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BACKGROUND: Determinants of plasma norepinephrine
(NE) and epinephrine concentrations are well known;
those of the third endogenous catecholamine, dopamine
(DA), remain poorly understood. We tested in humans
whether DA enters the plasma after corelease with NE
during exocytosis from sympathetic noradrenergic nerves.

METHODS: We reviewed plasma catecholamine data
from patients referred for autonomic testing and con-
trol subjects under the following experimental condi-
tions: during supine rest and in response to orthostasis;
intravenous yohimbine (YOH), isoproterenol (ISO),
or glucagon (GLU), which augment exocytotic release
of NE from sympathetic nerves; intravenous tri-
methaphan (TRI) or pentolinium (PEN), which de-
crease exocytotic NE release; or intravenous tyramine
(TYR), which releases NE by nonexocytotic means. We
included groups of patients with pure autonomic fail-
ure (PAF), bilateral thoracic sympathectomies (SNS-
x), or multiple system atrophy (MSA), since PAF and
SNS-x are associated with noradrenergic denervation
and MSA is not.

RESULTS: Orthostasis, YOH, ISO, and TYR increased
and TRI/PEN decreased plasma DA concentrations.
Individual values for changes in plasma DA concentra-
tions correlated positively with changes in NE in re-
sponse to orthostasis (r � 0.72, P � 0.0001), YOH (r �
0.75, P � 0.0001), ISO (r � 0.71, P � 0.0001), GLU
(r � 0.47, P � 0.01), and TYR (r � 0.67, P � 0.0001).
PAF and SNS-x patients had low plasma DA concen-
trations. We estimated that DA constitutes 2%– 4% of
the catecholamine released by exocytosis from sympa-
thetic nerves and that 50%–90% of plasma DA has a
sympathoneural source.

CONCLUSIONS: Plasma DA is derived substantially from
sympathetic noradrenergic nerves.
© 2008 American Association for Clinical Chemistry

Human plasma contains 3 endogenous catecholamines
— dopamine (DA),2 norepinephrine (NE), and epi-
nephrine (EPI). NE in the bloodstream is derived
mainly from networks of sympathetic nerves enmesh-
ing blood vessels throughout the body and pervading
organs such as the heart and kidneys. Plasma NE con-
centrations therefore have been used widely to indicate
sympathetic nervous system activity. Plasma EPI con-
centrations generally reflect neural outflow to the ad-
renal medulla and consequent secretion from adreno-
medullary chromaffin cells into the bloodstream.

Whereas the sources of plasma NE and EPI are well
known, those of the third endogenous catecholamine,
DA, remain poorly understood. Plasma DA concentra-
tions normally are very low—about 0.1 nmol/L—and
plasma DA concentrations are rarely reported.

One potential source of plasma DA is the diet
(pathway 1 in Fig. 1). Plasma DA increases after inges-
tion of a standard meal and decreases after prolonged
fasting (1 ). Ingestion of a standard meal increases
plasma DA sulfate concentrations by more than 50-
fold (1 ). The liver removes and metabolizes virtually all
the catecholamine delivered to it by the portal vein.
Therefore, although the gastrointestinal tract consti-
tutes the main site of DA production in the body (2 ),
very little of the free DA in the systemic circulation is
derived from the gut.

Another potential source of plasma DA is nonneu-
ronal uptake and decarboxylation of circulating dihy-
droxyphenylalanine (DOPA), catalyzed by L-aromatic-
amino-acid decarboxylase (LAAAD, pathway 2 in
Fig. 1). Such a process is known to be prominent in the
kidneys (3 ); however, since there is no significant
arterial-renal venous increment in plasma DA in hu-
mans (2 ), the renal contribution to plasma DA is prob-
ably very small. Considering the extremely high plasma
concentration of DA sulfate compared with that of free
DA, plasma DA might reflect a slight amount of decon-
jugation of DA sulfate, to regenerate the free catechol-
amine in nonneuronal cells.
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This study focused on a possible third source of
free (unconjugated) DA in plasma—sympathetic nor-
adrenergic nerves. According to this concept, DA is
coreleased with NE during exocytosis (pathway 3 in
Fig. 1). Dopamine-�-hydroxylase (DBH), the enzyme
that links DA to NE, is localized in and released from
the vesicles in sympathetic nerves. Sympathetic nerves
are thought to contain at least 2 vesicular pools— one a
storage pool characterized by slow net loss of the vesic-
ular contents by leakage into the axoplasm, and an-
other a release pool with relatively rapid loss by exo-
cytosis and exchange of the vesicular contents with the
extracellular fluid (4 ). The rapid release pool contains
newly synthesized NE (5 ). DA that has not yet been
converted to NE by intravesicular DBH might be co-
released with NE during exocytosis.

If plasma DA were derived from sympathetic
nerves, one would predict positive correlations be-
tween changes in plasma DA and plasma NE concen-
trations across individual subjects in response to stim-
uli that alter rates of exocytosis. In this study, we used
orthostasis, intravenous infusion of yohimbine (YOH),

infusion of isoproterenol (ISO), and injection of gluca-
gon (GLU) to increase exocytosis. Orthostasis stimu-
lates sympathetic outflow reflexively, resulting in rapid
increases in directly recorded sympathetic nerve traffic
and correlated increases in plasma NE concentrations
(6 ). YOH, an �-2 adrenoceptor blocker, increases sym-
pathetic outflow and augments NE release for a given
amount of sympathetic nerve traffic (7, 8 ). ISO, a non-
selective �-adrenoceptor agonist, increases NE release
by occupying stimulatory �-2 adrenoceptors on sym-
pathetic nerves (9 ) and possibly increasing sympa-
thetic outflows reflexively in response to systemic
vasodilation. GLU increases plasma epinephrine con-
centrations substantially and NE concentrations slightly
(10 ). Ganglion blockers such as trimethaphan (TRI)
and pentolinium (PEN) decrease exocytosis, by inhib-
iting postganglionic sympathetic nerve traffic.

We culled data from subjects in whom the rate of
entry of NE into the venous drainage of the heart was
measured during right heart catheterization at baseline
and during YOH infusion.

We also included infusion of the sympathomi-
metic amine, tyramine (TYR) (11, 12 ). NE release
evoked by TYR is not calcium dependent and therefore
is thought to be by nonexocytotic means. Because con-
tamination of TYR infusates with DA can increase
plasma DA levels artifactually (13, 14 ), we included
testing of whether TYR-evoked increments in plasma
DA concentrations relate to DA concentrations in the
infusate.

We chose patient groups with different, well-char-
acterized autonomic disorders, to provide a range of
plasma NE concentrations with which to compare
plasma DA concentrations. Pure autonomic failure
(PAF) is characterized by diffuse loss of sympathetic
noradrenergic nerves, whereas in multiple system
atrophy (MSA), sympathetic innervation is generally
intact. The 2 diseases differ in plasma NE and its me-
tabolites (15 ). If plasma DA emanated from sympa-
thetic noradrenergic nerves, then PAF patients would
have relatively low plasma DA concentrations.

Bilateral thoracic sympathectomies decrease sym-
pathetic outflows to the head and arms. Noradrenergic
innervation of the heart also is decreased (16 ). We in-
cluded data from patients who had undergone this
procedure.

Postural tachycardia syndrome (POTS) features
symptoms and signs of catecholamine excess, despite
normal sympathetic nerve traffic during supine rest.
The patients have exaggerated increments in sympa-
thetic activity during orthostasis (17 ) or vasodilator-
induced hypotension (18 ). If plasma DA were derived
partly from exocytosis from sympathetic noradrener-
gic nerves, then the recently reported finding of in-
creased NE and DA concentrations in POTS (19 ) could
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Fig. 1. Potential determinants of plasma DA.

(1), Dietary tyrosine (TY), with conversion to DOPA in the
gut wall catalyzed by tyrosine hydroxylase (TH) and then
conversion of DOPA to DA by L-aromatic-amino-acid de-
carboxylase (LAAAD). (2), Nonneuronal uptake of DOPA.
(3), TYR hydroxylation via TH in sympathetic noradrenergic
nerves. DA can be metabolized by multiple enzymes, in-
cluding monoamine oxidase (MAO), catechol-O-methyl-
transferase (COMT), and phenolsulfotransferase (PST). DA
sulfate can be converted back to DA via arylsulfatase (AST).
In vesicles of sympathetic nerves, DA is converted to NE via
DBH, so exocytosis can lead to corelease of NE and DA into
the extracellular fluid.
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be explained by increased exocytosis for a given
amount of sympathetic nerve traffic, decreased neuro-
nal reuptake of catecholamines, or both abnormalities.

Materials and Methods

We reviewed plasma catecholamine data from subjects
who had given written informed consent to participate
in protocols approved by the Intramural Research
Board of the National Institute of Neurological Disor-
ders and Stroke and carried out in the NIH Clinical
Center.

Included were 30 patients with Parkinson disease
(PD) (18 of whom had neurogenic orthostatic hypo-
tension), 37 with MSA, and 15 with PAF, diagnosed
according to generally accepted clinical criteria (20 ); 5
with bilateral thoracic sympathectomies (SNS-x); 61
with POTS; 14 with neurocardiogenic syncope (NCS);
9 with miscellaneous disorders who did not have neu-
rogenic orthostatic hypotension or evidence of pro-
gressive central neurodegeneration; and 41 healthy
volunteers. Results about other catechols in these groups
have been published (21–24 ). Comprehensive auto-
nomic function testing differentiated POTS from PAF
and PD in all subjects.

Patients with NCS or miscellaneous disorders and
healthy volunteers constituted a control group. NCS is
associated with normal sympathetic nerve traffic and
normal plasma NE concentrations during supine rest
(22, 25 ).

Plasma catecholamines were assayed in our labo-
ratory using liquid chromatography with electrochem-
ical detection after batch alumina extraction (26 ). The
limit of detection for plasma DA was about 2 pg/mL
(13 pmol/L) and for NE about 1 pg/mL (6 pmol/L). DA
concentrations below the detection limit were assigned
a value of zero.

We reviewed arterial plasma DA data from 92 sub-
jects who were off levodopa—10 PD, 32 MSA, 13 PAF,
and 37 control. Blood was sampled via a brachial cath-
eter after the subject had been at rest for at least 15 min.

In 206 subjects (26 PD, 37 MSA, 18 PAF, 61 POTS,
64 control), blood was sampled through an arm venous
catheter at baseline and after the subject was tilted up-
right at 90 degrees from horizontal for 5 min. If blood
pressure fell rapidly and this was deemed clinically sig-
nificant, the duration of tilting was �5 min.

In 49 subjects (10 PD, 17 MSA, 7 PAF, 15 control),
an i.v. bolus of YOH was administered (0.065 mg/kg/
min over 3 min) followed by an infusion at 0.5 �g/kg/
min for 12 min. Blood was sampled through an arm
catheter at baseline and at the end of the YOH infusion.

In 51 subjects, the arterial to coronary sinus incre-
ment in plasma DA concentrations and cardiac norepi-

nephrine spillover were measured during right heart
catheterization at baseline and during YOH infusion.

In 34 subjects (8 PD, 13 MSA, 1 PAF, 12 control),
ISO was infused intravenously at increasing doses (3.5,
7.0, 14.0, and 35 ng/kg/min) until a stable heart rate
increase of about 25 bpm was attained. Blood was sam-
pled through an indwelling arm catheter at baseline
and during ISO infusion at the criterion dose.

In 33 subjects (4 PD, 11 MSA, 5 PAF, 13 control),
GLU was injected at a bolus intravenous dose of 1 mg.
Blood was sampled through an indwelling arm catheter
at baseline and at 1, 2, 3, and 5 min after GLU injection.
Catecholamine data after GLU injection were aver-
aged, and responses to GLU were quantified from the
baseline value subtracted from the mean value after
GLU injection.

In 37 subjects (5 PD, 15 MSA, 6 PAF, 11 control),
blood was sampled through an indwelling arm catheter
at baseline and during intravenous infusion of TYR at
60 cc/h (1.0 mg/min) for 10 min.

In 27 subjects (6 PD, 7 MSA, 3 PAF, 11 control),
blood was sampled through an indwelling arm catheter
at baseline and during intravenous infusion of tri-
methaphan (TRI, 1.0 mg/min) for 10 min or at 15 min
after intravenous bolus injection of pentolinium (PEN,
2.5 mg).

We assessed responses of plasma catecholamine
concentrations using paired t tests and compared pa-
tient groups using independent-means t tests or analy-
ses of variance, with the Fisher protected least signifi-
cant difference post-hoc test. We assessed relationships
between increments in plasma DA and NE concentra-
tions across individual subjects using linear regression
and Pearson correlation coefficients. Data were ex-
pressed as mean (SE). A P value �0.05 defined statisti-
cal significance.

Results

DA was detectable in antecubital venous plasma in
97% of patients with PD, 95% with MSA, 67% with
PAF, 100% with SNS-x, 95% with POTS, 86% with
NCS, 100% with miscellaneous conditions, and 93% of
normal volunteers.

Across all subjects, plasma concentrations of DA
correlated positively with those of NE during supine
rest, in both arterial and arm venous (r � 0.24, P �
0.009; r � 0.40, P � 0.0001) plasma. Mean values for
arm venous DA also correlated positively with those of
NE across subject groups (r � 0.94, P � 0.01) (Fig. 2A),
with relatively low mean values for DA and NE in PAF
and SNS-x and increased mean values in POTS. The
PD, MSA, and control groups did not differ in absolute
values for plasma DA or NE during supine rest. In sub-
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jects undergoing right heart catheterization, the arteri-
al-coronary sinus increment in plasma DA correlated
positively with cardiac NE spillover (r � 0.54, P �
0.001). As indicated in Fig. 2A, the y-intercept for the
linear regression line of best fit (0.01 nmol/L) corre-
sponded to about one-eighth that of the mean plasma
DA concentration in the control group. Among con-
trol subjects, plasma DA during supine rest was unre-
lated to plasma NE (r � 0.11).

Plasma concentrations of DA increased signifi-
cantly in response to orthostasis (t � 3.2, P � 0.002),
YOH infusion (t � 2.2, P � 0.04), ISO infusion (t �
2.5, P � 0.017), and TYR injection (t � 2.9, P � 0.007)
but not GLU injection (P � 0.35) (Fig. 3). In response
to ganglion blockade with TRI or PEN, plasma DA de-
creased (t � 2.5, P � 0.018).

Individual values for changes in plasma DA con-
centrations were positively correlated with those in NE
in response to orthostasis (r � 0.75, P � 0.0001), YOH
(r � 0.75, P � 0.0001), ISO (r � 0.72, P � 0.0001),
GLU (r � 0.47, P � 0.01), and TYR (r � 0.67, P �
0.0001) (Fig. 3). For all stimuli, the y-intercept value
for the relationship between the increment in plasma
DA and that in plasma NE was close to the origin.

During YOH infusion in subjects undergoing right
heart catheterization, arterial-coronary sinus differ-
ences in plasma DA correlated positively with cardiac

NE spillovers (r � 0.66, P � 0.001), and the increments
in the arterial-coronary sinus difference from baseline
correlated positively with the increments in cardiac NE
spillover (r � 0.49, P � 0.001).

In response to TRI/PEN, the extent of decrease in
plasma DA seemed somewhat larger than expected for
the decrease in plasma NE, and in response to TYR, the
extent of increase in DA seemed larger than expected
for the increase in NE, compared to responses to other
stimuli (orthostasis, YOH, ISO, and GLU) (Fig. 2B).
The slope of the line of best fit for the relationship
between plasma DA and plasma NE responses to TYR
seemed larger than those for responses to orthostasis,
YOH, ISO, or GLU (Fig. 3).

During TYR infusion, the increment in plasma DA
varied with the DA concentration in the TYR infusate
(r � 0.53, P � 0.001). When data were excluded from
subjects who received TYR that contained more than
120 nmol/L of DA, there was no longer a relationship
between the increment in plasma DA and the DA con-
centration in the TYR infusate (r � �0.14, P � 0.49),
but the increment in plasma DA remained positively
correlated with that in plasma NE (r � 0.67, P �
0.0001), and the slope of the line of best fit remained
substantially greater than the slopes for orthostasis,
YOH, GLU, and ISO.
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Discussion

The results of this study support the view that in hu-
mans, free (unconjugated) DA in plasma is derived
substantially from sympathetic noradrenergic nerves.
Patient groups with PAF or SNS-x, conditions that are
characterized by loss of sympathetic noradrenergic
nerves, had low plasma concentrations of both DA and
NE. Conversely, patients with POTS, which is associ-
ated with augmented NE release from sympathetic
nerves into the plasma (22 ), had increased plasma con-
centrations of both DA and NE. A variety of stimuli
that release NE, by either exocytotic or nonexocytotic
means, from sympathetic nerves increased plasma DA
and NE concentrations, and ganglion blockade, which
temporarily eliminates sympathetic nerve traffic, de-
creased plasma DA and NE concentrations. Moreover,
in response to all 4 stimuli of exocytosis from sympa-
thetic noradrenergic nerves— orthostasis, YOH, ISO,
and GLU—individual values for increments of plasma

DA concentrations were strongly positively correlated
with those of plasma NE. Finally, during right heart
catheterization, the arterial-coronary sinus difference
in plasma DA was correlated positively with cardiac NE
spillover, during both supine rest and YOH infusion.

For all stimuli of NE release, the y-intercept value
for the relationship between the increment in plasma
DA and that in plasma NE was close to the origin. This
finding was consistent with a shared source of incre-
ments in plasma concentrations of the 2 catecholamines,
because if there were other determinants of plasma DA
(e.g., production and release of DA but not of NE from
DOPA decarboxylation in nonneuronal cells), then the
y-intercept value for line of best fit would be above the
origin. In healthy humans, infused DA does not affect
plasma NE concentrations until a supraphysiologic DA
concentration is reached that is far above the concen-
trations in any of the patient groups or manipulations
in the present study (27, 28 ). Endogenous DA also does
not seem to play a modulatory role in NE release (29 ).
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NE infusion, if anything, decreases plasma DA concen-
trations (30 ). The most likely explanation for relation-
ships between plasma DA and plasma NE concentra-
tions is therefore a shared source of both catecholamines,
such as corelease from sympathetic nerves.

The small slopes for stimuli of exocytosis (0.026 –
0.036 nmol DA/nmol NE) suggest that DA constitutes
only a very small proportion—about 2% to 4%— of
the catecholamine released by these stimuli. The results
support the inference that the vesicles undergoing exo-
cytosis from sympathetic nerves contain about 25–50
times as much NE as DA.

Across different forms of dysautonomia, chosen to
provide a spectrum of NE release from sympathetic
nerves, mean plasma DA concentrations varied linearly
with mean plasma NE concentrations. From the find-
ings that the PAF and SNS-x groups had mean plasma
DA concentrations that were about one-half the mean
value in the control group (Fig. 2A), at least half of
plasma DA is derived normally from sympathetic nor-
adrenergic nerves. Assuming linear extrapolation to
the y-intercept (0.010 nmol/L in Fig. 2A), and given a
normal plasma DA concentration of 0.080 nmol/L,
almost 90% of plasma DA would be derived from sym-
pathetic noradrenergic nerves. Most of plasma DA
therefore seems to have a sympathoneural source.

The increment in plasma DA during TYR infusion
was related to the DA content of the infusate, as noted
previously (13 ). When we excluded data from subjects
who received TYR infusates containing more than
120 mmol/L DA, there was no relationship between the
increment in plasma DA during TYR infusion and the
DA concentration in the infusate, but there was still a
larger plasma DA response than expected for the NE
response.

The relatively large plasma DA responses for
plasma NE responses to TYR (Figs. 2 and 3A), might be
explained by TYR not only displacing DA with NE
from vesicles but also competing with cytoplasmic DA
for monoamine oxidase and for the vesicular mono-
amine transporter, enhancing exit of DA.

One way to distinguish a reverse NET transport
effect from an exocytosis effect would be to track extra-
cellular fluid concentrations of NE and of its neuronal
metabolite, dihydroxyphenylglycol (DHPG). In hu-
mans, increases in exocytosis result in about the same
absolute increases in plasma NE and DHPG, because
the latter reflects reuptake of the released NE (31 ). In
contrast, displacement of NE from vesicles into the
axoplasm generates DHPG independently of NE re-
lease into the extracellular fluid. NE could build up
sufficiently in the axoplasm to exit the nerve by re-
verse NET transport, whereas DHPG, a glycol, diffuses
readily across membranes. Augmented net leakage of
NE from vesicles into the axoplasm therefore would be

expected to result in larger absolute increments in
plasma DHPG than NE levels. Such a pattern occurs
with TYR infusion (32 ).

The concept of calcium-independence of tyramine-
evoked norepinephrine release from sympathetic nerves
dates back to the 1960s. In irises incubated with D,L-3H-
norepinephrine, tyramine increased release of radio-
activity into the medium, and the radioactivity was due
exclusively to norepinephrine (33). In the same study,
absence of ionized calcium in the incubation medium
produced a slight augmentation of tyramine-induced
release of radioactivity, leading to the inference that
tyramine-induced norepinephrine release from sympa-
thetic nerves is not dependent on extracellular ionized
calcium. Electrical stimulation of bovine splenic nerves
evokes dose-related release of dopamine-�-hydroxylase
(which is confined to storage granules in sympathetic
nerves), whereas tyramine does not (34). In the perfused
guinea pig heart, tyramine evokes calcium-independent
release of norepinephrine and its neuronal metabolite,
dihydroxyphenylglycol (35).

The results of this study have potential implica-
tions for clinical neuropharmacology and pathophysi-
ology. Drugs increasing sympathetic outflow or de-
creasing neuronal reuptake would be expected to be
associated with increased plasma concentrations of
both catecholamines; those releasing NE by nonexo-
cytotic mechanisms would be associated with larger
DA than NE responses, and those decreasing exocytosis
would be associated with low plasma concentrations of
both catecholamines. Disorders involving decreased
activity of the vesicular monoamine transporter or
DBH would be expected to entail lower plasma NE
than DA, as has been reported in DBH deficiency (36 )
and in Menkes disease (37 ). In POTS, increased plasma
concentrations of both DA and NE are consistent with
increased overall sympathetic nerve traffic, decreased
neuronal reuptake, or both (38, 39 ). Finally, all pa-
tients with familial dysautonomia have increased
plasma DA:NE ratios (40 ), which, given the present
findings, suggests augmented release from vesicles con-
taining newly synthesized NE. Enhanced understand-
ing about sources and meaning of plasma DA con-
centrations, in the context of data about plasma
concentrations of other catechols, may provide bio-
markers with which to diagnose and track progression
of diseases and monitor effects of treatment.
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