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NEURONAL VARIABILITY: 
NOISE OR PART OF THE SIGNAL?
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Abstract | Sensory, motor and cortical neurons fire impulses or spikes at a regular, but slowly 
declining, rate in response to a constant current stimulus. Yet, the intervals between spikes 
often vary randomly during behaviour. Is this variation an unavoidable effect of generating 
spikes by sensory or synaptic processes (‘neural noise’) or is it an important part of the ‘signal’ 
that is transmitted to other neurons? Here, we mainly discuss this question in relation to 
sensory and motor processes, as the signals are best identified in such systems, although we 
also touch on central processes.

SPIKE TRAIN
A temporal sequence of 
all-or-none action potentials.

INTERSPIKE INTERVAL
The time between two 
successive spikes in a train.

We can quickly recognize the face of a family mem-
ber from among the billions of faces on our planet or 
identify a friend at some distance from their pattern of 
walking, even in a crowd. The basis for this remarkable 
ability must reside in the series of impulses (spikes) in 
individual nerve cells or populations of nerve cells. 
Neuroscientists have long debated how SPIKE TRAINS 
code information about sensory events. When Lord 
Adrian and colleagues first took recordings from 
sensory and motor neurons more than 75 years ago, 
they found that the intensity of a stimulus was coded 
as a rate of nerve impulses over time1,2, which is now 
referred to as the ‘rate code’. As described below, others 
have questioned whether rate is the only parameter 
that encodes information about sensory and motor 
events. Does the exact timing of spikes from one neu-
ron or the relative timing of spikes in a population of 
neurons convey further information that is important 
in the feats of pattern recognition that are mentioned 
above? These concepts have been referred to as ‘temp-
oral coding’. This topic has recently assumed new 
importance because of the implantation of an array of 
electrodes into the motor cortex of a severely disabled 
individual3. The spikes from these neurons are being 
processed to move a cursor on a computer screen in 
real time. The best method for decoding these spike 
trains will depend on our understanding, in detail, 
how information about movements is normally coded 
in the motor cortex.

The specific question raised in the title of this review 
follows on from these general issues. If a steady rate is 
important to determine the intensity of a constant sen-
sory or motor signal, then any variations in the INTER

SPIKE INTERVALS will cause fluctuations in the rate, which 
might be considered unwanted noise. However, if the 
timing of each spike carries extra information, then the 
variability can be an important part of the signal. We 
argue here that both temporal and rate coding are used, 
to varying degrees, in different parts of the nervous 
system, and that both contribute to the ability of the 
nervous system to discriminate complex objects and 
produce graceful movements. 

Information processing in sensory systems
Nearly 60 years ago, Claude Shannon developed a theory 
regarding the information that can be transmitted in 
a noisy communication channel4. This information 
theory has been popularized in terms of the ‘bits and 
bytes’ of information in computers, and has even been 
applied to the information content of the universe5. 
Application of the theory to neural systems seemed 
logical, as the survival of an organism depends on 
its ability to rapidly gather crucial information in a 
noisy or uncertain environment. One approach sug-
gested that the presence (1) or absence (0) of a spike 
would represent one binary choice, which is commonly 
referred to as a binary digit (or ‘bit’) of information6,7. 
For example, the binary numbers 00, 01, 10 and 11 
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a  Low noise input

b  High noise input

REFRACTORY PERIOD
The period of time after a spike 
when a neuron is unable or 
less able to fire another spike.

represent 2 bits (or 22 = 4 choices). Therefore, if the 
REFRACTORY PERIOD of a neuron is less than 1 ms, it could 
transmit more than 1,000 (103) bits of information in 
1 s in a sensory process. However, if different stimulus 
intensities are presented to a human observer (with 1012 
neurons), and the observer assigns a numerical score 
to each stimulus presentation, approximately seven 
categories can be reliably discriminated8. When more 
choices are presented, observers make errors and the 
information calculated from information theory is still 
roughly equivalent to seven categories. So, although the 
system has the potential to transmit 103 × 1012 = 1015 
bits in 1 s, conscious perception can provide less than 3 
bits (or 23 = 8 categories) of information about stimulus 
intensities in a range of sensory systems.

The rate code. This large discrepancy was soon resolved 
experimentally and theoretically. As mentioned above, 
Lord Adrian proposed the rate code in which the inten-
sity of a signal is represented as the number of spikes 
from a single neuron or a population of neurons over 
a period of time. The rate is obtained by dividing the 
number of spikes by the time period. In other words,  
signals in the sequence 100 (spike, no spike, no spike) 
over a period of 3 ms would be interpreted not as the 
binary representation of the number 4, but as a rate 
of 1 spike in 3 ms, which corresponds to 333 spikes 
in 1 s. This code would be indistinguishable from the 
sequences 010 and 001. In such a rate code, the total 
number of spikes over a period of time is the determin-
ing factor, rather than the order or timing of spikes. 
Variability in the inter-spike intervals and, therefore, 

in the total number of spikes in 1 s, for example, would 
limit the amount of sensory information that neurons 
transmit.

If the input to a neuron has little noise (FIG. 1a), the 
neuron will depolarize to the threshold at a steady rate 
and the number or rate of spikes over a period of time 
will be reproducible. With a noisy input (FIG. 1b), the 
spikes will be generated with variable intervals and the 
rate of spikes over time will also vary. Values of infor-
mation capacity of 2 or 3 bits have been calculated for 
single neurons in sensory systems, using rate coding 
to distinguish the levels of response to steady inputs 
over 1 s REF. 9,10. In fact, Talbot and colleagues11 
directly calculated the information contained in the 
firing of sensory receptors of a monkey to a flutter 
vibration applied to the skin and found that it agreed 
with the information from human observers respond-
ing to the same sensory stimulus. This agreement 
between responses in monkey sensory receptors and 
human experiments was encouraging, but several 
questions remained.

The problems with the rate code. First, as most sensory 
stimuli activate many receptors, a human observer 
should be able to use the larger number of nerve 
impulses from the population of sensory neurons to 
distinguish more categories. In other words, if a whole 
population of neurons is active, and each neuron sends 
2 or 3 bits to the brain in 1 s, why is human perception 
limited to less than 3 bits? Is the agreement between 
the calculated values of information capacity for single 
neurons and the human observer merely fortuitous? 
The answer to the latter question is probably yes. 
With a rate code, the number of bits of information 
increases according to the square root of the number 
of impulses, regardless of whether the impulses come 
from a single neuron or a population of neurons10. 
Therefore, 100 neurons would transmit 10 times the 
information of a single neuron. If the brain uses 100 
neurons to perceive different categories, we would 
expect ~20–30 bits of information to be transmitted 
in 1 s, which predicts more than a million possible 
perceptual categories. The information contained in 
the responses from populations of cells must under-
lie the ability to recognize faces, as mentioned above. 
However, some information might be lost in synaptic 
relays or in memory storage in the brain. Conceivably, 
this loss might cancel out the extra information that 
is contained in the population of sensory neurons in 
the particular laboratory experiments quoted above 
and leave 2 or 3 bits (or 7 categories). These issues still 
need to be rigorously tested experimentally.

Second, if variability in inter-spike intervals creates 
noise that limits information flow in sensory systems, 
why have sensory neurons not evolved to reduce this 
variability? As discussed below, in relation to temporal 
codes, neurons do fire spikes at precise times in some 
sensory systems. In others, the receptors are operating 
close to physical limits that introduce variability. For 
example, in the visual system, photons arrive randomly 
in time and, under some conditions, a single photon 

Figure 1 | Variability in neuronal firing. a | With a relatively steady depolarizing input current 
(low noise), spikes are generated at a regular rate. b | With higher noise, which could arise from 
a combination of excitatory and inhibitory postsynaptic potentials, the variability in firing rate is 
much higher, even though the mean firing rate might be similar. These data were simulated from 
a neural model with a leaky integrator and a fixed threshold82. The range in variability shown is 
typical of many neurons.
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STOCHASTIC PROCESS
A random sequence of events; if 
the probability of occurrence of 
the events is the same with each 
small increment of time, it is 
referred to as a Poisson process.

BANDWIDTH
The range between 
the lowest and highest 
frequencies of oscillation 
that produce a response.

ENTRAINED
The state in which one signal 
is linked to the repetitive 
behaviour of another.

HARMONICS
Integral multiples of the 
fundamental frequency.

can lead to perception12. The variability in the timing 
of spikes might be related to the irregular arrival of 
photons. Similarly, Brownian motion affects hair cells 
in the auditory system13,14. Therefore, the presence of 
variability in sensory systems might be an inevitable 
consequence of exquisitely responsive sensors. 
Furthermore, during synaptic transmission through 
sensory and central synapses, the effects of individual 
excitatory postsynaptic potentials (EPSPs) are relatively 
large compared with those of individual ions in the con-
stant currents that were considered in FIG. 1a REF. 15. 
If the generation of EPSPs is a random or STOCHASTIC 

PROCESS, variability will be introduced in the time that 
is taken to reach the threshold for spike generation16,17. 
According to this view, the response variability of neu-
rons in the CNS is a property of synaptic connections 
rather than the neurons themselves18. Below, we discuss 
evidence from the work of Mainen and Sejnowski, and 
others on the advantages of signal variability, which 
shows that the generation of EPSPs is not random and 
that their large size can be used to preserve timing 
information across synapses.

Finally, are these low rates of information transfer a 
consequence of studying steady signals? The answer to 
this question is probably also yes. The most important 
biological signals are changes in environmental param-
eters, such as light intensity. Sensory neurons respond 
to changing signals over a range of frequencies BAND

WIDTH and can only signal information in their normal 

working range. The bandwidth limits the maximum 
information capacity, but much more information can 
be transmitted with changing, rather than steady, sig-
nals. Experimental attempts to measure information 
capacity with broad-bandwidth random inputs have 
yielded approximate values of 1 bit per spike19,20. If neu-
rons fire tens or even hundreds of spikes per second, 
then tens or hundreds of bits per second are also pos-
sible, rather than only three with steady signals. Indeed, 
with rapidly varying signals, rates must be measured 
over small time intervals, so the distinction between 
rate and temporal codes breaks down. A more mean-
ingful measure is the accuracy in the timing of spikes 
in individual neurons in response to the changing 
stimulus, which can be of the order of milliseconds in 
cortical neurons and tenths of a millisecond in some 
sensory neurons21,22. 

Advantages of signal variability. Recent studies indi-
cate that variability might also offer distinct advan-
tages. Noise could enhance sensitivity to weak signals, 
a pheno menon that is known as ‘stochastic reso-
nance’23–25. As sensory signals are variable, Knill and 
Pouget26 suggested that the brain might also code sen-
sory information probabilistically and use the method 
of Bayesian inference. With this approach, the decision 
processes in the brain could deduce the best choice by 
combining previous experience with the probabilistic 
sensory signal27.

An example of the potential advantages of signal 
variability is presented in FIG. 2. If a sine wave with a 
period of 30 ms is applied to a muscle or a cutaneous 
receptor (FIG. 2a), the neuron becomes ENTRAINED to the 
stimulus, with one spike for each sinusoidal cycle. This 
gives information about the period, but not the form 
of the stimulus. A square wave with the same period 
(FIG. 2b) produces a similar train of spikes. Variability in 
the individual neurons can prevent this entrain-
ment28,29. With little noise, using the neural model of 
FIG. 1a, the responses to the sine wave would occur near 
a specific point in the cycle and would be indistinguish-
able for a sine or square wave (FIG. 2c,d). With more noise, 
as typically occurs in many neurons, the inter-spike 
intervals are more variable and the cycle histograms 
assume distinct shapes. The average responses to the 
sine and the square waves now match the waveforms of 
the input signals (FIG. 2e,f).

The problem of entrainment becomes greater the 
higher the frequency of the applied signals. Therefore, 
it is most acute in the auditory system, as this receives 
tones with frequencies of several kiloHertz, which is 
higher than in other sensory systems. However, a 
400-Hz tone on a violin can be distinguished from 
a similar tone on an oboe. Although the fundamental 
frequency is the same, the HARMONICS that are produced 
by an oboe and a violin at 800 Hz and higher frequen-
cies have different strengths. As the firing of cochlear 
neurons is close that expected for a random or Poisson 
process30, the resulting high degree of variability ensures 
that the different harmonic structures of the signals 
from the violin and oboe produce a different average 

Figure 2 | Noise can be beneficial to the faithful transmission of high-frequency inputs. 
When a sine wave (a) or square wave (b) with a period of 30 ms is added as an input to the 
low-noise neural model shown in FIG. 1a, the input entrains the firing of the neural model so that 
it generates one spike per cycle at a relatively fixed phase (c and d) and the shape of the input 
is lost. Adding the same inputs to the high-noise model shown in FIG. 1b produces spikes at all 
phases and the probability follows the shape of the input (e and f).
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BRAIN OSCILLATION
Rhythmic activity that 
can be recorded using 
electroencephalogram methods 
and that is usually divided 
into categories that are based 
on frequency; for example, 
the θ-rhythm is 4–8 Hz.

PHASELOCKED SIGNALS
When two (or more) 
periodic signals become 
linked at a particular part 
of the periodic cycle.

response. Therefore, the variability can increase the 
fidelity of transmission for high-frequency signals. In 
other words, although the variability is not necessarily 
part of the sensory signal, it might be an important part 
of the faithful processing of the signal. The ability of the 
neuron to transmit signals faithfully is only evident after 
analysing many cycles of the stimulus. However, trans-
mission by a population of neurons, rather than a single 
neuron, would allow the signal to be evident in real 
time. There are also neurons in the population that are 
tuned to respond best to 800 Hz and higher frequencies; 
responses from these neurons might also be important 
in distinguishing the tones from a violin and an oboe. 
Therefore, recording from a population of neurons is 
crucial for understanding the functions of the sensory 
system.

Mainen and Sejnowski31 suggested another impor-
tant advantage of noise. When they applied inputs 
with low noise, as in FIG. 1a, the timing of the spikes 
‘drifted’ from one trial to the next. The rate, but not 
the exact timing, of the spikes was reproducible. The 
authors showed that the addition of EPSPs produced 
spikes reliably on a millisecond time scale in one or 
more neurons. As the EPSPs that were applied 
presyna ptically reliably triggered spikes, the timing 
of pre synaptic events could be faithfully transmitted 
to postsynaptic neurons. Mainen and Sejnowski used 
cortical neurons in their study, but this argument also 
applies to synaptic transmission in sensory pathways 
(for example, see the evidence presented by Kara and 
colleagues32). In short, the apparent variability of neu-
rons in spike generation represents signals from pre-
synaptic EPSPs that provide important timing cues 
for their postsynaptic partners. This is often referred 
to as a ‘temporal code’. Various authors have used this 
term differently, but the central idea is that the exact 
timing of nerve spikes conveys more information 
than the rate alone. As there is no absolute time 

reference in the nervous system, the information is 
carried either in terms of the relative timing of spikes 
in a population of neurons or with respect to an 
ongoing BRAIN OSCILLATION. The accuracy of timing 
within a millisecond might be required to determine 
when and where a stimulus occurred. Several cues, 
such as intensity, timing and phase, are available to 
localize an auditory source in space, but recent com-
mentaries have emphasized the timing cue, with titles 
such as ‘Timing is everything’33, ‘Time is precious’34 
and ‘Spike times make sense’35. 

The neural timing mechanisms for localization 
have been well studied in animals, including birds36, 
mammals37,38 and electric fish39. They involve PHASE

LOCKED SIGNALS from two different sources converging 
onto cells that serve as comparators. Mutually inhibi-
tory connections in a neural circuit are important in 
sharpening the time and intensity differences. Neurons 
that are closer to a stimulus might receive more and 
earlier inputs than more distant neurons (FIG. 3). 
Mutual inhibition from the more strongly activated 
neurons could then block transmission in the more 
weakly activated ones. Recent studies have indicated 
that the precise timing of spikes is crucial in the func-
tion of the somatosensory 40 and visual systems41,42. 
Johansson and Birznieks studied the neural mecha-
nisms that are involved in avoiding slippage of an 
object that is grasped by the fingers of a human hand40. 
They argued that the timing of the first spikes in a 
population of cutaneous neurons codes the direction 
of movement on the skin, which is essential for the 
natural manipulation of objects, and for a fast and 
accurate response to the onset of a slip. The rate cod-
ing of later spikes might signal the level of force that is 
required to hold the object. This study highlights an 
important point: temporal and rate codes are not 
mutually exclusive and can be used in the same sen-
sory neurons. Other evidence indicates that the tem-
poral information in sensory neurons is faithfully 
transmitted to the sensory cortex32,42,43,45. In the rat 
barrel cortex, the timing of individual spikes carries 
82–85% of the total information regarding stimulus 
localization and the timing of the first spike is cru-
cial45. In summary, although earlier studies empha-
sized the importance of the rate code and inferred that 
variability in spike timing reflected neural noise, 
recent studies, such as those quoted above, emphasize 
the importance of temporal codes for understanding 
information processing in sensory systems.

Information processing in motor systems
Similar to sensory systems, motor systems show 
both precision and variability in the timing of spike 
generation. Activity in the ‘slip’ detectors mentioned 
above leads to a reflex action with a short and precise 
latency in the spinal cord to resist the slip46. At the 
level of the motor cortex, neurons have a preferred 
direction; that is, they respond best when the ani-
mal is planning to move in a particular direction47,48. 
Others have argued that it is not a particular direc-
tion that is coded but a synergistic group of muscles49, 

Figure 3 | Neuronal connections that are mutually inhibitory can accentuate the 
differences in time and intensity. Neuronal pathways (top) that are closer to a stimulus might 
fire earlier and produce more spikes than other pathways (bottom). Neuronal connections that are 
mutually inhibitory can enhance this difference by blocking transmission in neurons that receive 
later and less frequent excitation. Recent work has emphasized the importance of the latency to 
the first spike in rapid behavioural responses.
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Mirror

Monitor

OPTIMAL CONTROL THEORY
In engineering terms, a 
mathematical theory that 
allows for the regulation of a 
dynamic system using a priori 
knowledge or a model of the 
system to minimize particular 
variables, such as errors.

or that movements and muscles are both coded, but 
by different cells50. In any case, the response is gener-
ally variable and the neurons respond broadly with 
increased or decreased rates to movements in a wide 
range of directions. Therefore, the firing of a single 
neuron cannot accurately predict in which direc-
tion the animal will move. Schwartz and colleagues48 
trained monkeys to produce movements in virtual 
reality (FIG. 4). The activity of cells in the arm area 
of the motor cortex was recorded while the monkey 
made elliptical movements (FIG. 5a). The mean firing 
rate of a single neuron increased and decreased sinu-
soidally (FIG. 5b), but the variability in spike generation 
also increased as the mean rate increased (FIG. 5c). 
This study illustrates the importance of rate coding 
in the motor cortex. However, because of the variability, 
the number of neurons that would be required for 
a disabled subject to accurately control a movement 
using a neural prosthesis is estimated to range from 
tens to thousands of cells51,52.

The optimal control theory. Harris and Wolpert53 
proposed an elegant OPTIMAL CONTROL THEORY in which 
movements are organized so as to minimize the effects 
of variability at the end point. Movements from one 
point to another can be made with different trajecto-
ries, speeds and accuracies. The best strategy for con-
trolling a movement so that it reaches a desired end 
point with the least error depends on the variability 
that is inherent in the neural signals. If the variability 

is known at different signal levels, the optimal control 
theory can be used to calculate the best activation pat-
terns of relevant muscles to minimize error. In other 
words, variability in the motor system is considered as 
noise that decreases movement accuracy. However, if 
the nature of the noise is predictable, then the motor 
system might use optimal control algorithms to make 
the most accurate movements that are possible to 
a given target54,55. This is a potential solution to the 
problem that was raised many years ago by John von 
Neumann56, who was a founder of artificial intelli-
gence: how can a reliable nervous system be made out 
of unreliable elements? Harris and Wolpert argued 
further that if the variability is predictable and obeys a 
particular rule, many properties of stereotypical motor 
behaviours will follow automatically. The required 
rule is that the standard deviation (SD) of the control 
signal varies proportionally to the mean control signal; 
in other words, the noise is ‘signal dependent’. This 
rule would unify many experimental observations 
that were previously described in isolation without 
any common theoretical foundation, which is the 
hallmark of a good theory. 

Does the Harris and Wolpert rule hold experimen-
tally? One difficulty in answering this question is that 
they did not clearly specify what ‘the control signal’ 
meant in terms of the nervous system. A priori, it might 
be assumed that neurons in the motor cortex that are 
involved in planning the movement will also fire so as 
to minimize errors. If the firing rate of neurons in the 
motor cortex is the control signal, then the rule does 
not hold experimentally. As mentioned previously (FIG. 
5), the mean rate of spikes in individual neurons 
increases and decreases sinusoidally as the monkey 
traces each cycle of the ellipse. The SD of the rate also 
changes and the logarithm of the SD in firing rate is 
plotted against the logarithm of the mean rate (FIG. 5c) 
for the neuron that is shown in FIG. 5b. The gradient of 
the slope is 0.48, which indicates that the SD of the 
firing rates increases approximately according to the 
square root of the mean rate (which produces a slope 
of 0.5 on this plot), rather than linearly (which would 
produce a slope of 1.0). FIGURE. 5d shows the results for 
286 cells from 4 cortical hemispheres of 2 monkeys. 
Each cell was plotted as in FIG. 5c and the slope on this 
plot corresponds to the exponent of the relation 
between the SD of the firing rate and the mean rate. 
The Harris and Wolpert theory would predict a value 
of 1.0 if the relevant ‘control signal’ were the firing rate 
of neurons in the motor cortex. A range of values is 
seen in FIG. 5d, but the mean value of the slope is 0.50 ± 
0.12, which is significantly less than 1.0 (P <0.001, 
student’s t-test).

Perhaps the control signal is not the firing rate 
from single cortical neurons, but from populations 
of neurons. However, the same result with a value of 
0.5 was also obtained with a population of cortical neu-
rons (R.B.S., A.B. Schwartz and D.W. Moran, unpub-
lished observations). Alternatively, the control signal 
might be derived from motor neurons in the spinal 
cord, rather than from neurons in the motor cortex. 

Figure 4 | Studying movements in virtual reality. In this 
experimental set up, the monkey is seated and views the 
three-dimensional image on the computer monitor that is 
projected onto the mirror in front of it. A marker on the hand 
causes a sphere on the monitor to provide an image of the 
otherwise obscured hand to the monkey. The template to 
trace (for example, an ellipse or a circle) is also projected for 
the monkey to see in the mirror. The monkey receives a juice 
reward through the feeding tube if it keeps the sphere within 
the template while tracing in virtual reality. Image modified with 
permission from REF. 83 © (2003) Elsevier Science.
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ISOMETRIC CONTRACTION
A contraction in which a 
muscle exerts force but does 
not change in length.

HENNEMAN
Elwood Henneman (1915–
1995) was a neuroscientist at 
Harvard Medical School, who 
proposed a theory about the 
functional significance of cell 
size in spinal motor neurons.

RECRUITMENT
With respect to motor units, 
when a previously inactive 
unit is excited beyond 
its threshold and begins 
producing action potentials.

MOTOR UNIT
A motor neuron and all the 
muscle fibres that it innervates.

Harris and Wolpert quoted studies in which the SD 
of the inter-spike interval distributions for motor 
neurons was proportional to the mean interval. 
However, the control signal is more likely to be the 
rate of spikes, which is directly related to the force 
output, rather than the inter-spike intervals. BOX 1 
shows that, even if the SD of the inter-spike intervals 
is proportional to the mean interval, as quoted in 
Harris and Wolpert, the SD of the number of spikes 
or the rate over a given time will vary as the square 
root of the mean. This is in agreement with the results 
from the cortex (FIG. 5), but not with the rule proposed 
by Harris and Wolpert. A final possibility is that the 
relevant control signal is not derived from the nerv-
ous system, but is the total force output of a muscle or 
a group of muscles. Several studies have now shown 
that the SD of the force is approximately proportional 
to the mean force level during voluntary ISOMETRIC 

CONTRACTIONS57–59. How can the linear relationship 
between the SD of the force and the mean force arise 
from the square-root relationship in the nervous sys-
tem? The answer to this question follows from the 
HENNEMAN size principle.

The Henneman size principle. Henneman pro-
posed that the size of a motor neuron is essential to 
the structured relationship between its excitability 
threshold and the number, size and fatigability of 
the muscle fibres that it innervates60. To oversimplify: 

if changes in membrane voltage follow Ohm’s law 
(V = IR), the threshold for generating a spike requires 
the same change in voltage (V) for all motor neurons, 
and the synaptic currents (I) from muscle receptors 
or descending voluntary inputs are the same in all 
motor neurons, then the current will depolarize the 
cell membrane of a small neuron, which has a high 
input resistance (R), faster than that of a large neuron. 
As a result, the threshold will be reached sooner and 
more often. Therefore, motor neurons that produce 
small forces are the first to undergo RECRUITMENT and 
are followed by those that produce larger forces61. 
Although these assumptions are not entirely cor-
rect, the errors that are introduced do not change 
the basic recruitment order of motor neurons from 
those that produce small forces to those that produce 
large forces62–64. A MOTOR UNIT (FIG. 6c) that is active in 
a small reflex or voluntary contraction is small and 
non-fatiguing and the force fluctuations are also rela-
tively small. As the strength of contraction increases, 
progressively larger and more fatigable motor units 
are recruited. This ‘size principle’ has been studied 
in several muscles in animals and humans62,63, and 
a model is available for the first dorsal interosseous 
muscle of the human hand64.

The relationship between the SD of the force and 
the mean force level can be calculated under the 
assumption that the motor units are either recruited 
in a random order (FIG. 6a) or are recruited according 
to size in an orderly way (FIG. 6b). In recruitment 
according to size (FIG. 6c), the smallest motor unit, 
which has the lowest threshold, is the most likely to 
respond to the input. Given that the thresholds grad-
ually increase as the size of the motor units increase, 
there is a reduced chance of response to the input and 
fewer action potentials are produced in the larger 
motor units. Under the assumption of random 
recruitment, the SD increases according to the square 
root of the mean force level. However, if the motor 
units are recruited according to size (FIG. 6d), the SD is 
smaller, particularly at low force levels, and increases 
linearly with the mean force level. In other words, 
according to the Henneman size principle, small 
motor units are initially recruited to fire at low force 
levels that together produce relatively small fluctua-
tions in force. Progressively larger motor units are 
recruited at higher force levels, which inevitably pro-
duce larger fluctuations. This results in a steeper and 
more linear relationship between the SD and the 
mean force level, which is consistent with the rule 
required by the Harris and Wolpert theory.

Figure 5 | Neural activity while drawing in virtual reality. a | The average trajectory in 
the frontal plane of three cycles of ellipses that were drawn in space by a monkey using the 
virtual reality display shown in FIG. 4. b | The mean firing rate of a neuron in the motor cortex 
is plotted against the percentage of the average time taken to draw one cycle of the ellipse 
(0.98 s). c | The mean and standard deviation of the firing rate of the neuron in each of 20 
cycles plotted on log/log coordinates. The line was fitted using linear least mean-squares 
techniques. d | For each cell, the slope on the log/log plot of c was calculated, which 
corresponds to an exponent on a linear plot. This histogram shows the number of cells 
having various exponents, and was used to test a possible basis for the Harris and Wolpert 
optimal-control theory, as described in the text. 

Box 1 | Variability in intervals and rate

If µ is the mean inter-spike interval and σ is its 
standard deviation (SD), then the mean number of 
spikes, M, in time T will be M = T/µ and the variance in 
number, V, will be approximately V = σ2 T/µ3 REF. 81. 
If the coefficient of variation, σ/µ, is a constant, C, then 
the SD in number will be SD = C√M.
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COINCIDENCE DETECTOR
A sensing device that 
receives inputs from many 
sources and preferentially 
responds when these inputs 
arrive synchronously.

PHASE INFORMATION
The fraction of a complete 
cycle as measured from a 
specific reference point.

In contrast to the sensory system, in which vari-
ability can be beneficial, inconsistency in the motor 
system is an unavoidable concomitant of motor out-
put. However, because the variability is both predict-
able and linear, the motor system might have evolved 
optimal methods for generating accurate movements 
despite the ‘noise’. The trajectories of movements can 
then be organized to minimize errors in the end 
point. It should be possible to implement these same 
methods in a neural prosthesis to optimize the con-
trol of movements. How the nervous system calcu-
lates the optimal paths remains to be determined, 
but natural movements seem to follow the predicted 
trajectories, even when avoiding obstacles65. In sum-
mary, recent studies on the motor system indicate 
that the stereotypical structure of movements might 
result, at least in part, from the attempts to minimize 

the effects of inherent variability or noise in the 
force output of muscles.

Central processing of information
Do other regions of the CNS use similar principles 
to deal with variability or is the cognitive process-
ing in these regions fundamentally different from 
the sensory-motor events discussed above? Konig 
and colleagues66 suggested that the way in which a 
neuron processes information depends on the time 
period over which it integrates the input signals66. 
If the period is long compared with an inter-spike 
interval, then the firing rate will signal the inte-
grated inputs that the neuron receives. However, if 
the period is short, the neuron will only fire when 
inputs are synchronized and will function as a COIN

CIDENCE DETECTOR. The authors argued that cortical 
neurons predominantly function as coincidence 
detectors66. Stevens and Zador67 injected current, 
which was intended to mimic noisy synaptic cur-
rent, into neocortical neurons using a microelec-
trode in brain slices. They found that the irregular 
firing typical of cortical neurons occurred only in 
response to large synchronous inputs. Steinmetz 
and colleagues68 described an interesting example 
in the monkey somatosensory cortex. Neurons 
became increasingly synchronized when an animal 
was paying attention, particularly to difficult sen-
sory discriminations. Increased synchronization 
of motor units was also observed during tasks that 
demanded attention. The synchronous activation of 
separate pathways has long been associated with the 
potentiation of synapses, which might be important 
for learning and memory69–71; however, this topic is 
outside the scope of the present review.

Integration and synchronization are not always 
in opposition, as indicated by Konig and colleagues66 
and discussed above. The firing rate of the ‘place 
neurons’ in the hippocampus, increases when an 
animal is near its preferred location in space. 
However, the spikes are synchronized with respect 
to the θ-rhythm, which is prominent in the hippo-
campus, at a phase that changes monotonically as 
the animal approaches and then passes its preferred 
location72–74. Although this PHASE INFORMATION is avail-
able to the researcher, who can record both spike 
and wave activity, it is still unclear whether cells 
downstream to the place neurons extract this phase 
information. Oscillations similar to the θ-rhythm 
are widespread in the nervous system, but their 
meaning for specific behaviours is still debated. Mehta 
and colleagues75 suggested that oscillations might 
convert a rate code into a temporal code. They found 
that, in the rat hippocampus, the temporal code 
became more robust with experience and might be 
involved in learning temporal sequences. Tsodyks and 
colleagues76 found that the spontaneous activity of 
individual neurons was strongly associated with the 
spatial patterns in the visual cortex of cats, so oscilla-
tions might serve to bind neurons into ensembles that 
function together. 

Figure 6 | Simulations of force variability in a model of a motor pool. a | If the 
threshold for recruitment of a pool of 120 motor units is random with respect to twitch 
force, considerable variability occurs even during sustained contractions at low levels of 
mean force. As the level of mean force increases, the variability around the mean increases 
further. b | Normally, motor units in a pool are recruited in order of their twitch force, from 
small to large. With orderly recruitment, the variability is less at the same level of mean 
force compared with random recruitment. c | A schematic diagram to explain the orderly 
recruitment of motor units. A motor unit consists of a motor neuron and all of the muscle 
fibres it innervates. A common input drives all four motor neurons, but the combination of 
active and passive membrane properties results in thresholds (represented by the sigmoidal 
curves on the right) that vary across the pool of motor neurons56,76. The smallest motor unit 
has the lowest threshold current (sigmoid shifted to the left) and is therefore most likely to 
respond to the input. The threshold functions are gradually shifted to the right for the larger 
motor units, which results in a decreased probability of response to the input and fewer 
action potentials being sent to their constituent muscle fibres. Red vertical bars represent 
spikes. d | In both types of recruitment, variability increases as a function of mean force 
output, but at a different rate. Regression analysis gave a slope of 0.45 on logarithmic scales 
during random recruitment (open circles; r2 = 0.77, F = 820.74, P <0.001) and a slope of 
0.90 during orderly recruitment (filled circles; r2 = 0.97, F = 6.5429, P <0.001). Details of the 
model are given in REF. 57.  
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