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Abstract

Objective—To examine the neuropathological substrates of cognitive dysfunction and dementia

in Parkinson’s disease (PD).

Methods—140 patients with a clinical diagnosis of PD and either normal cognition or onset of

dementia two or more years after motor symptoms (PDD) were studied. Patients with a clinical

diagnosis of dementia with Lewy bodies were excluded.

Autopsy records of genetic data and semi-quantitative scores for the burden of neurofibrillary

tangles (NFTs), senile plaques (SPs), Lewy body (LB/LN) and other pathologies were used to

develop a multivariate logistic regression model to determine the independent association of these

variables with dementia. Correlates of co-morbid Alzheimer’s disease (PDD+AD) were also

examined.

Results—92 PD patients developed dementia and 48 remained cognitively normal. Severity of

cortical LB/LN (CLB/LN) pathology was positively associated with dementia (p<0.001), with an

odds-ratio (OR) of 4.06 (CI95%1.87–8.81), as was Apolipoprotein E4 (APOE4) genotype

(p=0.018,OR4.19 CI95% 1.28–13.75). 28.6% of all PD cases had sufficient pathology for co-

morbid AD, of which 89.5% were demented. The neuropathological diagnosis of PDD+AD
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correlated with an older age of PD onset (p=0.001,OR1.12 CI95%1.04–1.21), higher CLB/LN

burden (p=0.037,OR 2.48 CI95%1.06–5.82), and cerebral amyloid angiopathy severity (p=0.032,

OR4.16 CI95%1.13–15.30).

Interpretation—CLB/LN pathology is the most significant correlate of dementia in PD.

Additionally, APOE4 genotype may independently influence the risk of dementia in PD. AD

pathology was abundant in a subset of patients, and may modify the clinical phenotype. Thus,

therapies that target α-synuclein, tau, or Aβ could potentially improve cognitive performance in

PD.

Introduction

Cognitive dysfunction and dementia are a significant non-motor manifestation of

Parkinson’s disease (PD), with up to 80% of patients developing dementia.1 Cognitive

dysfunction seriously compromises the ability to perform activities of daily living,2 resulting

in reduced independence, quality of life, and survival.3, 4 Clinically, dementia in PDD is

similar, and often identical to, dementia with Lewy bodies (DLB);5, 6 however these typical

features may be masked by an Alzheimer’s disease (AD)-like amnestic syndrome.7

PDD is a heterogeneous neuropathological entity. Multiple clinicopathological correlation

studies have addressed this issue with conflicting results. Our group,8 and others9–12 have

reported that cortical (CLB) or limbic10, 13 Lewy bodies (LBs) and Lewy neurites (LNs) are

the best correlate of dementia in PD, indicating a caudal to rostral spread of LB/LN

pathology from the brainstem to cerebral cortex, as proposed by Braak and colleagues.14

However, others have found no correlations between cognitive function and the distribution

of LBs in the brain.15–17

Co-morbid AD pathology is also common in PDD,11, 18, 19 and others have proposed that

neurofibrillary tangle (NFT) and Aβ senile plaque (SP) pathology20, 21 or a combination of

these and CLB/LNs form the neuropatholological basis for PDD.22 Furthermore, AD-

specific neuroimaging23 and cerebrospinal fluid24 biomarkers are associated with cognitive

impairment in PD. These overlapping features suggest a potential clinicopathological

continuum between AD and PD.25 Advances in immunohistochemical (IHC) methods and

diagnostic criteria, together with variability in case selection, cognitive assessments, and

small sample sizes may all contribute to these discrepancies.9

Here we present a large, well characterized cohort of PD patients, followed longitudinally to

autopsy at two major movement disorders centers in the US. Detailed analysis of

neuropathological and genetic data enabled us to determine the strongest correlates of

dementia in PD, and examine the relationship between CLB/LNs and AD pathology.

Patients and Methods

Patient Selection

140 patients with a clinical diagnosis of PD with and without dementia who had been treated

at either the University of Pennsylvania’s Parkinson’s Disease and Movement Disorders

Center, the Parkinson’s Disease Research, Education and Clinical Center at the Philadelphia

VA Medical Center (Penn; n=121;40PD,81PDD), or the Udall Parkinson’s Disease

Research Center at the University of Washington (n=19;8PD,11PDD) were selected for

study. Forty two patients (20PD, 22PDD) from Penn were described in a previous report.8

Clinical diagnoses of PD and PDD were determined by the treating physician

(JED,JBL,HIH) during life based on the United Kingdom Brain Bank26 and the Diagnostic

and Statistical Manual of the American Psychiatric Association (4th edition)27 criteria. In
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most cases patients were seen in clinic or phone contact was made with the patient or his/her

family during the last three months of life. In addition, phone contact with the next of kin

immediately after death provided additional information on cognitive status prior to death.

Patients diagnosed with mild cognitive impairment (MCI) were categorized in the non-

demented group (n=4). All patients had either normal cognition or dementia starting two or

more years after the onset of PD motor symptoms. Patients with a clinical diagnosis of DLB

or onset of dementia within two years of PD motor symptom onset were excluded.

Genotyping for hereditary forms of PD was performed only in cases with significant family

history. All cases were sporadic, with the exception of one SCNA triplication case.28

Neuropathological assessment

Neuropathological examination was performed as previously described8, 29 with gross

examination of fresh or fixed tissue. Informed consent was obtained in accordance with the

rules of the respective institutional review boards at each university. Semi-quantitative

scores (0–3) for the major histological signatures of AD (NFTs, SPs) and PD (LBs/LNs)

were determined for each case using IHC with established monoclonal antibodies for tau

(PHF-130 or AT-831) and alpha-synuclein (SYN30332). Mature SPs were evaluated by the

amyloid-binding dye, Thioflavin-S (ThS) or tau IHC. Cerebral amyloid angiopathy (CAA)

was evaluated in the midfrontal cortex using ThS. Scoring and post-mortem diagnosis were

performed by experienced neuropathologists (JQT, TJM) and later extracted from the

Penn33 and UW databases for use in the statistical analysis. Scoring of dystrophic LNs in the

cornu-ammonis (CA) region 2 and 3 of the hippocampus (CA2-3 LN) 34 was based on the

highest density in these regions. The diagnosis of hippocampal sclerosis (HpScl) was

established using the criteria of selective neuronal loss and gliosis in CA-1 and subiculum as

described.35 The diagnosis of argyrophilic grain disease (AGD) was made by review of

hippocampal sections with IHC for tau (n=132) for the presence of dense tau-positive grains

in the entorhinal cortex and mild to moderate involvement of the CA region, most consistent

with a stage III36 or higher of AGD pathology, together with pretangles in the dentate gyrus,

and variable glial white matter pathology in the entorhinal cortex, as described.36, 37

Cerebrovascular disease (CVD) was defined based on the presence of vascular brain injury

(VBI) using modified criteria outlined in the latest NIA-Alzheimer’s Association

guidelines.38 Briefly, gross evidence of ischemic or hemorrhagic infarction or 2 or more

microvascular lesions (MVLs) in five hematoxylin and eosin stained sections (i.e. thalamus,

basal ganglia, frontal, parietal and temporal cortex) were considered positive for CVD.

MVLs were enumerated at the time of neuropathological diagnosis and retrospectively

confirmed for all cases. Evaluation of CA2-3 LN, HpScl, AGD, CVD and missing database

values were examined retrospectively at the time of this study. Staging of pathology was

performed retrospectively using Braak39 (NFTs), CERAD40 (SPs) and McKeith41 (LBs/

LNs) criteria on regional semi-quantitative data. Cases with an intermediate or high

probability of AD42 were classified as having “co-morbid AD.” Seven cases with missing

tissue/data precluded staging assessment in these cases. All retrospective analyses were

performed blind to the clinical diagnosis.

Genetic studies

DNA was extracted from peripheral blood following the manufacturer’s protocols

(Flexigene (Qiagen; Valencia, CA) or QuickGene DNA whole blood kit (Autogen;

Holliston, MA). Genotyping was performed using real-time allelic discrimination with

Applied Biosystem (ABI; Foster City, CA) TaqMan probes. The following SNPs were

genotyped with the corresponding ABI assays: MAPT (rs1052553, C_7563736_10) and

APOE (rs7412, C_904973_10 and rs429358, C_3084793_20). Genotyping was performed

on an ABI 7500 real-time instrument using standard conditions. Data were analyzed using

ABI 7500 Software v2.0.1.
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Statistical analysis

The global cortical score for burden of CLB/LN, SP, and NFT was determined by averaging

semi-quantitative scores in five cortical regions as described previously.8 Briefly, the

regions studied include the mid-frontal, anterior cingulate, ventromedial-temporal (average

of the amygdala, entrohinal cortex, and CA1-4), lateral-temporal and parietal cortex.

Available tissue in Wernicke’s area or the superior/mid temporal cortex was used to evaluate

the lateral-temporal lobe and post-central or angular cortex for the parietal lobe. A cortical

distribution score was calculated based on the number of these five cortical regions with a

score >0. These whole number scores were designated as ordinal variables, as were raw

scores from individual regions. Categorical variables included presence of HpScl, CVD,

AGD, CAA, APOE4 and H1/H1 genotyope. Continuous clinical variables included age of

motor onset, age of dementia onset, age of death, disease duration, motor to dementia onset

interval, and dementia onset to death interval. Demographic data were compared between

groups using chi-square tests or Fisher’s exact tests for categorical variables and

independent t-tests or Mann-Whitney U tests for continuous variables, as appropriate.

A stepwise-selection model building procedure was used to develop a logistic regression

model to examine the association of these variables with the primary outcome of dementia

in this cohort. Individual cortical region scores, AGD, CAA and HpScl were excluded from

the selection procedure due to limited data for these features in some groups, but were

examined in the univariate analysis (Supplementary Table 1, Figure 1). A receiver operating

characteristic curve (ROC) was generated to assess the diagnostic accuracy of the model.

Multiple logistic regressions were applied to the baseline model of dementia, controlling for

age of death, gender, and APOE genotype to measure the independent effects of each

cortical pathology type (Table 2). Categories with too few subjects were collapsed for

analysis (i.e. Braak≥ III-IV, CERAD≥A, NFT distribution score≥2, SP distribution score≥1).

Finally, estimates of sensitivity and specificity for global cortical pathology scores were

obtained at an optimal cut-point, defined as the point which maximizes the sum of the

specificity and sensitivity.

Stepwise-selection procedures incorporating all variables from the previous multivariate

model were performed to determine correlates of the presence of co-morbid AD and CLB/

LN burden. All statistical tests were two sided, and significance set at the 0.05 level.

Analyses were performed using SPSS 19.0 (SPSS, Chicago, Ill) and R version 2.13.43

Results

Demographic information

One hundred-forty patients were included in the study (Table 1). Ninety-two developed

dementia during the course of their illness while 48 were judged by the clinician non-

demented at the time of death. The two groups had similar age of motor onset and disease

duration. The APOE4 allele was more prevalent in the PDD group (p<0.001) while the

proportion of H1/H1 haplotype carriers was similar between groups (p= 0.223).

Neuropathological analysis

PDD patients had a significantly higher severity and wider distribution of cortical

neuropathology for the three main lesion types studied (Supplementary Table 1). In addition

to semi-quantitative measures, classification of disease burden differed significantly

between the two groups, most notably with the PDD subgroup composed of exclusively

limbic or neocortical LB/LN stage cases. Both Braak stages (p=0.009) and CERAD scores

(p=0.001) were overall more advanced in the demented group; however, 9.1% of PD cases
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without dementia had significant pathology for a histiologic diagnosis of co-morbid AD.

Conversely, 41.6% of the PDD group had no significant cortical SP pathology (CERAD 0)

and 49.4% had minimal NFTs (Braak 0–II). Thus, co-morbid AD was common, affecting a

subgroup of PDD (38.2%). CAA was also more prevalent in PDD (p=0.003). HpScl, CVD,

AGD, CA2-3 LN and striatal NFTs, SP, and LB/LNs were not significantly different

between groups (Supplementary Table 1).

Regional analysis showed a significantly increased burden of SP and LB/LN pathology in

the PDD group for all regions studied (Figure 1). NFT density was significantly higher in

the anterior cingulate gyrus and global cortical score only.

The associations between dementia and NFTS, SPs, and CLB/LNs were assessed using

logistic regression models. The likelihood-ratio test was used in each model to determine

whether the neuropathological variable contributed significantly to the fit of the model after

adjusting for age at death, gender, and APOE status. All else equal, an increased CLB/LN

global score, distribution score, and neocortical stage were associated with increased odds of

dementia, as was advanced SP and NFT distribution and global cortical SP scores (Table 2).

At the optimal cut points for the global cortical scores, CLBs/LNs have the highest

sensitivity (74%; specificity 67%) for dementia, while NFTs and SPs have a higher

specificity (75% and 86%, respectively; sensitivity 55% for both) (Figure 2).

Neuropathological correlates of PDD

The stepwise-selection model building procedure identified two significant correlates of

dementia: CLB/LN score (p<0.001, OR 4. 06, 95%CI 1.87–8.81) and APOE4 genotype

carrier status (p= 0.018, OR 4.19, 95%CI 1.28–13.75; Table 3). We found no significant

interaction between these variables, and also between APOE4 genotype and measures of AD

pathology or gender. The ROC curve obtained using this model (Figure 3) shows high

diagnostic performance of the model (area under the curve= 80.7%).

PDD subgroup analysis by Motor-Dementia Interval (MDI)

Some studies have suggested an exponential rate of clinical progression in PD,44 with older

age of motor onset associated with a shorter MDI and higher burden of CLB/LN, SP and

NFT pathology.22, 45 Due to the large range in MDI in our cohort (2–30 years), we chose a

similar stratification of the PDD group into short-(MDI <10 years) and long-MDI (MDI ≥10

years) groups to explore this phenomenon (Table 4). The short-MDI cases were mostly male

(88%, p=0.013), older at PD onset (p<0.001) and had a shorter overall disease duration

(p<0.001). Furthermore, they had higher levels of cortical NFTs (p=0.003) and CLBs/LNs

(p=0.028) (Figure 4), with a higher percentage (47.8%) of co-morbid AD (p=0.027).

Relationship between AD and CLB pathology in PDD

Using a stepwise-selection model, older age of PD onset (p=0.001, OR 1.12 95%CI 1.04–

1.21), higher CLB/LN score (p=0.037, OR 2.48 95%CI 1.06–5.82), and increased severity

of CAA (p=0.032, OR4.16 CI95%1.13–15.30) were found to be independently associated

with PDD+AD (Table 5). Univariate analysis showed higher CLB/LN and CAA severity in

the PDD+AD subgroup as well (Figure 4, Supplementary Table 2)

To examine correlates of CLB/LN burden, a stepwise linear regression model showed

increased global cortical NFT score (p<0.001), presence of dementia (p=0.002), CA2-3 LN

score >1 (p=0.001) and APOE 4 carrier status (p=0.014) to be significant (Table 6). There

was also a significant interaction between APOE4 genotype and age of motor onset

(p=0.048); for APOE4 carriers, an earlier age of motor onset was associated with a higher
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CLB/LN burden. Age of motor onset was not significantly associated with CLB/LN burden

in APOE4 negative patients (p=0.542).

Discussion

Our detailed analysis of a large cohort of PD patients from two university-based PD

movement disorders centers shows that the most robust correlate of dementia in PD is the

severity of CLB/LNs and APOE4 genotype. This combination of pathologies and genetic

factors account for the majority of variability in our model. There was an independent

contribution of NFTs and SPs for increased odds ratio for dementia in PD, but these effects

did not reach significance in the multivariate model; however, a thorough and

comprehensive sub-analysis of the PDD group which was designed to examine variables

predictive of a co-morbid AD diagnosis and demographics of PDD+AD patients, suggests

that plaque and tangle pathology may influence cognitive status and the course of disease

progression in a subset of PDD patients.

These data confirm our previous report8 of the importance of CLB/LNs in the development

of dementia in PD. Others have suggested cognitive impairment in PD is due to a

generalized process rather than involvement in specific regions.9 Indeed, we show here that

CLB/LN density was greater in all cortical regions examined for PDD.

Subcortical basal ganglia SP46 and LB/LN32, 46 pathology is often more robust in DLB than

in PDD cases and some studies also reported higher levels of SP22, 47 and LB/LN

pathology48 in PDD compared to PD. In this study, we examined a larger number of cases

and found modest levels of SPs, NFTs, and LB/LNs in the striatum for both demented and

non-demented patients. Since we measured mature plaques only, the effect of other types of

Aβ plaques or deposits in this study could be understated; however, other investigators have

found a similar burden of diffuse plaques in PD and PDD groups.22

While the optimal CLB/LN cut-point was sensitive to detect the majority of PDD, it was less

specific, mirroring previous data showing CLB/LN pathology in non-demented cases.15, 16

Thus, CLB/LNs do correlate significantly with cognitive impairment in the majority of PDD

patients; however, differing thresholds resulting in the emergence of cognitive impairment

during life may exist due to other factors, including APOE genotype as well as co-morbid

CVD and AD. Indeed, all PDD cases in our series with minimal (<0.5) CLB/LN scores had

co-morbid CVD or significant subcortical pathology as a possible contributor to dementia

(Supplementary Table 3).

The significant association of the APOE4 genotype with PDD in our cohort is intriguing and

suggests an independent contribution to cognitive decline in PD, as there was no significant

interaction between APOE4 carrier status and the global CLB/LN score or measures of AD

neuropathology in our dementia model (Table 3). Despite the lack of significance of this

interaction, the APOE4 genotype was a significant correlate in the multivariate regression

model to predict a greater CLB/LN severity (Table 6). Thus, the APOE4 genotype may

contribute to cognitive decline in PD through both shared and independent

neurodegenerative pathways to those associated with Lewy pathology. Interestingly, in

contrast to AD,49 there was no interaction between APOE4 genotype and gender in our PD

cohort, which may be due to the predominant number of male patients in our study. Others

have also shown an effect of APOE genotype on PDD50, 51 and CLB/LN severity,11 as well

as a potential involvement of the APOE protein in cell52 and animal models53 of α-

synuclein-mediated neurodegeneration, but further research is needed to elucidate the

molecular mechanisms underlying these connections. Diagnostic accuracy was enhanced by

incorporating both CLBs/LNs and APOE in the multivariate model for PDD (Figure 3);
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implying that these factors influence cognitive impairment in the majority of PDD cases and

that APOE genotype may be important to examine in clinical trials of PD involving

cognitive outcomes.

Variability among previous studies may partly reflect the effects of CVD, since most

clinicopathological studies of PDD did not evaluate CVD; however, one study found an

association between advanced Braak NFT stage and CVD in PDD.54 Thus, AD pathology

may be additive in causing CVD in PDD. A reported inverse relationship between CVD and

CLB/LN scores and direct correlation with CAA55 suggests that AD-type pathology may

accelerate CVD through associated CAA, independent of atherosclerosis and lipohyalinosis,

and CVD may potentiate CLB/LN associated cognitive impairment. Furthermore, APOE4

genotype confers a risk for vascular dementia both with and without co-morbid AD.56 We

found that CAA was more common in PDD (Supplementary Table 1), especially in those

with co-morbid AD; however, there was no unequivocal increased presence of CVD in the

PDD and PDD+AD subgroups (Supplementary Tables 1,2) and CVD did not reach

significance in our multivariate model of dementia. Our characterization of CVD was based

on the neuropathological assessment in the recently revised NIA-AA AD guidelines,38 and

therefore our study was limited to measures of VBI. Further study and validation of the

neuropathological correlates of VBI are needed; however, using the most recent criteria

available we do not show a significant influence of CVD on cognitive outcomes in PD.

Neither NFTs nor SPs were significant in our overall multivariate model of PDD. This

notwithstanding, cortical NFT and SP severity scores were more specific for dementia than

CLB/LNs (Figure 2), reflecting the high frequency of dementia in patients with sufficient

pathology for a diagnosis of co-morbid AD (89.5%). This finding suggests that PD patients,

especially those with an older age of onset, may be at increased risk for developing AD.

Hence, we speculate that this may reflect a “double hit” model of cognitive impairment in

PD wherein AD and CLB/LN pathologies converge to cause distinct forms of cognitive

impairment in PD/PDD. There were also independent associations of NFTs and SPs in the

univariate analysis of dementia (Table 2), indicating that these pathologies contribute to

dementia in the subset of PDD+AD patients. The presence of a large proportion of PDD

cases without significant AD pathology most likely explains why these measures may not be

significant in the multivariate model. Furthermore, patients with co-morbid AD had a

shorter MDI (Supplementary Table 2), suggesting an accelerated disease course. Thus, the

presence of AD appears to be a relatively specific, although not exclusive,19 finding in PDD

that potentially modifies the clinical phenotype.54 Indeed, others have shown a poorer

prognosis for PDD cases with co-morbid AD.20

Our finding that patients with a shorter MDI (<10 years) also have an older age of PD onset,

shorter disease duration and higher burden of co-morbid AD pathology (Table 4, Figure 4),

agrees with previous reports;20, 22, 44, 45, 57 although age of PD onset itself was not a

significant correlate of dementia. Additionally, we show a similar dementia-death interval

between PDD short- and long-MDI groups. This is in agreement with previous studies that

have dissociated the effects of aging from the age of PD onset,44, 58 showing a stereotyped

disease progression after the onset of dementia.

We further demonstrate a link between PD and AD by showing a correlation of NFT

severity with increasing CLB/LN burden. Other investigators have also found correlations of

SPs9, 11, 22, 59, 60 and NFTs9, 22 with CLB/LN burden in PDD. In vivo animal studies, 61 in

vitro cross-seeding experiments62–64 and significant co-morbid tau pathology in hereditary

PD patients with the A53T SCNA gene mutation65 suggest there are synergistic interactions

between tau and α-synuclein that may contribute to a clinicopathological spectrum between

PD and AD.
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In summary, our work here provides fresh insight into the complex pathogenesis of

dementia in PD, and further emphasizes the importance of CLB, aging, co-morbid AD

pathology and genetic susceptibility as pathological substrates of cognitive impairment and

dementia in PD. Further research will be necessary to clarify the relative contribution of

each of these strands before effective treatment can emerge.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 2.
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Figure 3.
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Figure 4.
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Table 1

Demographic information for patient groups.

PD
N=48

PDD
N=92

p-value

Gender N (%M) 48 (70.8%) 92 (78.3%) 0.3311

Age of Motor Onset (years)
Median (IQR)

61.00 (48.75, 70.00)* 63.50 (57.25, 71.75) 0.2572

Age of Dementia Onset (years)
Median (IQR)

NA 74.00 (69.25, 79.75) NA

Age of Death (years)
Median (IQR)

80.00 (72.00, 83.50) 79.00 (74.00, 82.00) 0.7652

Disease Duration (years)
Median (IQR)

14.50 (9.75, 23.50)* 13.00 (9.00, 19.00) 0.2532

Motor-Dementia Interval (years)
Median (IQR)

NA 8.00 (5.00, 14.00) NA

Dementia-Death Interval (years)
Median (IQR)

NA 4.00 (2.00, 6.00) NA

Brain Weight (grams)
Median (IQR)

1320.5 (1177.8, 1395.8) 1300.0 (1204.0, 1423.0)** 0.2873

APOE4 N (% carriers) 4/42 (9.5%) 40/89 (44.9%) <0.0011

H1/H1 Haplotype N (% carriers) 20/37 (54.1%) 40/89 (44.9%) 0.2231

1
Chi-Square,

2
Mann Whitney-U,

3
Independent T-test.

Missing Data for 2* and 1** cases.
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Table 2

Correlation of independent neuropathologic variables with dementia in PDD.

Measure† OR (95% CI)†† P Value†††

Staging

Braak I–II 0.68 (0.12–3.94) 0.0151

Braak ≥III–IV 2.58 (0.38–17.41)

CERAD ≥ A 1.99 (0.85–4.68) 0.1117

Neocortical LB/LN Stage 5.80 (2.38–14.16) 0.0001

Cortical Severity

Cortical NFT Score 3.08 (0.95–9.99) 0.0316

Cortical SP Score 1.84 (1.14–2.97) 0.0082

Cortical LB/LN Score 4.15 (1.88–9.18) 0.0001

Cortical Distribution

NFT Distribution Score ≥2 2.58 (1.03–6.44) 0.0384

SP Distribution Score ≥1 2.43 (1.03–5.75) 0.0419

LB/LN Distribution Score =3 2.33 (0.62–8.78) 0.0012

LB/LN Distribution Score =4 5.50 (1.47–20.64)

LB/LN Distribution Score =5 11.27 (2.84–44.7)

†
Categories with fewer than three individuals were combined for analysis (i.e. Braak stage, CERAD score, NFT distribution score, and SP

distribution score).

††
ORs and 95% CIs were generated from logistic regression models where the dependent (outcome) variable was presence of dementia. Age at

death, gender and APOE were included as covariates and each neuropathological measure was analyzed in a separate model.

†††
P-values were obtained from a likelihood ratio test comparing a model including age at death, gender, APOE and the indicated neurpathological

measure versus a model including age at death, gender and APOE only.
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Table 4

Comparison of long- and short-MDI for PDD patients

PDD- Short MDI
N=50

PDD- Long MDI
N=42

P-value

Number of Patients (%M) 44/50 (88.0%) 28/42 (66.7%) 0.0131

Age of Motor Onset (years)
Median (IQR)

69.50 (64.75, 75.25) 58.50 (50.00, 63.00) <0.0012

Age of Dementia Onset (years)
Median (IQR)

74.00 (71.25, 80.00) 74.50 (68.75, 77.75) 0.5402

Age of Death (years)
Median (IQR)

79.00 (73.00, 83.25) 78.00 (74.00, 81.25) 0.7182

Disease Duration (years)
Median (IQR)

9.00 (8.00, 11.25) 19.50 (15.75, 23.00) <0.0012

Motor-Dementia Interval (years)
Median (IQR)

5.00 (4.00, 8.00) 14.00 (12.00, 19.00) NA

Dementia-Death Interval (years)
Median (IQR)

4.00 (2.00, 6.00) 3.50 (1.00, 6.00) 0.8892

Brain Weight (grams)
Median (IQR)

1308.00 (1220.0, 1486.0)* 1285.5 (1185.25, 1400.0) 0.1253

APOE4 N (% carriers) 23/48 (47.9%) 17/41 (41.5%) 0.5421

H1/H1 Haplotype (% carriers) 25/37 (67.6%) 26/40 (65.0%) 0.6391

Braak Stage N (% cases)
0

I–II
III–IV
V–VI

1/46 (2.2%)
15/46 (32.6%)
15/46 (32.6%)
15/46 (32.6%)

6/40 (15.0%)
20/40 (50.0%)
8/40 (20.0%)
6/40 (15.0%)

0.0101

CERAD Stage N (% cases)
0
A
B
C

14/46 (30.4%)
3/46 (6.5%)

11/46 (23.9%)
18/46 (39.1%)

23/42 (54.8%)
2/42 (4.8%)
7/42 (16.7%)
10/42 (23.8%)

0.1211

AD diagnosis N (% cases) 22/46 (47.8%) 11/40 (27.5%) 0.0271

LB/LN Stage N (% cases)
Brainstem

Limbic
Neocortical

0/48 (0.0%)
4/48 (8.3%)

44/48 (91.7%)

0/39 (0.0%)
11/39 (28.2%)
28/39 (74.4%)

0.0191

Global Cortical NFT
N

Median (IQR)

42
0.67 (0.33, 1.2)

38
0.43 (0.13, 0.67)

0.0032

Global Cortical SP
N

Median (IQR)

45
1.6 (0.03, 2.50)

40
0.33 (0.00, 2.10)

0.1122

Global Cortical LB/LN
N

Median (IQR)

44
1.87 (1.22, 2.50)

38
1.20 (1.00, 2.13)

0.0282

1
Chi-Square,

2
Mann Whitney-U,

3
Independent T-test.

*
Missing data from 1 case.
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Table 6

Step-wise selection linear regression model to predict global cortical LB/LN score.

Variable Estimate Std. Error t value P-value

(Intercept) 0.40 0.37 1.07 0.2885

Global Cortical NFT Score 0.75 0.13 5.73 <0.0001

Clinical Dementia 0.39 0.12 3.16 0.0021

LN CA2-3 Score ≥1 0.45 0.13 3.45 0.0008

APOE4 Carrier 1.82 0.73 2.49 0.0144

Age of Motor Onset −0.003 0.01 −0.61 0.5424

APOE4/Age of Motor Onset Interaction −0.02 0.01 −2.01 0.0476

*
based on 104 observations
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