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A novel coronavirus, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), emerged from Wuhan,
China, in December 2019, resulting in a severe outbreak

of pneumonia1; SARS-CoV-2 causes a clinical syndrome, coronavi-
rus disease 2019 (COVID-19), and its pulmonary manifestations
have been well described. There is growing evidence of
neurological complications and disease in patients with
COVID-19. Two similar human coronaviruses (CoV), Middle
East respiratory syndrome (MERS-CoV) and severe acute
respiratory syndrome (SARS-CoV-1), have also been associated
with neurological disease in rare cases. This raises the questions
of whether SARS-CoV-2 is neurotropic and whether it contributes
to postinfectious neurologic complications. A handful of
case reports have described neurological complications in
patients with COVID-19.1-4 However, it remains unknown to
what extent SARS-CoV-2 damages the central nervous system
(CNS) or if neurological symptoms are attributable to secondary
mechanisms.

Search Strategy and Selection Criteria

References for this review were identified by searches of PubMed
from April to May 2020 for articles published between 1969 and
April 2020, as well as references from relevant articles. The search
terms COVID-19, SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-OC43,
neurotropism, neuroinvasion, and coronavirus were used. There were
no language restrictions. The final list of included articles was gen-
erated on the basis of relevance to the topics covered in this review.

Neurotropic Coronaviruses
Coronaviruses (CoV) are large, enveloped, positive-sense RNA vi-
ruses divided into 3 genera: alphacoronavirus, betacoronavirus, and
gammacoronavirus.5 These viruses infect humans and numerous
animal species, generally causing upper or lower respiratory tract,

IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in
December 2019, causing human coronavirus disease 2019 (COVID-19), which has now spread
into a worldwide pandemic. The pulmonary manifestations of COVID-19 have been well
described in the literature. Two similar human coronaviruses that cause Middle East
respiratory syndrome (MERS-CoV) and severe acute respiratory syndrome (SARS-CoV-1) are
known to cause disease in the central and peripheral nervous systems. Emerging evidence
suggests COVID-19 has neurologic consequences as well.

OBSERVATIONS This review serves to summarize available information regarding
coronaviruses in the nervous system, identify the potential tissue targets and routes of entry
of SARS-CoV-2 into the central nervous system, and describe the range of clinical neurological
complications that have been reported thus far in COVID-19 and their potential pathogenesis.
Viral neuroinvasion may be achieved by several routes, including transsynaptic transfer across
infected neurons, entry via the olfactory nerve, infection of vascular endothelium, or
leukocyte migration across the blood-brain barrier. The most common neurologic complaints
in COVID-19 are anosmia, ageusia, and headache, but other diseases, such as stroke,
impairment of consciousness, seizure, and encephalopathy, have also been reported.

CONCLUSIONS AND RELEVANCE Recognition and understanding of the range of neurological
disorders associated with COVID-19 may lead to improved clinical outcomes and better
treatment algorithms. Further neuropathological studies will be crucial to understanding
the pathogenesis of the disease in the central nervous system, and longitudinal neurologic
and cognitive assessment of individuals after recovery from COVID-19 will be crucial to
understand the natural history of COVID-19 in the central nervous system and monitor for
any long-term neurologic sequelae.
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gastrointestinal, neurological, or hepatic disease.6,7 Currently, there
are 7 CoV that can infect humans, including human coronavirus
(HCoV)–229E, HCoV-NL63, HCoV-HKU1, HCoV-OC43, MERS-CoV,
SARS-CoV-1, and SARS-CoV-2.8 Betacoronaviruses SARS-CoV-2,
SARS-CoV-1, and MERS-CoV are associated with severe disease in
humans.1,3,8 Although HCoV are typically associated with respira-
tory tract disease, 3 HCoV have been shown to infect neurons: HCoV-
229E, HCoV-OC43, and SARS-CoV-1.

HCoV-OC43
The neuroinvasive potential of HCoV-OC43 has been particularly well
studied. It has been shown to thrive in neural cell in vitro cultures.9

Oligodendrocytes, astrocytes, microglia, and neurons are suscep-
tible to acute infection with HCoV-OC43, and all except microglia
support persistent infection.10 In murine models, HCoV-OC43 can
invade the CNS intranasally, which is followed by a rapid spread
throughout the CNS. Neuronal damage appears to be caused by di-
rect, virus-mediated, and not immune-mediated injury.11 The CNS
damage causes a range of neurological disorders in mice, including
encephalitis and transient flaccid paralysis.12

In humans, history of infection with HCoV-OC43 is associated with
multiple sclerosis (MS), based on the presence of viral RNA in au-
topsy brain tissue of donors who died with MS.13,14 In 1 study,15 HCoV-
OC43 RNA was also detected in the cerebrospinal fluid (CSF) in 10 of
20 living patients with MS. Although the mechanism of potential
demyelination during HCoV-OC43 infection is unknown, this may be
because of an adaptive immune response against HCoV-OC43 anti-
gens that cross-react with myelin antigens. Indeed, peripheral T-cell
clones in patients with MS have been shown to cross-react to both
HCoV-OC43 and myelin antigens.16 In addition to demyelinating dis-
ease, there have also been pediatric case reports of children with se-
vere immunosuppression developing encephalitis associated with
HCoV-OC43 infection, with brain biopsies having positive results for
HCoV-OC43 RNA on metagenomic sequencing.17,18

SARS-CoV-1
During the SARS pandemic of 2002-2003, neurological complica-
tions were reported in a subset of patients.19 A group from Taiwan
reported 3 cases of axonal-variant Guillain-Barré syndrome (GBS) and
5 cases of ischemic stroke.20,21 One report22 described a patient with
SARS presenting with a seizure with a positive CSF polymerase chain
reaction result for SARS-CoV-1, although contamination of the CSF
sample was possible. In addition, SARS-CoV-1 has been reliably de-
tected in brain tissue specimens of autopsy donors with SARS, spe-
cifically in the cytoplasm of neurons in the cortex and hypothala-
mus, sometimes associated with neuronal edema and nuclear
degeneration.23,24 Examination of autopsy tissue from a patient with
encephalitis revealed neuronal necrosis, glial cell hyperplasia, and
infiltration of monocytes and T cells.25 Additionally, virions were
visualized in neurons on electron microscopy, and SARS-CoV-1 RNA
was isolated from the specimen.25 In murine models, SARS-CoV-1 en-
ters the CNS via the olfactory bulb and exhibits rapid transsynaptic
spread. The infection causes significant neuronal damage and death
without significant inflammatory infiltration.2

MERS-CoV
The Middle East respiratory syndrome CoV (MERS-CoV) first
emerged in 2012, and since that time, approximately 2494 cases

have been reported, with a 34.4% case mortality rate.26 Unlike SARS-
CoV-1 and SARS-CoV-2, MERS-CoV binds to the dipeptidyl pepti-
dase 4 receptor on cells to gain entry. Dipeptidyl peptidase 4 is widely
expressed throughout the body on epithelia, vascular endothelia,
and the brain.27,28 There have been several clinical case reports that
suggest MERS-CoV can lead to neurological complications in hu-
mans. In a study29 of 70 patients, 6 (9%) developed seizures, 9 (13%)
reported headache, and 18 (26%) experienced confusion. A case
series30 highlighted 3 severe cases of neurological disease in MERS-
CoV, including suspected acute disseminating encephalomyelitis, en-
cephalitis, and widespread ischemic infarcts. Another case series4

highlighted neuromuscular disease in MERS-CoV, including 3 cases
of GBS and a case of Bickerstaff encephalitis. However, although
murine models develop CNS infection after intranasal inoculation
with MERS-CoV, this virus has never been detected in the CNS of
humans.28

Mouse Hepatitis Virus
Historically, the neuroinvasive potential of CoV has been illustrated
through studies of the murine coronavirus mouse hepatitis virus. In
mice, this virus induces a spectrum of neurological disease ranging
from fatal encephalomyelitis to demyelinating disorders. Mouse hepa-
titis virus enters the CNS through hematogenous spread or intrana-
sal inoculation.31,32 Once in the CNS, the virus is associated with an
influx of immune cells, including CD-8 T cells, natural killer cells, and
neutrophils. A significant increase in inflammatory cytokines, includ-
ing interleukin 6 (IL-6), is observed in the CNS of infected mice.33

SARS-CoV-2
The SARS-CoV-2 virus shares close sequence homology to SARS-
CoV-1. Both viruses use spike proteins on the viral surface to bind to
the angiotensin-converting enzyme 2 (ACE2) receptor on mamma-
lian host cells, then use serine protease transmembrane protease
serine 2 (TMPRSS2) to prime the spike.34 The presence of the ACE2
receptor in tissues determines viral cellular tropism in humans. In
humans, ACE2 is expressed in airway epithelia, kidney cells, small
intestine, lung parenchyma, and vascular endothelia throughout the
body and widely throughout the CNS (Figure 1). Information about
specific cellular and spatial localization within the human brain is
emerging. A recent report35 (not yet peer reviewed) found that ACE2
is expressed in neurons, astrocytes, and oligodendrocytes. Expres-
sion of ACE2 was also highly concentrated in the substantia nigra,
ventricles, middle temporal gyrus, posterior cingulate cortex, and
olfactory bulb.35 This study35 compared human ACE2 expression
with the mouse brain and demonstrated similar expression pat-
terns. In other murine models, ACE2 expression has been identi-
fied in the motor cortex, cytoplasm of neurons, glial cells, and sym-
pathetic pathways in the brainstem.36,37 In neuronal cell cultures,
ACE2 is expressed both on the surface membrane and in the
cytoplasm.38 Widespread ACE2 expression in the brain raises the
concern that SARS-CoV-2, similarly to SARS-CoV-1, has the poten-
tial to infect neurons and glial cells throughout the CNS.

Potential Mechanisms of Neuroinvasion
Although there are reports of neurological complications in pa-
tients with COVID-19, it is unclear if SARS-CoV-2 is neurotropic in
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humans. Viral neuroinvasion could plausibly be achieved by sev-
eral routes, including transsynaptic transfer across infected neu-
rons (Figure 2), entry via the olfactory nerve (Figure 2), infection of
vascular endothelium (Figure 3), or leukocyte migration across the
blood-brain barrier (BBB) (Figure 3).

Transsynaptic Spread
There is increasing evidence that human and nonhuman CoV
invade peripheral nerve terminals, spread retrograde along nerve
synapses, and gain access to the CNS (Figure 2).12,39 Transsynaptic
transfer of virus has been demonstrated for several CoV, including
HCoV-OC43, hemagglutinating encephalomyelitis virus 67 (HEV67),
and avian bronchitis virus.12 For example, HEV67 enters the orona-
sal cavity and infects the nasal mucosa, lung epithelium, and small
intestine of suckling piglets and rats. It then infects the peripheral
nerves and spreads retrograde to the dorsal root ganglion, ending

in the medullary neurons.40 A membrane coating–mediated endo-
cytotic or exocytotic pathway facilitates HEV67 transfer between mo-
tor cortex neurons.40 A similar, vesicle-mediated secretory pathway
allows HEV67 to spread between neurons and satellite cells.41 For in-
tracellular spread within a neuron, fast axonal transport uses axonal
microtubules to move molecules retrograde or anterograde.12,42 Her-
pes simplex virus, HIV, and HCoV-OC43 have all been shown to use
retrograde fast axonal transport to infect the cell body of neurons.42

During the COVID-19 outbreak, isolated loss of sense of smell
(anosmia) and loss of sense of taste (ageusia) with or without respi-
ratory symptoms has been reported.43 Direct entry along the olfac-
tory nerve is another potential mechanism for SARS-CoV-2 entry to
the CNS (Figure 2). In a transgenic mouse model that expresses ACE2,
mice inoculated with SARS-CoV-1 intranasally showed that virus in-
vaded the CNS via a transcribrial route.44,45 The same has been dem-
onstrated in murine MERS-CoV and HCoV-OCR43 models after in-

Figure 1. Angiotensin-Converting Enzyme 2 (ACE2) Expression in the Brain
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Emerging data suggest that ACE2 receptors are expressed in multiple regions of
the human and mouse brain, including the motor cortex, posterior cingulate
cortex, ventricles, substantia nigra, olfactory bulb, middle temporal gyrus,
ventrolateral medulla, nucleus of tractus solitarius, and dorsal motor nucleus of
the vagus nerve (A) and on several key cell types that make up the central

nervous system, including neurons, microglia, astrocytes, and oligodendrocytes
(B).35-37 C, ACE2 receptors on a medullary neuron binding to the SPIKE protein
on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This figure
was created by an author (L.S.M.) using the website https://app.biorender.com.
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tranasal inoculation.11,28 In fact, chemically ablating the olfactory
neurons protected mice from HCoV-OCR43 invasion into the CNS.
It remains unclear whether SARS-CoV-2 can similarly spread to the
CNS via transcribrial route. Emerging reports46,47 (not yet peer re-
viewed) suggest that sustentacular and stem cells in the olfactory
epithelium express ACE2 and are vulnerable to SARS-CoV-2 infec-
tion, while olfactory sensory neurons do not express ACE2, suggest-
ing SARS-CoV-2 cannot gain access to nerve cells. These prelimi-
nary findings suggest that damage to the olfactory epithelium

underlies clinical anosmia, rather than neuronal injury. Further mu-
rine and autopsy studies will likely provide clarification.

Blood-Brain Barrier Spread
There are 2 possible mechanisms for SARS-CoV-2 spread across the
BBB. The BBB is composed of vascular endothelium, astrocytes, peri-
cytes, and extracellular matrix.48 Vascular endothelial cells are joined
by tight junctions and regulate the permeability of the BBB. The first
mechanism is through infection of and transport across vascular

Figure 2. Transsynaptic Viral Spread
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A, Coronavirus (CoV) has been shown
to spread via the transcribrial route
from the olfactory epithelium along
the olfactory nerve to the olfactory
bulb within the central nervous
system. B, CoV has been shown to
spread retrograde via transsynaptic
transfer using an endocytosis or
exocytosis mechanism and a fast
axonal transport (FAT) mechanism of
vesicle transport to move virus along
microtubules back to neuronal cell
bodies. This figure was created by an
author (L.S.M.) using the website
https://app.biorender.com.

Figure 3. Mechanisms of Spread Across the Blood-Brain Barrier

Endothelial infectionA Leukocyte infectionB

CoV

Astrocytes

Lumen

Vascular
endothelium

Infected
leukocyte

Permeable
blood-brain
barrier

A, Infected vascular endothelial cells
have been shown to spread severe
acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) to glial
cells in the central nervous system.
B, Known as the Trojan horse
mechanism, infected leukocytes can
cross the blood-brain barrier to infect
the central nervous system. CoV
indicates coronavirus. This figure
was created by an author (L.S.M.)
using the website
https://app.biorender.com.
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endothelial cells (Figure 3). Endothelia throughout the body ex-
press ACE2 and are at risk for infection by SARS-CoV-2. An autopsy
case study demonstrated the presence of SARS-CoV-2 viral par-
ticles in capillary endothelia and neurons of a frontal lobe specimen.49

Neurons were found to have viral particles packaged in dilated
vesicles. Electron microscopic imaging even demonstrated endo-
cytosis or exocytosis of viral particles across endothelial cells.
Arboviruses use a similar active-transport mechanism without rep-
lication to enter endothelial cells and cross the BBB into the CNS.50

Once the virus gains access to vascular and neuronal tissue, it could
begin a cycle of viral budding and further damage vascular and neu-
ronal tissue as the virus comes into contact with ACE2 on neurons,
glia, and vessels.51

The second mechanism is through infection of leukocytes
that pass through the BBB, termed the Trojan horse mechanism
(Figure 3).52 This mechanism is well described in HIV, in which in-
fected immune cells pass from the blood through the BBB to infect
the CNS.42,53 The SARS-CoV-1 virus has been shown to infect lym-
phocytes, granulocytes, monocyte derivatives, and monocytes,
which all express ACE2.24,54-56 It is likely that SARS-CoV-2 infects
similar cell types. It has been demonstrated that T lymphocytes
allow SARS-CoV-2 infection but do not support viral replication.57

The systemic inflammation that characterizes COVID-19 likely in-
creases the permeability of the BBB, thereby allowing infected
immune cells, cytokines, and possibly virus to pass into the CNS.58

Neurologic Manifestations
Information about neurologic manifestations in patients with
COVID-19 is sparse. Currently, there are a small number of pub-
lished case reports and clinical studies. A systemic study in Wuhan,
China, reported neurologic findings in 214 patients hospitalized with
COVID-19.59 Another systematic study60 in France noted neuro-
logic symptoms in 49 of 58 patients, including confusion, encepha-
lopathy, and corticospinal tract signs on examination, as well as lep-
tomeningeal enhancement and perfusion abnormalities on magnetic
resonance imaging (MRI).

The most common neurologic symptoms in COVID-19 are
headache, anosmia, and ageusia. Other neurological findings in-
clude stroke, impairment of consciousness, coma, seizure, and
encephalopathy.

Headache
Headache is one of the most common initial complaints in patients
with COVID-19. In a recent case series,61 headache was a predomi-
nant complaint, along with fever, cough, sore throat, and breath-
lessness. Prevalence varies in different reports but can affect up to
one-third of diagnosed patients.62,63 While headache is a well-
described manifestation of meningitis, encephalitis, vasculitis, and
intracranial hypertension, less is known about its pathophysiologi-
cal connection with COVID-19. Neuroinflammatory mechanisms have
been invoked in some headache syndromes via cytokines and che-
mokines that trigger nociceptive sensory neurons.64 Release of
cytokines and chemokines by macrophages during various stages
of COVID-19 infection may lead to similar mechanisms for pain.65 It
is imperative to screen patients who present with headache for sec-
ondary causes if they have had a change in their headache fre-

quency or severity, develop systemic symptoms such as a fever, or
are refractory to preliminary treatments.

Anosmia and Ageusia
The prevalence of anosmia and ageusia ranges widely in the litera-
ture. In a study of patients hospitalized in Wuhan, the prevalence
of hypogeusia and hyposmia was 5.6% and 5.1%, respectively,59

while 19.4% of patients in Italy had some form of chemosensory
dysfunction.66 Approximately 88.5% and 88.0% of patients
in Germany reported olfactory and gustatory dysfunction,
respectively.67 Of patients without nasal congestion, 79.7% were
hyposmic.67 Anosmia has also been noted in other respiratory
infections, such as influenza.66,68 In COVID-19, anosmia is typically
not accompanied by nasal swelling or rhinitis. Given the reports of
anosmia presenting as an early symptom of COVID-19, dedicated
testing for anosmia may offer the potential for early detection of
COVID-19 infection.

Impaired Consciousness
Impairment of consciousness was reported in 37% of patients
hospitalized with COVID-19 in the Mao et al59 study in Wuhan. There
are several possible mechanisms of altered consciousness in pa-
tients with COVID-19, including direct infection and damage of the
parenchyma, toxic-metabolic encephalopathy, seizures, or demy-
elinating disease.

Toxic-Metabolic Encephalopathy
The hallmark of encephalopathy is impaired attention and arousal,
presenting with confusion, lethargy, delirium, or coma.69 Common
risk factors that predispose patients to delirium are advanced age,
underlying dementia or cognitive impairment, multiple comorbid dis-
eases, infection, severe medical illness, poor functional baseline, and
malnutrition.70 Many metabolic and endocrine derangements put
patients at further risk for encephalopathy, including hyponatre-
mia or hypernatremia, hypocalcemia or hypercalcemia, renal dys-
function, liver dysfunction, and hypoglycemia or hyperglycemia,
among others. Sepsis and the subsequent inflammatory and cyto-
kine storm can also contribute to encephalopathy with IL-6, IL-8,
IL-10, and tumor necrosis factor α being implicated in states
of confusion.71

Patients hospitalized with COVID-19 may exhibit numerous
toxic-metabolic derangements, including cytokine storm, severe
inflammation, sepsis, and renal dysfunction.65 Severe COVID-19 dis-
ease is characterized by increased IL-2, IL-6, IL-7, granulocyte–colony-
stimulating factor, interferon-γ inducible protein 10, monocyte che-
moattractant protein 1, macrophage inflammatory protein 1–α, and
tumor necrosis factor α.72 Cytokine storm likely contributes signifi-
cantly to toxic-metabolic encephalopathy in severe cases, along with
the risk factors and metabolic derangements detailed.

Encephalitis
As discussed, MERS-CoV, SARS-CoV-1, and potentially SARS-CoV-2
can invade the CNS and potential encephalitis is a concern. How-
ever, currently there is no direct evidence of encephalitis second-
ary to SARS-CoV-2. A suspected case of meningoencephalitis73 in a
patient with COVID-19 was reported in Japan. The patient pre-
sented with headache, fever, and seizures. An MRI showed diffu-
sion restriction in the right temporal lobe, hippocampal atrophy,
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and ventriculitis, and SARS-CoV-2 RNA was detected in CSF, but it
was unclear if some of the patient’s reported features could be pre-
sent in the setting of seizure from other causes. A suspected case
of acute necrotizing encephalopathy has also been reported,74

which is typically a peri-infectious immune-mediated syndrome,
rather than direct viral encephalitis. An MRI of the patient’s brain
showed hemorrhagic, rim-enhancing lesions in the bilateral
thalami, medial temporal lobes, and subinsular region.74 High levels
of proinflammatory cytokines in the CSF can cause breakdown
and increased permeability of the BBB, which may in turn lead to
viral invasion.74

Seizure
Seizures can also lead to impairment in consciousness and have been
reported in other CoV infections. Additionally, subclinical seizures
are reported in roughly 10% of patients with critical illness,75 and
patients with primary seizure disorder are at higher risk of seizures
and status epilepticus in the setting of severe infection.76 At our aca-
demic medical center, there have been a high proportion of break-
through seizures in patients with epilepsy who have developed
COVID-19.

A recent report of 304 patients diagnosed with COVID-19 only
documented 2 “seizurelike events,”77(p3) with no confirmed cases
of new-onset seizures. The study was limited by lack of clinical
testing (eg, electroencephalography, imaging) and the retrospec-
tive approach.77 A case report of a patient with no history of epi-
lepsy who had multiple apparent tonic-clonic seizures in the set-
ting of COVID-19 may represent an unmasked seizure disorder or
the direct effect of COVID-19 in the CNS, but further study in these
cases are needed.78

Stroke and Vascular Events
The Mao et al study59 reported that 5% of a hospitalized cohort in
Wuhan had acute strokes. A more detailed report of the cerebro-
vascular disease events in this cohort revealed that 11 patients
developed acute ischemic strokes, 1 had a cerebral venous sinus
thrombosis, and 1 had an intracerebral hemorrhage.79 Patients who
developed cerebrovascular disease were significantly older; were
more likely to have severe COVID-19 disease manifestations; had
more cardiovascular risk factors; and had significantly higher
C-reactive protein and D-dimer levels, suggesting a hypercoagu-
lable state.79 A study80 in New York demonstrated that young
patients (younger than 50 years) developed large-vessel strokes in
the setting of COVID-19, suggesting all ages are vulnerable.

The pathophysiology of increased risk of cerebrovascular dis-
ease during COVID-19 infection is likely multifactorial. Common ab-
normal laboratory test results in patients include elevated leuko-
cyte count, C-reactive protein level, D-dimer level, ferritin level, and
lactate dehydrogenase level.81 Severe cases are characterized by
elevated inflammatory markers and hypercoagulability compared
with moderate cases and with increased likelihood of stroke.59

More specific viral mechanisms may also increase risk of stroke.
Infection of the vascular endothelial cells and subsequent damage
to vasculature may increase the risk of ischemic and hemorrhagic
infarcts. Many infections can increase the risk of stroke, often through
systemic inflammation, thrombosis, or vasculitis.82,83 Autopsy in
donors who had SARS-CoV-1 have demonstrated systemic vasculi-
tis and vasculitis of venules in the brain.23

Guillain-Barré Syndrome
and Peripheral Nerve Disorders
Guillain-Barré syndrome, also known as acute inflammatory demy-
elinating polyneuropathy (AIDP), can develop after a gastrointesti-
nal or respiratory illness.84 This is thought to occur through a mo-
lecular mimicry mechanism in which infecting viruses likely share
epitopes similar to components of peripheral nerves, which stimu-
lates autoreactive T or B cells. The antibodies produced by the
immune system to fight the virus cross-react and bind to compo-
nents of the peripheral nervous system, causing neuronal dysfunc-
tion. Both AIDP and acute motor axonal neuropathy (AMAN) vari-
ants have been documented after SARS-CoV-1 infections.20 Cases
of AIDP, AMAN, and Bickerstaff brainstem encephalitis have been
reported in the setting of MERS-CoV.4

Reports of GBS in patients with COVID-19 are emerging. A case
series85 reported 5 cases of GBS in Italy after COVID-19 infection. In
4 cases, patients presented with lower-extremity weakness and par-
esthesias. Patients developed symptoms a mean of 5 to 10 days af-
ter onset of viral symptoms. Electromyography studies showed
2 patients had AIDP and 3 had AMAN. Additional case reports de-
scribe a patient in Iran with AMAN86 and a patient from Italy with
Miller-Fisher–variant GBS.87

A clinical case of acute transverse myelitis was reported from
Wuhan,88 but MRI and CSF findings were not available. The patient
developed flaccid lower-extremity paralysis with loss of pinprick sen-
sation and paresthesias below the T10 level and was successfully
treated with steroids and intravenous immunoglobulin.

Possible CNS Effects of Therapies
Currently in Use for COVID-19
Currently, there are numerous different medications being used to
treat patients with COVID-19. Here we discuss their potential neu-
rologic effects and/or relevance to neurologic diseases.

Chloroquine and Hydroxychloroquine
Chloroquine and hydroxychloroquine, initially developed as anti-
malarial drugs, work by preventing the acidification of endosomes,
which interrupts cellular functions and may prevent viral entry via
ACE2 binding.89,90 Hydroxychloroquine inhibits SARS-CoV-2 in vitro,
but in vivo studies are lacking, and the US Food and Drug Adminis-
tration currently recommends exercising caution in using these drugs
because of potential cardiotoxicity.91 Neurologic adverse effects
include irritability, psychosis, peripheral neuropathy, and
neuromyopathy.92,93 Hydroxychloroquine is well known to exacer-
bate symptoms in myasthenia gravis and has long been contraindi-
cated for patients with this disease. It also lowers the seizure thresh-
old and interacts with several antiepileptic drugs, including
lacosamide and lamotrigine.94-96

Tocilizumab
Tocilizumab is a monoclonal antibody to the IL-6 receptor that may
attenuate cytokine release in patients with severe inflammatory dis-
ease. There are limited retrospective data that suggest possible
benefit.97,98 It has poor penetration into the CNS.99 Neurologic ad-
verse effects include headache and dizziness, and there have been
rare reports of multifocal cerebral thrombotic microangiopathy.100
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Remdesivir
Remdesivir is a viral RNA–dependent RNA polymerase inhibitor.
In vitro data have shown that it is a potent SAR-CoV-2 inhibitor, and
early clinical data have shown some benefit.101 There is little noted
about potential neurologic adverse effects, and clinical trials are
ongoing, which will provide valuable data.

Special Considerations for Patients
Under Neurological Care
Many patients under neurological care have complex conditions and
comorbidities that may place them at increased risk of developing
severe COVID-19 disease. Patients older than 65 years; living in a
skilled nursing facility; or with comorbid lung disease, heart dis-
ease, liver disease, obesity (body mass index [calculated as weight
in kilograms divided by height in meters squared] >40), diabetes,
kidney disease requiring dialysis, or immunosuppression are at higher
risk for severe disease in COVID-19.102

Multiple Sclerosis
Patients with MS taking disease-modifying therapies that have
immunosuppressive effects may be at increased risk of developing
severe COVID-19 disease. The National MS Society has released
recommendations for all patients with MS, in general, to continue
disease-modifying therapies.103 They advise steroids are safe to
treat acute MS relapses in patients without COVID-19. If a patient is
at high risk of exposure to SARS-CoV-2 and due for additional
immunosuppressive therapy, the MS International Federation rec-
ommends that clinicians should weigh the risks and benefits of
switching the patient to interferons, glatiramer acetate, or
natalizumab.104 The National MS Society and the Consortium of
MS Centers has created a patient reporting database (covims.org)
for ongoing research.

Neuromuscular Disorders
Patients with neuromuscular disorders are at particular risk for
deterioration with COVID-19. Many neuromuscular disorders are

treated with immunosuppressive medications, which can increase
the risk of developing severe COVID-19 disease. Additionally,
patients with myasthenia gravis or Lambert Eaton myasthenic syn-
drome may have respiratory muscle weakness, which can put
them at further risk for severe complications in COVID-19.105 The
International Myasthenia Gravis/COVID Working Group105 recom-
mends continuing current treatments. For those receiving immu-
nosuppressive therapy, the group recommends extravigilant social
distancing and telemedicine visits.105 As discussed, hydroxychlo-
roquine exacerbates myasthenia gravis symptoms and is contrain-
dicated. For patients with chronic dysimmune neuropathies, the
risks and benefits of in-hospital infusions should be weighed with
the risk of exposure to SARS-CoV-2 and developing severe
COVID-19 disease.106

Epilepsy
Epilepsy does not increase a patient’s risk of contracting SARS-
CoV-2 or put patients at higher risk of severe disease.107 Nearly all
antiepileptic drugs are not immunosuppressive and are safe for pa-
tients with COVID-19. Viral infections and fever may trigger seizure
in patients with epilepsy.108 Clinicians should anticipate break-
through seizures, prescribe medications for short-term manage-
ment, and provide patients with a detailed plan.108

Conclusions

To date, SARS-CoV-2 has infected millions and affected billions of
lives. The understanding of neurologic disease in patients with
COVID-19 is evolving, and clinicians should continue to monitor pa-
tients closely for neurological disease. Early detection of neurologi-
cal deficits may lead to improved clinical outcomes and better treat-
ment algorithms. Further laboratory and clinical data, including tests
of CSF, brain imaging, and tests of CNS tissue, will be essential in
elucidating the pathophysiology and potential for CNS injury. Lastly,
longitudinal neurological assessments of patients after recovery will
be crucial in understanding the natural history of COVID-19 in the
CNS and monitoring for potential neurologic sequelae.
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