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Abstract

Axonal degeneration and neuronal cell death are fundamental processes in development and contribute to the pathology of

neurological disease in adults. Both processes are regulated by BCL-2 family proteins which orchestrate the permeabilization of

the mitochondrial outer membrane (MOM). MOM permeabilization (MOMP) results in the activation of pro-apoptotic molecules

that commit neurons to either die or degenerate. With the success of small-molecule inhibitors targeting anti-apoptotic BCL-2

proteins for the treatment of lymphoma, we can now envision the use of inhibitors of apoptosis with exquisite selectivity for BCL-

2 family protein regulation of neuronal apoptosis in the treatment of nervous system disease. Critical to this development is

deciphering which subset of proteins is required for neuronal apoptosis and axon degeneration, and how these two different

outcomes are separately regulated. Moreover, noncanonical BCL-2 family protein functions unrelated to the regulation of

MOMP, including impacting necroptosis and other modes of cell death may reveal additional potential targets and/or

confounders. This review highlights our current understanding of BCL-2 family mediated neuronal cell death and axon

degeneration, while identifying future research questions to be resolved to enable regulating neuronal survival pharmacologically.

Facts

● Neuronal apoptosis and axon degeneration both occur

naturally in development, but also contribute to the

pathology of nervous system disease.
● Anti-apoptotic proteins such as BCL-XL and BCL-W

can prevent both axon degeneration and apoptosis.
● Many stressors induce neuronal cell death in a PUMA-

and BAX-dependent manner.
● Transcriptional upregulation of PUMA is required for

axon degeneration.

● BAX, not BAK, is the primary executor of MOMP in

neurons.

Open questions

● Intracellularly, where does MOMP occur after NGF

deprivation from axons?
● How do neurons prevent apoptosis while undergoing

axon degeneration?
● Why do many stressors trigger neuronal cell death and/

or axon degeneration that is PUMA and BAX dependent

rather than using other BCL-2 family proteins to?
● Do CNS and PNS axons degenerate through similar

mechanisms?
● Can pharmaceutical inhibition of BAX prevent neuronal

cell death and improve outcome in neurological events

like stroke?
● Does prevention of axon degeneration halt or delay the

pathology of neurodegenerative disease?

Introduction

For many cells, the balance between life and death is

regulated by the BCL-2 family of proteins. As reviewed
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previously, a dance occurs within the BCL-2 family on the

mitochondrial outer membrane (MOM) dance floor [1]—

with the outcome of this dance ultimately deciding whether

a cell will live or die. But what if the dance floor were

extended unimaginably? Neurons are morphologically

unique cells with long cytoplasmic extensions called axons.

The vast distance axons span results in a separation of

mitochondrial populations within a single cell—one popu-

lation within the cell body, and another that extends down

the length of the axon. The integrity of both mitochondrial

populations is vital to neuronal health [2]. The same BCL-2

family dance-of-death occurs within neurons but now the

dance floor has been extended; and as a result, the BCL-2

family can regulate axonal degeneration in addition to life

and death. Mitochondria are the “power-house” organelle of

the cell, but ironically, the MOM is also the platform to

initiate BCL-2-protein regulated cell death [1]. MOM per-

meabilization (MOMP) results in the release of pro-

apoptotic factors into the cytoplasm thereby committing a

neuron to die through apoptosis or degenerate only the

axon. It remains unclear how the BCL-2 family of proteins

regulates this dichotomy of programmed cell death and

degeneration, yet it is widespread in the nervous system

during development [3] and disease.

Neuronal cell death and axon degeneration
in development

Knockout studies in rodents have solidified the importance

of BCL-2 family proteins in the development of the nervous

system. Selective deletion of the pro-apoptotic BCL-2

family protein BAX prevents the normal cell death that

occurs in the cerebellum and retina, and these mice are

reported to have increases in hippocampal and dorsal root

ganglion (DRG) neurons [4–7]. Selective deletion of a

BAX-activating, pro-apoptotic protein called p53 upregu-

lated modulator of apoptosis (PUMA), also prevents apop-

tosis of DRG neurons in the peripheral nervous system

(PNS). This results in an increased number of neurons and

innervating branches during development [8, 9], with no

change in expected birth frequency for PUMA knockout

mice [10, 11]. Anti-apoptotic proteins of the BCL-2 family

also play key roles in development. For example, single or

double deletion of the genes encoding proteins BCL-XL and/

or MCL-1 results in massive neuronal cell death in the

developing central nervous system (CNS) [12–14]. The loss

of one allele for mcl1 plus one allele for bcl-X (BCL-XL

gene) is sufficient to cause severe brain and craniofacial

abnormalities in mouse development suggesting apoptosis

must be tightly regulated during development [15]. More-

over, the selective deletion of the BAX-activating protein

BIM results in a significantly reduced birth frequency [16].

However, single allele deletion for the bim gene rescues the

brain and craniofacial abnormalities observed in mcl1+/−and

bcl-x+/− mice [15], suggesting that BIM may play a role in

nervous system development.

BCL-W is an anti-apoptotic protein that contributes to

the maintenance of axons [17]. BCL-W knockout mice

demonstrate progressive nociceptor sensory neuropathy,

and as a result, fail to quickly respond to thermosensation

[18]. Intriguing, this neuropathy is due to axon degeneration

and occurs without cell body loss, demonstrating a

separation between axon degeneration and neuronal cell

death [18]. Nevertheless, BCL-W knockout mice are still

born at the expected frequency [19], while BCL-XL defi-

cient mice are not viable due to massive apoptosis in the

CNS [20]. This suggests BCL-W may play more of a role in

pathological settings rather than during development.

Key components of the apoptotic pathway, such as cas-

pases and pro-apoptotic BCL-2 proteins, are downregulated

during organismal maturation; rendering most adult tissues,

including the brain, resistant to apoptotic stimuli [21].

Additionally, primary cultures of murine hippocampal

neurons taken at the embryonic stage develop resistance to

apoptotic stimuli as they mature in vitro [21]. Furthermore,

we have observed that mature cultures of primary cortical

neurons resist death in response to the expression of trun-

cated BIM, a protein with reduced pro-apoptotic activity

[22]. However, these cultures of mature neurons remain

sensitive to the expression of full-length BIM, demonstrat-

ing that mature neurons are resistant, but not entirely

refractory to apoptotic stimuli [22]. Resistance to apoptotic

stimuli correlating with the maturation of neurons has also

been shown in vitro with cultures of sympathetic neurons of

the PNS [23–25]. Although mature sympathetic neurons

resist apoptosis, they remain permissive to axon degenera-

tion [24] demonstrating that that cell death and axon

degeneration can be regulated separately in a single cell.

This change in the regulation that occurs during maturation

in vitro means that it is important to account for the level of

maturity and/or differentiation in experimental design and

to report this in experiments using neuron cultures. For

instance, stroke mainly occurs in older adults [26], thus it is

important for stroke research to be conducted in mature

cultures of neurons that have the apoptotic machinery pro-

file more representative of an adult. Additionally, due to the

anatomical and biochemical differences between rodent and

human neurons [27], mature cultures of human neurons

would be the most representative albeit impractical model

system. Consequently, there is emerging emphasis on

understanding cell death in neurons derived from human

stem cell cultures, and grown as brain organoids. Indeed,

brain organoids are already proving to be valuable tools for

the study of pathology of diseases such as cerebral malaria

[28] and microcephaly induced by Zika virus [29].
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Neuronal cell death and axon degeneration
in disease

Neuronal cell death and axon degeneration occur naturally

during development, however, in the adult they contribute to

the pathology of terrible neurodegenerative diseases. In

amyotrophic lateral sclerosis (ALS), motor neuron cell death

was thought to be the major contributor to disease pathology

[8]. However, neuromuscular denervation via axon degen-

eration prior to cell death has also been shown to be a pri-

mary contributor to disease pathology [30]. The genetic

mutations that cause ALS prevent proper shuttling of mRNA

within axons, disrupting function and leading to cell death

[31]. The selective deletion of pro-apoptotic BCL-2 family

proteins, such as BAX, BIM, or PUMA, significantly delays

disease onset in animal models of ALS [30, 32, 33].

Parkinson’s disease (PD) develops from the specific loss

of dopaminergic neurons in the substantia nigra. In phar-

maceutically induced models of PD this cell death is

regulated by BCL-2 family proteins [34, 35]. Axonal

degeneration is also evident in PD and is not just limited to

dopaminergic neurons. The early axonal degeneration of

serotonergic neurons may contribute to non-motor-related

pathologies of PD including anxiety and depression [36].

Apoptosis and axonal degeneration also occur in more

acute pathologies such as stroke. Outside of the necrotic

core of the infarct in stroke, neurons within the penumbra

die from delayed apoptosis, which can be prevented in

mouse models by the genetic deletion of BAX [37]. Axonal

degeneration has been reported in murine models of stroke

[38] and may occur in distinct phases [39].

Wallerian degeneration is a type of axonal degeneration

that is thought to occur independent of BCL-2 family pro-

teins [40]. Curiously, Wallerian degeneration can even

occur in axons devoid of mitochondria [41] and appears to

be independent of BAX and BAK [40]. In response to nerve

crush or axotomy, the axon distal to the site of injury

undergoes Wallerian degeneration, which involves the

activation of calcium-dependent cysteine proteases called

calpains that degrade the axon. The portion of the axon

proximal to the injury, and still connected to the cell body,

remains intact [42]. Here, we mainly discuss BCL-2 family-

regulated axon degeneration that requires MOMP and cas-

pase activation (commonly referred to as “pruning”). The

contribution of Wallerian degeneration to neurodegenera-

tive disease and injury is discussed elsewhere [43].

BCL-2 family regulation of MOMP

MOMP is regulated by interactions among anti-apoptotic

(BCL-2, BCL-XL, BCL-W, and MCL-1) and pro-apoptotic

members of the BCL-2 family proteins. The pro-apoptotic

proteins are generally subdivided on the basis of function

and the presence of BCL-2 homology (BH) motifs [44] into

the pore-formers (BAX and BAK), and the BH3-only pro-

teins (BID, BIM, PUMA, NOXA, BAD, BIK, HRK, etc.).

Anti-apoptotic proteins and the pro-apoptotic pore formers

contain all four BH motifs (BH1–4), while the BH3-only

proteins, as implied from their name, possess only the BH3

motif. Abundance, relative affinity and post-translational

modifications all dictate how BCL-2 family proteins interact

with each other, ultimately leading to the execution or

prevention of MOMP [1]. The embedded together model,

reviewed elsewhere [1, 45], posits that these interactions are

competitive binding interactions that result in either acti-

vation or mutual sequestration mediated inactivation [46–

49], the affinities of the requisite interactions are altered by

binding to the mitochondrial membrane as the active plat-

form. MOMP occurs upon the activation and oligomeriza-

tion of the pore-forming proteins BAX and/or BAK on the

MOM. BAX and BAK become activated through binding

BH3-only “activator” proteins such as BID, BIM, and

PUMA. MOMP can be prevented by anti-apoptotic proteins

such as BCL-XL and BCL-W by binding to BH3-only

activators and/or activated BAX or BAK. As the resulting

heteromeric complexes are neither pro nor anti-apoptotic,

we refer to this as mutual sequestration [50]. Finally,

“sensitizer” BH3-only proteins such as BAD and NOXA

promote MOMP by binding to select anti-apoptotic pro-

teins, resulting in the displacement of BH3 activators and

active pore formers. Upon BAX activation and subsequent

MOMP, cytochrome c is released from the mitochondrial

intermembrane space to the cytoplasm where it binds with

seven Apaf-1 and caspase-9 molecules in a large complex

called an apoptosome. Complex formation activates cas-

pase-9, which, in turn, activates the executioner caspase-3

that degrades many cellular proteins, contributing to apop-

tosis of the cell (Fig. 1). In addition to cytochrome c, other

proteins released into the cytoplasm by MOMP contribute

to cell death. Released proteins include apoptosis inducing

factor (AIF), endonuclease G (EndoG), SMAC (also called

DIABLO), and Omi (also called HtrA2). AIF and EndoG

translocate to the nucleus to induce chromatin condensation

and DNA fragmentation [51]. SMAC binds to and inhibits

x-linked inhibitor of apoptosis protein (XIAP), which nor-

mally prevents caspase activity [52]. Omi is a serine pro-

tease that cleaves XIAP as well as other target proteins [53].

PUMA and BAX are the main regulators of
neuronal MOMP

The rate limiting step for MOMP is the activation of one or

more of the multi-BH motif pore-forming proteins BAX,

BAK, or BOK [54]. Surprisingly, in a variety of different

110 J. M. Pemberton et al.



neuron cultures the deletion of BAX is sufficient to confer

full protection from apoptosis (Table 1), while the deletion

of BAK offers no protection [21, 55, 56] and BOK is

reported to have no apoptotic role in neocortical neurons

[57]. A neuron-specific splice variant of BAK, called N-

BAK, has been identified [58], however, the expression of

the protein is largely suppressed, and therefore it likely has

no apoptotic role [59]. Despite this, in mouse knockout

studies the double deletion of both BAX and BAK results in

a further accumulation of neurons in the CNS compared to

BAX deletion alone [60]. Furthermore, the added deletion

of BAK lowers the number of pups that survive into

adulthood to <10%. The triple deletion of BAX, BAK, and

BOK results in: abnormal brain development and even

fewer survivors, but 1% do survive to adulthood [61].

Overall, these knockout studies suggest that BAK and BOK

may have a relevant role in the normal apoptosis of the

nervous system throughout development. It would be

interesting therefore to determine the extent to which BAK

and BOK may contribute to axon degeneration rather than

playing a major role in survival.

The proteins responsible for BAX activation are the

BH3-only “activators” BID, BIM, and PUMA. Despite

being a potent direct activator of BAX, there is limited

evidence to suggest that BID plays a fundamental role in

neuronal cell death [62, 63], and no indication it contributes

to axon degeneration [24, 64]. The expression of BIM has

been shown to increase in neurons deprived of nerve growth

factor (NGF), and in neuronal cultures undergoing ER or

oxidative stress [35, 65, 66]. The selective deletion of BIM

can delay neuronal apoptosis in some circumstances

in vitro, and may play a role in the progression of neuro-

degenerative disease, as knockout of BIM increases lifespan

and delays disease onset in a mouse model of ALS [33].

However, while BIM knockout has been shown to delay

neuronal apoptosis upon NGF deprivation, complete pro-

tection is afforded by the genetic deletion of BAX [67],

suggesting that other factors, in addition to BIM, can result

in BAX activation and neuronal apoptosis. Indeed, there is a

growing list of publications that demonstrate both neuronal

apoptosis and axon degeneration are highly dependent on

the BH3-only protein PUMA (Tables 1 and 2). Moreover,

numerous publications demonstrate that unlike BIM the

single deletion of PUMA prevented both neuronal apoptosis

[35, 65, 66, 68–71] and axon degeneration [64] in vitro.

PUMA was first discovered as a potent apoptosis indu-

cing BCL-2 family member transcriptionally regulated by

p53 [72, 73] hence its name; the p53 upregulated modulator

of apoptosis (PUMA). However, other transcription factors,

including CHOP [65] and Foxo3a [35], also regulate the

expression of PUMA, enabling its expression in response to

multiple varieties of stress in addition to DNA damage

[65, 70, 74]. Deficiency of PUMA and/or BAX is sufficient

to prevent neuronal cell death in response to oxidative

stress, ER stress, DNA damage, environmental toxins,

proteasomal inhibition, stroke-like stress, trophic-factor

deprivation, pan-kinase inhibition, and death receptor acti-

vation (Table 1). PUMA and BAX are also required for

axon degeneration induced by local deprivation of NGF

(Table 2). The local application of small-molecule inhibitors

of anti-apoptotic proteins (termed BH3 mimetics) on axons

is sufficient to induce PUMA- and BAX-dependent axon

Fig. 1 Different stressors/

damage (indicated by a red

“X”) induce the transcription

and translation of PUMA,

resulting in activation of BAX,

cytochrome c release and

subsequent caspase activation.

In neuronal apoptosis it remains

uncertain if PUMA activates

BAX directly or indirectly.

Unknown mechanisms are

indicated by a “?”.
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degeneration (Table 2). PUMA and BAX have been

demonstrated to be required for apoptosis and axon

degeneration in a variety of neuronal cell types from both

the CNS and PNS, and across different species (mouse and

rat) by multiple independent groups (Tables 1 and 2),

suggesting that they play a significant role in regulating

neuronal MOMP.

Regulation of cell death and axon
degeneration

Often axon degeneration occurs without the death of the

neuronal cell body. In order to prevent the neuronal cell

death and axon degeneration that contributes to neurode-

generative pathology, it is important to understand what

factors determine whether axon degeneration or neuronal

apoptosis occurs. One component may be the location of

stress. Whole cell trophic-factor deprivation causes both

PNS and CNS neurons to die in a PUMA- and BAX-

dependent manner [7, 71, 75], however, trophic-factor

deprivation exclusively from axons results in degeneration

[24]. Using microfluidic chambers that enable separate

treatment of neuronal cell bodies and axons, trophic-factor

deprivation from axons results in transcriptional upregula-

tion of key genes required for axon degeneration such as

bbc3, encoding PUMA [9, 64] (Fig. 2). PUMA expression

de novo in the cell body is required for axon degeneration

as application of the transcriptional inhibitor Actinomycin

D prevents trophic-factor withdrawal-induced axon degen-

eration [9, 64]. PUMA is a BH3-only protein and, thus, is

predicted to function as either a direct activator or a sensi-

tizer (indirect activator) of BAX and BAK. Numerous

publications have shown that the BH3-domain of PUMA

can directly bind to and activate BAX, resulting in MOMP

[75–77]. In addition, PUMA can also bind to and inhibit all

anti-apoptotic proteins [78]. Therefore, PUMA has two

apoptotic functions to execute MOMP (activator and sen-

sitizer), but which of these functions occur during neuronal

apoptosis or axon degeneration? The reported role for

PUMA in apoptosis and axon degeneration may be related

to the location of BCL-2 family proteins. Biochemical

fractionation has determined that the anti-apoptotic proteins

BCL-2 and MCL-1 are primarily localized within the cell

body of cultured murine DRG neurons, while BCL-XL and

BCL-W can be found in both the cell body and axon

[18, 64]. Localization of mitochondria within the axon may

also play a relevant role. For example, in PNS neurons,

accumulations of mitochondria are consistently observed at

nodal junctions between myelin on the axon and at the

synapse, both areas that are rich in membrane channel

proteins and participate in the generation of action poten-

tials [79]. However, CNS neurons appear to have moreT
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axonal mitochondria at intermodal areas [80]. Could

MOMP selectively occur to one cluster of mitochondria

within the axon, and not perpetuate down the length of the

axon? Or does an apoptotic trigger wave occur spreading

down the entire length of the axon [81]? It makes intuitive

sense that MOMP occurring in the cell body would induce

apoptosis, while selective MOMP in the axon could result

in axon degeneration (Fig. 2). Indeed, selective application

of BH3-mimetic to axons results in caspase activation and

subsequent degeneration [17, 64, 82]; suggesting that axo-

nal MOMP is sufficient to induce degeneration. Addition-

ally, because BH3 mimetics work by inhibiting anti-

apoptotic proteins, these data suggest that the sensitizer

function of PUMA would be sufficient to induce axon

degeneration. Immunofluorescence assays have also shown

that trophic-factor deprivation from axons results in cyto-

chrome c release [24], but whether MOMP is exclusive to

the axon remains to be determined. Western blot and mass

spec demonstrate that PUMA (protein) can be detected in

the cell body while evidence for synthesis in or localization

to the axon is less clear [9, 64]. PUMA is required for CNS

neurons to die from trophic-factor deprivation (Table 1),

however, a role for PUMA in CNS neuron axon

degeneration has not been determined. In PNS neurons,

selective application of the translational inhibitor cyclo-

heximide to the cell body prevents axon degeneration, thus

de novo PUMA expression in the cell body is required for

axon degeneration [64]. However, it is unknown how the

expression of PUMA in the cell body of PNS neurons

results in axonal MOMP, while sparing the cell body

(Fig. 2). Furthermore, neurons somehow restrict the spil-

lover of active caspases from the axon into the cell body. A

role has been speculated for the endogenous caspase inhi-

bitor XIAP in preventing active caspases reaching the cell

body [24], but how XIAP is regulated in apoptosis versus

axon degeneration remains unclear. Additionally, it is

unclear how neuronal cell death is prevented in the cell

body subsequent to MOMP mediated release of other

mitochondrial proteins including many implicated in cell

death-including cytochrome c, EndoG, Smac, and Omi

(Fig. 2). One key difference between the CNS and PNS

is the remarkable ability of PNS neurons to regenerate

after xonal degeneration [83]. In the PNS, regeneration of

the axon is possible as long as the neuronal cell body

remains alive. Thus, future research should investigate

whether in CNS neurons the cell bodies die after axon

Fig. 2 Local deprivation of

trophic factor(s) from axons

results in a retrograde signal

to upregulate transcription of

puma. Increased PUMA

expression results in either

direct or indirect activation of

BAX, induction of caspase

activation and subsequent

degeneration of the axon.

However, there are many

unknowns in the regulation of

selective degradation of axons

including: the location of

MOMP, how caspase-9 is

activated, and how neuronal cell

bodies remain alive when

PUMA is expressed and

caspases activated. Unknown

mechanisms are indicated by a

“?”. The numbers “1” and “2”

indicate the extension of

activation and inhibition signals

down the axon, respectively.
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degeneration, potentially explaining one reason why

regeneration in the CNS is so poor. If so then understanding

of how PNS neuronal cell bodies survive becomes even

more important.

Another relevant factor may be assembly of the apop-

tosome at the onset of neuronal apoptosis [24, 64] (Fig. 1),

but not axonal degeneration [24] (Fig. 2). Mature neurons

restrict the expression of Apaf-1 through chromatin remo-

deling limiting caspase-9 activation by MOMP [84].

However, during neuronal degeneration, activation of

caspase-9 occurs by an as yet unknown mechanism

[24, 82]. The activation of executioner caspases and sub-

sequent apoptosis has been reported to occur in

other cell types genetically deficient in either Apaf-1 or

caspase-9 [85].

Pharmacological inhibition of apoptotic
machinery—implications for
neurodegenerative disease

Activation of BAX is required in both axon degeneration

and neuronal cell death. However, attempts at therapies

preventing cell death in response to neurological damage

have targeted steps either upstream or downstream of the

coordination of BCL-2 family proteins at the mitochondria.

For example, Foretinib, a pan-kinase inhibitor, was identi-

fied in a screen for kinase inhibitors that could reduce cell

death and axon degeneration in rat superior cervical gang-

lion cultures [86]. Foretinib inhibits both trophic-factor

deprivation-induced axon degeneration and Wallerian

degeneration (due to axotomy). However, Foretinib delayed

but did not prevent axon degeneration in vivo upon sciatic

nerve-crush experiments in rats [86].

In contrast, in ischemia and reperfusion injury, the

inhibition of JNK signaling has been an attractive target to

prevent apoptosis for the protection of tissues [87, 88].

Inhibiting JNK3 has been proposed for treating ALS as JNK

inhibition prevents the apoptosis of motor neurons derived

from human iPS cells [89]. Consistent with potential utility

in ALS, the selective JNK inhibitor SP600125 protects CNS

neurons from axon degeneration induced by trophic-factor

withdrawal [90]. Although cardioprotective and neuropro-

tective activities have been observed for synthetic small-

molecule inhibitors of JNKs [87], systemic administration

of current JNK inhibitors is expected to suffer from on-

target side effects because different members of the JNK

family exert diverse physiological properties. Therefore, to

be useful as neuroprotectants it will be necessary to make

inhibitors with exquisite isoform specificity. Recent struc-

ture activity relationship studies resulted in an inhibitor that

is somewhat more specific for JNK3 suggesting selectivity

may be achievable [91].

In contrast to these inhibitors that act upstream of

MOMP, attempts to inhibit the function of caspases

downstream of MOMP met limited success. Treatment of

NGF deprived murine neurons with pan-caspase inhibitor

Z-VAD-FMK only partially protected neurons from cell

death or axonal degradation compared to BAX knockout

neurons [92]. This result is consistent with the release of

multiple pro-apoptotic molecules from mitochondria by

MOMP (Fig. 3) and suggests that the prevention of MOMP

would be a more effective strategy than inhibiting apoptosis

downstream of MOMP [93]. Thus, pharmacologic targeting

of BAX may be an efficient way to limit cell death, as BAX

activation is required for MOMP induced apoptosis (Fig. 3).

Until recently only the inhibitory BCL-2 family proteins

have been selectively targeted by compounds. The success

of the BCL-2 inhibitor Venetoclax, in patients with chronic

lymphocytic leukemia, small lymphocytic lymphoma, and

as a combinatorial therapy in acute myeloid leukemia [94–

96], clearly demonstrates that the protein–protein interac-

tions of BCL-2 family proteins are druggable. Venetoclax

and other inhibitors of anti-apoptotic proteins are referred to

as BH3 mimetics because they were designed to mimic the

BH3 motif of BAD, and thereby function as competitive

inhibitors for binding of BH3 proteins and active BAX and

BAK to anti-apoptotic proteins [97]. As activation of BAX

is rate limiting for MOMP and is regulated by multiple

BCL-2 family members upstream of oligomerization, Bax is

an ideal post-insult target (Tables 1 and 2). Genetic deletion

of BAX does not prevent cell injury but has been shown to

prevent neuronal cell death in mouse models of stroke and

traumatic brain injury [37, 98]. Thus, small peptides based

on BH3 motifs that inhibit rather than activate BAX, similar

to those identified for BAK [99], or synthetic small mole-

cules that bind interfaces on BAX allosteric to the canonical

BH3-groove interface would be very useful tools. The

small-molecule inhibitor BAI1 binds at a novel, allosteric

pocket between the α5–α6 hairpin and the loop between α3

and α4 [100]. Microscale thermophoresis measurements

and chemical shift perturbations in 15N-1H HSQC nuclear

magnetic resonance experiments demonstrate that BAI1

binds BAX directly. Although BAI1 appears to inhibit BAX

and not BAK, given the similar fold between BCL-2 family

members it remains to be formally determined whether

BAI1 will have off-target effects due to binding of other

BCL-2 family proteins [101]. The in vivo activity of BAI1

to prevent apoptosis is limited. Nonetheless, in zebrafish

and mice, BAI1 protects against doxorubicin-induced car-

diomyopathy as measured by a reduction in caspase-3

cleavage and retention of mitochondrial polarization [102].

The effects of BAI1 in cerebral injury or ischemia-

reperfusion models have yet to be demonstrated but pro-

vide an exciting opportunity that may drive further devel-

opment of this early stage synthetic.
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Inhibition of BAX prior to activating conformation

changes such as oligomerization and insertion into mem-

branes is attractive because in neurons it would prevent all of

the pro-apoptotic BH3 proteins from triggering MOMP and

therefore also prevent release of other pro-apoptotic proteins

from mitochondria (Fig. 3). In addition, BAX activation can

occur independent of BH3-only proteins by heat or a variety

of small molecules suggesting there may be as yet undis-

covered effectors of BAX in cells [103, 104]. BAX and

BAK execution of MOMP has also been demonstrated in

cultured cells in which the genes encoding all known BH3-

only proteins have been deleted [105], further stressing the

importance of targeting the executioner proteins directly as

opposed to other upstream signaling proteins.

Currently, there is only one study demonstrating that it is

possible to inhibit both BAX and BAK with a single com-

pound. MSN-50 and MSN-125 were identified as BAX

oligomerization inhibitors and shown to prevent cell death of

cortical neurons from glutamate excitotoxicity [106]. Inhi-

bition of BAX and BAK with these molecules protected cells

long enough that they were able to recover from an otherwise

lethal exposure to Actinomycin D or Staurosporine.

BAI1 and the oligomerization inhibitors MSN-50 and

MSN-125 are early stage tool compounds with micromolar

affinities- with off-target effects at effective concentrations.

Nonetheless, it may be possible to use BAI1 to probe the

role of BAX in axonal degeneration. Most important, BAI1

enabled identification of the binding pocket on BAX which

will likely lead to optimization of these inhibitors, or new

molecules.

Given the emergence of these inhibitors, the question

remains if pharmacological BAX inhibition protects against

neurological events such as stroke. After the excitotoxic cell

death characteristic of ischemic injury from a stroke, there is

a transitional period where a reduction of local cerebral

blood flow results in programmed cell death over a number

of days, to weeks [107–109]. This time period provides a

unique opportunity for a BAX inhibitor to limit the amount

of cell death following stroke. However, it remains

unknown whether pharmaceutical inhibition of BAX can

prevent axonal degeneration, and if preventing this axonal

degeneration will translate to better outcome for patients. If

BAX inhibition is demonstrated to provide therapeutic

benefit it would provide the impetus for optimization of

Fig. 3 Rationale for the

development of BAX

inhibitors. Upstream signaling

pathways converge at the MOM

with BAX activation as the

commitment step in apoptosis.

Preventing caspase activation is

not sufficient as MOMP causes

the release of pro-apoptotic

proteins that can lead to caspase

independent cell death.

116 J. M. Pemberton et al.



specificity, affinity, and pharmacological properties of a

BAX inhibitor.

The initial reaction to inhibiting BAX and BAK as a

treatment for neurological diseases of all kinds including

neurodegenerative diseases such as ALS has been skepti-

cism as BAX and BAK are predicted to be tumor sup-

pressors. However, BAX deficiency alone does not result in

an increased risk to spontaneous cancer formation in mice

[110]. Additionally, an acute insult such as ischemia or

stroke would only require transient BAX inhibition, further

limiting risk to cancer development. Given the exquisite

dependence of neuronal cell death on PUMA and BAX

an attractive approach would be to target this protein

pair specifically, which may limit undesirable on-target

effects in other tissues. Only with the development of better

tool compounds will it be possible to address both the

potential benefits and issues related to inhibiting neuronal

apoptosis.

Noncanonical roles of BCL-2 family proteins
in neurons

BCL-2 family proteins are well known for their role in

regulating MOMP, resulting in caspase activation and

committing a neuron to either apoptosis or axon degenera-

tion. However, other types of cell death exist which proceed

independently of caspase activation [111, 112], but may still

be regulated in part by noncanonical functions of BCL-2

family proteins. Indeed, other types of cell death such as

necroptosis and ferroptosis contribute to the pathology of

neurological disease and trauma, such as hemorrhagic

stroke [113]. Necroptosis signaling has been shown to

contribute to the progression of Wallerian degeneration of

both CNS and PNS neurons [114], a process that when

induced through nerve-crush experiments, also results in a

transcriptional upregulation of PUMA [9]. In colorectal

cancer cell lines PUMA can enhance necroptosis signaling

by inducing the release of mitochondrial DNA to the

cytoplasm where it is recognized by DNA sensors DAI/

Zbp1 and STING, leading to enhanced signaling by RIP3

and phosphorylation of MLKL [115]. Curiously, genetic

deletion of BAX and BAK had no effect on inhibiting this

necroptosis, suggesting that PUMA acts in a noncanonical

fashion to induce necroptosis [115]. This is in stark contrast

with another study showing that the genetic deletion of

BAX is sufficient to prevent necroptosis in mouse

embryonic fibroblasts [116]. Further research is required to

determine whether PUMA and/or BAX contribute to

necroptosis signaling in neuronal cell death and/or axon

degeneration (Wallerian), and whether pharmacological

inhibition of either protein can prevent non-apoptotic

neuron death. If so, inhibition of BAX may be sufficient

to prevent multiple types of neuronal cell death, and mul-

tiple types of axon degeneration. It is also vital to under-

stand the mechanism by which BAX is required for

necroptosis, as current small-molecule inhibitors such as

MSN-125 prevent BAX oligomerization. If BAX oligo-

merization is not required for necroptosis, an alternative

strategy will be needed to inhibit this form of cell death.

Ferroptosis is a MOMP independent, iron-dependent form

of programmed cell death that occurs upon the accumula-

tion of lipid peroxidation [117]. Conditional deletion of the

antioxidant enzyme glutathione peroxidase 4 results in rapid

motor neuron cell death through ferroptosis and paralyzes

mice, suggesting that the inhibition of ferroptosis may

play a role in the response to oxidative stress in adult motor

neurons in vivo [118]. Moreover, ferroptosis kills a large

percentage of the cells during transdifferentiation of somatic

cells, such as fibroblasts, into neurons [119]. Surprisingly,

overexpression of either BCL-2 or BCL-XL improved

the efficiency of neuron conversion by reducing the levels

of reactive oxygen species (ROS), and preventing ferrop-

tosis [119]. How anti-apoptotic proteins reduce ROS is

unknown, however, the expression of BCL-2 mutants

such as one in which serine 70 was replaced with

alanine exhibited reduced BAX binding but increased

activity at preventing ferroptosis, suggesting that BCl-2 and

BCL-XL prevent ROS accumulation through a non-

canonical role [119].

Chemotherapy-induced peripheral neuropathy is a form

of pathological axon degeneration that occurs in patients

treated with the chemotherapeutic paclitaxel. Paclitaxel

treatment of cultured sensory neurons prevents the axonal

transport of bclw mRNA, reducing protein levels and

resulting in peripheral neuropathy [120]. BAX may also be

involved as knockdown significantly reduced axon degen-

eration induced by paclitaxel. Interestingly, loss of axonal

BCL-W was reported to result in aberrant calcium signal-

ing, possibly from the IP3 receptor at the ER, and subse-

quently calpain activation [120]. Consistent with this,

release of cytochrome c from axonal mitochondria was not

observed in cultured neurons treated with paclitaxel [120].

Together, these data suggest that BCL-W and BAX act

independently of MOMP to regulate peripheral neuropathy.

Thus, caspase inhibitors are unlikely to be useful as MOMP

and subsequent caspase activation do not contribute to this

form of axon degeneration. However, a BAX inhibitor may

be of clinical use because the knockdown of BAX protected

cultured axons from neuropathy.

Conclusion

Unlike other cells, neurons regulate the degeneration of a

large part of the cell, the axon, without the cell dying.
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Surprisingly, neurons use BCL-2 family proteins to regulate

both cell death and axon degeneration. Moreover, despite

the redundancy that exits within the BCL-2 family that

presumably enables cells to respond differently to many

stimuli, several types of neurons require only PUMA and

BAX to execute many instances of apoptotic and axon

degeneration events (Fig. 4). This unique reliance on only

two BCL-2 family proteins affords the possibility of phar-

maceutical intervention without serious effects in other

tissues where the role of PUMA and BAX is more redun-

dant. To take the advantage of the unique regulation of

apoptosis and axon degeneration in neurons, it is important

to more fully understand the detailed mechanism(s) of

PUMA- and BAX-induced MOMP (Fig. 4). Such infor-

mation is a key to the development of BAX inhibitors that

will ultimately save neurons in a wide variety of neurolo-

gical conditions with minimal effects on other tissues. In

addition to PUMA and BAX, other BCL-2 family proteins

have been shown to contribute to the regulation of both

apoptosis and other types of neuronal death (necroptosis

and ferroptosis) and Wallerian axon degeneration. Thus, a

more detailed understanding of these processes will likely

reveal other potential therapeutic targets. Importantly the

imminent development of specific small-molecule inhibitors

of BAX will provide the initial tools needed to parse

mechanistic details of the coordinate regulation of

apoptosis, necroptosis, and other forms of cell death in the

pathology of neurodegenerative disease.
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Fig. 4 The BCL-2 family

proteins PUMA and BAX

regulate axon degeneration

and apoptosis. This unique

reliance on only two proteins

affords the possibility of

pharmacological inhibition to

prevent both process from

occurring with minimal effects

in other tissues. However,

detailed understanding of the

mechanism(s) of PUMA and

BAX induced MOMP and

necroptosis are first required.
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