcomes of blocking either of

the two channels, suggesting that the intrinsic variability of



ionic conductances between different neurons would be suf-

ficient to observe different outcomes of a same experimental

protocol.

The predictions of our reduced model were easily repro-

duced in the full computational model, only varying the two

considered maximal conductance parameters and keeping

all remaining parameters unchanged. As an experimental

validation of this hypothesis, we recorded the effect of

blocking either channel in a same experimental protocol

applied to eleven different dopaminergic neurons. In spite of

identical experimental conditions, we observed three of the

four possible different outcomes in the population of eleven

neurons, suggesting that the degree of cooperation between

sodium and L-type calcium considerably varies from one

neuron to the other (see [10] for details).

B. Experimental, computational, and mathematical sensitiv-

ity analysis

The anecdote above is for one particular type of ion

channel and one particular type of neuron but the lessons

of the anecdote have far more generality, most likely beyond

the particular field of experimental neurophysiology.

At the experimental level, the lesson of the anecdote

is that the knock-out experiment is potentially a fragile

experiment in any context where the behavior results from

the cooperation of distinct but redundant mechanisms. As

explained above, a pacemaking behavior only requires one

source of positive feedback and one slower source of negative

feedback. But in neurons, a particular balance between these

positive and negative feedbacks can be achieved in many

ways and regulated by the activation of many different

channel types. The cooperation between the sodium and L-

type calcium channels described in our anecdote is one such

example. It illustrates the potential difficulty of assessing the

role of one particular channel type through one particular

knock-out experiment. Both channels contribute to the posi-

tive feedback that is necessary for the pacemaking behavior.

As a consequence, an identical pacemaking behavior can

be achieved with vastly different expressions of a particular

ion channel type, and, conversely, identical expression of a

particular channel type can lead to vastly different behaviors.

This fact is shared by all types of neurons, because all

neurons are regulated by many different channel types. And

the conclusion is probably far more general, since both

the excitable behavior and the redundancy of regulation

mechanisms are pervasive across biology.

At the computational level, the lesson of the anecdote

is that a computational model is not necessarily of great

help to resolve the fragility of the experimental protocol.

The physiological realism that is needed to assess the role

of a particular channel type in a particular neuron leads

to high-dimensional models and high-dimensional parameter

spaces. Even in the unlikely situation where a detailed

model will perfectly account for the experimental conditions,

replacing the experimental sensitivity analysis by a purely

computational sensitivity analysis is largely intractable. A

computational study like the one reported in [35] illustrates

what it takes to explore multiple conductance and connec-

tivity parameters in a particular neuronal model using brute

force. But even regardless of the computational effort and of

the physiological realism of the conductance-based model,

the anecdote above suggests the fragility of the computational

outcome. Tiny variations of the “nominal” point in the

parameter space may drastically affect the outcome of the

computational “global” sensitivity analysis.

The alternative to experimental and computational sensi-

tivity analysis is to resort to mathematical analysis of the

neuronal model. Our anecdote could appear as a successful

story in that regard, since the proposed explanation came

from bifurcation analysis of a reduced model. But the true

lesson of the anecdote is that our analysis was completely ad

hoc. It took the best of a PhD project [7] to get the detailed

computational model to work, then reduce it empirically to

a tractable dimension, then perform a bifurcation analysis

of the reduced model, then validate this bifurcation analysis

on the full model, then propose an experimental protocol to

support the analysis, and finally to perform the experiments.

This project could be started only because both a reliable

detailed conductance based-model and a lot of experimental

data existed for the dopaminergic neuron. Those elements

would be lacking for most neurons and will continue to lack

for a long time for most biological behaviors.

C. Can robustness coexist with modulation?

The discussion in the previous section suggests that the

parametric sensitivity analysis of neuronal models is inher-

ently fragile: small variations in the space of physiological

parameters may drastically affect the behavioral outcome

of large parameter variations. In other words, global sensi-

tivity analysis around a nominal point in parameter space

is potentially fragile to small changes in the choice of

the nominal point. Such a property by no means implies

that the behavior itself is fragile. On the contrary, it is

a signature of over-actuated behaviors, that is, behaviors

determined by few degrees of freedom but regulated by many

cooperating processes. Such behaviors can be at the same

time robust to large parameter changes and sensitive to tiny

parameter changes: robust because the same behavior can be

achieved with vastly different combinations of parameters

(provided they determine the few degrees of freedom in

the same manner); sensitive because in a given parameter

configuration, a tiny change in one parameter is sufficient to

drastically affect the response of the system to a given input.

Disentangling the robustness and modulation capabili-

ties of a behavior is a current challenge in experimental

neuroscience and, more generally, in biology. Qualitative

models aim at capturing the few degrees of freedom that are

necessary to account for a given behavior. For instance, the

excitable behavior only requires one positive feedback loop

and one slower negative feedback loop. In contrast, quan-

titative models aim at capturing the diversity of regulatory

processes and to link them to physiological parameters. But

disentangling the robustness and modulation properties of the

behavior requires a mapping from physiological parameters



Fig. 14. Cooperation between sodium and calcium channels in the generation of DA neuron pacemaking. The center panel show the type of
pacemaker activity according to the value of sodium and L-type calcium conductances in the minimal and quantitative models. The white zone represents
hyperpolarized states and the dark blue zone accounts for pacemaking. Each insert shows the behavior of the model in control condition and during a
blockade of L-type calcium channels or sodium channels for a particular set of conductances. Taken from [10].



space to functional parameters. Without this mapping, the

sensitivity analysis in the physiological parameter space can

be both fragile and intractable.

D. Past successes of sensitivity analysis

The conclusion of our anecdote is that sensitivity analysis

of neuronal behaviors is a question of central importance in

neurophysiology but that the existing approaches –whether

experimental, computational, or mathematical– all suffer

from limitations that make progress slow and limited, even

in an area where modeling principles are broadly accepted

and a lot of experimental data have been accumulated. This

conclusion does not imply that one should regard the sensi-

tivity analysis of neuronal behaviors as a hopeless problem.

Sensitivity analysis is at the root of many successes of control

theory. It is the intractability of the sensitivity analysis ques-

tion in the repeater problem [3] that led Bode and colleagues

to develop the highly successful frequency analysis methods

of control theory. A local sensitivity analysis of the loop gain

is a highly successful tool for the analysis of linear feedback

systems: the superposition principle makes it possible to

study the sensitivity analysis of the feedback system at a

given frequency. Feedback control then becomes regarded

as loop shaping [3], that is, the robustness and performance

requirements of the closed-loop behavior are translated as

shaping requirements for the sensitivity of the loop gain at

different frequencies. Another success of sensitivity analysis

is in metabolic control analysis [11][21], where quantitative

control coefficients are attached to each elementary reaction

of a complex metabolic reaction scheme. In this example,

local sensitivity analysis is successful in identifying the limit-

ing steps of a complex nonlinear biochemical process but the

analysis is static and its success relies on monotonicity or/and

feedforward assumptions about the biochemical pathway.

Excitable behaviors are both dynamic and nonlinear. As

such, they violate both the superposition principle of linear

feedback systems and the static and/or feedforward assump-

tions of metabolic pathways. But the modeling principles

of conductance-based models suggest that they nevertheless

share properties of those two classes of models. The circuit

model of a neuron suggests that the capacitor voltage is

regulated by many parallel feedback loops. The feedback

system is highly nonlinear because conductances are volt-

age dependent, but this does not preclude a superposition

principle between ionic conductances that activate in very

different temporal and range windows. The view of each

ionic conductance as shaping the loop gain of the circuit in

a specific voltage range and in a specific frequency range is

not far from the loop shaping paradigm of control theory.

Likewise, both the parallel architecture and the biochemical

modeling principles of the ionic conductances are highly

reminiscent of metabolic pathways. The view of attaching

a control coefficient to each activation or inactivation path is

not far from the methodology of metabolic control analysis.

The dynamic input conductance methodology introduced in

[9] is an attempt to replicate earlier successes of sensitivity

analysis in conductance-based models.

Fig. 15. Example of an experimental measurement of dynamic input

conductances in voltage-clamp. A step of potential ∆V (top) induces
variations in the transmembrane current ∆I (bottom).

V. DYNAMIC INPUT CONDUCTANCES

As a one-port resistive circuit, the behavior of a single neu-

ron is entirely determined by its local conductance g(V, t),
which is however voltage dependent and time-varying. But

one can eliminate the time-varying nature of the conduc-

tances by relying on the distinct time scales of any neuronal

behavior. A bursting neuronal model has for instance three

distinct time scales. This suggests to model the circuit with

three independent time-invariant resistive branches, one for

each representative time-scale. The conductance of each

branch can be determined by mimicking the voltage-clamped

experiment of Hodgkin and Huxley: the current variation

∆I generated by the step of membrane potential ∆V is

decomposed as the sum of three distinct components (Fig.

15)

∆I = (∆I)f + (∆I)s + (∆I)u (22)

where (∆I)f , (∆I)s and (∆I)u are the fast, slow and

ultraslow components, respectively. Each component obeys

the sensitivity relationship

∆I =

(

−

∂I

∂V

)

∆V = −g(V )∆V (23)

where the term g(V ) =
(

∂I
∂V

)

shapes the sensitivity of

the transmembrane current to membrane potential variations.

This leads to the decomposition

−g(V )∆V = −gf (V )∆V − gs(V )∆V − gu(V )∆V (24)

which gives

g(V ) = gf (V ) + gs(V ) + gu(V ). (25)

The quantities gf (V ), gs(V ) and gu(V ) are called dy-

namic input conductances. They represent the aggregation

of all ionic currents in one specific time-scale.

They can be measured experimentally or computed

from the variational analysis of an arbitrarily detailed

conductance-based model. In a realistic conductance-based



model, gating variables exhibit a continuum of voltage-

dependent timescales. Therefore, a given physiological gat-

ing variable can, in principle, contribute to several timescales.

The dynamic input conductance in each timescale is therefore

expressed as a (voltage-dependent) linear combination of all

ionic conductances [9]. For a model composed of the gating

variables Xn, it gives

gf,s,u(V ) =
∑

n

wXn

f,s,u

∂I

∂Xn

∂Xn,∞

∂V
(26)

where wXn

f,s,u is the contribution of the variable Xn in the

fast, slow and ulstraslow timescales, respectively. The three

dynamic input conductance gf (V ), gs(V ) and gu(V ) can

then be interpreted as aggregate conductances in each of the

three timescales defining neuronal activity.

Fig. 16, left shows the dynamic input conductances of

a bursting neuron model. These voltage-dependent curves

make the link between complex conductance-based models

and the dynamical motif of neuronal excitability (Fig. 16).

The fast dynamic input conductance is mostly positive.

It shapes the fast positive feedback responsible for spike

upstroke. The slow dynamic input conductance is mostly

negative at suprathreshold potential. It shapes the slow nega-

tive feedback responsible for spike downstroke. In addition,

the slow dynamic input conductance exhibits a region of

positive value at hyperpolarized potentials. This slow positive

feedback is an essential component of the slow excitability

that underlies bursting, as shown above. Finally, the ultraslow

dynamic input conductance is mostly negative. It shapes the

ultraslow negative feedback responsible for spike frequency

adaptation and burst termination. We recover here the motif

of two-level excitability (see Fig. 11)

The significance of the dynamic conductances is that they

provide a bridge between the qualitative properties of the

behavior, which can be determined by a low-dimensional dy-

namical system organized by a singularity, and the sensitivity

analysis of a quantitative physiological model of the conduc-

tances, which requires a high-dimensional reaction network.

Thanks to this bridge, the biologically relevant question of

analyzing how ion channels shape neuronal excitability can

be systematically addressed through a sensitivity analysis of

the dynamic input conductances with respect to maximal

conductance parameters (i.e., density of a particular channel).

Computing sensitivity curves of the type ∂gf,s,u(V )/∂ḡx,

which evaluates at each membrane potential the derivative of

a given dynamic input conductance gf,s,u(V ) with respect

to a given maximal conductance parameter ḡx, one can

predict the effect of ion channel variations on neuronal

excitability. The dynamical role of an ion channel type is

determined by its regenerative/restorative properties in the

different timescales of neuronal spiking.

Dynamic input conductances provide the important insight

of how ion channels combine to generate or maintain a

specific neuronal behavior. This insight is relevant for the

quantification of robustness and homeostatic mechanisms

that govern neuronal spiking. As an illustration, Fig. 17

Fig. 16. The dynamic input conductances make the link between com-

plex conductance-based models and the dynamical motif of neuronal

excitability. Left, fast, slow and ultraslow dynamic input conductances of
a bursting neuron model (from top to bottom). Right, dynamical motif of
neuronal excitability.)

shows how the firing activity of a model neuron evolves

when the density of a specific ion channel type is increased.

When the ion channel density is increased alone, the firing

activity is strongly affected. This is because modifying the

density of a single channel type can strongly affect the

value of one or several dynamic input conductances, which

govern the modulation of neuron excitability. On the other

hand, the variation of one particular channel density can be

compensated for by covarying the densities of other channel

types in order to maintain the value of the dynamic input

conductances unchanged, as shown at the bottom of Fig.

17. This property, which relies on the fact that many ion

channels shape cooperatively the value of the dynamic input

conductances, is the basis for the robustness of neuronal

activity against the high variability observed in ion channel

densities.

VI. HOMEOSTASIS, REGULATION AND DYSREGULATION

A. Neurons solve a complex regulation problem

The preceding sections provide two important messages:

1 Electrophysiological properties of neurons arise from

a complex interaction between nonlinear components,

most notably ion channels and receptors.

2 There are many kinds of ion channels and receptors

simultaneously expressed by neurons, many of which



Fig. 17. Compensation mechanism derived from the sensitivity

analysis of the dynamic input conductances. Variation of a calcium
channel density (top trace) and membrane potential variation over time of
a neuron conductance-based model in the absence and the presence of the
compensation mechanism (center traces), and variations of channel densities
involved in the compensation mechanism (bottom trace).

overlap in their biophysical properties.

The first message tells us that for a neural circuit to work

properly, the signaling components in neurons need to be

appropriately regulated. Appropriate kinds of ion channels

and receptors need to be synthesized and expressed in a

neuron at appropriate levels. Achieving the right balance of

expression levels is a non-trivial task owing to a complex

relationship between the mixture of ion channels expressed

in a neuron and its emergent electrophysiological properties

at the single cell level, and at the level of a neural circuit.

In respect of the second message, we might be left won-

dering why evolution has produced a seemingly redundant

and unduly numerous array of signaling components. For

example, the human genome contains 40 known voltage-

gated potassium channel genes. Each gene typically encodes

multiple versions of a protein subunit that is in turn combined

with other subunits to make ion channels, resulting in a

combinatorial explosion in the number of kinds of channels

that can be expressed. The biophysical properties (such as

voltage dependence, ion selectivity, gating dynamics) of

these channels might differ substantially, or somewhat subtly,

leaving a large number of available degrees of freedom

for controlling neuronal excitability [17]. As we saw in

previous sections, the contributions of different ion channel

types to essential neural dynamics can overlap substantially,

even when the properties of individual ion channels differ,

meaning that there are many redundant degrees of freedom

for controlling neural excitability in a typical neuron.

Together, these messages raise a key question: how do

neurons control the expression of this vast array of signal-

ing components so as to achieve and maintain appropriate

electrophysiological properties? This is fundamentally a bi-

ological question. In terms of biological details (which ion

channels are involved, what the architecture of the regula-

tory mechanism looks like and which biological signaling

processes it uses) the answer will likely depend on the type

of neuron, the species of animal and the developmental

context (e.g. early development when neurons are growing,

or adulthood).

Abstractly, the neuron is faced with a very similar problem

as an engineer tasked with understanding how individual

conductances affect excitability. For example, if the current

threshold for initiating a spike is too low, a circuit might

become hyperexcitable, so neurons need to adjust specific

conductances to raise the spiking threshold. Evidently, neu-

rons somehow solve this problem because, by and large,

they achieve appropriate excitable behavior and maintain it

throughout an animal’s lifetime in spite of continual environ-

mental and internal perturbations. These perturbations may

be due to long-lived fluctuations in sensory stimuli or simply

noisiness in the underlying biological hardware that nervous

systems are comprised of. However, neurons do not have

the luxury of being able to predict the effect of increasing

or deceasing the expression of a particular conductance so

as to deal with a particular perturbation. Instead, neurons are

confined to using internal biochemical signals are proxies for

sensing their own activity and a set of evolved and perhaps

relatively inflexible feedback rules for adjusting ion channel

expression to maintain stable function.

B. Feedback control of neuronal excitability

In addition for compensating for perturbations, neurons

must employ feedback control due to the very nature of

cellular metabolism. The lifetime of a membrane-bound

protein such as an ion channel is many orders of magni-

tude shorter than the lifetime of the neuron in which it

is expressed, the latter being equal to the lifespan of the

organism as a rule of thumb. For example, AMPA receptors

at excitatory synapses in the mammalian brain are inserted

into the membrane, removed and degraded over the course

of tens of minutes [24]. Thus, in order for a neuron to

maintain its signaling properties, there needs to be constant

monitoring and replenishment of ion channels and receptors

at an appropriate rate. This observation hints at the existence

of feedback control mechanisms that regulate neuronal ex-

citability by controlling the synthesis and degradation rates

of ion channels and receptors. In fact, the existence of such a



feedback mechanism was hypothesized before it was shown

experimentally [29].

Fig. 18. Experimental evidence of feedback control in neurons.

Top: spiking initiated with depolarizing current in a mammalian neuron
grown in culture. Middle: no spiking initiated for the same magnitude
of depolarizing current as (Top) applied to a neuron grown in chronic
depolarizing conditions for a prolonged period (60 hours). Bottom: blocking
calcium influx via L-type calcium channels ablates the drop in excitability
caused by chronic depolarization. Data reproduced from [31]

Several key experiments [32], [42], [18], [6] have uncov-

ered slow regulatory mechanisms that adjust the expression

levels of ion channels and receptors in neurons in response

to gross perturbations in electrophysiological activity levels.

’Slow’ in this context means a timescale of hours or days

- far slower than typical fluctuations in membrane potential

activity such as action potentials and network oscillations

that are associated with signaling in the nervous system.

An experimental paradigm that we have used for revealing

this feedback control mechanism is shown in Figure 18. We

exposed neurons to elevated excitatory drive by manipu-

lating the extracellular ion balance, resulting in prolonged

depolarization by several millivolts [31], [32]. Over the

course of hours to days, the intrinsic firing threshold of the

neurons adjusted, making the neurons less excitable. This

compensatory, negative feedback mechanism was blocked

pharmacologically using L-type calcium channel inhibitors,

suggesting that calcium influx is a key feedback signal.

It is important to note that the shift in excitability seen

in Figure 18 results from a coordinated change in the

expression of multiple ion channel types: sodium currents,

potassium currents and transient calcium currents were all

found to be altered by the depolarizing stimulus used in these

experiments. Therefore, it is possible that a relatively simple

signal (net calcium influx) is used by neurons as the control

signal for the expression of multiple ion channel types.

A wealth of experimental literature identifies intracellular

calcium as a key signal for controlling the expression of

Fig. 19. High variability and correlations in ion channel expression

in identified neurons. Gene expression levels (mRNA counts) for six
different voltage-gated ion channel genes (para: sodium channel, shab, shal:
potassium channels, IH: hyperpolarization activated mixed cation channel,
BK KCa: calcium-dependent potassium channel) in identified neurons in the
crab Stomatogastric Ganglion (GM: gastric mill neuron, IC: inferior cardiac
neuron, LG: lateral gastric neuron, LP: lateral pyloric neuron, PD: pyloric
dilator neuron), Axes represent mRNA counts, determined by single cell
real time PCR for ion channel transcripts, each data point is a single cell.
Data reproduced from [38].

many genes in neurons, including those that code for ion

channels [13], [28]. The task of experimentally identifying

the regulatory control mechanisms at a molecular level is far

from straightforward and it is therefore not feasible to con-

struct literal, detailed models of the biochemical pathways

involved. However, there are several key phenomenological

features of ion channel and receptor regulation that have

been identified, and permit loosely mechanistic, conceptual

models to be constructed and analysed [26], [27]. We discuss

one such model in what follows.

C. Neuronal feedback control mechanisms tolerate variabil-

ity in ion channel expression levels

A striking feature of the steady-state expression of ion

channel genes is a high degree of variability among neurons



belonging to the same genetic, physiological and anatomical

class. In spite of this variability, these neurons exhibit

functionally similar properties, suggesting that the regula-

tory processes controlling ion channel expression tolerate

sloppiness in absolute expression levels and use a coarse

regulatory feedback signal. This can be seen in ensemble

measurements of the expression levels of different ion chan-

nel genes in single, identified neurons [38]. Figure 19 shows

three pairwise plots of the expression levels (abundance of

mRNA molecules) for six important ion channel genes in five

different identified neuron types in a crab motor ganglion.

Several-fold variation in mRNA abundance is seen, along

with strong, linear correlations between many of the channel

genes.

D. Simple models of ion channel regulation reconciles vari-

ability and homeostasis

We have seen that neurons employ feedback control to

regulate ion channel expression on a very slow timescale

and that this feedback control mechanism appears to use

calcium influx as a feedback signal. We have also seen

that the expression levels of multiple ion channels in single

neurons can vary substantially and tends to be correlated.

This suggests that neurons do not necessarily care about

absolute expression levels of ion channels and instead ensure

that relative expression levels are maintained. It is therefore

plausible that a simple, scalar signal might be used as an error

signal to detect deviation from some target activity level [33].

As a consequence, we may propose a simple feedback

control model where calcium influx is integrated by intracel-

lular signaling pathways that control gene expression [34].

Regulation is split into two steps as shown in Figure 20A:

calcium concentration, [Ca2+], activates (or deactivates) the

expression of mRNA molecules, mi for different ion channel

types, gi. The rates of synthesis and degradation of each of

these molecules is assumed to be fixed within each cell type

(denoted by the α’s and β’s in the Figure) and can be lumped

together to give single characteristic time-constants, τi. This

results in a simple set of ordinary differential equations:

τiṁi = Catarget − [Ca2+]

τ ġi = mi − gi (27)

Here, τi is the characteristic rate of production of each ion

channel mRNA, while τ is the rate of production of channel

protein (which, for simplicity, is assumed to be equal across

channel types). In keeping with experimental observations

these time-constants are taken to be much longer that the

dynamics of membrane potential fluctuations due to channel

gating. Catarget is a putative equilibrium ’target’ calcium con-

centration that the system maintains. When combined with

the membrane equation and the various state equations for

Hodgkin-Huxley type conductances, this forms an integral

controller, with calcium as the feedback signal (Figure 20B).

An immediate result is that this model produces correlated

steady-state conductance densities. Solving system (27) for

arbitrary, but small, initial values for the conductances we
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Fig. 20. A simple integral control model of ion channel expression.

A Intracellular calcium concentration, [Ca2+], determines the rates of
production of ion channel mRNAs ,which in turn determine the rate of
production of ion channel. Each mRNA and ion channel type has constitutive
degradation rates. The rates of synthesis (αx) and degradation (βx) of these
molecules are assumed to be characteristic of a particular cell type. B A
simplified model of this system constitutes an integral control law (27) with
[Ca2+] as the feedback signal. Figure reproduced from [34]

find that at steady-state, the ratio of conductance densities is

approximately constant:

gi
gj

≈

τj
τi

Not only does a constant-ratio solution resemble the

linearly-correlated conductance distributions observed in Fig-

ure 19, it also ensures approximately consistent physiological

properties when one considers the limit where membrane

current dominates the capacitive current [34].

It is not clear, experimentally, whether (27) serves as a

model of regulation dynamics that can be taken literally,

that is, whether one can really describe channel expression

dynamics with two effective time-constants and a single feed-

back signal. It seems unlikely that a cell as sophisticated as

a neuron would use such a crude feedback system to control

physiological processes that are crucial for an organism’s

survival. However, the fact that highly variable levels of

ion channel expression are seen suggests that neurons, as

feedback systems, are underactuated to some extent. In this

context, ’underactuated’ is a lose term that simply means



many variables are controlled by few feedback signals. The

simple model presented here captures the extreme case in

which only a single scalar feedback signal is used to control

the densities of many ion channel types.

Nonetheless, this simple feedback system is able to pro-

duce consistent physiological properties in model neurons

with a complex set of voltage-gated conductances and is

robust enough to generate specific neural circuit activity

[34]. Moreover, degeneracy among the properties of the ion

channels in the models means that the system is tolerant to

loss of a particular ion channel type in many cases. This is

shown in Figure 21, where we see that in some situations the

simple feedback control model can compensate for deletions

of a specific conductance and (approximately) recover its

previous behaviour on a long timescale. On the other hand,

the model converges to an aberrant state when other, key

conductances are deleted, as is seen in Figure 21B, where

’compensation’ results in the neuron changing from periodic

bursting activity to tonic spiking.

This situation is reminiscent of countless experiments

in neuroscience, where sometimes a manipulation (such

as deletion of an ion channel gene) is compensated for.

Compensation of this kind is seldom perfect, but owing to

other sources of robustness in nervous system function, ap-

proximate compensation is often good enough. On the other

hand, some deletions, physiological insults and disease states

cannot be compensated for by the regulatory control systems

in biological nervous systems, even when there are potential

solutions in parameter space to permit compensation. This

is consistent with the idea that the regulatory processes that

control ion channel expression are underactuated.

Underactuation means that a number of interesting

pathologies can occur. In the context of the simple model

above, genetic deletion, or pharmacological ablation of an

ion channel type alters the relationship between the feedback

signal (calcium) and the expression levels of the remaining

conductances. As a consequence, a perturbation that would

be innocuous in the absence of the slow feedback control

given by (27) can be accompanied by a pathological compen-

satory response when the system reaches steady-state. This

is seen in Figure 21C, where the initial perturbation causes

a subtle change in the behaviour of the neuron. However,

compensation due to the regulatory control system (27)

disrupts spiking activity in the neuron. We speculate that this

particularly insidious kind of pathology - one characterized

by aberrant compensatory actions of the regulatory systems

present in all neurons - constitutes a potential mechanism

underlying nervous system disorders and disease states.

VII. CONCLUSION

Neurons are highly specialized and diverse signaling ma-

chines. They derive their electrophysiological properties from

a complex interplay of molecular components, most notably

ion channels and receptors. We have described the impor-

tance of separating the electrical behavior, which can be

described by a few nonlinear resistive branches, one for each

Fig. 21. Homeostatic and aberrant compensation in a simple model

of ion channel regulation. A Membrane potential activity (top traces) and
intracellular calcium concentration (bottom traces) in a feedback-regulated
model neuron (using equations 27). The target value of the control variable,
Catarget, is indicated in red. The left traces show the model at steady state,
prior to a perturbation involving deletion of the IH -conductance, gH (center
traces). Following relaxation to steady-state (right traces), the perturbed
model recovers periodic bursting activity. B The same model as (A) with a
calcium conductance, gCaT , deleted instead of gH . In this case, the model
does not recover periodic bursting activity and instead fires tonically. C The
same feedback control model as in (A) and (B), but with different regulation
parameters which lead to tonic spiking at steady-state. Deletion of gCaT

leaves tonic spiking intact, but alters the frequency. Compensation by the
regulatory control system following gCaT deletion leads to loss of tonic
spiking in this case. Figure adapted from [34]

representative time scale, acting as voltage-dependent posi-

tive or negative feedbacks, from the biochemical behavior,

which quantifies the contribution of each type of ion channel

in a particular frequency range and voltage range. The

biophysical modeling principles proposed by Hodgkin and

Huxley provide a bridge between the electrical behavior and

the biochemical behavior. The electrical behavior is highly

nonlinear but it can be described with few variables and it

can be analyzed through a local analysis around organizing

singularities. The biochemical behavior has a highly parallel

and feedforward structure, which can be exploited to draw

conclusions from a local parameter sensitivity analysis.

Like most biological systems, the relevant timescales for

understanding neuronal activity span many orders of magni-

tude, up to and including timescales that correspond to the

lifetime of the signaling components themselves. Beyond the

millisecond-second timescales of spikes, bursts and network

oscillations, we explored dynamics of ion channels on the

longest known timescale - the timescale over which channels

are synthesized and degraded. Again, feedback control is

evident but there are numerous unanswered questions con-

cerning the nature of this so-called homeostatic regulation

that ensures nervous system stability over the lifetime of



an organism. Key questions surround the possible modes

of failure of homeostatic regulatory control as well as its

capacity to autonomously assemble functional circuits from

subcellular activity-dependent feedback rules.

The tutorial nature of the paper led us to focus on the

internal regulation mechanisms of a single cell, but the

proposed methodology is applicable to arbitrary neuronal

networks. In that sense, neuronal circuits may provide a rich

and novel source of inspiration for the behavioral principles

governing the organization of excitable systems.
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