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Abstract

Named-entity recognition (NER) aims at

identifying entities of interest in a text. Ar-

tificial neural networks (ANNs) have re-

cently been shown to outperform existing

NER systems. However, ANNs remain

challenging to use for non-expert users. In

this paper, we present NeuroNER, an easy-

to-use named-entity recognition tool based

on ANNs. Users can annotate entities us-

ing a graphical web-based user interface

(BRAT): the annotations are then used

to train an ANN, which in turn predict

entities’ locations and categories in new

texts. NeuroNER makes this annotation-

training-prediction flow smooth and ac-

cessible to anyone.

1 Introduction

Named-entity recognition (NER) aims at identify-

ing entities of interest in the text, such as location,

organization and temporal expression. Identified

entities can be used in various downstream appli-

cations such as patient note de-identification and

information extraction systems. They can also be

used as features for machine learning systems for

other natural language processing tasks.

Early systems for NER relied on rules de-

fined by humans. Rule-based systems are time-

consuming to develop, and cannot be easily trans-

ferred to new types of texts or entities. To address

these issues, researchers have developed machine-

learning-based algorithms for NER, using a vari-

ety of learning approaches, such as fully super-

vised learning, semi-supervised learning, unsuper-

vised learning, and active learning. NeuroNER

is based on a fully supervised learning algorithm,

which is the most studied approach (Nadeau and

Sekine, 2007).

∗ These authors contributed equally to this work.

Fully supervised approaches to NER include

support vector machines (SVM) (Asahara and

Matsumoto, 2003), maximum entropy mod-

els (Borthwick et al., 1998), decision trees (Sekine

et al., 1998) as well as sequential tagging meth-

ods such as hidden Markov models (Bikel et al.,

1997), Markov maximum entropy models (Kumar

and Bhattacharyya, 2006), and conditional ran-

dom fields (CRFs) (McCallum and Li, 2003; Tsai

et al., 2006; Benajiba and Rosso, 2008; Filannino

et al., 2013). Similar to rule-based systems, these

approaches rely on handcrafted features, which are

challenging and time-consuming to develop and

may not generalize well to new datasets.

More recently, artificial neural networks

(ANNs) have been shown to outperform other

supervised algorithms for NER (Collobert et al.,

2011; Lample et al., 2016; Lee et al., 2016;

Labeau et al., 2015; Dernoncourt et al., 2016).

The effectiveness of ANNs can be attributed to

their ability to learn effective features jointly

with model parameters directly from the training

dataset, instead of relying on handcrafted features

developed from a specific dataset. However,

ANNs remain challenging to use for non-expert

users.

Contributions NeuroNER makes state-of-the-

art named-entity recognition based on ANN avail-

able to anyone, by focusing on usability. To enable

users to create or modify annotations for a new

or existing corpus, NeuroNER interfaces with the

web-based annotation program BRAT (Stenetorp

et al., 2012). NeuroNER makes the annotation-

training-prediction flow smooth and accessible to

anyone, while leveraging the state-of-the-art pre-

diction capabilities of ANNs. NeuroNER is open

source and freely available online1.

1NeuroNER is available at: https://github.com/
Franck-Dernoncourt/NeuroNER
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2 Related Work

Existing publicly available NER systems geared

toward non-experts do not use ANNs. For

example, Stanford NER (Finkel et al., 2005),

ABNER (Settles, 2005), the MITRE Identifica-

tion Scrubber Toolkit (MIST) (Aberdeen et al.,

2010), (Boag et al., 2015), BANNER (Leaman

et al., 2008) and NERsuite (Cho et al., 2010) rely

on CRFs. GAPSCORE uses SVMs (Chang et al.,

2004). Apache cTAKES (Savova et al., 2010) and

Gate’s ANNIE (Cunningham et al., 1996; May-

nard and Cunningham, 2003) use mostly rules.

NeuroNER, the first ANN-based NER system for

non-experts, is more generalizable to new corpus

due to the ANNs’ capability to learn effective fea-

tures jointly with model parameters.

Furthermore, in many cases, the NER systems

assume that the user already has an annotated cor-

pus formatted in a specific data format. As a result,

users often have to connect their annotation tool

with the NER systems by reformatting annotated

data, which can be time-consuming and error-

prone. Moreover, if users want to manually im-

prove the annotations predicted by the NER sys-

tem (e.g., if they use the NER system to accelerate

the human annotations), they have to perform ad-

ditional data conversion. NeuroNER streamlines

this process by incorporating BRAT, a widely-

used and easy-to-use annotation tool.

3 System Description

NeuroNER comprises two main components: an

NER engine and an interface with BRAT. Neu-

roNER also comes with real-time monitoring tools

for training, and pre-trained models that can be

loaded to the NER engine in case the user does

not have access to labelled training data. Figure 1

presents an overview of the system.

3.1 NER engine

The NER engine takes as input three sets of data

with gold labels: the training set, the validation

set, and the test set. Additionally, it can also take

as input the deployment set, which refers to any

new text without gold labels that the user wishes

to label. The files that comprise each set of data

should be in the same format as used for the anno-

tation tool BRAT or the CoNLL-2003 NER shared

task dataset (Tjong Kim Sang and De Meulder,

2003), and organized in the corresponding folder.

The NER engine’s ANN contains three layers:

• Character-enhanced token-embedding layer,

• Label prediction layer,

• Label sequence optimization layer.

The character-enhanced token-embedding layer

maps each token to a vector representation. The

sequence of vector representations corresponding

to a sequence of tokens is then input to label pre-

diction layer, which outputs the sequence of vec-

tors containing the probability of each label for

each corresponding token. Lastly, the label se-

quence optimization layer outputs the most likely

sequence of predicted labels based on the se-

quence of probability vectors from the previous

layer. All layers are learned jointly. The model ar-

chitecture is detailed in (Dernoncourt et al., 2016).

The ANN as well as the training process

have several hyperparameters such as charac-

ter embedding dimension, character-based token-

embedding LSTM dimension, token embedding

dimension, and dropout probability. All hyperpa-

rameters may be specified in a configuration file

that is human-readable, so that the user does not

have to dive into any code. Listing 1 presents an

excerpt of the configuration file.

[dataset]

dataset_folder = dat/conll

[character_lstm]

using_character_lstm = True

char_embedding_dimension = 25

char_lstm_dimension = 50

[token_lstm]

token_emb_pretrained_file = glove.txt

token_embedding_dimension = 200

token_lstm_dimension = 300

[crf]

using_crf = True

random_initial_transitions = True

[training]

dropout = 0.5

patience = 10

maximum_number_of_epochs = 100

maximum_training_time = 10

number_of_cpu_threads = 8

Listing 1: Excerpt of the configuration file used

to define the ANN as well as the training process.

Only the dataset folder parameter needs to

be changed by the user: the other parameters have

reasonable default values, which the user may op-

tionally tune.
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Figure 1: NeuroNER system overview. In the NeuroNER engine, the training set is used to train the

parameters of the ANN, and the validation set is used to determine when to stop training. The user can

monitor the training process in real time via the learning curve and TensorBoard. To evaluate the trained

ANN, the labels are predicted for the test set: the performance metrics can be calculated and plotted by

comparing the predicted labels with the gold labels. The evaluation can be done at the same time as

the training if the test set is provided along with the training and validation sets, or separately after the

training or using a pre-trained model. Lastly, the NeuroNER engine can label the deployment set, i.e.

any new text without gold labels.
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3.2 Real-time monitoring for training

As training an ANN may take many hours, or

even a few days on very large datasets, NeuroNER

provides the user with real-time feedback during

the training for monitoring purpose. Feedback is

given through two different means: plots gener-

ated by NeuroNER, and TensorBoard.

Plots NeuroNER generates several plots show-

ing the training progress and outcome at each

epoch. Plots include the evolution of the overall

F1-score over time, confusion matrices visualizing

the number of correct versus incorrect predictions

for each class, and classification reports showing

the F1-score, precision and recall for each class.

TensorBoard As NeuroNER is based on Ten-

sorFlow , it leverages the functionalities of Tensor-

Board. TensorBoard is a suite of web applications

for inspecting and understanding TensorFlow runs

and graphs. It allows to view in real time the per-

formances achieved by the ANN being trained.

Moreover, since it is web-based, these perfor-

mances can be conveniently shared with anyone

remotely. Lastly, since graphs generated by Ten-

sorBoard are interactive, the user may gain further

insights on the ANN performances.

3.3 Pre-trained models

Some users may prefer not to train any ANN

model, either due to time constraints or unavail-

able gold labels. For example, if the user wants to

tag protected health information, they might not be

able to have access to a labeled identifiable dataset.

To address this need, NeuroNER provides a set

of pre-trained models. Users are encouraged to

contribute by uploading their own trained models.

NeuroNER also comes with several pre-trained to-

ken embeddings, either with word2vec (Mikolov

et al., 2013a,b) or GloVe (Pennington et al., 2014),

which the NeuroNER engine can load easily once

specified in the configuration file.

3.4 Annotations

NeuroNER is designed to smoothly integrate with

the freely available web-based annotation tool

BRAT, so that non-expert users may create or im-

prove annotations. Specifically, NeuroNER ad-

dresses two main use cases:

• creating new annotations from scratch, e.g. if

the goal is to annotate a dataset for which no

gold label is available,

• improving the annotations of an already la-

beled dataset: the annotations may have been

done by another human or by a previous run

of NeuroNER.

In the latter case, the user may use NeuroNER in-

teractively, by iterating between manually improv-

ing the annotations and running the NeuroNER en-

gine with the new annotations to obtain more ac-

curate annotations.

NeuroNER can take as input datasets in the

BRAT format, and outputs BRAT-formatted pre-

dictions, which makes it easy to start training di-

rectly from the annotations as well as visualize and

analyze the predictions. We chose BRAT for two

main reasons: it is easy to use, and it can be de-

ployed as a web application, which allows crowd-

sourcing. As a result, the user may quickly gather

a vast amount of annotations by using crowd-

sourcing marketplaces such as Amazon Mechan-

ical Turk (Buhrmester et al., 2011) and Crowd-

Flower (Finin et al., 2010).

One limitation of NeuroNER is that it does not

allow overlapping annotations in the BRAT for-

mat. However, NeuroNER is not restricted to

named-entity recognition: it may be used for any

sequence labeling, such as part-of-speech tagging

and chunking.

3.5 System requirements

NeuroNER runs on Linux, Mac OS X, and Mi-

crosoft Windows. It requires Python 3.5, Tensor-

Flow 1.0 (Abadi et al., 2016), scikit-learn (Pe-

dregosa et al., 2011), and BRAT. A setup script is

provided to make the installation straightforward.

It can use the GPU if available, and the number of

CPU threads and GPUs to use can be specified in

the configuration file.

3.6 Performances

To assess the quality of NeuroNER’s predictions,

we use two publicly and freely available datasets

for named-entity recognition: CoNLL 2003 and

Model CoNLL 2003 i2b2 2014

Best published 90.9 97.9

NeuroNER 90.5 97.7

Table 1: F1-scores (%) on the test set compar-

ing NeuroNER with the best published methods in

the literature, viz. (Passos et al., 2014) for CoNLL

2003, (Dernoncourt et al., 2016) for i2b2 2014.
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i2b2 2014. CoNLL 2003 (Tjong Kim Sang and

De Meulder, 2003) is a widely studied dataset with

4 usual types of entity: persons, organizations, lo-

cations and miscellaneous names. We use the En-

glish version.

The i2b2 2014 dataset (Stubbs et al., 2015)

was released as part of the 2014 i2b2/UTHealth

shared task Track 1. It is the largest publicly avail-

able dataset for de-identification, which is a form

of named-entity recognition where the entities

are protected health information such as patients’

names and patients’ phone numbers. 22 systems

were submitted for this shared task.

Table 1 compares NeuroNER with state-of-the-

art systems on CoNLL 2003 and i2b2 2014. Al-

though the hyperparameters of NeuroNER were

not optimized for these datasets (the default hyper-

parameters were used), the performances of Neu-

roNER are on par with the state-of-the-art sys-

tems.

4 Conclusions

In this article we have presented NeuroNER, an

ANN-based NER tool that is accessible to non-

expert users and yields state-of-the-art results. Ad-

dressing the need of many users who want to cre-

ate or improve annotations, NeuroNER smoothly

integrates with the web-based annotation tool

BRAT.
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Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: a web-based tool for nlp-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107. Association for Computational Lin-
guistics.

Amber Stubbs, Christopher Kotfila, and Özlem Uzuner.
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