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Brain cells normally respond adaptively to oxidative stress or bioenergetic challenges,

resulting from ongoing activity in neuronal circuits. During aging and in neurodegenerative

disorders, these mechanisms are compromised. In fact, neurons show unique

age-related changes in functions and metabolism, resulting in greater susceptibility

to insults and disease. Aging affects the nervous system as well as other organs.

More precisely, as the nervous system ages, neuron metabolism may change,

inducing glucose hypometabolism, impaired transport of critical substrates underlying

metabolism, alterations in calcium signaling, and mitochondrial dysfunction. Moreover, in

neuronal aging, an accumulation of impaired and aggregated proteins in the cytoplasm

and in mitochondria is observed, as the result of oxidative stress: reduced antioxidant

defenses and/or increase of reactive oxygen species (ROS). These changes lead to

greater vulnerability of neurons in various regions of the brain and increased susceptibility

to several diseases. Specifically, the first part of the review article will focus on the

major neuronal cells’ rearrangements during aging in response to changes in metabolism

and oxidative stress, while the second part will cover the neurodegenerative disease

areas in detail.

Keywords: aging, neurodegeneration, energetic metabolism, mitochondrial dysfunction, oxidative stress

INTRODUCTION

Aging affects the nervous system as well as other organs. In fact, neuronal cells are subjected
to damaged protein accumulation, increased oxidative stress, perturbed energy homeostasis
and mutations in nucleic acids. These alterations occur in normal aging and are exacerbated in
vulnerable neuronal populations in neurodegenerative diseases.

During aging, the brain gradually declines leading to memory, learning, motor coordination
and attention impairment (Alexander et al., 2012; Dykiert et al., 2012; Levin et al., 2014). Elderly
people show difficulties in the understanding of rapid speech and complex syntaxes, due to
cognitive impairment, but also due to hearing loss (Alexander et al., 2012). Brain decline parallels
the aging of other organs, with a progressive deterioration after 50 years (Mendonca et al., 2017).
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At the 60-year threshold, most people become increasingly
inclined to develop neurodegenerative diseases, such as
Alzheimer’s disease (AD) and Parkinson’s disease (PD;
Mattson, 2004; Kalia and Lang, 2015; Scheltens et al., 2016;
Aarsland et al., 2017).

Interestingly, it has been reported that the human brain
shrinks in an age-related manner, mostly in the temporal and
frontal lobes (Peters, 2006). In fact, the development of brain
atrophy during aging may anticipate the risk of developing
cognitive impairment and dementia (Jack et al., 2005).

AGING

Oxidative Imbalance
Brain is susceptible to oxidative stress because of the elevated
content of lipids—especially localized in the neuronal
membrane—and the oxidative metabolism occurring in
neurons. Tight balance between oxidative stress and the
antioxidant system is necessary to preserve the structural
integrity and the optimal brain functions (Birben et al., 2012;
Castelli et al., 2018). Oxidative damage is involved in aging and
age-associated cognitive impairment. During aging, neurons
tend to accumulate impaired and aggregated proteins, and
damaged mitochondria, as a consequence of oxidative stress.
Increase of reactive oxygen species (ROS) production and/or
decrease in antioxidant scavengers are the major players in this
process (Halliwell, 2001; Figure 1).

Cognitive impairment (Berr et al., 2000; Serrano and Klann,
2004; Kim et al., 2015) and oxidative brain injuries are mainly
due to lipid peroxidation products (Calabrese et al., 2004;
Richwine et al., 2005; Zhu et al., 2006), protein oxidation
(Abd El Mohsen et al., 2005; Rodrigues Siqueira et al., 2005;
Poon et al., 2006), and oxidative alterations in nuclear and
mitochondrial DNA (mtDNA; Hamilton et al., 2001). Elevated
levels of protein carbonylation have been reported in different
parts of the brain, among which includes the hippocampus
(Abd El Mohsen et al., 2005; Rodrigues Siqueira et al., 2005).
The principal neuronal cells ROS source originates from
mitochondrial respiration and leads to increased intracellular
calcium levels (Halliwell, 2001; Figure 1).

The age-related memory impairment is associated with
decreased levels of antioxidants in the brain and plasma
(Perkins et al., 1999; Berr et al., 2000; Rinaldi et al., 2003).
In physiological conditions, two principal defense mechanisms
required to counteract ROS-mediated damage are activated
in the brain: the antioxidant enzymes and non-enzymatic
antioxidants (Kohen et al., 2000; Kohen and Nyska, 2002).
Among the ROS scavenger enzymes, superoxide dismutase
(SOD), glutathione reductase, glyoxalase, glutathione peroxidase,
and catalase (CAT; Griendling et al., 2000) are comprised. It
has been widely demonstrated in various animal models that
the intracellular glutathione concentration and the ratio of
glutathione/glutathione disulfide (GSH/GSSG ratio) declines in
an age-related manner (Sasaki et al., 2001; Sandhu and Kaur,
2002; Rebrin et al., 2003;Wang et al., 2003; Suh et al., 2004, 2005).
This event has been described in all of the mammalian brain
regions analyzed, including the hippocampus (Calabrese et al.,

2004; Balu et al., 2005; Donahue et al., 2006; Zhu et al., 2006).
In this condition, Nrf2 (nuclear factor erythroid 2-related factor)
transcription factor switches on. The Nrf2 pathway is activated
to counteract the accumulation of ROS and reactive nitrogen
species since its activation increases the expression of several
endogenous antioxidants. Aged animals show a decrease in
Nrf2 activation compared to younger subjects (Safdar et al., 2010;
Gounder et al., 2012). In agreement, in aged brains, as well as
in other tissues, Nrf2 expression is decreased (Duan et al., 2009;
Ungvari et al., 2011), paralleled by an increase in inflammatory
genes in these organs (Ungvari et al., 2011). For this reason,
Nrf2 has been suggested as a potential therapeutic target
in diseases with neuroinflammatory and oxidative properties
(Salim, 2017).

The mechanisms by which ROS leads to cerebral tissue
damage is not clear. ROS may induce the activation of different
molecular signaling pathways, including neuroinflammation
and neuronal death (Gu et al., 2011; Figure 1), with the
involvement of glutamate toxicity, aspartate receptor signaling
and glucocorticoid receptor signaling (Albrecht et al., 2010;
Nguyen et al., 2011). Biochemically, neurons have different
susceptibilities to oxidative stress. For example, amygdala,
hippocampus, and cerebellar granule cells are more vulnerable to
oxidative stress (Wang andMichaelis, 2010), and accordingly are
the first to degenerate. Interestingly, the increased vulnerability
of the amygdala and the hippocampus to oxidative stress,
together with the lack of antioxidant defenses, alter the
biochemical integrity of the brain. Additionally, oxidative stress
also affects glutamatergic receptors, responsible for the long-term
potentiation and synaptic transmission (Haxaire et al., 2012; Lee
et al., 2012; Rai et al., 2013). Altogether, these events underlay
oxidative stress-induced cognitive decline.

Organelle Dynamics
The most typical responses to brain perturbations involve
distinct organelles, including the endoplasmic reticulum, which
allows the mediation of the Unfolded Protein Response (UPR),
the mitochondria, which plays a leading role in regulating
apoptosis, the nucleus, in which DNA lesions can trigger stress,
and peroxisomes, which have a significant role in the response to
oxidative stress (Figure 1).

Alterations in energy or nutrient balance, and changes in
calcium signaling or redox status modify endoplasmic reticulum
homeostasis, triggering reticulum stress, increased misfolded
proteins, and upregulation of UPR. In fact, during aging, there
is an imbalance between UPR protective adaptive response and
pro-apoptotic signaling in favor of apoptosis (Paz Gavilán et al.,
2006; Hussain and Ramaiah, 2007; Naidoo et al., 2008) with
the consequent alteration of the capability to maintain proper
protein folding and ER homeostasis (Figure 1).

Mitochondrial structure does not change during aging (Ledda
et al., 2000; Martinelli et al., 2006). These organelles are mainly
localized in neuronal axons and dendrites and are responsible
for ATP generation, necessary for maintaining electrochemical
neurotransmission and for cell repair (Mattson et al., 2008). One
of the most usual consequences of the natural aging process is the
reduced level of Ca2+-binding proteins.
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FIGURE 1 | Effect of aging in neuronal cell and involved mechanisms.

Beyond their pivotal role in cellular energy metabolism
production, mitochondria are also involved in cellular Ca2+

homeostasis and nuclear gene transcription regulation (Hou
et al., 2012; Yun and Finkel, 2014; Raefsky and Mattson, 2017).
Calcium signaling plays a fundamental role in neuronal function,
regulation and the structural adaptive mechanism (Cohen et al.,
2015). In particular, Ca2+ contributes to synaptic activity and
is involved in the transmission of the depolarizing signal.
During aging the ability of neuronal cells to maintain a proper
energy level can be compromised, thus impacting on Ca2+

homeostasis and determining weakened control Ca2+ dynamics.
As a consequence, an aberrant cytoplasmatic Ca2+ level occurs,
paralleled by perturbed cytoskeletal dynamics and abnormal
gene expression (Thibault et al., 2001; Toescu et al., 2004; Gant
et al., 2006; Porte et al., 2008). It is clear that altered Ca2+

signaling is involved in impaired cognition. The restoration of
Ca2+ homeostasis in aged rats leads, in fact, to an improvement
of cognitive performances (Fukushima et al., 2008; Gant et al.,
2015). Moreover, hippocampal neurons are more susceptible
to Ca2+-excitotoxicity (Camandola and Mattson, 2011). Ca2+-
dependent calpains activation is involved in neuronal injury and
cell death, due to PARP1-mediated apoptosis (Mattson, 2000;
Nixon, 2003; Fatokun et al., 2014).

Furthermore, the generation of membrane permeability
transition pores is crucial in the apoptosis process (Mattson,

2000). Changes in brain energy metabolism can cause weakening
of neuronal functions and alterations leading to neuronal death
(Mattson et al., 2008; Grimm and Eckert, 2017; Figure 1).

As indicated above, in the aged brain, a failure in the
normal antioxidant defense mechanisms occurs, which renders
the brain more vulnerable to the lethal consequences of oxidative
stress (Finkel and Holbrook, 2000). It has been reported
that mitochondrial-free radicals are responsible for mtDNA
damage. Post-mortem brains of elderly showed elevated levels
of 8-hydroxy-2-deoxyguanosine in both nuclear DNA (nDNA)
and in mtDNA. Moreover, some researchers indicated greater
damage in mtDNA than in nDNA in aged rodents (Barja and
Herrero, 2000; Barja, 2004; Yang et al., 2008).

During aging, mtDNA oxidative-induced mutations
accumulate in post-mitotic tissues, including the brain (Chomyn
and Attardi, 2003; Kraytsberg et al., 2003). A growing body of
evidence indicates mtDNA mutations as the crucial mechanism
leading to aging (Kujoth et al., 2005; Santos et al., 2013; Aon
et al., 2016; Scheibye-Knudsen, 2016; DeBalsi et al., 2017;
Kauppila et al., 2017; Figure 1). In a recent review, it has been
highlighted that accumulation of mutations can induce an
alteration in mtDNA replication, leading to electron transport
chain activity loss and altered mitochondrial respiration
(DeBalsi et al., 2017). In aging, organelle efficiency fails, leading
to pathological status (Chauhan et al., 2014). Mitochondrial
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dynamics are protective in maintaining mitochondria integrity.
In fact, during aging, synaptosomal mitochondria shift to a
pro-fusion state occurs (Stauch et al., 2014). In the skeletal
muscle, the lack of fusion, due to Mfn1 and Mfn2 ablation,
induces accumulation of deletions and point mutations in
the mitochondrial genome, together with muscle atrophy and
mitochondrial alterations (Chen et al., 2010). Moreover, the
absence of fusion, resulting from Drp1 ablation in mice adult
forebrain, causes mitochondrial dysfunction and altered synapsis
transmission, concomitant with decreased ATP production and
oxygen consumption (Oettinghaus et al., 2016). The loss of
Drp1 affects memory function and synapsis activity, evidencing
the crucial role of mitochondrial fusion/fission activity in brain
function. Drp1 deletion in post-mitotic Purkinje cells leads
to mitochondrial swelling, oxidative damage, accumulation
of autophagy markers, leading to neurodegeneration in the
cerebellum (Kageyama et al., 2012).

The antioxidant treatment (MitoO and acetylcysteine), in
Drp1 KO cells, reduced cell death and mitochondrial swelling
(Kageyama et al., 2012). On this premise, efficient mitochondrial
dynamics appear to be crucial for maintaining a healthy organelle
population for potential therapeutic treatments.

Peroxisomes are essential organelles in eukaryotes and
are involved in numerous metabolic pathways and redox
homeostasis and contribute to essential brain metabolic
processes. Their functional relevance in humans is emphasized
by peroxisomal disorders (Trompier et al., 2014). Peroxisomes
are implicated in cell aging since they are affected by altered ROS
and RNS production (Giordano and Terlecky, 2012; Figure 1).
During aging, cells are metabolically less active, and catalase
is translocated from peroxisomes to the cytosol. It has been
demonstrated that the restoration of peroxisomal catalase levels
limits cellular senescence, and therefore, it could be used as
a therapeutic target in aging (Giordano and Terlecky, 2012).
Furthermore, aging depends on the peroxisome life cycle. After
division, both young and old peroxisomes are present, with the
latter being damaged by products of peroxisomal metabolism
(Beach et al., 2012). The old peroxisomes are thus removed by
autophagy to avoid compound accumulation and to maintain
organelle homeostasis (Aksam et al., 2007).

Neuronal Metabolism
During aging, neuronal metabolism is impaired. The human
brain has the highest energy requests with respect to any
organ system, using more than 20% of the body’s energy,
despite comprising only 2% of total body mass (Lin and
Rothman, 2014). In vitro and in vivo studies demonstrated
that the brain consumes a large amount of glucose for the
maintenance of pre-synaptic and post-synaptic ion gradients
for glutamate neurotransmission, and to preserve the resting
potential of neurons (Attwell and Iadecola, 2002). Moreover,
neurotransmitter signaling needs constant phospholipid
remodeling and trans-membrane lipid asymmetries, which
represent around 26% of the net energy uptake of the brain
(Purdon et al., 2002). In the awake and unstimulated brain, the
use of basal energy is already high, and when a stimulus occurs,
the energy consumption is even higher.

In the brain, the metabolic fate of glucose varies depending
on cell type and on the specific expression of metabolic enzymes.
Neurons are mainly oxidative, while astrocytes are generally
glycolytic (Ivanov et al., 2014). Neuronal glucose metabolism
is multifaceted. It comprises the mechanisms controlling brain
glucose consumption, such as the insulin signaling pathways.
Brain glucose is transported across the endothelium into
astrocytes through GLUT1 (glucose transporter) and transferred
into neurons, mostly via GLUT3 and GLUT4, participating
in the glycolytic pathway. In aged rat brains, decreased
glucose uptake and a reduction in neuronal GLUTs have
been reported (Yin et al., 2016). During aging, alterations
in mitochondria energy-transducing ability, as well as glucose
availability occur, together with an impairment in neuronal
glucose uptake, increased oxidant production and decreased
electron transport chain activity (Yin et al., 2016). A significant
role is exerted by insulin and IGF-1 signaling, since they
are involved in the regulation and maintenance of cognitive
function and brain metabolism (de la Monte and Wands,
2005). Brain aging is closely related to decreased IGF-1
signaling, involving inactivation of the PI3K/Akt pathway
(Jiang et al., 2013). Thus, during aging, it is more likely
that brain glucose uptake, as well as systemic control of
glucose, will fail (Reger et al., 2006). Several preclinical and
clinical studies highlight a link between low brain glucose
uptake and mild cognitive impairment (Cunnane et al., 2011).
In aged brain, glucose hypometabolism and mitochondrial
alteration are observed, which are initial indicators of age-related
impairment (Small et al., 2000; Mosconi et al., 2008). Moreover,
decreased glucose consumption has been described in different
brain areas in human subjects with the use of the positron
emission tomography analyses of fluorodeoxyglucose uptake
(Zuendorf et al., 2003). Rats showed an age-dependent decline
in glucose consumption in the hippocampus and cortex, which
is linked to impaired cognitive performance (Gage et al.,
1984). Synaptic spines are the site of neurotransmission and
need a high rate of ATP for maintaining neurotransmitter
transporter activities and Na+ and Ca+ pumps, and for
restoring gradients after synapsis activity (Attwell and Laughlin,
2001; Alle et al., 2009; Harris et al., 2012; Rangaraju et al.,
2014). During aging, neurons are not able to generate ATP,
thus synapses are susceptible to alterations and degeneration
(Harris et al., 2012). Numerous factors concur to age-dependent
brain hypometabolism. Some clinical studies demonstrated
that cerebral blood flow and age are negatively connected
(Schultz et al., 1999; Fabiani et al., 2014). During aging, blood-
brain barrier (BBB) impairment and brain hypoperfusion lead
to decreased import of nutrients, and/or removal of toxins
and parenchymal accumulation of blood-derived proteins and
immune cells (Zlokovic, 2011; Rosenberg, 2012). Aged mice
showed a reduction in whitematter, ultrastructural mitochondria
modifications and a weak correlation between mitochondria
and endoplasmic reticulum (Stahon et al., 2016). Aged brains
showed decreased NADH, total NAD and NAD+ levels (Bai
et al., 2011; Pittelli et al., 2011; Zhu et al., 2015). GLUT1 levels
are reduced in an age-dependent manner, in compromised
cerebral blood flow, cerebral capillary mass, and glucose uptake,
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concomitant with augmented BBB leakage (Winkler et al.,
2015). These rearrangements precede dendritic spine loss in
CA1 hippocampal neurons and are linked to behavioral decline
(Winkler et al., 2015).

Morphological Rearrangement
Wide loss of nerve cells is not present in normal aging,
and the regions affected by a neuronal loss are restricted
(no more than 10%). The principal age-related neuronal
structural alterations involve dendrites reduction in length and
number, with a loss of various dendritic spines (Figure 1).
Hippocampal DG-CA3 system is involved in regenerative
ability, structural plasticity and in the regulation of neurotrophic
factors like brain-derived neurotrophic factor (BDNF; Wang
and Michaelis, 2010). Oxidative injury of DG-CA could
impair remodeling ability, decrease cell proliferation, modify
structural plasticity, and alter neurogenesis, collectively
impairing normal synaptic neurotransmission. Moreover,
dendritic shrinking and amygdala hyperactivity, that could
increase synaptic instabilities by altering the hippocampus-
amygdala connectivity, have been observed (Kreibich and
Blendy, 2004; Brown et al., 2005; Radley et al., 2006; Wood
et al., 2010). Synaptic injury is paralleled by axons reduction
and disorganized myelin sheaths undergoing segmental
demyelination followed by remyelination. These changes
contribute to cognitive decline and behavioral impairment
that often occurs during normal aging (Peters et al., 2000;
Sandell and Peters, 2001, 2003; Peters and Sethares, 2002;
Bowley et al., 2010). Myelin is important for insulating axons
and guarantees rapid propagation of action potentials, thus
alterations in myelin structure induce weak conduction velocity
along axons. Additionally, the remyelination process generates
shorter myelin internodes (Peters et al., 2000; Sandell and
Peters, 2001, 2003; Peters and Sethares, 2002; Bowley et al.,
2010). The decrease in conduction velocity along axons,
due to changes in myelin sheaths and internodes, renders
reaction times longer and interferes with neuronal synchrony,
which is implicated in cognitive performance (including
attention and memory), as well as sensory and motor functions
(Jermakowicz and Casagrande, 2007).

One of the first changes studied in neuronal cells was
the accumulation of lipofuscin granules (Moreno-García et al.,
2018). Lipofuscin granules, which range between 1 and 3 µm
in diameter, appear as brownish particles in neuronal cytoplasm
and are probably indigestible residues of lysosomes materials.
Since, for many years, lipofuscin was the only one change
recognized, its accumulation was an indicative marker of the
nervous system aging. Several studies reported that pigmentation
of lipofuscin accumulation varies in different regions of the
nervous system and that it is accumulated at different rates
depending on the brain region. Aggregation of lipofuscin does
not strongly affect neuronal metabolism and functional activities
(Pannese, 2011).

All the studies on non-human species reported that, during
aging, the neuronal loss is restricted to some central nervous
system (CNS) areas; however, in human it is still difficult to
estimate the percentage of loss but is restricted to specific

areas (Merrill et al., 2001; Mohammed and Santer, 2001;
Keuker et al., 2004).

It has been further reported that aged animals and
humans’ axons may present degenerated mitochondria, glycogen
inclusions and filaments accumulations (Geoffroy et al., 2016;
Salvadores et al., 2017). These modifications trigger axonal
impairments. In fact, in aged animals and humans, degenerated
or degenerating axons, as well as the reduction in axons number,
have been observed (Sandell and Peters, 2001, 2003; Marner
et al., 2003; Cepurna et al., 2005; Bowley et al., 2010; Peters
et al., 2010). In brain aging and neurodegeneration, the levels
of Aβ-peptide and pro-inflammatory cytokines accumulate at
an early stage during the pathogenic process (Figures 1, 2).
These accumulations trigger the alteration of signal transduction
pathways crucial for neuronal health. Neurotrophins signaling is
crucial in memory, learning, synaptic function and plasticity, and
neuronal cell survival (Smith, 1996; Huang and Reichardt, 2001).

In fact, a preclinical study in aged animals demonstrated
that chronic BDNF deficiency induced an age-dependent
impairment, thus suggesting that BDNF positively affects brain
performance and neuronal survival (Petzold et al., 2015).
It has been indicated that during aging, TrkB receptors
decrease and that BDNF helps some pituitary function as an
intracellular messenger (Rage et al., 2007). BDNF is protective
and pro-survival (Castelli et al., 2018), is involved in energy
homeostasis control (Xu and Xie, 2016), and is strongly reduced
during aging.

Another neurotrophin, Glial cell line-derived neurotrophic
factor (GDNF), is altered during aging. GDNF increases in
an age-dependent manner in the frontal cortex but not in
the hippocampus, suggesting that it exerts its trophic action
locally (Matsunaga et al., 2006). Moreover, GDNF is involved in
glutamate release and altered glutamate transporters expression,
inducing excitotoxicity and triggering neurodegeneration
(Farrand et al., 2015).

The glycoprotein nerve growth factor (NGF) is involved in
cognitive functions and is strongly decreased during aging. These
shreds of evidences suggested that this neurotrophin influences
age-dependent cognitive impairment, the maintenance and
survival of cholinergic neurons and memory (Yang et al., 2014).

In preclinical studies in transgenic animals, increased
BDNF, NGF, and NT3 levels, paralleled by a reduction
in number of hippocampal positive amyloid plaques, were
reported after insulin-like growth factor 2 (IGF2) treatments
(Mellott et al., 2014).

NEURODEGENERATIVE DISEASE

Oxidative Imbalance
Neurodegenerative disorders, commonly associated with
muscular and cognitive deficits, have pathological hallmarks,
including brain atrophy, plaques, neurofibrillary tangles, and
aggregates (Kipps et al., 2005; Obeso et al., 2008; Gandhi and
Abramov, 2012). In AD, PD and Huntington disease (HD), the
main feature is the neurotoxic aggregation of specific proteins
in the brain (Figure 2). In specific, AD is characterized by the
accumulation of misfolded tau and amyloid β (Aβ) proteins,
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FIGURE 2 | Effect of degeneration in neuronal cell and involved mechanisms.

while in PD and Huntington’s diseases, α-synuclein (α-syn) and
mutant Huntington protein (mHtt) accumulate, respectively.
Researchers have indicated a link between oxidative stress and
development of neuronal plaque, α-synuclein, and mHtt (Li
et al., 2013), and a link between the Aβ protein formation and
ROS has been reported as well (Behl et al., 1997; Abramov
and Duchen, 2005; Shelat et al., 2008). In PD, oxidative stress
leads to α-synuclein aggregation in dopaminergic neurons,
which in turn induces intracellular ROS formation (Xiang
et al., 2013). While in HD, in vitro studies indicated that free
radicals are implicated in misfolding and accumulation of
mHtt-induced neurotoxicity (Pitts et al., 2012). In AD brain,
antioxidant enzyme activity is strongly reduced (Ansari and
Scheff, 2010) and Aβ-mediated ROS production induces lipid
peroxidation, causing reduced membrane permeability and
triggering excitotoxicity mechanisms by increased calcium
influx (Figure 2). These events lead to altered neurotransmission
and cognitive impairment. In fact, ROS has been related to
Aβ-induced damage in LTP, resulting in learning and memory
impairment, due to altered neuronal transmission (Dumont
et al., 2009; Ma et al., 2011; Ma and Klann, 2012; Parajuli
et al., 2013). In addition, oxidative stress could be linked
to clearance of Aβ. It has been reported that Aβ oxidizes
LRP1, thus inducing to the accumulation of the neurotoxic
peptide Aβ in the brain. For instance, LRP1 is a multifaceted
protein, which controls the efflux of Aβ from the brain to

the blood, across the BBB, and LRP1 activity is decreased
in AD (Jeynes and Provias, 2008). Therefore, Aβ disrupts
this clearance through oxidizing LRP1. LRP1 oxidation is
confirmed by the presence of HNE-LRP1 protein adducts
in the AD hippocampus (Owen et al., 2010). The altered
Aβ clearance triggers Aβ accumulation in the brain, a key
factor in AD pathogenesis (Cheignon et al., 2018). Another
target for oxidative stress in AD is represented by protein
Tau. Indeed, HNE induces alteration in the protein Tau
conformation, thus supporting the involvement of the
oxidative stress, particularly induced by Aβ, in the AD
pathogenesis, by inducing neurofibrillary tangle formation
(Liu et al., 2005; Cheignon et al., 2018).

Organelle Dynamics
In a transgenic model of neurodegenerative diseases, misfolded
protein accumulation induces changes in the organelle dynamics,
and in the reticulum (Reddy et al., 1999; Rao et al., 2002).
UPR impairment has also been described in PD. In fact, with
parkin function loss, misfolded parkin substrates accumulate
in the endoplasmic reticulum of the dopaminergic neurons of
the substantia nigra, inducing ER stress and neuronal death
(Imai et al., 2001). This event occurs in autosomal recessive
juvenile parkinsonism in particular, where mutations in the
Parkin gene trigger reticulum stress (Imai et al., 2001). Studies
indicated that targeting UPR by inactivation or inhibition
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represents a potential therapy for neurodegenerative diseases
(Brown and Naidoo, 2012).

Mitochondria exert pivotal functions in most
neurodegenerative diseases. When mitochondrial dynamics and
activities are impaired, low ATP production, high levels of ROS,
and apoptosis occur (Suárez-Rivero et al., 2016). Interestingly,
mitochondria extracted from lymphoblasts of Huntington’s
disease patients show lower mitochondrial membrane potential
with respect to the control group (Panov et al., 2002). This
finding was also confirmed by mitochondria extracted from
the brains of transgenic mice expressing mutant huntingtin
protein. The physiological alteration, mitochondrial-mediated
oxidative stress and calcium perturbations of the mitochondria
induced the onset of behavioral and pathological abnormalities
(Mattson et al., 2008). As shown in Figure 2, Ca2+ signaling
is compromised in neurodegenerative disorders. Interestingly,
neurons expressing elevated levels of Ca2+–binding proteins are
preserved by AD, whereas neurons expressing these proteins
at lower levels are subjected to wide impairment. One of the
causes of the high vulnerability of AD neurons is the decreased
Ca2+buffering ability of the neuronal cytosol. Neurons of AD
aged patients showed activation of Ca2+-dependent proteases
(calpain family). Calpain is activated as a response to the
increased levels of Ca2+ in the cytosol and cleaves various
proteins essential for the regular neuronal activity, triggering,
and as a consequence, neuronal impairment and apoptosis. PD
pathogenesis is attributable to Ca2+ dysregulation (Surmeier
et al., 2012), therefore, the handling of mitochondrial Ca2+

buffering capacity and the pharmacological modulation of
L-type channel activity can represent therapeutic strategies for
reducing PD progression (Calì et al., 2011, 2014). Functional
alterations of mitochondrial complex I are responsible for PD
onset (Hu and Wang, 2016). Sporadic PD patients showed
reduced complex I in various brain regions, neural and extra-
neural tissues (Parker et al., 2008). Complex I deficiency is linked
to increased ROS generation (Swerdlow et al., 1996). Moreover,
mutations in α-synuclein are typical of PD pathology (Guardia-
Laguarta et al., 2014). PD can also be caused by mutations in
Parkin and PTEN-induced kinase 1 (PINK1). The Parkin gene
is highly expressed in brain tissues, including the substantia

nigra (Kitada et al., 1998). PINK1 is a mitochondrially-located
molecule and has a positive role. A mutation in its kinase domain
renders cells susceptible to oxidative stress (Valente et al., 2004).

In AD neuritis, the concomitant depletion of mitochondria
or fusion and fission regulators, as well as deficits in axonal
transportation and axonopathy, indicate that mitochondrial
transport represents one of the causes of impairment (Massano
and Bhatia, 2012). Mitochondria Aβ neurons or neurons
expressing Amyloid precursor protein exhibit reduced motility
and density in axons (Gao et al., 2008; Massano and Bhatia,
2012). Comparably, tau, particularly in its mutant form, alters
mitochondrial trafficking in the neuronal cell. This altered
trafficking can be reduced by the inhibition of mitochondrial
fragmentation (Kausar et al., 2018), suggesting that the
impairment of mitochondrial transport is strictly related to
mitochondrial fragmentation. This correlation should also be
considered in AD, in order to evaluate, in future investigations,

if restoring mitochondrial trafficking could prevent Aβ or
tau-induced mitochondrial and neuronal impairment. However,
it should be explored as to whether alterations of mitochondria in
neurodegenerative diseases constitute a primary or a secondary
event or are just part of a largermultifactorial pathogenic process.

Numerous evidence indicated that peroxisomes have a
crucial role in aging and altered peroxisome functions support
the onset of age-related pathologies. In fact, in an in vitro

study, a connection between peroxisomes and AD has been
reported. Primary rat hippocampal neurons were treated with
Wy-14.463, a peroxisome proliferator agonist, and it was
observed that peroxisomal proliferation protected neurons
against Aβ peptide-induced cell death (Santos et al., 2005;
Cimini et al., 2009). Moreover, an induction in ABCD3 and
ACOX1 expression has been reported in a transgenic AD mouse
model that may represent an efficient fatty acid β-oxidation
necessary to counteract mitochondrial dysfunctions (Fanelli
et al., 2013). Finally, peroxisomal dysfunction induced by
thioridazine triggers increased APP and β-secretase expression
(Shi et al., 2012). All these pieces of evidence support
the relationship between neurodegeneration and peroxisomal
dysfunction (Figure 2).

Neuronal Metabolism
In AD patients, alteration in BBB integrity occurs (Zipser
et al., 2007; Zlokovic, 2011). Moreover, the disease-dependent
alterations in BBB are faster with respect to normal subjects
(Montagne et al., 2015; van de Haar et al., 2016). In addition, an
alteration in nutrient and metabolic enzymes has been reported
in AD. For instance, GLUT1 andGLUT3 levels are reduced in the
AD patients’ brains (Simpson et al., 1994; Harr et al., 1995) and
correlate with the reduction of brain glucose consumption and
consequent cognitive impairment (Landau et al., 2010; Figure 2).

People with mild cognitive impairment or AD showed a
strongly reduced glucose consumption compared to normal
aging (Kato et al., 2016). The hypothesis that AD may be
considered a type of diabetes mellitus that specifically affects
the brain has been recently discussed. In fact, recently, the
scientific literature has focused on the fact that AD may be
triggered by insulin resistance and insulin deficiency. It has been
reported that type 2 diabetes mellitus induces insulin resistance,
cognitive impairment, and oxidative stress, mimicking AD
neurodegeneration. Moreover, the altered insulin and IGF
pathway, as indicated above, represents early and progressive
alterations that can trigger the main molecular, histopathological
and biochemical lesions of AD patients (Figure 2). Furthermore,
it has been reviewed that, as a consequence of the diabetes
induction through intracerebral inoculation of streptozotocin, an
alkylating antineoplastic agent, animals showed closer features
of AD. In addition, common pathophysiological alterations and
signaling, such as inflammatory, oxidative stress and PI3K-
GSK3β, between AD and diabetes have been indicated. In
light of these overlaps, AD has been referred to as type
3 diabetes, since it mimics a kind of diabetes that affects
the brain since the AD molecular and cellular characteristics
are similar to those observed in type 1 and type 2 diabetes
(de la Monte and Wands, 2008; Kandimalla et al., 2017).
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Morphological Rearrangement
In AD there is a substantial loss of neurons but this is not
the main factor inducing cognitive impairment (Figure 2).
Researchers have explained these phenomena identifying
changes in dendrites and axons. For instance, in diseased
neurons, the dendritic tree undergoes faster decline, in fact, a
decrease in the number of dendritic shafts occurs and the few
remaining show fewer and shorter branches, as well as a reduced
number of spines (Dickstein et al., 2007; Wang et al., 2018).
However, not all the spines are affected in the same manner,
since only the thin spines, which are plastic, strongly motile and
are involved in learning, are lost (Dumitriu et al., 2010). BDNF
is also involved in neurodegeneration (Figure 2) and its strong
decrease indicates more vulnerable neuronal populations. This
highlights the necessity to detect a potential therapy that targets
BDNF signaling (Tapia-Arancibia et al., 2008), since in AD and
PD, there is also a concomitant increase in pro-BDNF expression
(Budni et al., 2015).

On the other hand, it has been reported that GDNF also has a
neuroprotective effect on substantia nigra neurons in PD patients
(Gill et al., 2003). In contrast to NGF, an increase in pro-NGF is
linked to AD and to mild cognitive impairment. In light of this,
NGF, as well as proNGF, could be used as AD targets.

CONCLUSION

Aging is a stochastic process dependent on the predictable and
random features leading to the accumulation of unrepaired

cellular damage, weakened cellular repair, an imbalance in

antioxidant defenses and altered metabolism. Healthy aging
depends on a combination of lifestyle, individual genetic
factors, and external environmental factors. Several reports
indicated that glucose hypometabolism, impaired transport of
critical substrates, alterations in calcium signaling, mitochondrial
dysfunction, and oxidative stress, are mechanisms of aging that
render neurons susceptible to degeneration. All of these events
trigger morphological rearrangements in neurons, leading to
malfunction, compromised transmission, loss of memory and
performance (Figure 1).

On this basis, age-related neurodegenerative disorders show
a picture far worse with respect to normal aging (Figure 2),
characterized by an increase of misfolded proteins, increase of
oxidative stress and reduced scavenging capability resulting in
massive neuronal loss; mainly in a specific brain area, and leading
to heavy alterations in performance, memory and a change
in personality.

These findings point towards a multifactorial portrait where
different agents, many interdependent, play a significant role
during brain aging, and where exacerbation of these factors may
expose to the onset of age-related neurodegenerative disease.
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