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In prion diseases, neuropathology has remained the most important tool to give a
definite diagnosis, and neuropathological research has contributed significantly to
our current pathogenetic understanding. Immunohistochemistry for the disease-
associated prion protein (PrPSc) is indispensable for the neuropathological confirm-
ation of prion diseases. The amount and distribution of PrPSc deposits do not
always correlate with type and severity of local tissue damage. PrPSc deposition
occurs only where neuronal parenchyma is present; in scarred infarctions with
prominent gliosis, PrPSc does not accumulate. Early, severe and selective loss affects
a subset of inhibitory GABAergic neurons both in human and experimental prion
diseases. The central pathogenetic cascade includes oxidative stress to neurons and
their apoptosis. New patterns of PrPSc immunoreactivity include granular gang-
lionic and tiny adaxonal PrPSc deposits in peripheral nervous tissue, and dendritic
cells and macrophages in vessel walls, suggesting that mobile haematogenous cells
may be involved in spread of prions.

Neuropathology has a major role in surveillance of, and research on,
prion diseases. For surveillance, it contributes diagnostic confirmation
as well as potential identification of new disease (sub)types. This is
important in view of the wide and steadily growing spectrum of clinical
and pathological phenotypes and prion protein (PrP) gene (PRNP)
genotypes. For research, it contributes to our pathogenetic
understanding of prion diseases. The present brief review focuses on
recently emerging points to consider in the neuropathology of human
prion diseases (Table 1).

Macroscopy of human prion diseases

Gross inspection of the brain in sporadic Creutzfeldt-Jakob disease
(CJD), the paramount human prion disease, may not reveal obvious
abnormalities. More commonly, however, there is some degree of
cerebral atrophy, which can be diffuse [Plate X(A)] or have focal
accentuations. Based on preferential involvement of specific regions,
occipital1, striatal, thalamic and cerebellar2 varieties have been
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described3. However, these subtypes are part of a spectrum of lesioning
of the brain4. The hippocampal formation is usually well preserved even
in cases of severe brain atrophy, at variance with other degenerative
dementias including Alzheimer’s disease. Gerstmann-Sträussler-
Scheinker disease (GSS) with the classical ataxic clinical phenotype
features prominent cerebellar atrophy and degeneration of spinal tracts5.

Histopathology of human prion diseases

Histopathological features of human Prion diseases have been
extensively described (e.g. Budka6) and will not be fully elaborated here.
The classical triad of spongiform change, neuronal loss, and gliosis
(astro- and microglia) is the neuropathological hallmark of prion
diseases. Since neuronal loss and gliosis accompany many other
conditions of the CNS, it is the spongiform change that is mostly specific
to prion diseases. This spongiform change may be mild, moderate or
severe [Plate X(B)] and is characterised by diffuse or focally clustered,
small, round or oval vacuoles in the neuropil of the deep cortical layers,
cerebellar cortex or subcortical grey matter, which might become
confluent. Ultrastructurally, the spongiform changes correspond to
enlarged cell processes (mainly neurites) containing curled membrane
fragments and amorphous material7. Spongiform change should not be
confused with non-specific spongiosis. This includes status spongiosus
(‘spongiform state’), comprising irregular cavities in gliotic neuropil
following extensive neuronal loss (including also lesions of ‘burnt-out’
CJD), ‘spongy’ changes in brain oedema and metabolic encephalo-
pathies, and artefacts such as superficial cortical, perineuronal, or
perivascular vacuolation. Focal changes indistinguishable from
spongiform change may occur in some cases of Alzheimer’s and diffuse
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Table 1 Important points to consider and newly recognised features in the
neuropathology of human prion diseases

Diagnosis Classical histopathological triad – spongiform change, neuronal loss, and 
gliosis (astro- and microglia)

Recognition of disease (sub)types
Immunocytochemistry for PrPSc – use and significance, technique and pitfalls

Pathogenetic research Function of the normal cellular PrPC

Development, patterns and distribution of PrPSc deposition
Correlation of PrPSc deposition with disease (sub)type
Correlation of PrPSc deposition with histopathology
Pathogenetic models – neurotoxicity versus loss of function
Selective neuronal vulnerability
Pathways to neuronal death – oxidative stress and apoptosis
New patterns of PrPSc deposition in the PNS and vessel walls
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Lewy body diseases8. In contrast to prion diseases of animals, the presence
of vacuoles in nerve cell bodies is uncommon in CJD. Ballooning of
neurons observed in some instances is related to accumulation of
neurofilament proteins. Spongiform changes and astocytosis may also
involve the white matter9,10. Extensive white matter degeneration
distinguishes the ‘panencephalopathic’ form of CJD, which is particularly
frequent in Japan11.

Presence and distribution of spongiform change vary greatly between
cases and disease subtypes. An almost constant location is the head of
the caudate nucleus12. By contrast, spongiform changes are rarely
present in the brainstem and spinal cord, although PrP accumulation can
be demonstrated at these sites. Normally, extensive sampling from
various brain areas (including frontal, temporal, and occipital lobes,
basal ganglia, and cerebellum) is mandatory in every suspected case.
However, one block of tissue with typical histological changes and/or
unambiguous PrPSc immunoreactivity is sufficient for a definite diagnosis.
Brain biopsy has been found to be diagnostic in 95% of CJD cases in
which the disease has been confirmed at autopsy or by experimental
transmission13. However, this procedure should be restricted to rare
instances where a treatable alternative diagnosis is suggested by clinical or
laboratory findings.

In sporadic CJD, the regional distribution of spongiform change in
distinct patterns was shown to depend upon PrPres fragment sizes and
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Table 2 Neuropathological criteria for CJD and other human prion diseases

Creutzfeldt-Jakob disease (CJD)
A Sporadic, iatrogenic (recognised risk) or familial (same disease in first degree relative or 

disease-associated PrP gene mutation)
• Spongiform encephalopathy in cerebral and/or cerebellar cortex and/or subcortical 

grey matter; and/or
• Encephalopathy with prion protein (PrP) immunoreactivity (plaque and/or diffuse 

synaptic and/or patchy/perivacuolar types)
B New variant CJD (vCJD)

• Spongiform encephalopathy with abundant PrP deposition, in particular multiple fibrillary 
PrP plaques surrounded by a halo of spongiform vacuoles (‘florid’ plaques, ‘daisy-like’ 
plaques) and other PrP plaques, and amorphous pericellular and perivascular PrP deposits 
especially prominent in the cerebellar molecular layer

Gerstmann-Sträussler-Scheinker disease (GSS) (in family with dominantly inherited progressive ataxia
and/or dementia and one of a variety of PrP gene mutations):

• Encephalo(myelo)pathy with multicentric PrP plaques

Familial fatal insomnia (FFI) (in family with PRNP178 mutation):
• Thalamic degeneration, variably spongiform change in cerebrum.

Kuru: spongiform encephalopathy in the Fore population of Papua-New Guinea.

Updated and modified from Budka et al.8 as currently used by the WHO18.
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glycotypes, and codon 129 genotype in the PrP gene, PRNP14,15. However,
some prion diseases have equivocal, little, or no spongiform change, such
as fatal familial insomnia (FFI)16 that is specifically characterised by
prominent thalamic atrophy with profound astrogliosis. Then
immunohistochemistry for PrP and PRNP genotyping have a decisive
diagnostic role17. Current neuropathological criteria for human prion
diseases18, including the specific diagnostic features of variant CJD (vCJD),
are listed in Table 2.

CJD brains may also show age-related Alzheimer-type amyloid deposits
immunoreactive for the β/A4-peptide, with or without PrPSc co-
localisation19. Neuro-axonal dystrophy may be widespread in some CJD
brains20.

Immunohistochemistry for the prion protein (PrP)

Use and significance

The function of the normal cellular protein (PrPC), the molecular
prerequisite for the manifestation of any prion disease, has not been
clarified. However, immunohistochemistry and other methods found it
predominantly expressed in neural tissue, including neurons21 and glial
cells22; other organs (e.g. uterus, placenta, thymus, heart, lung, muscle,
gastrointestinal tract) also contain considerable amounts23. Up-
regulation of PrPC seems to be important in inflammatory conditions of
muscle24, skin25 and liver26, as well as in neurodegenerative disorders
including Alzheimer and prion diseases27.

The conformationally abnormal, disease-associated isoform (PrPres,
derived from proteinase-resistant, or PrPSc, the latter term derived from
scrapie) accumulates in the CNS in the whole group of prion diseases
and has become the most important diagnostic marker. Routine
detection of PrPSc for diagnostic purposes uses methods such as
immunohistochemistry, immunoblotting or ELISA assays performed on
diseased tissue samples from patients obtained at autopsy, or from
slaughtered animals as is done with current EU-wide testing of cattle for
BSE and sheep for scrapie. Immunohistochemistry for PrPSc has emerged
as an indispensable adjunct to the neuropathological confirmation of
prion diseases, especially in cases with equivocal histopathological
changes8,28. It is suitable on routinely formol-fixed and paraffin-
embedded tissues, although the technique may prove capricious, and
pitfalls need to be considered (see below). It is noteworthy that, as for
the spongiform change, PrP deposition may be focal and, in rare
instances, the detection of PrP immunoreactivity may require staining of
several blocks. Unfortunately, routine immunohistochemistry for PrPSc
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might yield a negative result in exceptional cases, especially in FFI16.
More recently developed techniques such as the paraffin-embedded
tissue blot29 or the use of Carnoy’s fixative30 are promising alternatives
to increase sensitivity for the detection of PrPSc in tissues. However, in
our European neuropathological study of human prion diseases31 that
now encompasses tissues from almost 1000 patients, we have seen only
2 FFI brains negative with immunohistochemistry for PrP among tissue
specimens fulfilling criteria for a human prion disease.

Given the long incubation periods that make experimental
transmission impractical, immunohistochemistry for PrP has also been
used as a surrogate marker for infectivity in peripheral tissues that are
important for considerations of infectivity risks, such as the lymphoid
system32 or the peripheral nervous system33,34. Moreover, PrP is also an
important marker for development, spread and distribution of
pathology. However, the amount and distribution of PrP deposits do not
always correlate with type and severity of local tissue damage16,35. In a
sequential experimental study on the time course and intensity of tissue
lesioning and immunohistochemistry for PrP in mice inoculated with a
human CJD agent, PrP accumulation does not precede, but follows
spongiform change in some brain regions36. Local PrPSc deposition
requires the local presence of neuronal, but not glial, elements: in pre-
existing brain lesions such as infarctions in which neuronal elements had
been focally destroyed and replaced by a gliotic scar, PrP deposition is
absent [Plate X(D)]4.

PrPSc and infectivity are not uniformly distributed in an individual or
animal affected with a prion disease. Two distinct groups can be
distinguished: in the first, PrPSc and infectivity have been detected in a
distribution mainly limited to the central nervous system (brain, spinal
cord, parts of the eye, trigeminal and spinal ganglia). This pattern is
typical of sporadic and iatrogenic CJD, genetic human prion diseases
and BSE of cattle. In the second, PrPSc and infectivity involve also
peripheral tissues, in particular the lymphoid system37,38, and this
distribution is characteristic of vCJD, natural and experimental scrapie,
experimental BSE in sheep, and CWD. In all prion diseases, however,
most PrPSc and infectivity reside in the CNS during clinical disease or
late in the incubation period. This differential distribution of infectivity
according to species and disease phenotype is one important factor when
considering risks for transmission.

Technique and pitfalls

Since all anti-PrP antibodies that are currently used in immunohisto-
chemistry do not distinguish between PrPC and PrPSc, specific pre-treatment
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of tissue sections39 is required for a prion disease diagnosis to abolish
simultaneous reactivity with PrPC, just as tissue extracts have to undergo
proteinase K digestion before detection of PrPres by immunoblotting. In our
hands as well as those of others, a protocol using formic acid, guanidine
thiocyanate, and hydrated autoclaving40 gave the strongest and most
consistent signals for formol-fixed and paraffin-embedded brain tissue.
Minor modifications have been recommended41, but are not necessary for
optimal immunostaining39. It should be noted that the possibility of pitfalls
requires extensive experience in technique and interpretation. Sometimes
unspecific labelling of diffuse neuronal somata, dystrophic neurites, β/A4
amyloid, and neurofibrillary tangles may be seen, probably representing
incomplete abolishment of PrPC immunoreactivity. Thus, diagnostic
interpretation of positive labelling has to be made by experienced observers
and must consider the morphology of obtained signals. Antibodies such as
6H4 and 12F10 failed to give this type of labelling and are, therefore, less
likely to recognise non-pathological PrP material in immunohistochemistry39.

Patterns and distribution of PrP deposition

Characteristic patterns of PrP deposition are synaptic, that is the most
difficult to reveal, patchy/perivacuolar, and plaque types [Plate X(C)] and
which may overlap in the individual brain8; sometimes prominent
perineuronal deposits surround neuronal somata and processes.
Frequencies of these patterns differ between cerebral and cerebellar
cortex35. Synaptic-type deposits and unicentric PrP plaques occur both in
CJD and GSS, while abundant multicentric plaques are peculiar to GSS5.
Plaque-like deposits are the only type of PrP deposits extending to the
subcortical white matter35 and are more frequent than true compact Kuru-
type plaques with fringed outline that are clearly visible without
immunohistochemistry [Plate X(E)]. They also stain with periodic acid-
Schiff, alcian blue, Congo Red (staining disappears after formic acid
treatment) and thioflavine S. Kuru plaques decorate a minority of sporadic
CJD brains and are most frequent in the cerebellar cortex where they are
usually confined to the granular layer. While very rarely ‘florid’ or ‘daisy-
like’ plaques may be observed in other prion diseases35, their prominence
is restricted to vCJD [Plate X(F)]. As with spongiform change, also type
and distribution of PrP deposition in sporadic CJD were shown to depend
upon PrPres fragment size and PRNP codon 129 genotype14,15.

New patterns of PrP deposition in the PNS and vessel walls

Recently, granular ganglionic and tiny adaxonal PrP deposits were
described in spinal and vegetative ganglia, spinal roots and peripheral
nerves in rare cases of human prion disease34 and experimental scrapie33.
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It remains to be established by sequential studies whether this
involvement of the peripheral nervous system reflects centripetal or
centrifugal spread of PrP deposition and follows the pathways of travel
by the infectious agent. In sporadic and variant CJD, we also found PrPSc

deposits in intracranial vessel walls by immunohistochemistry and
paraffin-embedded tissue blotting. Using double immunofluorescence,
these deposits co-localise with HLA-DR and S-100 immunoreactive cells
in the intima, which are components of the vascular-associated dendritic
cell network, as well as with HLA-DR and CD-68 immunopositive
macrophages of the intima and media. Thus, mobile haematogenous
cells in vessel walls may be involved in the spread of disease-associated
prion protein and possibly also of infectivity42.

Pathogenetic contribution

One enigma of prion diseases remains the pathogenesis of brain tissue
damage, in particular of neuronal drop-out and subsequent tissue loss that
is usually much more striking in human than in animal and experimental
prion diseases. In principle, models involving a neurotoxic gain of function
(most likely for aggregated PrPSc)43 or loss of function (of PrPC) are
conceivable and might even co-operate to manifest disease. A variety of
studies were interpreted to support either model, or even both16,44–48.

Both in human and experimental prion diseases, oxidative stress was
identified as an important pathogenetic event49,50. Neuronal loss appears to
follow an apoptotic pathway that is apparently independent of local
deposition of PrPSc but correlates with astrogliosis, microglial activation and
axonal damage51. Specific vulnerability of a peculiar, parvalbumin-
expressing subset of inhibitory GABAergic neurons was found both in
human52,53 and experimental prion diseases54. In fact, this vulnerability was
detectable early in the incubation period and thus represents the earliest
changes ever described after experimental inoculation54. However, FFI
differs in such vulnerability55 from all other human prion diseases. Other
vulnerabilities include that of the granular layer of the cerebellum that is
frequently depleted in sporadic CJD, and variable involvement of the basal
nucleus of Meynert, either primarily or secondarily to cortical neuronal
loss56,57. The molecular basis for such selective neuronal vulnerabilities is
still obscure.
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