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Maintenance of neuronal homeostasis is a challenging task, due to unique cellular

organization and bioenergetic demands of post-mitotic neurons. It is increasingly

appreciated that impairment of mitochondrial homeostasis represents an early sign of

neuronal dysfunction that is common in both age-related neurodegenerative as well as in

neurodevelopmental disorders. Mitochondrial selective autophagy, known as mitophagy,

regulates mitochondrial number ensuring cellular adaptation in response to several

intracellular and environmental stimuli. Mounting evidence underlines that deregulation of

mitophagy levels has an instructive role in the process of neurodegeneration. Although

mitophagy induction mediates the elimination of damaged mitochondria and confers

neuroprotection, uncontrolled runaway mitophagy could reduce mitochondrial content

overstressing the remaining organelles and eventually triggering neuronal cell death.

Unveiling the molecular mechanisms of neuronal mitophagy and its intricate role in

neuronal survival and cell death, will assist in the development of novel mitophagy

modulators to promote cellular and organismal homeostasis in health and disease.

Keywords: aging, cell death, energy metabolism, homeostasis, mitochondria, mitophagy, neurodegeneration,

neuroprotection

INTRODUCTION

Mitochondria are remarkably dynamic organelles that divide, fuse and migrate in different
cellular compartments. The processes of mitochondrial fission and fusion ensure metabolite and
mitochondrial DNA (mtDNA) exchange for dilution of dysfunctional elements as well as dictate
organelle shape, number and bioenergetic functionality. Neurons require high energy levels and
depend on mitochondrial homeostasis to carry out their functions and sustain neuronal circuit
formation, communication and activity (Misgeld and Schwarz, 2017; Palikaras and Tavernarakis,
2020). Hence, neuronal cells are equipped with specialized molecular mechanisms for efficient
distribution of mitochondria. Mitochondria are typically localized to areas of high-energy demand
including the distal portion of the initial segment of axons, the nodes of Ranvier, growth cones,
presynaptic buttons and postsynaptic densities (Steketee et al., 2012; Smith et al., 2016; Misgeld
and Schwarz, 2017; Garcia et al., 2019; Verreet et al., 2019). While progress has been made in
identifying the proteins involved in mitochondrial transport within neurons, the significance of
localizing mitochondria in neuronal compartments, where they can respond to local changes in
neuronal activity and energy metabolism, is largely unknown and only starting to be exploited
(Sheng and Cai, 2012; Misgeld and Schwarz, 2017; Garcia et al., 2019; Palikaras and Tavernarakis,
2020).

It becomes increasingly appreciated that the removal of misfolded proteins, protein aggregates
and damagedmitochondria, is of crucial importance for the proper function and long-term survival
of neurons. The detailed molecular mechanisms that govern mitochondrial selective autophagy
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in such a highly differentiated and compartmentalized cell, as
well as their relevance to neuronal physiology only now begin
to be elucidated. During the last decade, mitophagy was widely
studied in the context of stress and pathological conditions
(Palikaras et al., 2018; Lou et al., 2020; Yan et al., 2020). A
growing body of evidence highlightsmitophagy as a physiological
process that occurs constitutively at baseline levels in the nervous
system. Interestingly, basal mitophagy levels differ between brain
regions and neuronal sub-populations. The dentate gyrus, lateral
ventricle and Purkinje cells display high levels of mitophagy,
whereas mitophagy is low in the neurons of the striatum,
cortex and substantia nigra (Sun et al., 2015). Furthermore,
neuronal mitophagy declines with age leading to accumulation
of defective organelles (Palikaras et al., 2015; Sun et al., 2015;
Evans and Holzbaur, 2020a). Increased mitochondrial damage
is a hallmark of aging and age-associated neurodegeneration
highlighting that neuronal cells are particularly sensitive to age-
dependent mitophagy impairment.

While the role of mitophagy in cellular and organismal
physiology is essential, several pathological conditions, such
as mitochondrial disorders, ischemic stroke, chronic cerebral
hypoperfusion, and diabetes, are shown to stimulate uncontrolled
mitochondrial elimination that subsequently leads to neuronal
cell death (Shi et al., 2014; Su et al., 2018; Devi et al., 2019;
Park et al., 2019; Zaninello et al., 2020). These findings underline
mitophagy as a “double-edged sword” for neuronal homeostasis
and viability. Here, we survey recent advances toward the
elucidation of the intricate role of mitophagy in neuronal survival
and cell death.

MOLECULAR MECHANISMS OF
MITOPHAGY IN NEURONAL CELLS

The maintenance of a healthy mitochondrial pool is pivotal for
cellular and organismal homeostasis (Figure 1). Post-mitotic
neuronal cells are more susceptible to mitochondrial damage
due to their increased energetic demands. Therefore, aged or
dysfunctional mitochondria need either to be repaired through
mitochondrial surveillance quality mechanisms, including
proteasome system, mitochondrial proteases, mitochondrial
derived vesicles (MDVs), fission-fusion machinery and
mitochondrial unfolded protein response (UPRmt), or be
eliminated by selective mitochondrial autophagy (Figure 1)
(Palikaras et al., 2018).

Several molecular mechanisms have been uncovered to
mediate mitochondrial removal to date, highlighting that
mitophagy could be triggered in response to diverse stimuli
via multiple signaling pathways, in distinct cellular contexts.
Accumulating evidence demonstrates an intricate coordination
between mitophagy regulatory mechanisms and highlights their
conservation from yeast to mammals (Palikaras et al., 2018;
Pickles et al., 2018; Lou et al., 2020). The PINK1 (PTEN-
induced putative kinase 1)/Parkin pathway is the most well-
characterized signaling cascade that orchestrates mitochondrial
degradation in response to stress (Harper et al., 2018; Palikaras
et al., 2018; Montava-Garriga and Ganley, 2020). PINK1 is a

mitochondrial protein kinase that is stabilized on the outer
mitochondrial membrane upon challenged conditions. PINK1
activity is induced upon its auto-phosphorylation leading to
the recruitment of Parkin on mitochondrial surface (Hasson
et al., 2013; Lazarou et al., 2015; Khaminets et al., 2016;
Pickles et al., 2018; Sekine and Youle, 2018). In turn, Parkin
ubiquitinates various outer mitochondrial membrane proteins
promoting either their degradation or their association with
autophagy adaptors and general autophagic machinery (Hasson
et al., 2013; Heo et al., 2015; Lazarou et al., 2015; Khaminets et al.,
2016; Gatica et al., 2018; Pickles et al., 2018; Sekine and Youle,
2018). Several studies underlie the causative interplay between
PINK1 and Parkin activation in response to mitochondrial
dysfunction. Systematic proteomic analysis both in non-neuronal
and neuronal cells suggest the stimulation of a feed-forward
mechanism that involves the PINK1-dependent phosphorylation
of ubiquitin (Ub) and poly-Ub chains on damaged organelles
to enhance mitophagy signal upon stress (Harper et al., 2018;
Ordureau et al., 2018, 2020). Furthermore, several PINK1- and
Parkin-independent molecular pathways have been identified
implicating the significance of multiple mitochondrial proteins
or lipids, including FUNDC1 (FUN14 Domain Containing 1),
BNIP3 (BCL2/adenovirus E1B 19-kDa-interacting protein 3),
NIX/BNIP3L (BCL2/adenovirus E1B 19-kDa-interacting protein
3-Like), BCL2L13 (BCL2- Like 13), FKBP8 (FK506 binding
protein 8), PHB2, cardiolipin, and ceramide among others, which
act as receptors and facilitate mitophagy (Sentelle et al., 2012;
Harper et al., 2018; Palikaras et al., 2018; Montava-Garriga and
Ganley, 2020).

The removal of neuronal mitochondria is a challenging
cellular event since the majority of mitochondrial population is
located at the distal neuronal compartments, far away from the
cell body of the neuron, where mature acidic lysosomes mainly
present (Holtzman andNovikoff, 1965; Cai et al., 2010; Evans and
Holzbaur, 2020b; Han et al., 2020). Despite the spatial limitations,
timely degradation of impaired mitochondria is essential for
neuronal protection against cell death. Recent studies have
suggested that Parkin-mediated mitophagy is limited in a small
subset of mature neurons and takes place much more slowly than
in other cell types (Cai et al., 2012a,b; Lin et al., 2017; Puri et al.,
2019). These results support the notion that alternative molecular
mechanisms sustain mitochondrial homeostasis upon mild
stress, before the stimulation of Parkin-mediated mitophagy.
Indeed, a very recent study has demonstrated that the
mitochondrial E3 ubiquitin ligase 1 (Mul1) facilitates an early
checkpoint to preserve mitochondrial integrity and restrains
neuronal mitophagy under mild mitochondrial stress (Puri et al.,
2019). Interestingly, Mul1 affects the stability of Mitofusin 2
(MFN2) preserving mitochondrial homeostasis. Mul1 deficiency
increases MFN2 protein levels promoting hyperfusion of the
mitochondrial network. Notably, MFN2 is also located on the
endoplasmic reticulum (ER)-mitochondrial contact sites where
it regulates calcium homeostasis (De Brito and Scorrano, 2008;
Filadi et al., 2015; Mclelland et al., 2018). Therefore, depletion
of Mul1 in neurons results in impaired ER-mitochondrial
tethering due to MFN2 upregulation, which in turn triggers the
elevation of cytoplasmic calcium levels, calcineurin activation,
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FIGURE 1 | Mitochondrial quality control mechanisms. Several environmental and intracellular stimuli influence mitochondrial activity and integrity. The maintenance of

a healthy mitochondrial population is essential for cellular metabolism and brain function. Thus, aged or defective organelles need either to be restored via

mitochondrial quality control mechanisms, including (1) mitochondrial dynamics, (2) proteasome system, (3) mitochondrial derived vesicles (MDVs), and (4)

mitochondrial unfolded protein response (UPRmt), or (5) be degraded by mitophagy.

DRP1 (Dynamin-related protein 1)-mediated mitochondrial
fragmentation and eventually mitophagy (Puri et al., 2019).
Studies in non-neuronal cells have shown that MFN2 is
phosphorylated by PINK1, and thereby promotes Parkin
recruitment on the outer mitochondrial membrane (Chen and
Dorn, 2013). In turn, Parkin ubiquitinates MFN2 to induce
its degradation, which results in the subsequent release of
mitochondria from the ER, thereby enhancing mitophagy (Chen
and Dorn, 2013; Mclelland et al., 2018). Although the core
mitophagy constituents are conserved in both neurons and
non-neuronal cells, the kinetics of mitochondrial elimination
varies not only between different cell types, but also between
neuronal sub-populations. These results indicate the existence of
a multi-step, highly organized and precise mitochondrial quality
control system.

A recent study reported that the degradation of defective
organelles is a rate-limiting event in neuronal cells (Evans and
Holzbaur, 2020a). Mild stress conditions trigger mitochondrial
depolarization, resulting in their subsequent sequestration
by autophagosomes and their delivery from the distal
neuronal compartments to the soma. Although mitophagy
in non-neuronal cells is taking place rapidly, neuronal

mitoautophagosomes remain intact in non-acidified organelles,
whereby their elimination is a very slow process (Evans and
Holzbaur, 2020a). Optineurin (OPTN) and TANK-binding
kinase 1 (TBK1) act downstream of Parkin to recognize defective
organelles and promote their autophagosomal engulfment
and retrograde transportation under antioxidant deprivation.
Interestingly, OPTN-mediated mitophagy is spatially-restricted
in neuronal cell bodies, with only few mitophagic events to be
detected in axons or dendrites (Evans and Holzbaur, 2020a).
These results further support the notion that mitophagy is
differentially regulated across neuronal compartments, as it
is previously demonstrated both in vitro and in vivo (Ashrafi
et al., 2014; Devireddy et al., 2015; Mcwilliams et al., 2016;
Sung et al., 2016; Puri et al., 2019; Zaninello et al., 2020).
Despite the fact that several adaptor molecules, such as NDP52,
OPTN, p62 and TAX1BP1 (Tax1 binding protein 1), have
been identified to facilitate mitophagy in non-neuronal cells,
it remains still elusive whether these adaptor proteins might
participate and/or co-regulate the highly compartmentalized
nature of neuronal mitophagy.

The differential kinetic patterns of mitochondrial turnover
under both basal and challenged conditions could explain
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FIGURE 2 | The intricate role of mitophagy in neuroprotection and neurodegeneration. Basal mitophagy eliminates defective mitochondria and simultaneously new

organelles are generated through mitochondrial biogenesis to sustain mitochondrial population. Excessive mitophagy significantly reduces mitochondrial number

overstressing the remaining organelles and eventually leads to energetic crisis and cell death. Similarly, mitophagy defects results in the accrual of damaged

mitochondria promoting neurodegeneration and brain aging.

the enhanced vulnerability of neurons upon mitochondrial
dysfunction. Additionally, age-dependent perturbations in
cellular homeostasis, including proteostasis collapse, lysosomal
dysfunction, mitochondrial impairment, increased oxidative
stress and genomic instability among others, could further
impede the efficiency of mitophagy exacerbating neuronal
susceptibility to degeneration (Hou et al., 2018; Palikaras et al.,
2018; Hipp et al., 2019; Lie and Nixon, 2019).

NEUROPROTECTIVE ROLE OF
MITOPHAGY

Defective mitochondrial turnover results in the progressive
accumulation of damaged organelles and is characterized as a
hallmark of aging and age-related neurodegenerative pathologies
(Figure 2) (Hou et al., 2019; Lautrup et al., 2019; Cai and
Jeong, 2020; Lou et al., 2020). Post-mortem Alzheimer’s disease
(AD) hippocampal samples display smaller mitochondria with
altered cristae formation and impaired function compared
with their counterparts in age-matched healthy controls (Fang

et al., 2019). Further evidence stemming from human induced
pluripotent stem cells (iPSCs)-derived AD neurons indicated
significantly decreased phosphorylation levels of ULK1 (Unc-
51 Like Autophagy Activating Kinase 1) and TBK1, thereby
suggesting that the initiation of the mitophagy process is
impaired (Fang et al., 2019). Congruently, levels of other essential
autophagy/mitophagy regulators, such as Parkin, OPTN, Mul1,
BECN1 (Beclin 1), AMBRA1 (Autophagy And Beclin 1
Regulator 1), FUNDC1, are diminished in AD samples (Pickford
et al., 2008; Martin-Maestro et al., 2016; Fang et al., 2019).
Moreover, a recent study demonstrated that overexpression

of wild type and disease-associated tau results in reduced
Parkin recruitment onto mitochondrial surface and mitophagy

inhibition in both nematodes and neuroblastoma cells (Cummins
et al., 2019). These findings suggest that the impairment
of basal mitophagy is an early event in AD human brain
and a causative factor in the development and progression
of disease pathophysiology (Kerr et al., 2017; Fang et al.,
2019).

In addition to AD, mitochondrial abnormalities and
mitophagy defects have also been associated with the
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pathogenesis of Parkinson’s disease (PD) (Liu et al., 2019).
Loss of function mutations of PARK6 and PARK2 genes, which
encode PINK1 and Parkin respectively, are linked to familial
form of parkinsonism (Chu, 2019). Although the PINK1/Parkin
pathway has been extensively studied in both neuronal and
non-neuronal cell cultures, its role in mitophagy regulation and
neuronal survival in vivo remains still controversial. Studies
in flies and rats demonstrated that Parkin deficiency leads to
altered mitochondrial morphology and function accompanied
by dopaminergic neuronal loss and motility defects (Kitada
et al., 1998; Whitworth et al., 2005; Yang et al., 2006; Dave et al.,
2014; Pickrell and Youle, 2015). However, PINK1 and Parkin
deficiency does not trigger any severe PD-associated phenotype
in mice, suggesting the existence of compensatory mitochondrial
quality control mechanisms (Goldberg et al., 2003; Perez and
Palmiter, 2005). Further supporting this notion, transgenic flies
and mice expressing mitophagy reporter identified that PINK1
and Parkin are dispensable for basal neuronal mitophagy (Lee
et al., 2018; Mcwilliams et al., 2018). Interestingly, a recent
study in mice identified that exhaustive exercise and increased
mtDNA damage stimulate dopaminergic neuronal loss and
locomotion defects in both PINK1 and Parkin mutant mice
(Sliter et al., 2018). These findings underscore that acute and/or
chronic organismal stress might contribute to the development
and progression of diverse pathological conditions, especially in
sensitive genetic backgrounds.

Mounting evidence suggests that mutant huntingtin (mHtt)
influences directly mitochondrial homeostasis contributing
to Huntington’s disease (HD) pathogenesis (Orr et al.,
2008; Shirendeb et al., 2011; Yan et al., 2020). Furthermore,
autophagy-mediated degradation of both cytoplasmic and
mitochondrial constituents is perturbed in HD leading to
the progressive accumulation of protein aggregates and
dysfunctional mitochondria (Martinez-Vicente et al., 2010).
Indeed, microscopic examination of the dentate gyrus region
revealed that basal mitophagy levels are diminished in a mouse
model of HD compared to age-matched control animals (Sun
et al., 2015). Supporting the neuroprotective role of mitophagy,
genetic studies in flies and rodents uncovered that mHtt is
associated directly with mitochondrial membranes and impairs
mitochondrial integrity and mitophagy execution leading to
neurodegeneration (Hwang et al., 2015; Khalil et al., 2015; Guo
et al., 2016; Franco-Iborra et al., 2020).

Pharmacological upregulation of mitophagy is shown to
promote neuroprotection against several neurodegenerative
pathologies (Georgakopoulos et al., 2017; Palikaras et al.,
2018). Indeed, dietary supplementation with urolithin A (UA),
actinonin and NAD+ (Nicotinamide Adenine Dinucleotide)-
precursor molecules, restores multiple pathological features
of AD, including mitochondrial damage, neuronal defects,
Aβ aggregation, aberrant tau phosphorylation levels,
neuroinflammation, and cognitive dysfunction among others
(Hou et al., 2018; Fang, 2019; Lautrup et al., 2019; Gilmour et al.,
2020). Moreover, nicotinamide riboside (NR; NAD+-precursor
molecules) administration preserves mitochondrial function
and diminishes degeneration of dopaminergic neurons through
mitophagy induction in flies, mouse and iPSCs models of
PD (Schondorf et al., 2018). Recent clinical trials suggest that

administration of both NR and UA is safe without demonstrating
any adverse effect in compound-treated compared to placebo-
treated group and highlight their therapeutic potential (Dollerup
et al., 2018; Andreux et al., 2019; Conze et al., 2019; Radenkovic
et al., 2020). Interestingly, NAD+-precursor molecules confer
neuroprotection through the activation of BNIP3-mediated
mitophagy in both AD and PD models (Schondorf et al., 2018;
Fang et al., 2019). These results underline the requirement of
personalized pharmacological approaches that depend on the
patient genetic background to overcome mitophagy pathway
deficiencies in pathological conditions (Xie et al., 2019).

Spermidine, a natural occurring compound, is shown to
induce autophagy and mitophagy promoting cytoprotection,
stress resistance and longevity in yeast cells, nematodes, flies,
and mice (Eisenberg et al., 2009, 2016; Madeo et al., 2018).
Furthermore, spermidine-rich feeding reverses the age-induced
decline of polyamines in brain tissue and subsequently improves
synaptic impairment and memory loss in an autophagy-
dependent manner (Gupta et al., 2013, 2016; Maglione et al.,
2019). A randomized clinical trial was recently conducted to
evaluate the impact of spermidine supplementation on memory
performance in humans (Wirth et al., 2018). Spermidine-
treated aged-individuals displayed moderate improvement in the
memory performance and enhanced mnemonic discrimination
abilities compared to placebo-treated group (Wirth et al., 2018).
The decreased levels of spermidine in blood serum of AD patients
compared to healthy individuals, further support the therapeutic
potential of polyamine-rich food supplementation against age-
related dementia in humans (Madeo et al., 2018; Joaquim et al.,
2019).

Taken together, the central role of mitophagy in neuronal
communication, activity and survival is steadily emerging. It
is increasingly appreciated that impairment of mitochondrial
metabolism represents an early sign of neuronal deficits that
is common in both age-related deterioration of brain function
as well as in neurodegenerative disorders. Therefore, the
development of novel therapeutic interventions to modulate
mitochondrial turnover and preserve healthy mitochondrial
population could confer neuroprotection against brain aging
before any irreversible impairment.

MITOPHAGIC CELL DEATH IN NEURONS

The tight coordination between mitochondrial biogenesis and
degradation is essential for cellular, tissue and organismal
physiology (Palikaras and Tavernarakis, 2014; Palikaras et al.,
2015). Insufficient mitochondrial biogenesis and excessive
mitophagy diminish mitochondrial population that burdens the
remaining organelles, which subsequently promote mitophagy-
mediated cell death (Figure 2) (Palikaras and Tavernarakis,
2014; Subramaniam, 2020). Indeed, excessive mitochondrial
elimination has been indicated as a cause of cell death in
several disease models (Subramaniam, 2020). Notably, BNIP3-
mediated mitophagy is shown to promote neuronal death both
in vitro and in vivo upon ischemic stroke (Shi et al., 2014).
BNIP3 deficiency prevents neuronal loss in neonatal brains
upon ischemia/hypoxia (I/H) treatment. Although BNIP3 and
NIX/BNIP3L share high degree of sequence homology, elevated
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NIX/BNIP3L levels could not compensate BNIP3 depletion
to trigger mitophagy and cell death in response to ischemic
stroke. Therefore, it is suggested that mitophagic cell death
is mainly regulated by BNIP3, whereas NIX/BNIP3L sustains
basal mitophagy levels in neurons (Shi et al., 2014). Further
supporting the pro-death activities of BNIP3, a recent study
demonstrated increased protein levels of BNIP3 and mitophagy
upregulation in a rat model of chronic cerebral hyperfusion
(CCH). Chronic state of reduced cerebral blood flow leads
to CCH that is linked to neurological damage and cognitive
decline (Somredngan and Thong-Asa, 2018). Interestingly,
administration of URB597, a fatty acid amide hydrolase inhibitor,
decreases BNIP3 and Parkin protein levels, which confers
neuroprotection due to mitophagy inhibition (Somredngan and
Thong-Asa, 2018).

The brain region hippocampus retains its neurogenic
capacities throughout adulthood and is severely affected during
brain aging or injury. Evidently, neuronal stem cell plasticity,
survival and differentiation are under constant and tight
proteostatic and metabolic regulation (Garcia-Prat et al., 2017;
Khacho et al., 2019). Moreover, transgenic mice expressing
mitophagy reporter display increased basal mitophagy levels in
the hippocampal dentate gyrus, highlighting the pivotal role
of mitochondrial quality control in neurogenesis (Sun et al.,
2015; Khacho et al., 2019). Hippocampal neuronal stem cells
(HNSCs) differentiation and viability depends on extracellular
stimuli, including insulin/insulin-like growth factors (IGFs).
It is already documented that insulin depletion triggers
autophagy-dependent cell death in HNSCs (Aberg et al., 2000;
Lichtenwalner et al., 2001). Parkin stimulation deregulates
ER-mitochondrial tethering promoting cytoplasmic calcium
elevation and mitophagic cell death in hippocampal neurons
upon insulin withdrawal (Park et al., 2019). Altered insulin
signaling interferes with hippocampal neuronal function and
is associated with several neurodegenerative and psychiatric
disorders (Bernstein et al., 2020; Palikaras and Tavernarakis,
2020). Taken together these results underline the impact of
imbalancedmitochondrial biogenesis andmitophagy in neuronal
stem cell survival.

Recent findings demonstrated that excessive mitophagy
eliminates mitochondrial content in striatal neurons and
triggers cell death upon mitochondrial damage (Sharma
et al., 2019). The small GTPase Rhes (Ras homolog enriched
in striatum) is highly expressed in striatum brain region
and is associated with lysosomal and mitochondrial cellular
compartments. Interestingly, Rhes induces NIX-mediated
runaway mitophagy and reduces mitochondrial content in
response to 3-Nitropropionic acid (3-NP) mitochondrial
toxicant (Sharma et al., 2019). Evidently, 3-NP supplementation
promotes striatal lesions and causes severe pathological
symptoms in mammals reminiscent of HD (Brouillet et al., 1993;
Fu et al., 1995; He et al., 1995; Guyot et al., 1997). Therefore,
it is tempting to speculate that imbalance of mitophagy might
be a contributing factor to striatal neurodegeneration and
pathogenesis of HD.

Several studies in mammals and nematodes demonstrated
that disruption of the continual redistribution of mitochondria

compromises axonal stability, synaptic integrity and
neuropeptide release leading to neurodegeneration (Misko
et al., 2012; Cherra et al., 2013; Rawson et al., 2014; Zhao
et al., 2018; Han et al., 2020; Zaninello et al., 2020). A very
recent study reported that exaggerated autophagy/mitophagy
depletes axonal mitochondria in retinal ganglion cells (RGCs)
and mediates the development of autosomal optic atrophy
(ADOA) (Zaninello et al., 2020). ADOA is an incurable genetic
disorder caused by mutations in theOPA1 gene (Alexander et al.,
2000; Delettre et al., 2000). Although, the main pathological
feature of ADOA is optic nerve degeneration and visual loss
during early childhood, several patients develop multi-systemic
deteriorations, including deafness, ataxia, myopathies and
paraplegia among others, underlining the pivotal role of OPA1
activity in the maintenance of mitochondrial metabolism and
tissue homeostasis (Yu-Wai-Man et al., 2010; Belenguer and
Pellegrini, 2013). Further elaborating on the contribution of
mitophagy to ADOA pathogenesis, it is documented that
OPA1 mutation stimulates AMPK (AMP-activated protein
kinase) activity in axonal hillock and mediates mitochondrial
degradation in nematode and mouse neurons. Notably,
autophagy deficiency restores mitochondrial content in
axons and inhibits visual defects in an ADOA mouse model
highlighting the detrimental effect of uncontrolled mitophagy
in disease development and progression (Zaninello et al.,
2020).

CONCLUSION

Mitophagy preserves energy homeostasis facilitating
the elimination of defective organelles and, thereby,
preventing the release of various harmful byproducts of
mitochondrial activity. Hence, mitophagy stimulation exerts
cytoprotection against premature aging and neuronal death
(Palikaras et al., 2018; Bakula and Scheibye-Knudsen, 2020).
Although the molecular mechanisms of mitochondrial
selective autophagy have been extensively studied, several
controversial questions remain to be addressed about neuronal
mitophagy. The stimulus and the molecular mechanisms,
which regulate autophagosomal formation in axons, cargo
recognition and sequestration, transport to the soma,
fusion with lysosomes and degradation are still obscure.
Furthermore, several gaps remain in our understanding of
major aspects of mitochondrial contributions to neuronal
vulnerability and aging that might trigger cellular and/or
tissue damage.

Aging represents the greatest risk factor for the onset
of degenerative diseases of the nervous system. These
include the very common Alzheimer’s, Parkinson’s, and
Huntington’s diseases among others, all of which are tightly
associated with mitochondrial and autophagic defects (Chu,
2019; Bakula and Scheibye-Knudsen, 2020; Cai and Jeong,
2020; Evans and Holzbaur, 2020b; Lou et al., 2020; Yan
et al., 2020). Additionally, the molecular pathways that
orchestrate the crosstalk between mitophagy, apoptosis and
necrotic cell death in axonal and dendritic degeneration
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remain unknown. Unraveling potent chemical modulators
of mitophagy and understanding how mitochondrial
elimination promotes either neuroprotection or neuronal
cell death would be essential for the development of novel
and context-specific pharmacological interventions against
neurodegenerative disorders.
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