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Abstract: The optimal methods for the synthesis of mechanisms in rehabilitation usually require
solving constrained optimization problems. Metaheuristic algorithms are frequently used to solve
these problems with the inclusion of Constraint-Handling Techniques (CHTs). Nevertheless, the most
used CHTs in the synthesis of mechanisms, such as penalty function and feasibility rules, generally
prioritize the search for feasible regions over the minimization of the objective function, and it notably
influences the exploration and exploitation of the algorithm such that it could induce in the premature
convergence to the local minimum and thus the solution quality could deteriorate. In this work, a
Neuronal Constraint-Handling (NCH) technique is proposed and its performance is studied in the
solution of mechanism synthesis for rehabilitation. The NCH technique uses a neural network to
search for the fittest solutions into the feasible and the infeasible region to pass them to the next
generation of the evolutionary process of the Differential Evolution (DE) algorithm and consequently
improve the obtained solution quality. Two synthesis problems with four–bar and cam–linkage
mechanisms are the study cases for developing lower-limb rehabilitation routines. The NCH is
compared with four state-of-the-art constraint-handling techniques (penalty function, feasibility rules,
stochastic ranking, ε-constrained method) included into four representative metaheuristic algorithms.
The irace package is used for both the algorithm settings and neuronal network training to fairly
and meaningfully compare through statistics to confirm the overall performance. The statistical
results confirm that, despite changes in the rehabilitation trajectories, the proposal presents the best
overall performance among selected algorithms in the studied synthesis problems for rehabilitation,
followed by penalty function and feasibility rule.

Keywords: constraint-handling technique; metaheuristics; neural networks; optimal synthesis; opti-
mization; rehabilitation mechanism

1. Introduction

Nowadays, rehabilitation systems based on closed-chain mechanisms are a low-cost
alternative for rehabilitation routines [1–3]. In the design of these systems, a mechanism
synthesis process is made. The synthesis process consists of determining the link lengths to
generate a rehabilitation trajectory in the mechanism coupler link [4]. Among the graphi-
cal, analytical, or optimal methods used in the synthesis of mechanisms [5], the optimal
method is the most suitable to solve synthesis problems because several design objectives,
constraints, and precision points can be handled as an optimization problem. However,
the solution quality depends on the numerical methods (optimizers) that solves the opti-
mization problem [6–8].
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Numerical methods are frequently used to solve complex problems in the optimal
synthesis of mechanisms. These can be classified into indirect and direct search methods [9].
The indirect search methods require derivatives of both the objective function and con-
straints presenting issues when the optimization problem is non-continuous and in the
case of highly nonlinear spaces (the obtained solutions converge to the initial guessing).
The most popular indirect search method to solve optimal synthesis problems is the Sequen-
tial Quadratic Programming (SQP) [10–14]. Otherwise, the direct search methods do not
require a derivative of the objective function and constraints, and the solutions are obtained
heuristically [15] allowing for searching for solutions in highly nonlinear or discontinuous
spaces.

The direct search methods such as metaheuristic algorithms are currently used to
solve the synthesis of mechanisms problems because they are based on a set of solutions
called population such that the initial guessing does not influence the obtained solutions.
The metaheuristic algorithms are inspired in biological systems as the Genetic Algorithm
(GA) [16], Differential Evolution (DE), Malaga University and Mechanism Synthesis Algo-
rithm (MUMSA) [17], in social phenomena as the Particle Swarm Optimization (PSO) [18],
inspired by musical composition as the Harmony Search (HS) [19] or in physics as the In-
clined Planes Optimization (IPO) [20]. Among these algorithms, GA, DE, PSO, and MUMSA
are usually implemented to solve synthesis problems, finding better solutions than indirect
search methods in the synthesis of mechanisms [3,7,21–23].

On the other hand, the original versions of metaheuristic algorithms solve uncon-
strained optimization problems. Nevertheless, the mechanism synthesis problems are
formulated as optimization problems with inequality constraints requiring not only the
selection of optimizers that search in high nonlinearity objective space, but also the ways
of finding into the complex search shapes enclosed by constraints. Therefore, the opti-
mizers and the ways of handling complex constraints are crucial. The efficiency of the
optimizers to provide the most suitable solution quality depends on the way of handling
constraints. In constrained optimization problems, Constraint-Handling Techniques (CHTs)
have been incorporated [24–26]. In the solution of constrained optimization problems,
there are five types of constraint-handling techniques; these are: penalty functions, special
representations and operators, repair algorithms, separation of objective function and con-
straints, and hybrid methods [24]. Currently, the Penalty Function (PF), Feasibility Rules
(FR), Stochastic Ranking (SR), and ε-Constraint (εC) are popular constraint-handling tech-
niques used in metaheuristic algorithms for the synthesis of mechanisms [27–29]. The PF
transforms a constrained optimization problem into an unconstrained one [30]. In the
PF, the constraints are penalized and incorporated into the objective function, and the
penalty factor in constraints is usually high. Therefore, the search for feasible regions is
prioritized over the objective function minimization, for instance, in [5,6,8,17,31–39]. The
FR have three rules for handling constraints. In this method, the search for feasible regions
is also prioritized over the objective function minimization [3,7,21,40,41]. The SR works
by using a pseudo-random ordering of solutions where the first ones in the ranking are
selected [29,42]. A probabilistic parameter controls the order of solutions to prioritize the
search for feasible regions or the minimization of the objective function. The εC relaxes
the constraints to increase the probability of selecting solutions close to feasible regions.
This constraint-handling technique prioritizes the search for feasible regions over the mini-
mization of the objective functions. The εC also has a gradient-based mutation mechanism
to find feasible regions using the gradient of unfeasible solutions [29,43]. Through the
empirical study of four CHTs (PF, FR, SR, and εC) for the solution of mechanism synthesis
given in [29], it is confirmed that the most suitable solution quality depends on the way
of handling constraints and consequently impacts the efficiency of optimizers. In that
work, the feasibility rules usually led to efficient optimization in the solution of mechanism
synthesis for rehabilitation.

The summary of metaheuristic algorithms and their constraint-handling techniques
used in the mechanism synthesis problem in a broad context and for specific rehabilitation



Appl. Sci. 2022, 12, 2396 3 of 31

purposes is given in Table 1. The PF and the FR are the most promising and widely used
CHTs for the mechanism synthesis problem for rehabilitation. It is also observed that
the performance of SR and εC have only been investigated a little. According to recent
literature [44], the trend to improve the solution accuracy for the dimensional synthesis
problem is to make modifications of metaheuristics by hybridizing different algorithms or
modifying their structure, as they are shown in Table 1. However, the efficient and effective
use of handling constraints based on neuronal networks has not been investigated in the
dimensional synthesis problem for rehabilitation. This research direction can significantly
influence the metaheuristic behavior.

Table 1. Summary of investigations using metaheuristic algorithms and constraint-handling tech-
niques in mechanism synthesis problems in a broad context and for specific rehabilitation purposes.

Study Mechanisms Metaheuristic Algorithms Constraint-Handling
Technique

[5] four–bar mechanism Genetic Algorithm (GA) Penalty Function (PF)
[41] Hand robot mechanism Pareto Optimum Evolutionary Feasibility Rules (FR)

multi-objective Algorithm (POEMA)
[31] four–bar mechanism Differential Evolution (DE) PF
[32] Six-bar mechanism DE PF
[33] four–bar mechanism DE PF
[34] four–bar mechanism GA–fuzzy logic (GA-FL) PF
[17] four–bar and Málaga University Mechanism PF

Six-bar mechanisms Synthesis Algorithm (MUMSA)
[35] four–bar mechanism GA, DE, PF

Particle Swarm Optimization (PSO)
[36] four–bar mechanism Ant-gradient (AG) PF
[45] four–bar mechanism GA–DE PF
[6] Six-bar mechanism Cuckoo Search (CS) PF

[37] four–bar mechanism Imperialist Competitive Algorithm (ICA), PF
GA, DE, PSO

[8] four–bar mechanism Modified Krill Herd PF
[46] four–bar mechanism Teaching-Learning-Based PF

Optimization (TLBO), GA, PSO
[38] four–bar mechanism Hybrid Lagrange Interpolation DE PF

(HLIDE)
[39] four–bar and Hybridization DE with Generalized PF

Six-bar mechanisms Reduced Gradient
[47] four–bar mechanism DE FR
[48] four–bar mechanisms CS, TLBO, DE, MUMSA -

auto-adaptive modified DE,
combined-mutation DE (CMDE)

Study Mechanism in Metaheuristic Algorithms CHTRehabilitation

[21] Six-bar mechanism in MUMSA FR
finger rehabilitation

[22] cam–linkage mechanism GA PF
in gait rehabilitation

[7] four–bar mechanism DE FR
in gait rehabilitation

[23] four–bar mechanism in PSO, TLBO -
gait rehabilitation and

orthotic devices
[3] Eight-bar mechanism in DE FR

lower limb rehabilitation
[29] Eight-bar, four–bar and DE, PSO, MUMSA, GA FR, PF,

cam–linkage mechanisms Stochastic-Ranking (SR),
in lower limb rehabilitation ε-Constraint (εC)
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1.1. Contributions

The constraint-handling techniques used in the synthesis of mechanisms generally
prioritize the search for feasible regions. According to the results in [29], it is observed that
the fast convergence to feasible regions as presented in the penalty function, feasibility
rules, and ε-constraint increase the convergence probability to local minimums in synthesis
problems. On the other hand, stochastic ranking controls the search by prioritizing feasible
regions and minimizing the objective function through a probabilistic factor. However,
the pseudo-random ordering of solutions in stochastic ranking decreases the metaheuristic
algorithm capability to explore and exploit search space in the synthesis problem solution.
Therefore, to decrease the convergence probability to a local minimum in metaheuristic
algorithms, the incorporation of a neuronal network as a constraint-handling technique is
presented in this work, and the proposed NCH technique represents the first contribution
of the work. This technique searches for solutions in the infeasible or feasible regions
based on prior knowledge. The neural network as a constraint-handling technique can
find patterns in complex data sets to ensure the obtained solution quality, in particular,
problems [49–52]. The proposed NCH technique is applied to the solution of two synthesis
problems to develop lower limb rehabilitation routines. One of these mechanisms is the
most common one in the literature, the four–bar linkage mechanism. The other mechanism
is a new mechanism reported in [22] conformed by a cam and links called cam–linkage
mechanism. Sixteen algorithms are selected to make a comparative analysis and confirm
the NCH technique’s performance. The sixteen algorithms are based on four metaheuristic
algorithms using four popular constraint-handling techniques. Therefore, these algorithms
and techniques are the most representative of mechanism synthesis problems in the state-
of-the-art.

On the other hand, the stochastic parameters in algorithms produce every run, reach-
ing different solutions. The algorithm parameters can significantly influence the perfor-
mance of those algorithms and the quality of solutions [53,54]. Thus, unlike other research,
this work takes into consideration the automatic parameter tuning of all algorithms with
the aid of the irace package [55], to make a fair and meaningful comparative statistical
analysis. The descriptive and inferential statistical analysis verifies the performance of
the proposed NCH technique included into the DE/RAND/1/BIN through the conver-
gence towards a region of the design space where the obtained solutions remain within a
useful and competitive margin [56]. Therefore, the analysis provides enough information
about the most suitable constraint-handling technique applied to algorithms for solving
the mentioned problems and confirms the performance of the proposal with respect to the
state-of-the-art CHTs. The fair and meaningful comparative statistical analysis represents
the second contribution of this work.

1.2. Paper Organization

This work is organized as follows: Section 2 presents the NCH technique implemented
in a DE variant called DE/RAND/1/BIN. Section 3 presents two study cases to test the
proposed constraint-handling technique performance. The first study case is related to the
synthesis of a four–bar linkage mechanism, and the second study case is associated with the
synthesis of the cam–linkage mechanism. Section 4 analyzes the NCH technique in a DE
algorithm with respect to four popular constraint-handling techniques (FR, SR, EC, and PF)
included into four metaheuristic algorithms commonly used in mechanism synthesis (ED,
GA, PSO, MUMSA). The analysis is based on descriptive statistics, confidence intervals
and inferential statistics. Section 5 presents conclusions of the work.

2. Constraint-Handling Technique Based on a Neural Network for the Differential
Evolution Algorithm

This work presents the constraint-handling technique based on a neural network. This
technique is implemented in a DE variant called DE/RAND/1/BIN and is tested in the
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solution of mechanism synthesis problems. In this work, those problems have more than
one design objective, and they are formulated by using the weighted sum method [57].

Section 2.1 presents the general statement of the mechanism synthesis problem as a
mono-objective optimization problem. Section 2.2 explains the operation of the DE variant
DE/RAND/1/BIN, and Section 2.3 shows the proposed constraint-handling technique
based on a neural network.

2.1. Statement of the Mechanism Synthesis Problem

Optimization problems for the synthesis of mechanisms usually require satisfying
several design objectives and constraints. Multi-objective or mono-objective optimization
techniques can solve design problems. Nowadays, mono-objective optimization techniques
are commonly used for solving mechanism synthesis problems, where a multi-objective
problem is transformed into a mono-objective problem by the weighted sum approach.
Therefore, the mechanism synthesis problem related to this work is expressed as follows.

Min
x∗

J̄(x) (1)

subject to:

gj(x) ≤ 0 ∀ j = {1, 2, . . . , m} (2)

hk(x) = 0 ∀ k = {1, 2, . . . , r} (3)

xmin ≤ x ≤ xmax (4)

where J̄(x) = ∑n
i=1 wi Ji(x) is the weighted objective function, Ji is the i-th term associated

with a design performance index, wi is the i-th weight attributed to each term, x ∈ Rq

is the design variable vector, gj(x) and hk(x) are the inequality and equality constraints,
respectively, and [xmin, xmax] ∈ Rq are the design variable vector bounds.

2.2. General Overview of the Differential Evolution Algorithm

In this work, the optimization strategy for the solution of synthesis problems is based
on the differential evolution variant called DE/RAND/1/BIN [58]. The term "DE" in the
name of the variant DE/RAND/1/BIN relates to the Differential Evolution algorithm.
The term “RAND” indicates the inclusion of a random mutation with one “1” pair of
individuals, meaning that the base vector is randomly selected from the population and
one difference vector is added. The last term “BIN” implies the incorporation of a binomial
crossover.

DE/RAND/1/BIN initializes with a population XG = {XG
1 , XG

2 , . . . , XG
NP} in the

generation G = 0 with NP individuals. Each individual XG
p ∀ p = {1, 2, . . . , NP} in the

population XG has D genotypic characteristics represented by the design variable xp,q
i.e., XG

p = [xp,1, xp,2, . . . , xp,q] ∀ q = {1, 2, . . . , D}. In the initial generation G = 0, the design
variable vector is determined by random values in the range [Xmin, Xmax].

The individuals in the population XG undergo the mutation and crossover processes to
generate a population of offspring individuals UG = {UG

1 , UG
2 , UG

3 , . . . , UG
p } in each genera-

tion G. These processes aim to improve the fitness of individuals XG for the next generation
of parents XG+1. The mutation and crossover processes of the variant DE/RAND/1/BIN
are detailed in (5):

uG
p,q =

Crossover︷ ︸︸ ︷
Mutation︷ ︸︸ ︷

xG
r3,q︸︷︷︸

Base vector

+ F(xG
r1,q − xG

r2,q)︸ ︷︷ ︸
Di f f erence vector

, If rand(0, 1) < CR or q = qrand

xG
p,q, Otherwise

(5)
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where CR ∈ [0, 1] is the crossover factor, F ∈ [0, 1] is a scale factor, and r1, r2 and r3
are random numbers that represent the information of three individuals; these must be
different from the individual p and, among them, and qrand ∈ {1, 2, . . . , D} is a random
value that controls the crossover point.

Each new offspring’s individual UG
p is compared with their parent XG

p . Both individuals
compete and only the fittest individuals pass on to the next generation G + 1. In this work,
the selection between the parent and the offspring vectors is based on the Neuronal Constraint-
Handling (NCH) technique. This technique is described in the following subsection.

2.3. Neuronal Constraint-Handling Technique

The Neuronal Constraint-Handling (NCH) technique is based on a feed-forward
artificial neural network [59]. This technique selects the most suitable individual between
two existing individuals XG

p and UG
p . The best individual for the next population XG+1 is

obtained considering the value of the objective functions J̄(x) and the sum of infeasible
constraint distance φ(x) given by (6).

φ(x) =
m

∑
j=1

max(0, gj(x)) (6)

The best individual between XG
p and UG

p is defined based on the neural network
architecture. The operation of the NCH technique with DE/RAND/1/BIN algorithm is
presented in the block diagram shown in Figure 1. The NCH technique can be divided in
three processes to select solutions. In the first process, the value of the objective function
J̄ and the value of the sum of infeasible constraint distance φ of two individuals are nor-
malized in the range [0,1], using the maximum objective function value (max( J̄(XG))) and
the maximum sum of infeasible constraint distance (max(φ(XG))) found in the population
XG. Each normalized value is introduced in the input layer of neurons consisting of four
neurons as=1

1 , as=1
2 , as=1

3 , and as=1
4 . The input neuron values are defined by (7)–(10).

a1
1 =

J̄(XG
p )

max(J(XG))
(7)

a1
2 =

φ(XG
p )

max(φ(XG))
(8)

a1
3 =

J̄(UG
p )

max(J(UG))
(9)

a1
4 =

φ(UG
p )

max(φ(UG))
(10)

In the second process, the neuron values of the input layer go to a hidden layer of
neurons, where the inputs are analyzed according to a selection rule learned a priori.
Hence, the values in the input layer goes to the neurons in the hidden layer as

r ∀ r =
{1, 2, . . . , n fs} ∧ s = {2, 3, . . . , c− 1}, where c is the number of layers and n fs is the number
of neurons in the s layer. In this process, the user can select the number of layers and
neurons. The third process selects the best individual between XG

p and UG
p . One neuron

as=c
1 is established in the output layer, and then, with this information, the best individual

is given by the selector (11):

XG+1
p =

{
XG

p if ac
1 < 0

UG
p if ac

1 ≥ 0
(11)

As can be seen in Figure 1, the neurons as
r in the NCH technique receive the values of

previous neurons, but these input values do not go directly to the next neuron. These input
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values are introduced using neuronal weights w̄s
t,r ∈ [−100, 100] ∀ t = {1, 2, . . . , n fs−1},

as shown in Figure 2.

Figure 1. Neuronal constraint-handling technique.

Figure 2. Artificial neuron or node in the NCH technique.
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The output value of the neuron as
r is obtained using (12), where ūs

r ∈ [−100, 100] is a
bias value, n fs−1 is the number of neurons in the s− 1 layer, and f (µ) ∈ [−1, 1] is a sigmoid
activation function given by (13):

as
r = f

(
n fs−1

∑
t=1

(w̄s
t,ras−1

r ) + ūs
r

)
(12)

f (µ) =
1− e−µ

1 + e−µ (13)

Algorithm 1 shows the operation of DE/RAND/1/BIN algorithm with the neuronal
constraint-handling technique. The proposal is called R1B-NCH.

Algorithm 1 Pseudo-code of the DE/RAND/1/BIN with the inclusion of the NCH tech-
nique (R1B-NCH).

1: Generate an initial population X0 with NP individuals.
2: Evaluate X0.
3: G ← 0
4: while G ≤ Gmax do
5: for all XG

p ∈ XG do
6: Generate a child individual UG

p based on (5)
7: Evaluate the fitness of UG

p .
8: Determine for the next generation, the individual XG+1

p according to the proposed
NCH technique (11) between XG

p and UG
p .

9: end for
10: G ← G + 1
11: end while
12: Select the best individual in the last population i.e., x∗ = Best(XGmax ) in the optimiza-

tion problem (1)–(4).

It is important to note that the selection rule in the NCH technique is based on the
neuronal weights w̄s

t,r and bias ūs
r. Therefore, those weight values must (train) to develop a

suitable selection process in the synthesis process of mechanisms.

3. Study Cases

This work considers two study cases to test the DE/RAND/1/BIN algorithm with the
Neuronal Constraint-Handling technique. The first study case is related to the synthesis
of a four–bar linkage mechanism [7,11], and the second study case is associated with the
synthesis of the cam–linkage mechanism for lower limb rehabilitation [22]. Both linkage
mechanisms are synthesized to follow paths in the coupler point.

3.1. Case 1: Four–Bar Linkage Mechanism

The conceptual design model for the four–bar linkage mechanism is presented in
Figure 3, where r1, r2, r3, and r4 are the link lengths, θ1 is the ground link angle, [x0,y0]
is the Cartesian position of the mechanism with respect to the coordinate system x − y,
and θi

2 ∀ i = {1, 2, . . . , n f } is the i-th crank angle.
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Figure 3. four–bar linkage mechanism.

The dimensional synthesis problem for this mechanism consists of finding the link
lengths that approximate the coordinate [xi

P, yi
P] of the coupler link point P to the coor-

dinates [x̄i
P, ȳi

P] of the rehabilitation trajectory. Figure 3 shows the design variable vector,
and it is defined in (14):

x =
[
r1, r2, r3, r4, θ1, x0, y0, rcx , rcy , θ1

2 , θ2
2 , . . . , θ

n f
2

]
(14)

The dimensional synthesis optimization problem is presented in (15)–(19), where the
constant values w1 = 1 and w2 = 0.01 weight the design goals:

Min
x

w1

n f

∑
i=1

[(xi
P − x̄i

P)
2 + (yi

P − ȳi
P)

2] + w2

n f

∑
i=1

(θi
2 − θ̄i

2)
2 (15)

subject to:

g1(x) ≤ 0 : r2 + r1 − r3 − r4 ≤ 0 (16)

g2(x) ≤ 0 : −r4 − r1 + r2 + r3 ≤ 0 (17)

g3(x) ≤ 0 : −r3 − r1 + r2 + r4 ≤ 0 (18)

xmin ≤ x ≤ xmax (19)

The first design goal minimizes the error between the desired precision points [x̄i
P, ȳi

P]
and the path [xi

P, yi
P] of the mechanism’s coupler link point. The second design goal

minimizes the angular displacement error between the desired angles θ̄i
2 and the crank

angles θi
2. In this problem, the desired angles θ̄i

2 are established by (20):

θ̄i
2 = θ1

2 + 2π i−1
n f−1 ∀ i = {1, 2, . . . , n f } (20)

The i-th desired precision point [x̄i
P, ȳi

P] is established based on the ankle trajectory
for rehabilitation routine. In this work, two trajectories are considered for the synthesis
process representing a change in the human anatomy. The Pearson correlation between
both trajectories is 95%. The trajectory points are shown in Figure 4, where Figure 4a,b
are considered as trajectory 1 and trajectory 2, respectively, for the synthesis process. The
Cartesian coordinates of the trajectory points are shown in Table A1.
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(a) Trajectory 1; (b) Trajectory 2.

Figure 4. four–bar linkage precision points for the synthesis process.

The synthesis problem has three inequality constraints (16)–(18). These constraints
define a crank-rocker mechanism according to the Grashof criterion. The design variable
vector x ∈ R23 for the four–bar linkage mechanism is bounded by xmin and xmax limits.
These limits are established according to [29].

3.2. Case 2: Cam–Linkage Mechanism

The second optimization problem is the synthesis of a cam–linkage mechanism. The de-
sign problem was presented by Shao et al. [22]. The conceptual model for the cam–linkage
mechanism is shown in Figure 5, where r1, r2, ..., r8 are the link lengths; β, γ, η are related
to angular displacements; [x0, y0] is the Cartesian position of the mechanism with respect to
the x− y coordinate system; e and the angle α define the displacement position of the slider.

Figure 5. cam–linkage mechanism.

The dimensional synthesis problem for this mechanism consists of finding the link
lengths and the cam profile that approximate the coordinates [xi

P, yi
P] of the coupler link

point P to the coordinates [x̄i
P, ȳi

P] of the rehabilitation trajectory. In this work, two reha-
bilitation trajectories are considered for the synthesis process representing a change in the
human anatomy. The Pearson correlation between both trajectories is 97%. The trajectory
points are shown in Figure 6, where Figure 6a,b are considered as trajectory 1 and trajectory
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2, respectively, for the synthesis process. The Cartesian coordinates of the trajectory points
are shown in Tables A2 and A3.
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-900
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(a) Trajectory 1 (b) Trajectory 2

Figure 6. cam–linkage precision points for the synthesis process.

In this synthesis problem, the design variable vector is given by (21):

x = [r1, r2, r3, r4, r5, r6, r7, r8, α, β, γ, η, x0, y0, e] (21)

The dimensional synthesis optimization problem is presented in (22)–(34).

Min
x

w1
∑

n f
i=1(θ

i
1 − θ̄i

1)
2

Θre f
+ w2

R0

Rre f
(22)

subject to:

g1 : r1 + r2 − r3 −
√

s2
min + e2 ≤ 0 (23)

g2 : r1 + r3 − r2 −
√

s2
min + e2 ≤ 0 (24)

g3 : r1 +
√

s2
max + e2 − r2 − r3 ≤ 0 (25)

g4 : r2
2 + r2

3 − (dAC)
2
min − 2r2r3 cos π/6 ≤ 0 (26)

g5 : −r2
2 − r2

3 + (dAC)
2
max + 2r2r3 cos(π − π/6) ≤ 0 (27)

g6 : r2
5 + r2

6 − (dDF)
2
min − 2r5r6 cos π/6 ≤ 0 (28)

g7 : −r2
5 − r2

6 + (dDF)
2
max + 2r5r6 cos(π − π/6) ≤ 0 (29)

g8 : (dOD)max − r4 − r1 ≤ 0 (30)

g9 : |r4 − r1| − (dOD)min ≤ 0 (31)

g10 : (dBe)max − r3 ≤ 0 (32)

g11 : 0.12R0 − 0.6|ρ|min ≤ 0 (33)

xmin ≤ x ≤ xmax (34)

The first term of the weighted objective function (22) minimizes the error between the
crank angles θi

1 and the desired angles θ̄i
1 ∀ i = {1, 2, . . . , n f }, where n f is the number of

precision points, and θ̄i
1 is defined by (35):

θ̄i
1 = θ1

1 + 2π
i− 1

n f − 1
∀ i = {1, 2, . . . , n f } (35)

The second term minimizes the base radius R0 of the cam (see Figure 5). Both design
objectives are weighted by w1 = 0.3 and w2 = 0.7, and normalized by Θre f = 0.4246 [rad]
and Rre f = 0.3782 [m] according to [22].
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On the other hand, the first three inequality constraints (23)–(25) guarantee a complete
revolution of the crank angle θ2 (Grashof criterion), where smin and smax are the minimum and
maximum values of s(θ1) in the precision points. The inequality constraints (26)–(29) provide
high efficiency of the force transmission from the input link (crank link) to the output link,
where dAC is the distance between points A and C, and dDF is the distance between points
D and F. The inequality constraints (30)–(32) guarantee the path feasibility in the output
link, where dOD is the distance between points D and F, and dBe is the distance between
points B and e. The inequality constraint (33) defines the minimum curvature radius of the
cam profile. The design variable vector x is bounded by xmin and xmax. For more details
about the constraints and boundary limits, see [29].

4. Results

In this section, the behavior of the DE/RAND/1/BIN algorithm with the NCH tech-
nique, named R1B-NCH, is compared with four popular constraint-handling techniques
included in four metaheuristic algorithms. The metaheuristic algorithms involve the Dif-
ferential Evolution (DE) variant DE/RAND/1/BIN, Genetic Algorithm (GA), Particle
Swarm Optimization (PSO), and the Malaga University Mechanism Synthesis Algorithm
(MUMSA). Moreover, Feasibility Rules (FR), Stochastic-Ranking (SR), ε-Constrained (εC),
and Penalty Function (PF) are considered as constraint-handling techniques. Therefore,
the R1B-NCH algorithm is compared with sixteen different algorithms in the solution of
study cases.

As was mentioned in previous sections, two different trajectories in each study case are
considered. The good parameter setting of optimization algorithms (algorithm parameter
tuning) are found using only trajectory 1 for each study case. The irace package carries
out the algorithm parameter’s tuning process to get significant results in the comparative
analysis process. On the hand, the NCH technique is trained with the same package
considering the parameter setting obtained previously and trajectory 1 for each study case.

Once the algorithm parameter setting is obtained and the neuronal constraint handling
is trained, the second trajectory in the mechanism synthesis problem is used to show the
algorithm performance under changes in the trajectory. This test provides information
about the capability of the NCH technique to handle variations in the optimization problem
that were considered neither in the algorithm tuning process nor the training process. This
second trajectory provides different data than the trained data set provided by the first
trajectory, and then this test evaluates the ability of the NCH to handle a data set that was
not considered in the training process and the capacity to produce a suitable response in
the output of the NCH.

This section is divided into three subsections: the first one presents the experiment
conditions obtained by the algorithm tuning and training process. The second one shows
algorithm performance analysis per each study case using descriptive, confidence intervals,
and inferential statistics. Finally, in the third one, the overall evaluation of the algorithms
is discussed to confirm the performance of the proposed NCH technique included in the
DE/RAND/1/BIN.

4.1. Experiment Conditions: Algorithm Parameter Tuning and Neuronal Constraint Handling
Training Process

This section presents the parameter tuning of algorithms and also the training process
of the proposed NCH technique. Those processes are applied at each study case and
consider the first trajectory.

Four metaheuristic algorithms (DE/RAND/1/BIN, GA, PSO, and MUMSA) with
the use of four constraint-handling techniques (FR, SR, εC and PF) are considered in
the tuning process. The irace [55] package version 3.3 implemented in the R software
version 3.6.2 is used in the parameter setting of algorithms. The irace package finds the
most suitable setting of the algorithm parameters given a specific optimization problem
through a set of automatic configuration procedures in a particular problem. At each
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iteration of configuration procedures, it maximizes the algorithms’ performance across
difference demands and uses either the non-parametric Friedman test or the paired t-test
to identify worse configurations to be discarded. When these procedures end, the best
algorithm setting results in a much higher-performing optimization algorithm, and it
can be used to solve the problem. For the detailed explanation of the irace procedure,
consult [60]. The maximum number of algorithm executions in the irace package for finding
the algorithm parameter setting is set as 50,000. Each algorithm in one execution includes a
stop criterion based on the objective function evaluation. In this case, 300,000 evaluations
of the objective function are considered. The maximum number was empirically chosen
through a series of trial and error procedures where the trade-off between the computational
time and the convergence to a suitable solution is considered.

The algorithm parameter setting obtained by the irace package is presented in Table 2
for the first study case and Table 3 for the second one.

The training of the NCH technique into the DE/RAND/1/BIN consists of finding the
neural weights w̄s

t,r and the bias ūs
r by using the irace package. In the training process of the

NCH technique, the crossover factor CR and the scale factor limits Fmin, Fmax are fixed with
the same configuration of the algorithm DE/RAND/1/BIN using the Feasibility Rules (FR)
constraint handling technique (see Tables 2 and 3).

Four neurons in the input layer (a1
r ∀ r = {1, 2, 3, 4}), three neurons in three hidden

layers (as
r ∀ r = {1, 2, 3} ∧ s = {2, 3, 4}), and one neuron in the output layer (a5

1) are
considered. The number of neurons in each layer was obtained by the trial and error
procedure where different numbers of neurons are compared to maximize the algorithm
efficiency. Based on that set of trials, three layers of neurons are recommended, with three
neurons in each layer for the study cases. The neural weights w̄s

t,r and the bias ūs
r for each

study case are shown in Table 4.

Table 2. Algorithm parameter setting obtained by an irace package in study case 1.

Algorithm CHT Parameters

DE/RAND/1/BIN

FR CR = 0.95, Fmin = 0.13, Fmax = 0.95
SR CR = 0.91, Fmin = 0.23, Fmax = 0.96, P f = 0.15
EC CR = 0.89, Fmin = 0.20, Fmax = 0.81, Pg = 0.07, Tc = 590, Rg = 5, cp = 6
PF CR = 0.95, Fmin = 0.17, Fmax = 0.91, vk = 10, 000

GA

FR CR = 0.80, MR = 0.06
SR CR = 0.23, P f = 0.20, MR = 0.05
EC CR = 1, Pg = 0.05, Tc = 610, Rg = 4, cp = 8, MR = 0.08
PF CR = 0.83, MR = 0.11, vk = 10, 000

PSO

FR vmin = 0.0, vmax = 0.01, C1 = 1.29, C2 = 2.04
SR P f = 0.69, vmin = 0.0, vmax = 0.01, C1 = 2.22, C2 = 1.06
EC Pg = 0.05, Tc = 610, Rg = 4, cp = 8, vmin = 0.0, vmax = 0.01, C1 = 1.10, C2 = 1.79
PF vmin = 0.05, vmax = 0.17, C1 = 2.04, C2 = 1.06, vk = 10, 000

MUMSA

FR CR = 0.73, Fmin = 0.34, Fmax = 0.78, R = 0.87, MR = 0.05
SR CR = 0.81, Fmin = 0.69, Fmax = 0.79, R = 0.73, MR = 0.08, P f = 0.31
EC CR = 0.93, Fmin = 0.71, Fmax = 0.99, R = 0.75, MR = 0.03, Pg = 0.08, Tc = 257, Rg = 3, cp = 9
PF CR = 0.02, Fmin = 0.13, Fmax = 0.78, R = 0.04, MR = 0.02, vk = 10, 000

CR is the crossover factor, Fmin and Fmax are the maximum and minimum scale factor limits. MR is the mutation
rate. P f is a probabilistic factor in SR. cp is a parameter to control the speed of reducing relaxation of constraints.
Tc is the maximum number of iterations (generations or time) to relax constraints. RG is the number of attempts to
improve a solution, and Pg is a probabilistic factor to improve a solution using the gradient-based mutation in εC.
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Table 3. Algorithm parameter setting obtained by the irace package in study case 2.

Algorithm CHT Parameters

DE/RAND/1/BIN

FR CR = 0.87, Fmin = 0.51, Fmax = 0.53
SR CR = 0.91, Fmin = 0.46, Fmax = 0.70, P f = 0.52
EC CR = 0.92, Fmin = 0.53, Fmax = 0.56, Pg = 0.04, Tc = 430, Rg = 5, cp = 9
PF CR = 0.93, Fmin = 0.52, Fmax = 0.63

GA

FR CR = 0.98, MR = 0.11
SR CR = 0.57, P f = 0.12, MR = 0.17
EC CR = 1, Pg = 0.08, Tc = 640, Rg = 4, cp = 6, MR = 0.14
PF CR = 0.02, Pg = 0.21

PSO

FR vmin = 0.05, vmax = 0.24, C1 = 0.29, C2 = 3.12
SR P f = 0.48, vmin = 0.04, vmax = 0.23, C1 = 1.60, C2 = 1.07
EC Pg = 0.06, Tc = 600, Rg = 2, cp = 2, vmin = 0.04, vmax = 0.26, C1 = 1.90, C2 = 0.86
PF vmin = 0.12, vmax = 0.34, C1 = 2.47, C2 = 0.34

MUMSA

FR CR = 0.99, Fmin = 0.78, Fmax = 0.86, R = 0.31, MR = 0.03
SR CR = 0.88, Fmin = 0.71, Fmax = 0.74, R = 0.89, MR = 0.03, P f = 0.41
EC CR = 0.91, Fmin = 0.82, Fmax = 0.85, R = 0.83, MR = 0.03, Pg = 0.03, Tc = 340, Rg = 2, cp = 5
PF CR = 0.98, Fmin = 0.66, Fmax = 0.73, R = 0.89, MR = 0.12

CR is the crossover factor, Fmin and Fmax are the maximum and minimum scale factor limits. MR is the mutation
rate. P f is a probabilistic factor in SR. cp is a parameter to control the speed of reducing relaxation of constraints.
Tc is the maximum number of iterations (generations or time) to relax constraints. RG is the number of attempts to
improve a solution, and Pg is a probabilistic factor to improve a solution using the gradient-based mutation in εC.

Table 4. Algorithm parameters of the NCH obtained by the irace package.

Parameter Four–Bar Cam–Linkage Parameter Four–Bar Cam–Linkage

w1
1,1 −5.1507 −9.7041 w3

3,2 −4.5326 −1.7223
w1

2,1 5.7785 4.6228 w4
1,1 −6.4775 −9.5093

w1
3,1 7.5795 −9.6850 w4

2,1 0.7554 −3.7442
w1

4,1 5.2518 −3.5547 w4
3,1 0.8913 0.0632

w1
1,2 8.4485 1.6000 w4

1,2 −5.6703 −6.2279
w1

2,2 −4.8087 5.5538 w4
2,2 5.7473 −5.4144

w1
3,2 6.4018 −4.7216 w4

3,2 −2.1010 −1.4408
w1

4,2 −0.0997 4.5662 w5
1,1 5.0501 −5.8695

w1
1,3 −6.4759 9.3248 w5

2,1 2.7255 −4.0260
w1

2,3 −6.9908 0.6948 w5
3,1 −5.471 −0.5826

w1
3,3 6.9994 −9.1374 u1

1 5.0333 −5.8695
w1

4,3 0.9477 −5.2051 u1
2 2.7255 −4.0260

w2
1,1 6.4335 −7.9333 u1

3 −5.471 −0.5826
w2

2,1 6.7337 −0.4223 u2
1 5.0333 7.6293

w2
3,1 9.1879 3.7733 u2

2 −3.2977 −7.3464
w2

1,2 2.2342 7.7584 u2
3 −0.5276 −0.2524

w2
2,2 −6.4004 −8.9817 u3

1 4.4916 −5.0776
w2

3,2 0.2861 −6.4264 u3
2 6.1729 2.9905

w3
1,1 7.0605 −7.6129 u3

3 −9.4461 −9.8085
w3

2,1 −3.3614 8.5456 u4
1 −3.4358 f −6.9378

w3
3,1 3.2812 −3.3421 u4

2 0.8191 −4.6794
w3

1,2 −4.3912 2.1478 u4
3 −1.1605 4.4777

w3
2,2 8.4263 7.2631 u5

1 −1.7526 −2.6718
Fmax 0.95 0.53 Fmin 0.13 0.51
CR 0.95 0.87

4.2. Algorithm Performance Analysis

Thirty executions are carried out to evaluate the metaheuristic algorithm performance
(DE/RAND/1/BIN, GA, PSO, MUMSA) for each constraint-handling technique (FR, SR,
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εC, PF, NCH). The acronyms given by the sixteen algorithms are related to the algorithms’
acronym, followed by the constraint-handling technique through a dash. For instance,
in the case of algorithms related to the DE/RAND/1/BIN, the acronyms are expressed as
R1B-FR, R1B-SR, R1B-εC, and R1B-PF.

The algorithm parameters presented in Table 2, and Tables 3 and 4 are considered
in the executions. Sixty individuals, particles, or chromosomes (NP = 60) and 600,000
objective function evaluations are established as a stop condition for each algorithm.

The results obtained by each algorithm consider the thirty best objective function
values obtained through the thirty executions (one value per each execution). This set of
values conforms to one sample for the statistical analysis described in this section for a
particular algorithm.

In this section, the samples of all algorithms are analyzed by using descriptive statistics,
confidence intervals, and inferential statistics.

4.2.1. Descriptive Statistics

The samples related to thirty executions of algorithms are analyzed by using descrip-
tive statistics metrics, such as the mean, the media, the standard deviation (std), and the
maximum (max) and minimum (min) values of the objective function. In addition, the num-
ber of Non-Feasible Solutions (NFS) at the end of the optimization process through the
thirty executions is also included to know whether the constraint-handling technique shows
some issue to leave the infeasible region.

Study case 1:

Table 5 shows the descriptive statistics of samples for study case 1 using trajectory 1 in
the synthesis process. The columns are related to the analyzed algorithm, the descriptive
statistics metrics, and the NFS for each sample. Boldface indicates the minimum value for
each column. According to the results in Table 5, all metaheuristic algorithms find feasible
solutions through the thirty executions (see NFS metric). R1B-NCH, R1B-SR, and R1B-PF
obtain the three best solutions in that order (see column “min”). R1B-NCH gives the best
algorithm performance finding solutions. The obtained solution in R1B-SR and R1B-PF
presents an increment of 37.88% and 41.94%, respectively, with respect to R1B-NCH (see
column “min”). In addition, the mean and minimum results are less in R1B-NCH than
other algorithms, and the standard deviation, the median, and maximum values present an
average behavior.

Table 6 shows the descriptive statistics of the samples for study case 1 using trajectory
2 in the synthesis process. The columns of such tables contain the same terms explained
above. In this analysis, the R1B-NCH algorithm reliability is studied under trajectory
changes to be followed by the four–bar linkage mechanism. According to the results in
Table 6, all metaheuristic algorithms find feasible solutions (see “NFS” column). MUMSA-
εC, R1B-FR, and R1B-NCH obtain the three best solutions in that order. In spite of R1B-NCH
presenting the third position, the difference with respect to the MUMSA-εC is minimal at
around 2.59% (see “min” column). Moreover, the R1B-NCH algorithm has the best mean
value, indicating the consistency of results through different executions. The standard
deviation, the median, the maximum, and minimum values of the objective function have
average performance in the R1B-NCH with respect to other algorithms.
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Table 5. Descriptive statistics of the obtained results for each metaheuristic algorithm in study case 1
with trajectory 1.

Algorithm-CHT Mean Std. Median Min Max NFS

R1B-FR 0.02619 0.01033 0.03075 0.003966 0.04198 0
GA-FR 0.03709 0.006465 0.03808 0.02067 0.05163 0
PSO-FR 0.03626 0.01057 0.03566 0.02025 0.05834 0

MUMSA-FR 0.03233 0.007363 0.03338 0.01265 0.0421 0
R1B-SR 0.03088 0.008759 0.03394 0.002988 0.04118 0
GA-SR 0.03578 0.01002 0.03773 0.01142 0.05438 0
PSO-SR 0.02846 0.007408 0.02765 0.004439 0.04094 0

MUMSA-SR 0.03104 0.00883 0.0341 0.01653 0.04237 0
R1B-εC 0.03395 0.004956 0.03378 0.02432 0.04756 0
GA-εC 0.04107 0.009803 0.04155 0.01859 0.0544 0
PSO-εC 0.03441 0.007179 0.03341 0.02315 0.0567 0

MUMSA-εC 0.02708 0.01299 0.0295 0.003726 0.04752 0
R1B-PF 0.02486 0.01167 0.03135 0.003076 0.03391 0
GA-PF 0.0397 0.008355 0.038 0.02922 0.05966 0
PSO-PF 0.03371 0.01283 0.03478 0.005304 0.06198 0

MUMSA-PF 0.02407 0.009266 0.02789 0.009579 0.03866 0
R1B-NCH 0.02255 0.01324 0.02978 0.002167 0.03585 0

Table 6. Descriptive statistics of the obtained results for each metaheuristic algorithm in study case 1
with trajectory 2.

Algorithm-CHT Mean Std. Median Min Max NFS

R1B-FR 0.02357 0.01494 0.03304 0.002539 0.04297 0
GA-FR 0.03521 0.01041 0.03816 0.01467 0.05109 0
PSO-FR 0.03724 0.00713 0.03643 0.02442 0.05452 0

MUMSA-FR 0.03205 0.009535 0.03412 0.01266 0.048 0
R1B-SR 0.02685 0.01408 0.03331 0.002685 0.04368 0
GA-SR 0.04522 0.01005 0.04495 0.02564 0.06512 0
PSO-SR 0.0353 0.01015 0.03663 0.003119 0.05145 0

MUMSA-SR 0.03064 0.01027 0.03104 0.01039 0.05104 0
R1B-εC 0.02956 0.009226 0.03264 0.01179 0.04592 0
GA-εC 0.03973 0.009862 0.03818 0.02489 0.05877 0
PSO-εC 0.03608 0.009744 0.03674 0.01091 0.05446 0

MUMSA-εC 0.02675 0.01264 0.03091 0.002507 0.05102 0
R1B-PF 0.02509 0.01224 0.02461 0.002746 0.04512 0
GA-PF 0.03458 0.01353 0.04058 0.005144 0.05076 0
PSO-PF 0.03452 0.01104 0.03651 0.01113 0.05355 0

MUMSA-PF 0.02689 0.007722 0.02891 0.00876 0.03767 0
R1B-NCH 0.02336 0.01577 0.03441 0.002572 0.04166 0

Study case 2:

Table 7 shows the descriptive statistics for study case 2 using trajectory 1 in the
synthesis process. The columns of such tables contain the same terms explained above.
According to the results in Table 7, all metaheuristic algorithms find feasible solutions
except for the PSO-FR and R1B-SR algorithm (see “NFS” column). R1B-NCH, MUMSA-FR,
and MUMSA-εC obtain the three best solutions (see “min” column). R1B-NCH gives
the best algorithm performance finding solutions due to the mean, the median, and the
min value of the best objective function being less than other algorithms. The standard
deviation and the maximum value of the objective function also present a lower value than
the average in the proposal.
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Table 7. Descriptive statistics of the obtained results for each metaheuristic algorithm in study case 2
with the trajectory 1.

Algorithm-CHT Mean Std. Median Min Max NFS

R1B-FR 0.7046 0.05785 0.6858 0.6778 0.9428 0
GA-FR 19.72 34.7 7.387 2.206 145.5 0
PSO-FR 5.092 2.945 4.244 2.232 13.56 1

MUMSA-FR 1.641 0.8234 1.158 0.6581 3.145 0
R1B-SR 0.7533 − 0.7533 0.7533 0.7533 29
GA-SR 3.123 1.743 2.455 1.892 8.379 0
PSO-SR 3.407 4.932 2.441 1.334 28.89 0

MUMSA-SR 1.779 1.324 1.206 0.6633 6.056 0
R1B-εC 0.6886 0.04365 0.6751 0.6625 0.8178 0
GA-εC 5.154 2.55 3.98 2.339 11.08 0
PSO-εC 2.336 1.067 2.17 0.983 6.829 0

MUMSA-εC 1.797 1.694 0.8433 0.6595 5.484 0
R1B-PF 0.7961 0.3161 0.7118 0.6722 2.422 0
GA-PF 2.714 0.4742 2.506 2.077 3.639 0
PSO-PF 2.91 1.138 2.899 1.388 7.702 0

MUMSA-PF 2.901 2.317 2.341 0.7097 10.47 0
R1B-NCH 0.6823 0.05252 0.6632 0.658 0.8157 0

Table 8 shows the descriptive statistics for study case 2 using trajectory 2 in the
synthesis process. The columns of such tables contain the same terms explained above.
In this analysis, the R1B-NCH algorithm reliability is studied under a trajectory change
in the cam–linkage mechanism. According to the results in Table 8, all metaheuristic
algorithms find feasible solutions except for PSO-FR, R1B-SR, and PSO-εC (see “NFS”
column). MUMSA-FR, R1B-NCH, and MUMSA-SR obtain the three best solutions in that
order. The R1B-NCH presents a very slight increment of around 0.68% with respect to the
obtained result given in MUMSA-FR (see “min” column). The R1B-NCH also obtains the
best values in the mean, the standard deviation, the median, and the maximum value of
the objective function.

Table 8. Descriptive statistics of the obtained results for each metaheuristic algorithm in study case 2
with trajectory 2.

Algorithm-CHT Mean Std. Median Min Max NFS

R1B-FR 0.7011 0.08787 0.6694 0.6592 0.9423 0
GA-FR 6.38 6.634 3.33 2.098 35.07 0
PSO-FR 3.705 2.125 3.331 1.706 13.79 2

MUMSA-FR 1.601 1.468 0.8563 0.6418 5.802 0
R1B-SR − − − − − 30
GA-SR 3.77 2.143 2.737 1.889 7.992 0
PSO-SR 5.722 11.51 2.966 1.03 62.69 0

MUMSA-SR 1.681 1.233 1.042 0.649 4.779 0
R1B-εC 0.686 0.06462 0.6591 0.6556 0.8979 0
GA-εC 5.369 2.458 4.001 1.8 8.895 0
PSO-εC 2.596 1.027 2.506 1.394 7.299 1

MUMSA-εC 1.755 1.594 0.9007 0.6536 5.441 0
R1B-PF 0.7394 0.1097 0.691 0.6796 1.056 0
GA-PF 2.836 0.8672 2.561 2.065 6.465 0
PSO-PF 2.983 1.476 2.779 1.151 7.049 0

MUMSA-PF 3.183 5.02 2.204 0.6996 28.75 0
R1B-NCH 0.6588 0.03913 0.6487 0.6462 0.8027 0
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It is observed in Tables 5–8 that the R1B-NCH presents an outstanding mean perfor-
mance (see “mean” columns) in the search for solutions through study cases in spite of
presenting changes in the optimization problems (rehabilitation trajectories) where the
algorithm setting and the NCH technique were tuned and trained, respectively.

However, descriptive statistics cannot estimate the best algorithm behaviors for future
executions. Therefore, the analysis of results by 95% confidence intervals and inferential
statistics [56] is carried out in the next section.

4.2.2. Confidence Intervals and Inferential Statistics

This section confirms the best algorithm behavior to solve each study case considered
in this work. The best algorithm behavior is obtained by analyzing the sample (thirty best
values of the objective function) obtained in each algorithm execution by 95% confidence
intervals [61] and using the non-parametric Friedman test [56].

The 95% Confidence Interval (CI) [61] is a range of values for a selected sample
of a study, where, with a 95% confidence, the interval contains the population’s true
mean. Therefore, the confidence interval values closest to zero indicate the most promising
algorithm due to the high probability that the mean behavior of the algorithm is inside
such interval. Moreover, in what follows, for each study case, the use of inferential statistics
through the Friedman test of the algorithm samples with the best CI will confirm the
algorithm performance.

Study case 1:

Table 9 shows the confidence interval values obtained by each algorithm for study
case 1 using both trajectories, and Figure 7 shows its graphical representation. It is observed
that the R1B-NCH, the R1B-PF, and the MUMSA-PF have confidence intervals closer to
zero (to the left) for trajectory 1. The R1B-NCH presents the confidence interval lower
limit value closest to zero, and its confidence interval upper limit does not exceed the
MUMSA-PF confidence interval upper limit. The results using trajectory 2 show that
R1B-FR, R1B-PF, and R1B-NCH have confidence intervals closer to zero. The R1B-NCH
presents the confidence interval lower limit value closest to zero, and the upper limit does
not exceed the confidence interval upper limit of R1B-FR.

Table 9. Confidence interval values of algorithm for study case 1 in both trajectories.

Trajectory 1

Limits R1B-FR R1B-SR R1B-εC R1B-PF R1B-NCH
Low 0.0223 0.0276 0.0321 0.0205 0.0176
Up 0.0300 0.0341 0.0358 0.0292 0.0275

GA-FR GA-SR GA-εC GA-PF
Low 0.0347 0.0320 0.0374 0.0366
Up 0.0395 0.0395 0.0447 0.0428

PSO-FR PSO-SR PSO-εC PSO-PF
Low 0.0323 0.0257 0.0317 0.0289
Up 0.0402 0.0312 0.0371 0.0385

MUMSA-FR MUMSA-SR MUMSA-εC MUMSA-PF
Low 0.0296 0.0277 0.0222 0.0206
Up 0.0351 0.0343 0.0319 0.0275
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Table 9. Cont.

Trajectory 2

Limits R1B-FR R1B-SR R1B-εC R1B-PF R1B-NCH
Low 0.0180 0.0216 0.0261 0.0205 0.0175
Up 0.0291 0.0321 0.0330 0.0297 0.0292

GA-FR GA-SR GA-εC GA-PF
Low 0.0313 0.0415 0.0360 0.0295
Up 0.0391 0.0490 0.0434 0.0396

PSO-FR PSO-SR PSO-εC PSO-PF
Low 0.0346 0.0315 0.0324 0.0304
Up 0.0399 0.0391 0.0397 0.0386

MUMSA-FR MUMSA-SR MUMSA-εC MUMSA-PF
Low 0.0285 0.0268 0.0220 0.0240
Up 0.0356 0.0345 0.0315 0.0298

0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Figure 7. Graphical representation of confidence intervals for algorithms solving the study case 1 in
both trajectories.

The 95%-confidence Friedman test is carried out in those three outstanding algorithms
per each trajectory, i.e., in R1B-NCH, R1B-PF, and MUMSA-PF for trajectory 1; and, in R1B-
FR, R1B-PF, and R1B-NCH for trajectory 2. According to the Friedman test in those groups
of three algorithms, there is no statistically significant difference in the comparisons because
the returned p-value is greater than 0.05. It is also confirmed in the multiple comparisons
with the Bonferroni post-hoc error correction method of the Friedman test given in Table 10
that the associated p-value is greater than 0.05, indicating the no confirmation of the
superiority of one algorithm in the comparison. In this paper, a tie is declared in the
comparison when that situation occurs. Thus, in all comparisons presented in Table 10,
the algorithms draw.

In the mechanism synthesis problem, it is common to obtain the optimal solution by
setting different (usually thirty) executions to the same problem [47]. However, there may
be significant differences among the best solutions obtained through different executions,
and the most promising solution obtained by the optimizer in the mechanism synthesis
problem is given through the best solution among executions [62].
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Table 10. p-values for tests in the multiple comparisons among the three outstanding algorithms in
study case 1 using both trajectories. All algorithms draw two times in both trajectories.

Trajectory 1
Hypotesis Bonferroni

MUMSA-PF vs. R1B-NCH 1
MUMSA-PF vs. R1B-PF 1
R1B-NCH vs. R1B-PF 1

Trajectory 2
Hypotesis Bonferroni

R1B-FR vs. R1B-NCH 1
R1B-FR vs. R1B-PF 0.59012
R1B-NCH vs. R1B-PF 0.90510

Then, to know whether the proposed R1B-NCH empirically presents a high probability
of finding the best results in the kinematic synthesis problem for lower limb rehabilitation,
the following is defined: As the confidence interval indicates whether these executions
are repeated in several tests, the proportion of calculated 95% confidence intervals that is
included the population’s true mean value would tend toward 95%; then, the confidence
interval closest to zero will indicate the population’s true mean value is closer to the
reduction of the objective function, and, hence, it is assumed that this interval presents a
high probability of granting the best solution (minimum value) through thirty executions
of the algorithm (executions commonly used for finding the best solution in the mechanism
synthesis problem).

In order to verify the previous assumption, the other four sets of thirty executions are
performed for the two groups of three algorithms (R1B-NCH, R1B-PF, and MUMSA-PF for
trajectory 1; and R1B-FR, R1B-PF, and R1B-NCH for trajectory 2). In Table 11, the minimum
values from the thirty executions per set are displayed. It is observed that, in each column
related to the set of data for the corresponding trajectories, the minimum value, marked in
boldface, is obtained by the proposed R1B-NCH.

Table 11. Minimum value of the objective function through different sets of thirty algorithms’
executions in study case 1 in both trajectories.

Trajectory 1
Algorithm-CHT Set 1 Set 2 Set 3 Set 4

R1B-NCH 0.00219 0.00305 0.00216 0.00214
R1B-PF 0.00234 0.00848 0.00401 0.00215

MUMSA-PF 0.01340 0.01142 0.01166 0.00976

Trajectory 2
Algorithm-CHT Set 1 Set 2 Set 3 Set 4

R1B-NCH 0.00255 0.00257 0.00266 0.00263
R1B-PF 0.00257 0.00307 0.00341 0.00354
R1B-FR 0.00270 0.00260 0.00271 0.00353

According to this analysis for study case 1, it is observed that the R1B-NCH algo-
rithm presents a high probability to find the best solution through thirty executions of the
algorithm in the mechanism synthesis problem for lower limb rehabilitation.

Study case 2:

Table 12 shows the confidence intervals obtained by each algorithm for study case 2
using both trajectories. Figure 8a shows the graphical representation of the confidence
interval, and Figure 8b shows the close-up view of the confidence intervals closer to
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zero. According to the results for both trajectories, R1B-FR, R1B-εC, and R1B-NCH have
confidence intervals closer to zero, where R1B-NCH presents the confidence interval lower
limit value closest to zero and its upper limit does not exceed the R1B-εC confidence
interval upper limit.

Table 12. Confidence interval values of algorithms for the study case 2 in both trajectories.

Trajectory 1

Limits R1B-FR R1B-SR R1B-εC R1B-PF R1B-NC
Low 0.6830 - 0.6723 0.6780 0.6627
Up 0.7262 - 0.7049 0.9141 0.7019

GA-FR GA-SR GA-εC GA-PF
Low 6.7614 2.4716 4.2015 2.5364
Up 32.6767 3.7737 6.1055 2.8906

PSO-FR PSO-SR PSO-εC PSO-PF
Low - 1.5653 1.9376 2.4854
Up - 5.2484 2.7343 3.3350

MUMSA-FR MUMSA-SR MUMSA-εC MUMSA-PF
Low 1.3340 1.2845 1.1647 2.0357
Up 1.9489 2.2735 2.4295 3.7658

Trajectory 2

Limits R1B-FR R1B-SR R1B-εC R1B-PF R1B-NC
Low 0.6683 - 0.6618 0.6984 0.6442
Up 0.7339 - 0.7101 0.7803 0.6735

GA-FR GA-SR GA-εC GA-PF
Low 3.9029 2.9697 4.4512 2.5120
Up 8.8576 4.5703 6.2872 3.1597

PSO-FR PSO-SR PSO-εC PSO-PF
Low - 1.4245 2.2053 2.4316
Up - 10.0193 2.9865 3.5342

MUMSA-FR MUMSA-SR MUMSA-εC MUMSA-PF
Low 1.0532 1.2205 1.1600 1.3086
Up 2.1492 2.1417 2.3506 5.0576

0 5 10 15 20 25 30 0.7 0.75 0.8 0.85 0.9

(a) (b)

Figure 8. Graphical representation of confidence intervals for algorithms solving the study case 2 in
both trajectories. (a) Original size. (b) Close−up view.
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The 95%-confidence Friedman test is performed in those three outstanding algorithms,
i.e., in R1B-FR, R1B-εC, and R1B-NCH for both trajectories. According to the Friedman
test in those groups of three algorithms, there exist a statistically significant difference
among them in both trajectories because the p-value associated is less than the proposed
significance level. Hence, to determine if one algorithm outperforms the other, inferential
statistics given by the Friedman test for multiple comparisons with the Bonferroni post-hoc
error correction method is carried out for finding the accurate pairwise comparisons. In
Table 13, such tests are given, and in boldface, the winner in the comparison is highlighted.
According to the number of wins, the results indicate that R1B-NCH is the most promising
optimizer in the optimal synthesis for the study case 2 in both trajectories because it wins
in all comparisons.

Table 13. p-values for tests in the multiple comparisons among the three outstanding algorithms in
study case 2 using both trajectories. R1B-NCH wins two times in both trajectories. R1B-EC wins one
time in trajectory 1.

Trajectory 1
Hypotesis Bonferroni

R1B-EC vs. R1B-FR 9.0179× 10−4

R1B-EC vs. R1B-NCH 4.2514× 10−2

R1B-FR vs. R1B-NCH 3.8933× 10−9

Trajectory 2
Hypotesis Bonferroni

R1B-EC vs. R1B-FR 8.4557× 10−2

R1B-EC vs. R1B-NCH 1.8685× 10−5

R1B-FR vs. R1B-NCH 5.7132× 10−11

In order to empirically confirm the superiority of the proposed R1B-NCH, to obtain the
optimal solution by setting different (usually thirty) executions to the same problem, other
four sets of thirty executions are performed for the two groups of three algorithms (R1B-FR,
R1B-εC, and R1B-NCH for both trajectories). In Table 14, the minimum values from the
thirty executions per set are displayed. It is observed that, in each column, the minimum
value, marked in boldface, is given by the expected algorithm (based on Table 13), i.e., the
proposed R1B-NCH. Note that these boldface values cannot be reached by the other
algorithms (R1B-FR and R1B-εC), confirming the statistical analysis presented above.

Table 14. Minimum value of the objective function through different sets of thirty algorithms’
executions in study case 2 in both trajectories.

Trajectory 1
Algorithm-CHT Set 1 Set 2 Set 3 Set 4

R1B-NCH 0.65626 0.65628 0.65606 0.65637
R1B-FR 0.67261 0.67827 0.67514 0.67639
R1B-εC 0.67012 0.66972 0.66852 0.66230

Trajectory 2
Algorithm-CHT Set 1 Set 2 Set 3 Set 4

R1B-NCH 0.64382 0.64224 0.64307 0.64441
R1B-FR 0.64948 0.65921 0.65997 0.65742
R1B-εC 0.65648 0.65463 0.65531 0.64569

4.2.3. Overall Evaluation of the Proposed NCH through Study Cases

The overall evaluation of the most promising algorithms given in Section 4.2.2 is
discussed next.
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In the first study case and according to Table 10, the most promising algorithms
considering both trajectories are: R1B-NCH, R1B-PF, MUMSA-PF, and R1B-FR. In that case,
all algorithms draw with each other. Thus, each algorithm presents two draws. In the
second study case and according to Table 13, the most promising algorithms are: R1B-NCH,
R1B-EC, and R1B-FR. In such a case, the R1B-NCH wins four times, and the R1B-EC wins
one time. With this information, a summary of the number of wins and draws for both
study cases, and trajectories are presented in Table 15. According to this table, the overall
evaluation of the most promising algorithms is analyzed, and it is confirmed that the most
promising one is the proposed R1B-NCH because it wins and draws four times. The next
best behaviors of the algorithms to solve the synthesis problem are related to R1B-PF and
R1B-FR in that order.

Table 15. Number of wins and draws in the overall performance of the most promising algorithms.

Algorithm-CHT Win Draw Total

R1B-NCH 4 4 8
R1B-PF 0 4 4
R1B-FR 0 3 3
R1B-EC 1 1 2

MUMSA-PF 0 2 2

Then, the NCH technique increases the exploration and exploitation capabilities in
the ED/RAND/1/BIN algorithm to solve the considered mechanism synthesis problems.
The obtained solution (mechanism) could improve the lower limb rehabilitation machine.

Finally, the best solutions obtained by the R1B-NCH algorithm for each study case are
displayed in Tables 16 and 17. In order to validate the obtained mechanism for rehabilitation
purposes, the Computer-Aided Design (CAD) of the mechanism in different phases of the
crank movement is shown in Figures 9 and 10. Through the figure sequences given by the
number 1 to the sequence number 9, it is observed that the coupler point of the mechanism
in both figures can provide the proposed rehabilitation routine showing in a continuous
line. Furthermore, if we fixed the human ankle joint in the coupler point of the mechanism,
the mechanism can reproduce the natural movement of the leg, as is shown in those figures.

Table 16. Design variable vector obtained by R1B-NCH for study case 1.

Design variable x1 [m] x2 [m] x3 [m] x4 [m] x5 [rad] x6 [m] x7 [m] x8 [m]

Value 0.5993 0.3056 0.5188 0.4359 0.5584 −0.0820 0.3773 0.5959

Design variable x9 [m] x10 [rad] x11 [rad] x12 [rad] x13 [rad] x14 [rad] x15 [rad] x16 [rad]

Value −0.1457 −0.8068 −1.1432 0.6441 0.7786 0.9475 1.1921 1.5975

Design variable x17 [rad] x18 [rad] x19 [rad] x20 [rad] x21 [rad] x22 [rad] x23 [rad]

Value 2.0538 2.5685 3.0521 −2.6381 −1.9459 −1.1755 −0.8090

Table 17. Design variable vector obtained by R1B-NCH for study case 2.

Design variable x1 [mm] x2 [mm] x3 [mm] x4 [mm] x5 [mm]

Value 222.2690 592.4821 895.9455 686.9534 400.3920

Design variable x6 [mm] x7 [mm] x8 [mm] x9 [rad] x10 [rad]

Value 506.1880 509.3375 683.1163 0.4579 −1.0462

Design variable x11 [rad] x12 [rad] x13 [mm] x14 [mm] x15 [mm]
Value −0.1572 −0.4755 −295.5667 14.9513 33.3667
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(4) (5) (6)

(7) (8) (9)

Figure 9. CAD representation of the best mechanism movement obtained by R1B-NCH for study
case 1.
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(7) (8) (9)

Figure 10. CAD representation of the best mechanism movement obtained by R1B-NCH for study
case 2.

5. Conclusions

In this work, the Neuronal Constraint-Handling (NCH) technique is proposed and
included in the differential evolution variant ED/RAND/1/BIN algorithm. The proposal
is validated in the solution of synthesis problems of the four–bar and cam–linkage mecha-
nisms (two study cases) for developing lower-limb rehabilitation routines.

The constraint-handling techniques FR, SR, εC, and PF are included in the metaheuris-
tic algorithms DE/RAND/1/BIN, GA, PSO, and MUMSA for comparative purposes.

The NCH performance is fairly and meaningfully compared with sixteen metaheuristic
algorithms using the irace package for both the algorithm settings and neuronal network
training, and the statistical analysis for the confirmation of the overall performance.

The statistical results confirm that the proposed R1B-NCH presents the best overall
performance in spite of using different trajectories than were used to tune the algorithms
and train the NCH technique. Furthermore, the results indicate that the NCH technique
balances the exploration and exploitation capabilities in the ED/RAND/1/BIN algorithm
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to solve the considered mechanism synthesis problems and thus obtains better design
solutions.

Future work involves the use and the comparative study of other neuronal network
architecture such as recurrent neural networks and symmetrically connected neural net-
works as constraint handling techniques. Recent authors’ work indicates that the use of
the relative angle method in the development of the kinematic motion in the synthesis
problem of mechanism indirectly increases the exploration capability of the algorithms,
i.e., the statement of the optimization problem highly influences in the optimizer. The use
of NCH techniques with the relative angle method could benefit the search and improve
the obtained results. Another research direction involves using the NCH technique in
multi-objective search approaches for the mechanism synthesis problems in rehabilitation
routines.
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Acronyms

NCH Neuronal Constraint-Handling
DE Differential Evolution
DE/RAND/1/BIN DE variant with random mutation an binomial crossover
SQP Sequential Quadratic Programming
GA Genetic Algorithm
PSO Particle Swarm Optimization
MUMSA Malaga University Mechanism Synthesis Algorithm
POEMA Pareto Optimum Evolutionary multi-objective Algorithm
GA-FL GA–Fuzzy Logic
AG Ant-Gradient
CS Cuckoo Search
ICA Imperialist Competitive Algorithm
TLBO Teaching-Learning-Based Optimization
HLIDE Hybrid Lagrange Interpolation DE
CMDE Combined-Mutation DE
CHT Constraint-Handling Techniques



Appl. Sci. 2022, 12, 2396 27 of 31

Nomenclature

J̄ Weighted objective function
Ji i-th objective function
x Design variable vector
gj j-th inequality constraint
hk k-th equality constraint
xmin & xmax Upper and lower design variable vector bounds
XG Population of individuals in a G generation
XG

p p-th individual in the XG population
UG Offspring individuals in a G generation
φ Constraint distance
f (µ) Sigmoid function
as

r r-th neuron in s-th layer in NCH technique
ŵs

t,r t-th wight for as
r neuron

as
r r-th bias in s-th layer for as

r neuron
wi i-th weight in the objective function
[x̄i

p, ȳi
p] Desired path points

[xi
p, yi

p] Mechanism path points
ri i-th length link
θi

2 i-th crank angle
[x0, y0] Ground link origin
[rcx , rcy ] Lengths in the coupler link
β, γ & η Link angles
e Slider displacement
α Slider angular position
R0 Cam base radius
Θre f Normalization angle parameter
Rre f Normalization radius parameter
dij Distance between i to j point
CR Crossover factor
Fmin & Fmax Maximum and minimum scale factor limit
MR Mutation rate
P f Probabilistic factor in SR
cp Control the relaxation of constraints
Tc Maximum iterations to relax constraints
RG Number of attempts to improve a solution
Pg Probabilistic factor to improve a solution

Appendix A. Trajectories for Rehabilitation in the Study Cases

Table A1. Cartesian coordinates of the precision points for both trajectories in study case 1.

Trajectory 1 Trajectory 2
x [m] y [m] x [m] y [m]

0.7429 0.188 0.7429 0.188
0.6551 0.1573 0.6551 0.1573
0.6014 0.1388 0.6014 0.1388
0.5189 0.1149 0.5189 0.1249
0.4159 0.1012 0.4159 0.1212
0.3001 0.1074 0.3001 0.1174
0.1964 0.1375 0.1964 0.1375
0.1639 0.1662 0.1639 0.1662
0.1605 0.2003 0.1605 0.2003
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Table A1. Cont.

Trajectory 1 Trajectory 2
x [m] y [m] x [m] y [m]

0.1934 0.2256 0.1934 0.2256
0.2619 0.2251 0.2619 0.2251
0.4201 0.1808 0.4201 0.2108
0.6474 0.1607 0.6474 0.1907
0.7429 0.188 0.7429 0.188

Table A2. Cartesian coordinates of the precision points for trajectory 1 in study case 2.

x [mm] y [mm] x [mm] y [mm] x [mm] y [mm]

−315.8706 −725.914 102.286 −784.1517 249.9019 −624.0724
−305.426 −729.4993 113.9412 −782.7289 232.1635 −626.9287
−295.562 −732.633 126.2456 −780.9599 214.5033 −631.2082
−284.9638 −735.7146 137.8298 −779.0587 195.4565 −636.575
−272.9513 −738.8459 150.0497 −776.7977 175.5689 −643.126
−259.5651 −742.091 162.2326 −774.345 154.0295 −650.5493
−245.4816 −745.2649 175.691 −771.2814 132.9875 −658.2092
−230.7078 −748.3559 188.404 −768.0873 110.6898 −666.7843
−217.2474 −750.9006 201.7067 −764.4419 88.04307 −675.2332
−201.8657 −754.024 214.2527 −760.6806 62.68539 −684.4142
−188.5033 −756.6797 228.0001 −756.1684 37.99372 −693.0726
−173.8345 −759.6436 240.3332 −751.8006 13.98859 −701.2471
−161.1907 −762.2906 253.8222 −746.6116 −13.02161 −709.5296
−147.8624 −764.9876 265.2127 −741.7514 −38.76389 −716.7951
−134.5299 −767.7142 277.7069 −736.0049 −65.7052 −723.5015
−122.5271 −770.2517 289.3726 −730.1277 −93.18724 −729.2118
−111.1662 −772.6216 300.7921 −723.7715 −119.8744 −733.994
−98.40761 −774.9819 310.6746 −717.4391 −147.5638 −737.2401
−86.97769 −777.2058 320.2523 −710.5785 −172.2932 −739.7084
−74.81197 −779.1819 328.2496 −703.7132 −197.8191 −740.6221
−63.29198 −781.0032 335.1887 −696.3953 −222.7483 −740.2338
−51.73248 −782.6248 339.9644 −689.448 −244.9169 −738.7976
−40.13729 −784.046 343.6156 −681.9446 −266.9157 −735.9746
−28.51026 −785.2659 345.5832 −674.264 −284.0916 −733.2587
−16.16956 −786.2028 346.533 −666.2336 −299.6447 −729.774
−4.491148 −787.0124 344.1531 −659.0253 −313.0036 −726.1448
7.891441 −787.5247 340.7879 −651.3812 −321.6559 −723.6518
19.6055 −787.922 335.573 −644.3309 −328.838 −721.1686
30.63857 −788.0627 327.8983 −637.91 −332.1062 −720.0498
43.05355 −787.9534 318.5382 −632.043 −332.155 −720.179
54.77622 −787.6019 307.4652 −627.8585 −329.6154 −721.2705
67.19192 −787.0725 295.572 −624.2872 −323.2063 −723.8421
78.90697 −786.3287 281.0296 −622.9766 −316.7307 −726.2375
91.2885 −785.2526 266.4392 −622.3635
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Table A3. Cartesian coordiantes of the precision points for trajectory 2 in study case 2.

x [mm] y [mm] x [mm] y [mm] x [mm] y [mm]

−315.8706 −725.914 102.286 −777.1517 249.9019 −624.0724
−305.426 −729.4993 113.9412 −776.7289 232.1635 −626.9287
−295.562 −732.633 126.2456 −776.9599 214.5033 −631.2082
−284.9638 −735.7146 137.8298 −776.0587 195.4565 −636.575
−272.9513 −738.8459 150.0497 −774.7977 175.5689 −643.126
−259.5651 −742.091 162.2326 −773.345 154.0295 −650.5493
−245.4816 −745.2649 175.691 −771.2814 132.9875 −658.2092
−230.7078 −748.3559 188.404 −768.0873 110.6898 −666.7843
−217.2474 −750.9006 201.7067 −764.4419 88.04307 −675.2332
−201.8657 −754.024 214.2527 −760.6806 62.68539 −680.4142
−188.5033 −756.6797 228.0001 −756.1684 37.99372 −685.0726
−173.8345 −759.6436 240.3332 −751.8006 13.98859 −687.2471
−161.1907 −762.2906 253.8222 −746.6116 −13.02161 −692.5296
−147.8624 −764.9876 265.2127 −741.7514 −38.76389 −697.7951
−134.5299 −767.7142 277.7069 −736.0049 −65.7052 −701.5015
−122.5271 −770.2517 289.3726 −730.1277 −93.18724 −702.2118
−111.1662 −772.6216 300.7921 −723.7715 −119.8744 −701.994
−98.40761 −774.9819 310.6746 −717.4391 −147.5638 −703.2401
−86.97769 −777.2058 320.2523 −710.5785 −172.2932 −703.7084
−74.81197 −777.1819 328.2496 −703.7132 −197.8191 −704.6221
−63.29198 −777.0032 335.1887 −696.3953 −222.7483 −702.2338
−51.73248 −776.6248 339.9644 −689.448 −244.9169 −700.7976
−40.13729 −777.046 343.6156 −681.9446 −266.9157 −697.9746
−28.51026 −778.2659 345.5832 −674.264 −284.0916 −698.2587
−16.16956 −778.2028 346.533 −666.2336 −299.6447 −699.774
−4.491148 −778.0124 344.1531 −659.0253 −313.0036 −701.1448
7.891441 −778.5247 340.7879 −651.3812 −321.6559 −703.6518
19.6055 −777.922 335.573 −644.3309 −328.838 −705.1686

30.63857 −778.0627 327.8983 −637.91 −332.1062 −708.0498
43.05355 −777.9534 318.5382 −632.043 −332.155 −710.179
54.77622 −777.6019 307.4652 −627.8585 −329.6154 −713.2705
67.19192 −777.0725 295.572 −624.2872 −323.2063 −718.8421
78.90697 −777.3287 281.0296 −622.9766 −316.7307 −721.2375
91.2885 −777.2526 266.4392 −622.3635
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