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Abstract.

The presence of gap junction coupling among neurons of the central nervous systems has been appreciated for some
time now. In recent years there has been an upsurge of interest from the mathematical community in understanding the
contribution of these direct electrical connections between cells to large-scale brain rhythms. Here we analyze a class of
exactly soluble single neuron models, capable of producing realistic action potential shapes, that can be used as the basis
for understanding dynamics at the network level. This work focuses on planar piece-wise linear models that can mimic the
firing response of several different cell types. Under constant current injection the periodic response and phase response
curve (PRC) is calculated in closed form. A simple formula for the stability of a periodic orbit is found using Floquet theory.
From the calculated PRC and the periodic orbit a phase interaction function is constructed that allows the investigation
of phase-locked network states using the theory of weakly coupled oscillators. For large networks with global gap junction
connectivity we develop a theory of strong coupling instabilities of the homogeneous, synchronous and splay state. For a
piece-wise linear caricature of the Morris–Lecar model, with oscillations arising from a homoclinic bifurcation, we show that
large amplitude oscillations in the mean membrane potential are organized around such unstable orbits.

Key words. piece-wise linear models, gap junctions, Floquet theory, coupled-oscillator theory, phase-density function

AMS subject classifications. 92C20

1. Introduction. Gap junctions allow for direct communication between cells. They are typically
formed from the juxtaposition of two hemi-channels (connexin proteins) and allow the free movement of
ions or molecules across the intercellular space separating the plasma membrane of one cell from another.
Gap junction coupling is known to occur between many cell types, including for example pancreatic-β
cells [21], heart cells [23] and astrocytes [9]. It is no understatement to say that they are now believed to
be ubiquitous throughout the central nervous system [16]. Indeed it has been appreciated for some time
that they exist between inhibitory neurons of the neocortex [35]. As well as being found in neocortex
[36, 4, 39, 34], they occur in many other brain regions, including the hippocampus [34], inferior olivary
nucleus in the brain stem [75], the spinal cord [71], the thalamus [47] and have recently been shown to form
axo-axonic connections between excitatory cells in the hippocampus (on mossy fibers) [41]. Without the
need for receptors to recognize chemical messengers gap junctions are much faster than chemical synapses
at relaying signals. The synaptic delay for a chemical synapse is typically in the range 1− 100 ms, while
the synaptic delay for an electrical synapse may be only about 0.2 ms. There is now little doubt that
gap junctions play a substantial role in the generation of neural rhythms, both functional [3, 46, 8] and
pathological [82, 24], and that they may subserve system level computations [62].

The presence of gap-junctional coupling in a neuronal network necessarily means that neurons directly
‘feel’ the shape of action potentials (APs) from other neurons to which they are connected. From a
modeling perspective one must therefore be careful to work with single neuron models that have an
accurate representation of an AP shape. To date there is now a zoo of single neuron models that can
accurately reflect these shapes for different neuronal cell types (see for example [49]). Typically such
models, being based around that of Hodgkin–Huxley [44], are high dimensional and can often only be
analyzed using perturbative techniques, such as geometric singular perturbation theory (see [72] for a
review). When combined with an initial reduction of the model, say using the techniques in [54], this
has proven a remarkably powerful approach for gaining insight into single neuron behavior. However,
it does not necessarily pave the way for tractable network studies. In this case starting from a one
dimensional integrate-and-fire (IF) type model is often advocated [11]. However, since the IF model does
not generate an action potential shape it must be augmented in some way as in [15, 37], leading one
naturally to consider the spike-response model [38]. However, in this case the AP is considered to have
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a universal shape, triggered as the voltage reaches a constant voltage threshold. This does not quite
capture the dynamics of a truly excitable system (with gating variables) where instead one would expect
a state-dependent threshold and a variable AP shape. Thus we are naturally led to a search for planar
models possessing one voltage and one gating variable that can mimic the behavior of high dimensional
conductance based models. Perhaps the most famous example of such a model is the FitzHugh–Nagumo
model [31], which has many of the same characteristics as the Hodgkin–Huxley model. In this case
analytical progress has been possible with one further step, namely the introduction of piece-wise linear
(PWL) nullclines. This gives rise to the so-called McKean model [64], for which a number of results
about the existence and stability of periodic orbits are now known [83, 84]. In this paper we introduce a
broader class of PWL models that can mimic the behavior of many common cell types and describe how
to analyze periodic orbits explicitly. Importantly we show that the study of such models does indeed allow
for mathematical studies of the rich dynamical behavior seen in large networks with strong gap junction
coupling. In this sense our work is complementary to many other theoretical studies that focus on weak

coupling [74, 69, 7, 61, 56, 26] as well as computational studies with strong coupling [55, 60, 3, 76].

One of the main motivations for pursuing the work in this paper is that it may underpin the devel-
opment of a tractable firing rate model of neural tissue possessing gap junctions. Necessarily this must
require an understanding of strong coupling if gap induced variations in firing rate are of interest. With
the exception of work by van Vreeswijk [81] (for synaptic interactions) results for strong coupling are
rare. Hence, although we focus on the special case of PWL neuron models this is useful as it allows
for some specific insight to be gained into dynamics in the strong coupling regime. Moreover, some
of the techniques we develop here, notably for determining the stability of the asynchronous state in
a strongly gap-junction coupled global network, are valid not just for PWL systems but more general
limit cycle oscillator networks. The more detailed structure of this paper is as follows. In section 2 we
introduce the class of PWL models that we study throughout the paper. In particular we focus on two
distinct examples, one of which is the McKean model and the other a new PWL model that caricatures
the conductance-based Morris–Lecar model with oscillations generated via a homoclinic bifurcation [68].
Next, in section 3, we show how to analyze periodic orbits that arise in such models under constant
current injection. This includes the construction of orbits, the determination of their stability, and the
calculation of the phase response curve for the orbit. Stability is analyzed using Floquet theory and shown
to lead to a simple formula for the non-zero Floquet exponent. Network studies are pursued in section 4
for two important cases: i) weak coupling, and ii) strong coupling. In the former case we show how to
calculate the phase interaction function for a network in closed form using a Fourier representation. This
is used to investigate phase-locked states in both small and large networks. Focusing on synchronous and
splay states in globally coupled networks we further show how to treat the case of strong coupling. Our
results for existence and stability recover those of the weak coupling theory in the appropriate limit. In
section 5 we use this strong coupling theory to understand large amplitude oscillations seen in the mean
field signal of networks of Morris–Lecar neurons with gap junction coupling [42]. Finally in section 6 we
discuss natural extensions of the work in this paper.

2. Piece-wise linear neuron models. The excitable properties of neural cells can often be sum-
marized simply by determining their firing rate response to constant current injection. Broadly speaking
one then either classifies a neuron as being Type I or Type II. Type I is obtained when repetitive action
potentials are generated with an arbitrarily low frequency, whereas in Type II action potentials emerge at
a nonzero frequency. In this latter case it is natural to think of oscillations as arising through a Hopf bifur-
cation. Indeed from the seminal experimental and modeling work of Hodgkin and Huxley this is known to
be the case for the squid giant axon. Thus, although the original Hodgkin–Huxley model consists of four
nonlinear ordinary differential equations (ODEs) it is not surprising that alternative planar models can
also be invoked to fit at least the firing rate response. The classic example being the FitzHugh–Nagumo
model [31], though others such as obtained by a systematic reduction of the Hodgkin–Huxley equations
are known [1]. These planar models are described by two coupled nonlinear ODEs, one for voltage and
the other for a single effective gating variable. The nullcline for the voltage variable has a cubic shape
typical of many excitable systems. Although powerful geometric techniques may be brought to bear on
such planar models their analysis in closed form is precluded by the presence of the cubic nonlinearity.
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Fig. 2.1. The phase plane for the McKean model has a nullcline with a piece-wise linear cubic shape (dashed green line)
corresponding to v̇ = 0 and a linear one associated with ẇ = 0 (dotted blue line). Parameters are C = 0.1, I = 0.5,γ = 0.5,
and a = 0.25. The red line corresponds to a stable periodic orbit.

This has motivated the introduction and study of PWL caricatures, such as the McKean model [64, 79].
The equations for a single two-dimensional McKean neuron take the form

Cv̇ = f(v) − w + I, (2.1)

ẇ = g(v, w), (2.2)

where the functions f(v) and g(v, w) are given by

f(v) =





−v, v < a/2

v − a, a/2 ≤ v ≤ (1 + a)/2

1 − v, v > (1 + a)/2

, (2.3)

g(v, w) = v − γw. (2.4)

Here, C > 0, γ > 0, I is a constant drive and f(v) is a PWL caricature of the cubic FitzHugh–Nagumo
nonlinearity f(v) = v(1 − v)(v − a), whilst g(v, w) describes the linear dynamics of the gating variable.
Another popular choice for f(v) is the function f(v) = −v + Θ(v − a), where Θ is the Heaviside step
function. The analysis of this latter nonlinearity has been pursued in detail by Tonnelier [78, 80]. A phase-
plane plot of the McKean model is shown in Fig. 2.1. To generate Type I behavior, often associated with
either a homoclinic bifurcation or a saddle-node on an invariant cycle (SNIC) [27], necessarily requires the
introduction of a nonlinear dynamics for the gating variable, as in the Morris–Lecar model or the cortical
neuron model of Wilson [85]. A PWL idealization of the Morris–Lecar model has already been introduced
by Tonnelier and Gerstner [80], and since the nullcline of the gating variable in the Wilson model has a
quadratic shape, it too is easy to caricature. Indeed many of the shapes for g(v, w) underlying a Type I
response appear to be described with the simple continuous choice

g(v, w) =

{
(v − γ1w + b∗γ1 − b)/γ1, v < b

(v − γ2w + b∗γ2 − b)/γ2, v ≥ b
, (2.5)

with −a/2 < b∗ < (1 − a)/2 and a/2 < b < (1 + a)/2. Here we take γ2 > 0, though allow γ1 to
take both positive and negative values. Another natural choice, though this time discontinuous, is
g(v, w) = v − γw + Θ(v − b), which has been used to caricature the Morris–Lecar model in particular
[80]. Note that (up to a constant shift) we recover the PWL McKean model with the choice γ1 = γ = γ2
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Fig. 2.2. The phase plane for the piece-wise linear Morris–Lecar (PML) model with γ1 = 2, γ2 = 0.25, C = 0.825,
I = 0.1, a = 0.25 and b = 0.5 and b∗ = 0.2. The pale blue line passing through the saddle (gray filled circle) is the separatrix
between the stable fixed point (black filled circle) and the stable limit cycle (in red).

in equation (2.5). An example with dynamics that is bistable between a fixed point and a limit cycle
is shown in Fig. 2.2. Here the emergence of low frequency oscillations is associated with a homoclinic
bifurcation, whereby the amplitude of the periodic orbit grows with a decrease in I and collides with a
saddle point. We regard this model as a PWL caricature of the Morris–Lecar neuron, with oscillations
arising from a homoclinic bifurcation, and as such shall refer to it as the PML model. On a technical
point it is important to note that it is not possible to have a smooth SNIC with a piece-wise linear model,
since it would not contain any quadratic parts (necessary to define a saddle-node bifurcation). One such
example, would be the nonlinear integrate-and-fire neuron, described by Karbowski and Kopell [52] with
subthreshold dynamics v̇ = |v|+I. Throughout the rest of this paper we shall work with the PWL model
defined by equations (2.3) and (2.5), though we stress here that the techniques we develop work for all
of the PWL choices for f(v) and g(v, w) that we have discussed above.

3. Periodic orbits. As a PWL planar system much can be said about the dynamics of models
defined by equations (2.3) and (2.5). For the special case that f(v) = −v + Θ(v − a) and g(v, w) = v
Tonnelier [78] has shown how to use the method of harmonic balance [2] to obtain information about
periodic orbits. Here we present an alternative approach that can tackle more general choices for f and
g. In essence we solve the system in each of its linear regimes and demand continuity of solutions to
construct orbits of the full nonlinear flow. To see how we do this it is first convenient to consider a
two-dimensional linear system of the form

ż = Az + b, z =

[
v
w

]
, (3.1)

where the 2 × 2 matrix A has components aij , i, j = 1, 2, and b is a constant 2 × 1 input vector. The
solution to (3.1) may be written in the form

z(t) = G(t)z(0) + K(t)b, G(t) = eAt, K(t) =

∫ t

0

G(s)ds. (3.2)

If A has real eigenvalues λ±, such that Aq± = λ±q± with q± ∈ R
2, given by

λ± =
TrA ±

√
(TrA)2 − 4 detA

2
, (3.3)
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then we may ‘diagonalize’ and write G(t) in the computationally useful form G(t) = P eΛtP−1, where
Λ = diag(λ+, λ−), P = [q+, q−], and q± = [(λ± − a22)/a21, 1]T . If A has complex eigenvalues ρ± iω then
the associated complex eigenvector is q such that Aq = (ρ+iω)q, q ∈ C

2. In this case G(t) = eρtPRωtP
−1,

where

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
, P = [Im(q),Re(q)] =

[
0 1
ω̂ ρ̂

]
, (3.4)

with ω̂ = ω/a12 and ρ̂ = (ρ − a11)/a12. Note that ρ and ω may be written using the invariance of Tr
and det as ρ = (a11 + a22)/2, ω2 = a11a22 − a12a21 − ρ2 > 0. The explicit form for G(t), necessary for
carrying out computations, is given in Appendix A.

To specify a periodic orbit of the PWL model of choice it is convenient to break the solution into
pieces such that on each piece the dynamics is governed by a linear dynamical system. As a concrete
example we will focus on the type of periodic orbits shown in Figs. 2.1 and 2.2. In both these examples
we need only consider four distinct pieces, labeled by µ = 1, . . . , 4. We denote the time spent in each of
these four states as Tµ. For each piece we write zµ(t) = Gµ(t)zµ(0) + Kµ(t)bµ with the forms for Gµ and
Kµ given by (3.2) under the replacement of A by Aµ. For the McKean model we have that A1 = A3,
A2 = A4 where

A1 =

[
1/C −1/C
1 −γ

]
, A2 =

[
−1/C −1/C

1 −γ

]
, (3.5)

with

b1 =

[
(I − a)/C

0

]
, b2 =

[
(1 + I)/C

0

]
, b4 =

[
I/C
0

]
, (3.6)

and b3 = b1. For the PML model defined by (2.5)

A1 =

[
1/C −1/C
1/γ2 −1

]
, A2 =

[
−1/C −1/C
1/γ2 −1

]
, A4 =

[
1/C −1/C
1/γ1 −1

]
, (3.7)

with

b1 =

[
(I − a)/C
b∗ − b/γ2

]
, b2 =

[
(1 + I)/C
b∗ − b/γ2

]
, b4 =

[
(I − a)/C
b∗ − b/γ1

]
, (3.8)

and A3 = A1 and b3 = b1. Introducing two voltage thresholds v1
th and v2

th, where (v1
th, v2

th) = (a/2, (1 +
a)/2) for the McKean model and (v1

th, v2
th) = (b, (1+a)/2) for the PML model, means that we can param-

eterize a periodic orbit by choosing initial data such that z1(0) = (v1
th, w∗) (with w∗ as yet undetermined)

and zµ+1(0) = Gµ(Tµ)zµ(0)+Kµ(Tµ)bµ, for µ = 1, 2, 3. The ‘times-of-flight’ Tµ are determined by solving
the threshold crossing conditions: v1(T1) = v2

th, v2(T2) = v2
th, v3(T3) = v1

th, and v4(T4) = v1
th. A periodic

solution can then be found by solving w4(T4) = w1(0), thus yielding w∗ and the period T =
∑4

µ=1 Tµ.
In Fig. 3.1 we plot the period and orbit shape as a function of the external drive I obtained using the
prescription above. A similar plot for the PML model is shown in Fig. 3.2. In contrast to the McKean
model the firing rate of the PML model at the onset of repetitive behavior increases from zero, as expected
for a system with a homoclinic bifurcation.

Three other types of periodic solution are also possible. Two of these involve only a single threshold
crossing. Namely one which crosses through the section v = v1

th, but not v = v2
th and another which crosses

through v = v2
th, but not v = v1

th. Calling these the sub- and supra-threshold periodic orbits respectively
then each may also be solved for using the approach (and notation) above. The sub-threshold orbit is
specified by the restriction µ = {1, 4} with z1(0) = (v1

th, w∗), subject to v1(T1) = v1
th = v4(T4) and

w4(T4) = w1(0), so that T = T1 + T4. The supra-threshold orbit is specified by the restriction µ = {2, 3}
with z2(0) = (v2

th, w∗), subject to v2(T2) = v2
th = v3(T3) and w3(T3) = w2(0), so that T = T2 + T3.

Examples of such orbits are shown in Fig. 3.3. The final type of orbit does not cross any thresholds, and
is defined by simply by v(T ) = vth and v(T ) = v(0) for some section vth through the orbit. We shall call
such an orbit harmonic, because its shape will be determined by a linear system of ODEs. Note however
that it will only exist at an isolated point in parameter space, namely where the coefficient matrix A has
purely complex eigenvalues (TrA = 0, detA > 0).
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Fig. 3.1. McKean model. Left: period of solution as a function of background drive I. Right: shape of orbits for
I = 0.4, 0.5, 0.6, 0.7, 0.8. Other parameters as in Fig. 2.1.
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Fig. 3.2. PML model. Left: period of solution as a function of background drive I. Right: shape of orbits for I
ranging from 0.17 to 0.09. Other parameters as in Fig. 2.2.
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Fig. 3.3. McKean model. Left: Sub-threshold orbits with C = 1, γ = 0.4, and I = 0.475, 0.5, 0.525. All these sub-
threshold orbits have a common period. Right: Supra-threshold orbits with C = 1, γ = 0.7, and I = 0.47, 0.49, 0.51. All
these super-threshold orbits have a common period. Other parameters as in Fig. 2.1.
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3.1. Phase response curve. It is common practice in neuroscience to characterize a neuronal
oscillator in terms of its phase response to a perturbation. This gives rise to the notion of a so-called
phase response curve (PRC). For a detailed discussion of PRCs we refer the reader to [29, 30, 45]. Suffice
to say that there are three main ways to calculate PRCs, attributed to Winfree, Kuramoto and Malkin.
A nice comparison of these three approaches can be found in [50]. For concreteness we shall follow the
exposition in [13] for the Malkin adjoint method. Consider a dynamical system ż = F (z) with a T -
periodic solution Z(t) = Z(t + T ) and introduce an infinitesimal perturbation ∆z0 to the trajectory Z(t)
at time t = 0. This perturbation evolves according to the linearized equation of motion:

d∆z

dt
= DF (Z(t))∆z, ∆z(0) = ∆z0. (3.9)

Here DF (Z) denotes the Jacobian of F evaluated along Z. Introducing a time-independent phase shift
∆θ as θ(Z(t) + ∆z(t)) − θ(Z(t)) we have to first order in ∆z that

∆θ = 〈Q(t),∆z(t)〉, (3.10)

where 〈·, ·〉 defines the standard inner product, and Q = ∇Zθ is the gradient of θ evaluated at Z(t).
Taking the time-derivative of (3.10), gives

〈
dQ

dt
,∆z

〉
= −

〈
Q,

d∆z

dt

〉
= −〈Q, DF (Z)∆z〉 = −

〈
DFT (Z)Q,∆z

〉
. (3.11)

Since the above equation must hold for arbitrary perturbations we see that the gradient Q = ∇Zθ satisfies
the linear equation

dQ

dt
= D(t)Q, D(t) = −DFT (Z(t)), (3.12)

subject to the conditions ∇Z(0)θ · F (Z(0)) = 1/T and Q(t) = Q(t + T ). The first condition simply

guarantees that θ̇ = 1/T (at any point on the periodic orbit), and the second enforces periodicity. The
(vector) PRC, R, is related to Q according to the simple scaling R = QT . In general (3.12) must be
solved numerically to obtain the PRC, say using the adjoint routine in XPP [25]. However, for PWL
models DF (Z) is piece-wise constant and we can obtain a solution in closed form. Introducing a labeling
as for the periodic orbit in section 3 we re-write (3.12) in the form Q̇µ = DµQµ, where Dµ = −AT

µ . The

solution of each subsystem is given by Qµ(t) = GT
µ (Tµ−t)Qµ(Tµ) with Qµ(Tµ) = Qµ+1(0), for µ = 1, 2, 3.

Denoting Q4(T4) = (q1, q2) we have the relation

q1

µ

[
f(v1

th) − w∗ + I
]
+ q2g(v1

th, w∗) =
1

T
. (3.13)

Periodicity is ensured by choosing Q1(0) = Q4(T4). After introducing the 2 × 2 matrix
Γ = GT

1 (T1)G
T
2 (T2)G

T
3 (T3)G

T
4 (T4), this periodicity condition takes the form

(Γ11 − 1)q1 + Γ12q2 = 0. (3.14)

Hence (3.13) and (3.14) define a pair of linear equations for (q1, q2) that we may write in the form

Ψ

[
q1

q2

]
=

[
1/T
0

]
, Ψ =

[
(f(v1

th) − w∗ + I)/µ g(v1
th, w∗)

Γ11 − 1 Γ12

]
. (3.15)

This is easily solved, with say Cramer’s rule, giving qi = det(Ψi)/ det(Ψ), where

Ψ1 =

[
1/T g(v1

th, w∗)
0 Γ12

]
, Ψ2 =

[
(f(v1

th) − w∗ + I)/µ 1/T
Γ11 − 1 0

]
. (3.16)

Similarly we may also construct the PRCs for the sub- and supra-threshold orbits (though we omit the
details here). Note that the discussion above assumes that the underlying dynamical system is described
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Fig. 3.4. Phase response curve (first component of Q(t) scaled by T ). The dashed line shows the underlying shape of
the periodic voltage solution. Left: McKean model PRC with parameters as in Fig. 2.1. Right: PML model with parameters
as in Fig. 2.2.

by a continuous vector field, so that we are free to choose any point on the orbit to fix the condition
θ̇ = 1/T . For discontinuous systems such as would arise in the singular limit C = 0 or with a discontinuous
choice of g(v, w) then conditions (3.13) and (3.14) are not sufficient. Techniques for tackling relaxation
style oscillations that arise in the former case have been developed in [48, 17], whilst the latter case can
easily be treated by writing down the matching conditions to fix θ̇ = 1/T at any jump discontinuities in
g(v, w). A plot of two example PRCs constructed using the above approach are shown in Fig. 3.4.

3.2. Stability: Floquet theory. The natural way to determine the stability of a periodic orbit
is to use Floquet theory (see for example [14]). The linearized equations describing the evolution of
perturbations around the periodic orbit are given by (3.9). Note that with the use of a time-ordering
operator T we may write the fundamental matrix solution of this T -periodic system as

G(t) = T

{
exp

[∫ t

0

DF (Z(s))ds

]}
, (3.17)

where T D(t)D(s) = Θ(t− s)D(t)D(s) + Θ(s− t)D(s)D(t). Let µk be the (distinct) eigenvalues of G(T )
and write σk = ln(µk)/T mod 2πi. It follows that the periodic orbit will be stable if all the Floquet
exponents have negative real part, namely Re σk < 0 for all k = 1, 2. Note that one of the Floquet
exponents is always zero since it corresponds to perturbations along the periodic orbit (i.e. Ż is a
solution of (3.9) with a Floquet multiplier equal to unity). For PWL models time-ordering is not an issue
(since DF is piece-wise constant) and we have that G(T ) = G4(T4)G3(T3)G2(T2)G1(T1) = ΓT .

We now make use of the well known result µ1µ2 = exp(
∫ T

0
Tr DF (s)ds) to obtain (σ1, σ2) = (0, σ),

where

σ =
1

T

∑

µ=1

TµTr Aµ. (3.18)

The non-zero exponent for the sub- and supra-threshold orbit is given by (3.18) with T2 = T3 = 0 and
T1 = T4 = 0 respectively. For a harmonic splay state we have simply that σ = Tr A1. Periodic solutions
are stable if σ < 0. For example, a periodic solution of the McKean model has a non-zero Floquet
exponent σ = (T1 − T2 + T3 − T4)/(CT ) − γ. Note that in the singular limit C → 0 we expect T1,3 → 0,
so that σ ≤ 0. Hence, any periodic orbits that persist in this limit will be stable. For the PML model
σ = (T1 − T2 + T3 + T4)/(CT ) − 1. Some example plots of the non-zero Floquet exponent as a function
of the external drive I are shown in Fig. 3.5.
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Fig. 3.5. Plot of the Floquet exponent σ. Left: Result for the McKean model using the solution branch of Fig. 3.1
(left). Right: Result for the PML model using the solution branch of Fig. 3.2 (left). Since σ < 0 the solution branches in
these two examples are stable.

4. Gap junction coupling. To model the direct gap junction coupling between two cells, one
labeled post and the other pre, we introduce an extra current to the right hand side of (2.1) of the form

Igap = ggap(vpre − vpost), (4.1)

where ggap is the conductance of the gap junction. Indexing neurons in a network with the label i =
1, . . . , N and defining a gap junction conductance strength between neurons i and j as gij means that

neuron i experiences a drive of the form N−1
∑N

j=1 gij(vj−vi). For a phase locked state then zi(t) = z(t−
φiT ), z(t) = z(t+T ), (for some constant phases φi ∈ [0, 1)) and we have N equations distinguished by the

driving terms N−1
∑N

j=1 gij(v(t+(φi−φj)T )−v(t)). In this section we pursue two approaches for studying
networks of identical PWL neurons with such coupling terms. The first is the more familiar coupled
oscillator approach, valid for weak coupling. The second approach exploits a Fourier representation to
obtain closed form solutions for splay states with arbitrary coupling strength.

4.1. Weak coupling. The theory of weakly coupled oscillators [57, 28] is now a standard tool of
dynamical systems theory and has been invoked by several authors to study networks with gap junctions
[69, 61, 70, 26, 63, 53]. It has also previously been used to study networks of McKean neurons in the
singular limit C → 0 [17, 22]. We introduce a time-dependent phase along the T -periodic orbit of an
uncoupled neuron such that θ̇i(t) = 1/T for i = 1, . . . , N , with θi ∈ [0, 1). In the presence of weak
coupling (small gij), the dynamics for a gap junction coupled network then takes the form

dθi

dt
=

1

T
+

1

N

N∑

j=1

gijH(θj − θi), i = 1, . . . , N, (4.2)

where H(θ) is the so-called phase interaction function. For gap junction coupling this is given by

H(θ) =
1

T

∫ T

0

QT (t)(v(t + θT ) − v(t), 0)dt, (4.3)

where v(t) is a periodic solution of (2.1) and (2.2), and Q(t) is the associated adjoint. It is convenient to
introduce Fourier series for the 2 × 1 vectors z and Q and write

z(t) =
∑

n

zne2πint/T , Q(t) =
∑

n

Qne2πint/T . (4.4)
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The phase interaction function then has the series representation:

H(θ) =
∑

n

Rnv−n[e−2πinθ − 1], (4.5)

where vn denotes the first component of zn and Rn is the first component of Qn. The Fourier coefficients
zn and Qn may be obtained in closed form by taking Fourier transforms of the solutions for z(t) and
Q(t). A straightforward calculation, using the forms of z(t) and Q(t) derived in sections 3 and 3.1, gives

zn =
1

T

4∑

µ=1

[
αn

µzµ(0) + γn
µbµ

]
e−2πinνµ , Qn =

1

T

4∑

µ=1

βn
µQµ(Tµ)e−2πinνµ , (4.6)

where (ν1, ν2, ν3, ν4) = (0, T1, T1 + T2, T1 + T2 + T3)/T and the coefficients αn
µ, βn

µ and γn
µ are given

explicitly by

αn
µ =

∫ Tµ

0

Gµ(t)e−2πint/T dt, βn
µ =

∫ Tµ

0

GT
µ (Tµ − t)e−2πint/T dt, γn

µ =

∫ Tµ

0

Kµ(t)e−2πint/T dt. (4.7)

Computationally useful forms for these matrix coefficients are given in Appendix B. Writing H(θ) as
the Fourier series

∑
n Hne2πinθ we have that Hn = R−nvn for n 6= 0 and H0 = −

∑
n 6=0 Hn. From the

structure of (4.7) given in Appendix B we see that the Fourier coefficients for the orbit and the response
function decay as 1/n, and hence those of the phase interaction function as 1/n2. Examples of phase
interaction functions constructed using the above prescription are shown in Fig. 4.1.

We define a phase-locked solution to be of the form θi(t) = φi +Ωt, where φi is a constant phase and
Ω is the collective frequency of the coupled oscillators. Substitution into the averaged system (4.2) gives

Ω =
1

T
+

1

N

N∑

j=1

gijH(φj − φi), i = 1, . . . , N. (4.8)

After choosing some reference oscillator, these N equations determine the collective frequency Ω and
N − 1 relative phases. In order to analyze the local stability of a phase-locked solution Φ = (φ1, ..., φN ),

we linearize the system by setting θi(t) = φi + Ωt + θ̃i(t) and expand to first-order in θ̃i to obtain:

dθ̃i

dt
=

1

N

N∑

j=1

Ĥij(Φ)θ̃j , Ĥij(Φ) = gijH
′(φj − φi) − δi,j

N∑

k=1

gikH ′(φk − φi), (4.9)

where H ′(φ) = dH(φ)/dφ. One of the eigenvalues of the Jacobian Ĥ is always zero, and the corresponding
eigenvector points in the direction of the flow, that is (1, 1, . . . , 1). The phase-locked solution will be stable
provided that all other eigenvalues have a negative real part. For two neurons, with gij = g, a phase
locked state is defined by G(φ) = 0 where G(φ) = g[H(−φ) − H(φ)] and φ is the relative phase between
the two. The condition for stability is simply G′(φ) < 0. By symmetry the phase locked state (φ = 0)
and the anti-synchronous state (φ = 1/2) are guaranteed to exist. In Fig. 4.2 we plot G(φ) for the
phase interaction functions of Fig. 4.1. In this example we see that the McKean model admits a stable
synchronous solution, whilst the PML model admits a stable anti-synchronous solution.

For globally coupled networks with gij = g the system (4.2) is SN×T1 equivariant. By the equivariant
branching lemma maximally symmetric solutions describing synchronous, splay, and cluster states are
expected to be generic [5]. For the synchronous state, defined by φi(t) = 0, the collective frequency

is given simply as Ω = 1/T , and Ĥij(Φ) = gH ′(0)[1 − Nδij ]. Hence, there is a single zero eigenvalue
and an eigenvalue λ = −gH ′(0) of multiplicity N − 1. For the examples in Fig. 4.1 we see that the
McKean model has a stable synchronous solution whilst the PML model, with oscillations generated by
a homoclinic bifurcation, does not. If the underlying single neuron model has an oscillation generated
by a SNIC bifurcation (for which the PRC is well known) then synchrony is stable [26, 50]. For a splay

state of the form φi = i/N the eigenvalues of Ĥ are given by λn = g
∑

j H ′(j/N)(e2πinj/N − 1)/N
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Fig. 4.1. Phase interaction functions corresponding to Fig. 3.4. Left: McKean model. Right: PML model.

for n = 0, . . . , N − 1. Such solutions are often called merry-go-round states, since all oscillators in the
network pass through some fixed phase at regularly spaced time intervals of T/N . For a recent review of
the stability of cluster states (in which subsets of the oscillator population synchronize, with oscillators
belonging to different clusters behaving differently) we refer the reader to [40, 12]. We shall not focus on
them further here.

In the limit N → ∞ we have the useful result that (for global coupling) network averages may be
replaced by time averages:

lim
N→∞

1

N

N∑

j=1

F (jT/N) =
1

T

∫ T

0

F (t)dt = F0, (4.10)

for some T-periodic function F (t) = F (t + T ). Hence in the large N limit the collective frequency of a
splay state (global coupling) is given by Ω = 1/T + gH0, with eigenvalues

λn =
g

T

∫ T

0

H ′(t/T )e2πint/T dt = −2πingH−n. (4.11)

Hence a splay state is stable if −ngIm Hn < 0, where we have used the fact that since H(θ) is real then
Im H−n = −Im Hn. A numerical examination of the eigenvalues (4.11) (using the analytical expressions
for Hn obtained via (4.6)) for the phase interaction functions shown in Fig. 4.1, shows that the splay
state is unstable for both these examples. One natural way to stabilize the splay state is to include some
synaptic coupling as in the work of [37, 26]. Another mechanism is to include noise, as originally noted
by Kuramoto [57]. If we consider the addition of zero mean white noise with variance σ2 to the voltage
dynamics then the phase-reduced system also feels an additive zero mean white noise source, though with

variance σ2
θ given by σ2

θ = σ2
∫ T

0
[R(t)]

2
dt/T . For a globally coupled network the asynchronous state is

stable if −ngIm Hn < σ2
θn2, for all n 6= 0 [58] . This nicely shows us that if the eigenvalues associated

with the deterministic model stray slightly into the right hand complex plane then a small amount of
noise can be used to compensate and restabilize the splay state. However, since this is an argument that
relies upon weak-coupling then it can necessarily only work if the unstable eigenvalues are sufficiently
close to the imaginary axis.

4.2. Beyond weak coupling. Here we develop techniques for the study of the synchronous and
splay state in the strong coupling regime for global coupling (gij = g, for all i, j). First we show how to
construct such solutions, extending techniques used in our weak coupling analysis, and use this to explore
the effect of gap junction strength on network firing rates. Secondly we show how to analyze the stability
of the synchronous solution using Floquet theory, and that of the splay state using a phase-density
formalism.
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McKean model. Right: PML model.

4.2.1. Existence and stability of a synchronous state. A synchronous network solution exists
whenever a periodic orbit for an isolated oscillator exists (g = 0), and has the period of the uncoupled
isolated oscillator. However, stability will depend on the value of coupling g. For convenience we define
a matrix Aµ(g) = Aµ − B(g) with

B(g) =
g

C
J, J =

[
1 0
0 0

]
. (4.12)

Following along similar lines to [40] the 2N Floquet multipliers are given as the eigenvalues of a 2N ×2N
matrix G(T ), where G(T ) has the form of equation (3.17), with DF given by

DF =




A(g) + 1
N B(g) 1

N B(g) 1
N B(g) . . . 1

N B(g)
1
N B(g) A(g) + 1

N B(g) 1
N B(g) . . . 1

N B(g)
...

. . .
1
N B(g) 1

N B(g) . . . A(g) + 1
N B(g) 1

N B(g)
1
N B(g) 1

N B(g) . . . 1
N B(g) A(g) + 1

N B(g)




, (4.13)

where A(g) = Aµ(g). Here µ is chosen according to µ = µ1 if t ∈ [0, T1), µ = µ2 if t ∈ [T1, T2), µ = µ3

if t ∈ [T2, T3) and µ = µ4 if t ∈ [T3, T4), defining four distinct phases of the orbit. On each of these
four phases DF = DFµ is independent of time. The matrix DFµ is block circulant, with a generating
row given by [Aµ(g) + B(g)/N B(g)/N . . . B(g)/N ], and can be diagonalized by Fourier transform.
Introducing the 2 component vector qn, n = 0, . . . , N − 1, then the components of the eigenvectors of
DFµ can be listed as a set of N 2-component vectors with entries

qne2πinm/N , n,m = 0, . . . , N − 1, (4.14)

where q0 is an eigenvector of Aµ and qn 6=0 is an eigenvector of Aµ(g). Hence, we may calculate
G(T ) = G4(T4)G3(T3)G2(T2)G1(T1) using the representation Gµ(Tµ) = Pµ exp(ΛµTµ)P−1

µ , where Pµ

is the matrix of eigenvectors of DFµ and Λµ the corresponding diagonal matrix of eigenvalues, compris-
ing the 2 eigenvalues of Aµ and N − 1 copies of the two eigenvalues of Aµ(g). However, motivated by
these observations, there is a much simpler way of calculating the Floquet multipliers that avoids the
computation of G(T ) (and its eigen-structure).

We write the N dimensional linearized system of equations in the form Ż = DF Z. First consider
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the 2 dimensional system ż = A(g)z. By direct inspection we see that

Z =




z
−z
0
...
0




,




z
0
−z
...
0




, . . . ,




z
0
0
...

−z




, (4.15)

are linearly independent solutions of Ż = DF Z. Hence the two Floquet multipliers of ż = A(g)z are
also Floquet multipliers of Ż = DF Z, with N − 1 degeneracy. Now consider the 2 dimensional system
ż = Az. Again by direct inspection we see that

Z =




z
z
z
...
z




, (4.16)

is also a solution of Ż = DF Z, with two Floquet multipliers. Hence we can account for all the 2N Floquet
multipliers (including the one which is unity). Using the analysis of section 3.2 the three relevant Floquet
exponents are given by equation (3.18) and the pair (σ1, σ2) where σk = ln(µk)/T mod 2πi. Here the µk

are the two (distinct) eigenvalues of G(T ) = G4(T4)G3(T3)G2(T2)G1(T1), where Gµ(Tµ) = exp(Aµ(g)Tµ)
is a 2 × 2 matrix. Hence the synchronous network state is stable if an uncoupled isolated oscillator has
a stable periodic orbit (σ < 0, and see equation (3.18)), and if the absolute values of the eigenvalues
of G(T ) are less than unity. The condition for eigenvalues to cross the unit circle along the real axis is
det[G(T ) ± I] = 0, and off of the real axis we have the condition detG(T ) = 1. This latter condition
is equivalent to

∑
µ TµTrAµ(g) = 0. For the examples in section 4.1 we find that the McKean model

supports a stable synchronous state for weak coupling and that this stability persists with increasing g.
For the PML model the synchronous state is unstable for weak g and can restabilize with increasing g
when det[G(T ) − I] = 0. For the parameters of Fig. 2.2 this occurs at g ∼ 0.45.

4.2.2. Existence and stability of a splay state. Here we will focus on a globally coupled network
in the large N limit. We first re-write the coupling term for a splay state, (vi(t), wi(t)) = (v(t −
iT/N), w(t − iT/N)) with (v(t), w(t)) = (v(t + T ), w(t + T )), as

lim
N→∞

1

N

N∑

j=1

v(t + jT/N) =
1

T

∫ T

0

v(t)dt, (4.17)

which is independent of both i and t. Hence, for a splay state every neuron in the network is described
by the same dynamical system, namely

Cv̇ = f(v) − gv − w + I + gv0, ẇ = g(v, w), (4.18)

where v0 = T−1
∫ T

0
v(t)dt. We note that because of the dependence on v0 (4.18) is an advanced-retarded

differential delay equation (see Appendix D for a general numerical method of solution). In the notation
of section 3 we write żµ = Aµ(g)zµ + bµ(g), where bµ(g) = bµ + b with

b =
g

C
Jz0, z0 =

[
v0

w0

]
. (4.19)

The same techniques as deployed in section 3 can be invoked to obtain a formal solution describing a
T -periodic orbit. In doing so we see that the generalization of (4.6) expresses the solution in terms of



14 S Coombes

2.5

3

3.5

0 0.2 0.4 0.6

T

g

0

5

10

15

20

0.08 0.09 0.1

T

I

Fig. 4.3. Period of the splay state as a function of the coupling strength g. Left: McKean model with parameters as
in Fig. 2.1. Right: Period of PML model with g = 0.1 as a function of drive I and other parameters as in Fig. 2.2. Note
the coexistence of a long and short period splay state.

itself via the dependence of bµ(g) on the Fourier component z0. Setting n = 0 in this equation gives a
self consistent expression for z0 given by:

z0 =
1

T

4∑

ν=1

{
α0

ν(g)zν(0) + γ0
ν(g)bν(g)

}
, (4.20)

where αn
µ(g) and γn

µ(g) are the natural generalizations of αn
µ and γn

µ (obtained under the replacement
of Gµ(t) = exp(Aµt) by exp(Aµ(g)t) in (4.7)). Equation (4.20) may be rearranged to obtain an explicit
equation for z0 in the form z0 = Mz1(0), where the 2 × 2 matrix M is a function of system parameters
and the unknowns w∗ and Tµ. The threshold crossing conditions may then be solved for as before to
determine w∗ and Tµ. The elements of α0

µ are given explicitly by Kµ(Tµ) and those of γ0
µ are given in

Appendix C. The dependence of the period on the strength of coupling g is shown in Fig. 4.3. Typically
we find that if a splay state exists for g = 0 then with increasing g its period decreases. However, in some
parameter regimes it can also begin to increase again, as originally noted in [26]. Interestingly for the
PML model it is easy to find parameter regimes where there is a coexistence of solutions, as in Fig. 4.3
right. Note that in this example with I < 0.09 (where there are two solutions) the splay state does not
exist at g = 0 so that weak-coupling theory can not tell us anything about either existence or stability.

In general the stability of a phase-locked state can be determined by determining the 2N Floquet
exponents of the linearized system. Indeed pursuing this approach for a splay state we would find
a similar coefficient matrix as in (4.13) with diagonal entries not equal to each other, but rather phase
shifted, making analytical progress more cumbersome. However for large N we may pursue an alternative
phase reduction technique for networks of limit cycle oscillators with synaptic coupling developed by van
Vreeswijk [81] and later used to study resonate-and-fire networks [66]. To do this we first write the

coupling term N−1
∑N

j=1 vj(t) in a more convenient form for studying perturbations of the mean field,
namely we write

lim
N→∞

1

N

N∑

j=1

vj(t) = lim
N→∞

1

N

N∑

j=1

∑

m∈Z

u(t − Tm
j ), (4.21)

where Tm
j = mT + jT/N . Here u(t) = 0 for t < 0 and is chosen such that v(t) =

∑
m∈Z

u(t − mT ),
ensuring that v(t) = v(t + T ). For arbitrary values of Tm

j the coupling term (4.21) is time-dependent,
and we may write it in the form

E(t) =

∫ ∞

0

f(t − s)u(s)ds, f(t) = lim
N→∞

1

N

∑

j,m

δ(t − Tm
j ), (4.22)
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where we recognize f(t) as a firing rate. We now consider perturbations of the mean field such that
E(t) (the average membrane voltage) is split into a stationary part (arising from the splay state) and an
infinitesimal perturbation. Namely we write E(t) = v0 + ǫ(t), with small ǫ(t). Since this perturbation to
the oscillator defined by (4.18), the splay oscillator, is small we may use phase reduction techniques to
study the stability of the splay state.

In terms of a phase θ ∈ [0, 1) along the asynchronous state we may write the evolution of this phase
variable in response to a perturbation in the mean field as

dθ

dt
=

1

T
+ gΓ(θ)ǫ(t), (4.23)

where Γ(θ) is the (g-dependent) voltage component of the adjoint for the splay oscillator. This can again
be calculated in closed form using the techniques developed in section 3.1. Some examples of splay state
PRCs are shown in Fig. 4.4. In fact we need to treat N phase variables θi each described by an equation
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Fig. 4.4. The PRC of the splay state for the PML model for three different points on the solution branch shown in
Fig. 4.3 right. Left: I = 0.095. Middle: I = 0.085 lower branch. Right: I = 0.085 upper branch.

of the form (4.23), which are coupled by the dependence of ǫ(t) on these variables. To make this more
explicit we write

ǫ(t) =

∫ ∞

0

δf(t − s)u(s)ds, (4.24)

and use a phase density description to calculate the dependence of the perturbed firing rate δf on the
phases. We define a phase density function as the fraction of neurons in the interval [θ, θ + dθ] namely
ρ(θ, t) = N−1

∑
j δ(θj(t) − θ). Introducing the flux J(θ, t) = ρ(θ, t)θ̇, we have the continuity equation

∂ρ

∂t
= −

∂J

∂θ
, (4.25)

with boundary condition J(1, t) = J(0, t). The firing rate is the flux through θ = 1, so that f(t) = J(1, t).
Considering perturbations around the splay state, (ρ, J) = (1, T−1), means writing ρ(θ, t) = 1 + δρ(θ, t),
with a corresponding perturbation of the flux that takes the form δJ(θ, t) = δρ(θ, t)/T +gΓ(θ)ǫ(t). In fact
the analysis that follows applies to the asynchronous state and not just the splay state. The distinction
between the splay and asynchronous states is subtle; in the splay state, the phases are distributed along a
cycle with phase differences of 1/N between two adjacent phases. In the asynchronous state, the definition
is simply ρ(θ, t) = ρ0(θ), namely that the phase density function is independent of time.

Differentiation of δJ(θ, t) gives the partial differential equation

∂tδJ(θ, t) = −
1

T
∂θδJ(θ, t) + gΓ(θ)ǫ′(t), (4.26)

where

ǫ(t) =

∫ ∞

0

u(s)δJ(1, t − s)ds. (4.27)
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Assuming a solution of the form δJ(θ, t) = eλtδJ(θ), gives

ǫ(t) = δJ(1)eλtũ(λ), (4.28)

where ũ(λ) =
∫∞

0
u(t)e−λtdt is the Laplace transform of u(t). In this case ǫ′(t) = λǫ(t). Equation (4.26)

then reduces to the ordinary differential equation

d

dθ
δJ(θ)eλTθ = gλTΓ(θ)δJ(1)ũ(λ)eλTθ. (4.29)

Integrating (4.29) from θ = 0 to θ = 1 and using the fact that δJ(1) = δJ(0) yields an implicit equation
for λ as

1

ũ(λ)
−

gλT

eλT − 1

∫ 1

0

Γ(θ)eλθT dθ = 0. (4.30)

By taking the Laplace transform of v(t) =
∑

m u(t − mT ), we have that

ũ(λ) = (1 − e−λT )ṽ(λ). (4.31)

Hence, we may write λ as the solution to E(λ) = 0, where

E(λ) =
eλT

ṽ(λ)
− gλT

∫ 1

0

Γ(θ)eλθT dθ. (4.32)

Since 1/ṽ(0) = 0 we see that E(0) = 0 as expected. Writing λ = ν + iω then the pair (ν, ω) may be
found by the simultaneous solution of ER(ν, ω) = 0 and EI(ν, ω) = 0, where ER(ν, ω) = Re E(ν + iω) and
EI(ν, ω) = Im E(ν + iω). In terms of the Fourier coefficients for Γ(θ) and v(t) we may obtain a useful
representation for (4.32) using

∫ 1

0

Γ(θ)eλθT dθ = (eλT − 1)
∑

n

Rn

2πin + λT
, (4.33)

ṽ(λ) = T
∑

n

v−n

2πin + λT
. (4.34)

Examples of the spectrum obtained from the zeros of E(λ), for the PML model, are shown in Fig. 4.5. In
all cases we find the splay state is unstable.

For small g we expect to recover the stability result obtained using weakly coupled oscillator theory
(see section 4.1). To check this we consider solutions of the form 2πin + λT = 2πingRnv−nT , for n 6= 0,
and g ≪ 1. In this case we have that

E(λ)

g
=

1∑
n 1/(2πinRn)

− (λT )2
∑

n

Rn

2πin + λT
. (4.35)

Using the fact that Rn decays as 1/n (and so is an odd function of n) and λ scales with g, we may write

∑

n,m

1

2πinRn

Rm

2πim + λT
≈
∑

n

1

2πin(2πin + λT )
=

1

eλT − 1

∫ 1

0

S(θ)eλθT dθ, (4.36)

where we introduce the function S(θ) =
∑

n Sne2πinθ, with Sn = 1/(2πin). Recognizing S(θ) as the
Fourier series for the sawtooth function S(θ) = S(θ + 1) with S(θ) = −θ for θ ∈ [0, 1), we may evaluate
(4.36) as 1/(λT )2. Using (4.36) in (4.35) shows that E(λn) = 0, where λn = 2πin − 2πingH−n, and we
recover the stability condition for weak coupling, namely −ngIm Hn < 0, for n 6= 0.
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Fig. 4.5. Spectrum for the splay state in the PML model. Eigenvalues are at the positions where the red and blue
curves intersect. The small circles denote the predictions from weak coupling theory. Parameters as in Fig. 2.2. Left:
I = 0.1, g = 0.01. Note the unstable mode with ω ∼ ±3.6. As expected eigenvalues from the weak coupling theory are close
to the zeros of the full stability function. Right: Spectrum for the splay state with g = 0.1, C = 0.9, I = 0.085. In this case
predictions from weak coupling theory break down. Note the occurrence of a double-zero eigenvalue signaling a bifurcation
to a branch of solutions with T2 = 0 (i.e. orbits tangential to v = v2

th
).

5. Mean field rhythms. We are now in an ideal position to explore observations of Han et al.

[42, 43] concerning large amplitude oscillations seen in the average membrane potential of globally gap
junction coupled Morris–Lecar networks. These novel rhythms were interpreted as cyclic transitions
between coherent and incoherent network states, and described as “bursting”. However, to distinguish
this from the type of behavior commonly associated with fast-slow systems [18] we shall not use this
terminology here. For the rest of this section we focus on the PML model. We begin our discussion by
analyzing the homogeneous fixed point behavior of the network. Using arguments similar to those in
section 4.2.1 we may easily construct conditions for the stability of the fixed point (vss, wss). Considering
the case b < vss < (1 + a)/2 then we have that

vss =
a − I + bs − b/γ2

1 − g − 1/γ2
, wss =

vss

γ2
+ bs −

b

γ2
. (5.1)

If it exists this homogeneous steady state is independent of C. The conditions for network stability of
this homogeneous state are Tr A1 = 1/C − 1 < 0 and TrA1(g) = (1− g)/C − 1 < 0. Thus a homogeneous
network state (if it exists) is only stable for C > 1, and unstable otherwise. Note however that when
Tr A1(g) = 0, namely C = CH = 1 − g, we expect the existence of a harmonic splay state (since the
dynamics is governed by a purely linear system with imaginary eigenvalues). Generically the results
in sections 4.2.1 and 4.2.2 show that both the synchronous and splay states will be unstable for the
PML model. However, knowledge of these states and the stability of the network steady state can be
used to understand the original observations in [42, 43] regarding oscillations in the mean membrane
potential. These authors suggested that such states could be viewed as being pushed and pulled between
the unstable synchronous state and the unstable fixed point. However, in light of the work presented here
we now see that such oscillations may also occur as oscillations around an unstable orbit, that can either
be a fixed point or a splay state. We illustrate this idea with the aid of Fig. 5.1. In each of the upper
panels we show plots of the unstable orbits that exist for C < CH , C = CH and C > CH , with C < 1.
For C < CH there is an unstable splay state that ‘sits’ between the unstable synchronous state and
the unstable homogeneous steady state. Direct numerical simulations show that the network fluctuates
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Fig. 5.1. Top: A family of coexisting unstable orbits in the PML model; synchronous (green), splay (blue), sub-
threshold splay (light blue) and harmonic splay (red). Here g = 0.1, I = 0.085 and other parameters as in Fig. 2.2. left:
C < 1 − g (C = 0.89). middle: C = 1 − g (C = 0.9). right: C > 1 − g (C = 0.91). Middle: Numerical simulation (after
dropping transients) with N = 100 neurons showing a pseudo color plot of the triple (θ, vi, wi), where θ = t/∆ mod 1 for
some fixed ∆. Initial data chosen to lie between the splay and synchronous state. left: The network cycles between the
unstable synchronous state and the unstable splay state. ∆ is the chosen as the mean of the synchronous and splay period.
middle: The network cycles between the unstable synchronous state and the unstable harmonic splay state. ∆ is the chosen
as the mean of the synchronous and harmonic splay period. right: The network cycles between the unstable synchronous
state and the unstable fixed point. ∆ is the chosen as the period of the synchronous state. Bottom: Mean field signal E(t)
showing large amplitude fluctuations. left: Fluctuations around the splay state (with v0 = 0.52107). middle: Fluctuations
around the splay state (with v0 = 0.52583). right: Fluctuations around the fixed point (with v0 = 0.545).
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Fig. 5.2. Time varying mean field behavior organized around the unstable fixed point. Parameters as in Fig. 5.1 right
with C = 0.95.

around the splay state, cycling between the other two unstable states. A similar behavior occurs at
C = CH , though the network can fluctuate around and between three co-existing unstable splay states.
For C > CH the network dynamics fluctuates around the unstable homogeneous steady state. In Fig. 5.2
we show an example of large amplitude oscillations in the mean membrane potential with a value of C
just less than C = 1, beyond which point the homogeneous steady state is stable.

6. Discussion. Motivated by the desire to understand the dynamics of neuronal networks with gap
junction coupling we have developed a number of results for planar piece-wise linear neuron models.
We focus on these as they are minimal models capable of generating action potential shapes. Unlike
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synaptically coupled networks the shape of an action potential is all important in a gap junction coupled
network as it is communicated directly between cells. For any piece-wise linear planar single neuron model
we have shown how to build periodic orbits in a self-consistent way, by piecing together trajectories from
neighboring regions of phase space. Moreover, this procedure naturally lends itself to the construction of
the associated phase response curve. The stability of periodic orbits has been established using Floquet
theory, which in this case generates closed form expressions for the non-zero exponent of the orbit. As
well as paving the way for the more obvious weakly coupled network analysis we have found that the
simplicity of the piece-wise linear model can allow for studies in the strong coupling regime, albeit for
global coupling. In illustration of the utility of studying piece-wise linear networks we have further shown
how this can underpin a systematic explanation of the original observations of Han et al. [42] on the
generation of exotic mean field signals in networks of Morris–Lecar neurons with gap junction coupling.

Looking forward it is well to mention here a number of possible extensions of the work in this paper
that will lead to a deeper understanding of the role of gap junctions in shaping brain rhythms. As we have
stressed the techniques in this paper are general and are applicable to many piece-wise linear systems. In
particular it would be valuable to study Type I models which rely on a SNIC to generate their firing rate
response [33, 32]. The cortical neuron model of Wilson [85] is a classic example of this, and its quadratic
recovery variable is easily caricatured by choosing the parameter γ1 in equation (2.5) to be negative. For
systems with local chain-like coupling it may also prove possible to adapt techniques in [65] to study
both synchronization and transient dynamics. Another natural step is to endow the purely gap junction
coupled networks that we have described here with synaptic interactions. At the level of weak coupling
the coupled oscillator theory that we have described here is naturally generalized along the lines in
[26, 53]. Another mechanism available to neurons for the initiation of a firing event is that of anode break
excitation, whereby a neuron can fire on release from a hyperpolarized state. The planar models that
we have considered here are capable of such behavior, and thus when connected by inhibitory synapses
emergent network periodic orbits might also be analyzed in a piece-wise linear fashion. In the strong
coupling regime the challenge of studying phase-locked states that are neither synchronous nor splay
effectively reduces to the problem of studying ordinary differential equations with delays. The techniques
for doing this for piece-wise linear systems are relatively well developed in the engineering community
and one may therefore revisit the work in this paper making explicit use of Lambert functions to define
trajectories [6, 86]. In light of the recent interest in the analysis of gap junctions between dendritic
trees [73] it would be interesting to explore the possibility of moving away from point neuron models,
as studied here, to ones with a spatially extended character [10]. For dendrites without active processes
the tools for doing this have been partially developed in [19]. However, of all the possible next steps we
regard the development of a tissue level firing rate model that can properly treat gap junction coupling
as the major challenge facing the mathematical neuroscience community. Although at the level of fast
voltage variables it is natural to think of gap junction coupling between nearest neighbors as generating
a diffusive coupling, it is not clear that it is appropriate to simply add diffusive terms to existing rate
models [77], such as the Wilson-Cowan, Amari or Liley models (recently reviewed in [20]), since the state
variables in these examples have no direct interpretation as fast voltage variables. In future work we hope
to combine ideas from mean field dynamics, particularly those in [51, 67], with “equation-free” modeling
[59] to tackle this challenge.

Acknowledgments. I would like to thank Bard Ermentrout and three anonymous referees for useful
comments that have improved the presentation of the work in this paper.
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Appendix A. For real eigenvalues of A, we have the explicit form for G(t) in section 3:

G11(t) =
1

λ+ − λ−

{
λ+eλ+t − λ−eλ

−
t − a22

[
eλ+t − eλ

−
t
]}

,

G12(t) = −
λ+ − a22

λ+ − λ−

λ− − a22

a21

[
eλ+t − eλ

−
t
]
,

G21(t) =
a21

λ+ − λ−

[
eλ+t − eλ

−
t
]
,

G22(t) =
1

λ+ − λ−

{
λ+eλ

−
t − λ−eλ+t + a22

[
eλ+t − eλ

−
t
]}

. (6.1)

The matrix K(t) may then be calculated as:

K11(t) =
1

λ+ − λ−

{
eλ+t − eλ

−
t − a22

[
eλ+t − 1

λ+
−

eλ
−

t − 1

λ−

]}
,

K12(t) = −
λ+ − a22

λ+ − λ−

λ− − a22

a21

[
eλ+t − 1

λ+
−

eλ
−

t − 1

λ−

]
,

K21(t) =
a21

λ+ − λ−

[
eλ+t − 1

λ+
−

eλ
−

t − 1

λ−

]
,

K22(t) =
1

λ+ − λ−

{
λ+

λ−

[
eλ
−

t − 1
]
−

λ−

λ+

[
eλ+t − 1

]
+ a22

[
eλ+t − 1

λ+
−

eλ
−

t − 1

λ−

]}
. (6.2)

For complex eigenvalues of A, we have the explicit form for G(t):

G(t) =
eρt

ω̂

[
ω̂ cos ωt − ρ̂ sin ωt sinωt
−(ρ̂2 + ω̂2) sinωt ω̂ cos ωt + ρ̂ sin ωt

]
. (6.3)

The matrix K(t) may then be calculated as:

K(t) =
1

ω̂

[
ω̂KR(t) − ρ̂KI(t) KI(t)
−(ρ̂2 + ω̂2)KI(t) ω̂KR(t) + ρ̂KI(t)

]
, (6.4)

where

KR(t) =
1

ρ2 + ω2

{
ρ
[
eρt cos(ωt) − 1

]
+ ωeρt sin(ωt)

}
, (6.5)

KI(t) =
1

ρ2 + ω2

{
ω
[
1 − eρt cos(ωt)

]
+ ρeρt sin(ωt)

}
. (6.6)

Appendix B. Computationally useful forms for the matrix elements in (4.7) are as follows:

αn
µ = PµΨn

µP−1
µ , (6.7)

βn
µ = P̃µΨ−n

µ P̃−1
µ e−2πinTµ/T , (6.8)

γn
µ = PµΨ̃n

µP−1
µ , (6.9)

where

Ψn
µ = diag

(
e(λµ

+
−2πin/T )Tµ − 1

λµ
+ − 2πin/T

,
e(λµ

−

−2πin/T )Tµ − 1

λµ
− − 2πin/T

)
, (6.10)

Ψ̃n
µ = diag(1/λµ

+, 1/λµ
−)

[
Ψn

µ +
e−2πinTµ/T − 1

2πin/T
I

]
, n 6= 0, (6.11)

Ψ̃0
µ = diag(1/λµ

+, 1/λµ
−)diag

(
eλµ

+
Tµ − 1

λµ
+

− Tµ,
eλµ

−

Tµ − 1

λµ
−

− Tµ

)
, (6.12)

with Pµ and P̃µ as the matrix of eigenvectors of Aµ and AT
µ respectively, with associated eigenvalues λµ

±.

From the structure of Ψn
µ and Ψ̃n

µ above we see that αn
µ, βn

µ , and γn
µ all decrease as 1/n.
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Appendix C. In section 4.2.2 the elements of γ0
µ are calculated explicitly by noting that γ0

µ =∫ Tµ

0
Kµ(t)dt. The structure of Kµ(t) for real and imaginary eigenvalues of the associated matrix Aµ are

given by (6.2) and (6.4) respectively. Denoting
∫ t

0
K(s)ds by F (t) gives

F11(t) =
1

λ+ − λ−

{
eλ+t − 1

λ+
−

eλ
−

t − 1

λ−

− a22

[
1

λ+

[
eλ+t − 1

λ+
− t

]
−

1

λ−

[
eλ
−

t − 1

λ−

− t

]]}
,

F12(t) = −
λ+ − a22

λ+ − λ−

λ− − a22

a21

[
1

λ+

[
eλ+t − 1

λ+
− t

]
−

1

λ−

[
eλ
−

t − 1

λ−

− t

]]
,

F21(t) =
a21

λ+ − λ−

[
1

λ+

[
eλ+t − 1

λ+
− t

]
−

1

λ−

[
eλ
−

t − 1

λ−

− t

]]
,

F22(t) =
1

λ+ − λ−

{
λ+

λ−

[
eλ
−

t − 1

λ−

− t

]
−

λ−

λ+

[
eλ+t − 1

λ+
− t

]

+a22

[
1

λ+

[
eλ+t − 1

λ+
− t

]
−

1

λ−

[
eλ
−

t − 1

λ−

− t

]]}
. (6.13)

for real λ± and

F (t) =
1

ω̂

[
ω̂FR(t) − ρ̂FI(t) FI(t)
−(ρ̂2 + ω̂2)FI(t) ω̂FR(t) + ρ̂FI(t)

]
, (6.14)

where

FR(t) =
1

ρ2 + ω2
{ρ [KR(t) − t] + ωKI(t)} , (6.15)

FI(t) =
1

ρ2 + ω2
{ω [t − KR(t)] + ρKI(t)} , (6.16)

for complex λ±. The matrices γ0
µ = Fµ(Tµ) may then be calculated using the above forms for F (t) (under

the replacement of λ± by λµ
±).

Appendix D. For a splay state we may rewrite the advanced-retarded system of equations (4.18)
as a set of ODEs by introducing:

X−(t) =
1

T

∫ t

0

v(t)dt, X+(t) =
1

T

∫ T

t

v(t)dt. (6.17)

After re-scaling time as τ = t/T we may write

C

T

dv

dτ
= f(v) − gv − w + I + g(X− + X+), (6.18)

1

T

dw

dτ
= g(v, w), (6.19)

dX−

dτ
= v, (6.20)

dX+

dτ
= −v, (6.21)

subject to the boundary conditions v(0) = vth = v(1), w(0) = w∗ = w(1), X−(0) = 0, X−(1) = v0,
X+(0) = v0, and X+(1) = 0 (for some voltage section vth). We have four ODEs with seven boundary
conditions which we may treat as a boundary value problem for the free parameters (v0, w

∗, T ). For
general choices of f and g it is natural to use numerical shooting for the solution of this problem. Alter-
natively, for the PWL models discussed in this paper we may analytically construct solutions according
to the prescription described in section 4.2.2.
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