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Abstract

Synchronous rhythms represent a core mechanism for sculpting temporal coordination of neural

activity in the brainwide network. This review focuses on oscillations in the cerebral cortex that

occur during cognition, in alert behaving conditions. Over the last two decades, experimental and

modeling work has made great strides in elucidating the detailed cellular and circuit basis of these

rhythms, particularly gamma and theta rhythms. The underlying physiological mechanisms are

diverse (ranging from resonance and pacemaker properties of single cells, to multiple scenarios for

population synchronization and wave propagation), but also exhibit unifying principles. A major

conceptual advance was the realization that synaptic inhibition plays a fundamental role in

rhythmogenesis, either in an interneuronal network or in a recipropocal excitatory-inhibitory loop.

Computational functions of synchronous oscillations in cognition are still a matter of debate

among systems neuroscientists, in part because the notion of regular oscillation seems to

contradict the common observation that spiking discharges of individual neurons in the cortex are

highly stochastic and far from being clock-like. However, recent findings have led to a framework

that goes beyond the conventional theory of coupled oscillators, and reconciles the apparent

dichotomy between irregular single neuron activity and field potential oscillations. From this

perspective, a plethora of studies will be reviewed on the involvement of long-distance neuronal

coherence in cognitive functions such as multisensory integration, working memory and selective

attention. Finally, implications of abnormal neural synchronization are discussed as they relate to

mental disorders like schizophrenia and autism.

I. Introduction

A. Synchronization and stochastic neuronal activity in the cerebral cortex

In 1958, Frédéric Bremer published a seminal review in this journal on ‘theoretical and

experimental data pertaining the nature, origin, synchrony and functional significance of

brain waves’ [110]. Half a century later, the study of cortical rhythms has become an area of

converging interests across many disciplines in Neuroscience [145,143]. Network

oscillations are attractive for cellular neurophysiologists interested in understanding network

behavior in terms of the underlying biophysical mechanisms. Synchronous oscillations can

be studied in detail using in vivo and in vitro preparations, and increasingly in combination

with powerful genetic tools. Therefore, for neurophysiologists and theorists alike, the study

of synchronous rhythms offers an excellent venue to investigate how collective network

dynamics emerge from the interplay between cellular biophysics and synaptic circuits. On

the other hand, for systems neurophysiologists working with alert animals, who have long

recorded single neurons with tremendous success in uncovering neural correlates of
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behavior, understanding coordinated neural population patterns in a circuit represents a new

challenge. Moreover, cognition involves a large network of brain structures, therefore it is

critical to elucidate neuronal interactions between different brain regions, increasingly with

the help of multi-electrode recordings and imaging techniques. Coherent oscillations, more

generally neuronal synchrony, may play a role in well timed coordination and

communication between neural populations simultaneously engaged in a cognitive process.

There are many commonalities among network oscillations in various nervous systems.

Indeed, it has been suggested that cortical circuits are similar to central pattern generators

[1086]. However, whereas central pattern generators are well described in terms of coupled

oscillators [638], it is questionable that cortical rhythms can be conceptualized in that

framework. Typically, brain rhythms of the waking brain are reflected by small-amplitude

scalp electroencephalogram (EEG) signals. They occur intermittently by short episodes in

time [378,711], and synchronization is subtle and typically confined to restricted neural

populations [238,630]. As a matter of fact, awake behaving states were traditionally called

‘desynchronized EEG’ in contrast to large-amplitude slow oscillations observed in quiet

(non-rapid eye movement, non-REM) sleep [908,909,913,236]. It is an interesting and, by

no means obvious, question as to how desynchronization or asynchrony is achieved in a

neural network [2,345,1029,243,997,1016,123,126,241,538,232]. Presumably, cortical

networks in wakefulness are predominantly asynchronous, at the same time weak

oscillations and selective coherence are present. At the single neuron level, spike discharges

of cortical cells are highly irregular, characterized by some measures as approximate

Poisson processes [884,862], hence far from behaving as clock-like oscillators. Synaptic

inputs to cortical neurons measured in vivo also display large stochastic fluctuations [236].

Such irregular neural firing patterns may be computationally desirable to maximize

information content of spike trains for neural coding of sensory information [36], generating

stochastic choice behavior in decision making [1034,226,487], and other brain functions. At

first sight, the strongly stochastic nature of neuronal spike discharges is at odds with the

popular description of network rhythms in terms of synchronization of clock-like neural

oscillators.

Unlike a well defined function such as respiration or walking for a rhythmic motor pattern

generation system [638], it has been elusive to conclusively demonstrate that specific brain

processes causally depend on certain cortical oscillations [877,876,861]. Instead of focusing

on rhythmicity per se, the function of synchronous oscillations should be better appraised in

the more general perspective of correlation between spike times of neurons. Neural

correlation implies synchronization on some timescale, which can occur with or without

oscillations. High variability of spike discharges itself depends on correlations in the inputs

[917,420], since the variability of inputs that converge onto a cortical neuron would be

largely averaged out through summation over a large number of uncorrelated neurons [884].

In the cortex, pairwise neural correlation of trial-by-trial response fluctuations (noise

correlation) is typically small [339,1097,568,40,187]; recent work indicates that the

population average of noise correlations is approximately zero in some dynamical states of

the cortex [262,801,433]. But even weak neural correlations can have strong impact on a

network’s state [851], and may be important for various computations ranging from sensory

coding, to attentional gain modulation, to planning and goal choices

[376,890,992,838,728,1016,851,36,233,221,642,771,294,835,979,941]. Perhaps no recent

findings better highlighted the importance of correlated spike times than the discovery of

spike-timing dependent plasticity (STDP) for synaptic learning

[1,344,643,82,1093,81,213,151,879]. STDP depends on the relative timing of the pre- and

post- synaptic spikes as well as the firing rates [643,880,879,540]; if the spike discharges of

a pair of neurons were uncorrelated Poisson processes, there would be no net modification

of synaptic connections between the two [505,891,826]. In the hippocampus, for instance,
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STDP represents an attractive mechanism for sequence learning in spatial navigation [1]. As

an animal moves along a linear track, location- and direction-selective place cells in the

hippocampus are activated sequentially. If two neural pools fire one after another within tens

of milliseconds, according to the STDP rule, synaptic connections from those firing earlier

to those firing later should be strengthened, whereas synaptic connections in the opposite

direction are weakened. An observable consequence is that the shape of the spatial tuning

curve of hippocampal place cells becomes asymmetric (skewed) with experience, a

prediction that was confirmed experimentally [673]. This example illustrates how a learning

mechanism specifically depends on temporal correlations of neural firing activity.

Correlated activity (coherent rhythms in particular) also plays an important role in circuit

pattern formation of the developing brain [289,1082,88].

Synchronous oscillations are a simple and appealing way to produce or enhance temporal

correlations between neurons [419], which are critical for STDP. Conversely, STDP may be

a driving force to determine neuronal synchronization patterns in a network

[464,157,731,941,319], or to detect specific temporal patterns in the input [651].

Interestingly, a recurrent network endowed with STDP at local synapses could self-organize

into complex oscillatory patterns, perhaps at the border between synchronization and

desychronization, with irregular yet correlated spatiotemporal dynamics [608]. One of the

main objectives of this review is to marshal experimental data and theoretical work that are

beginning to resolve the apparent dichotomy between stochasticity and synchrony of cortical

dynamics in cognition.

B. Cortical oscillations associated with cognitive behaviors

Bremer’s 1958 review focused on the ‘alpha rhythm’, large-amplitude EEG sinusoidal (~ 10

Hz) oscillations that spontaneously occur in an awake and relaxed state [110,108,20,910].

By that time, it was already known that other EEG rhythms could be observed in certain

behavioral states [469], or be induced by sensory stimulus [9]. However, these macroscopic

EEG signals, when recorded from the scalp, have small-amplitudes and are spatially poorly

localized. Better measurements could be obtained invasively using subdural

electrocorticogram (ECoG) with the scalp removed and electrodes directly placed on the

cortical (pial) surface, so that the signals are not smeared spatially by passing through the

skull; or mesoscopic local field potential (LFP) with electrodes inserted deep into the brain

[733,732]. Using ECoG or LFP recordings in animals, a variety of brain rhythms have been

found across various behavioral states during wakefulness, which are briefly described

below.

1. Theta (4–8 Hz) rhythm is a prominent coherent oscillation observed in the

hippocampus and its surrounding limbic structures during exploratory movements,

e.g. when a rat navigates through a maze looking for food in a laboratory

experiment [1002,87,141]. During spatial navigation, hippocampal pyramidal

neurons (‘place cells’) encode specific locations (‘place field’) of the rat during

active exploration [738]. The spike timing of a hippocampal neuron systematically

shifts to an earlier phase of the theta cycle as the rat moves across the cell’s place

field, a phenomenon called ‘phase precession’ [740,881,1080,456,254] (Fig. 1A).

Theta phase precession has also been observed during navigation in two-

dimensional arenas [881,457,462]. While the frequency of theta oscillations is

higher with a faster running speed of the animal, the linear relationship between the

phase of spikes fired by a place cell and the distance traveled by the rat in the place

field is independent of the running speed [343], suggesting that spatial information

may be partly encoded by the precise timing of spikes. Hippocampal theta rhythm

is believed to play a role in the formation and retrieval of episodic and spatial

memory [425].
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Theta rhythm has also been observed in the neocortex [516,489,790,474,150,390].

In humans, theta rhythm was found to be enhanced in various neocortical sites

during working memory, for example when a subject was required to remember a

list of items across a delay of a few seconds [790,677]. Single-unit activity phase-

locked to LFP theta rhythm was also observed in monkey’s extrastriate cortex in a

working memory task [569], and in the human brain [467]. Theta rhythm appears to

be particularly prominent in the frontal midline (including the anterior cingulate

cortex) [348,741,1022,980,160], a subregion of the prefrontal cortex (PFC)

implicated in behavioral monitoring [615], valuation of response outcomes [832]

and other aspects of cognitive functions.

2. Ultrafast oscillations (> 100 Hz) were first reported in 1935 by Adrian in the

cerebellum [7]. In the hippocampus, EEG is characterized by transient sharp wave

ripples (~ 100 – 200 Hz) that recur intermittently during awake immobility,

consummatory behaviors and non-REM sleep, when theta rhythm is absent

[146,147]. Similarly high frequency transient oscillations have also been observed

in the neocortex [150].

3. Beta (15–30 Hz) rhythm was initially observed in the primary motor cortex by Hans

Berger in 1931. In a pioneering work with intracranial EEG (iEEG) recording from

epileptic patients [469], Jasper and Penfield noted that beta rhythm occurred during

‘readiness’, but ceased at the initiation of a movement. Electrophysiological studies

on humans and monkeys generally confirmed the idea that beta rhythm is

associated with preparation and inhibitory control in the motor system: the beta

power is decreased at the onset of movement execution, and increased when a

response is withheld [822,768,103,711,842,41,925]. Other studies indicate that beta

oscillations are not limited to the motor system, but more generally are involved in

sensorimotor integration and top-down signaling (see Section VI).

4. Gamma (30–80 Hz) rhythm was first shown to be induced by sensory stimulus in

the olfactory bulb by Adrian [8,9], and later studied extensively by Freeman [303].

In the hippocampus, gamma rhythm often co-occurs and is temporally inter-nested

with theta rhythm [923,104,694]. In the neocortex, Rougeul, Buser and their

colleagues identified 40–50 Hz oscillations in the parietal and frontal areas, when

cats appeared to be ‘in a class of “attentive” behavioural states’, for example while

watching a prey that just entered the room. These authors referred to this fast

oscillation as ‘hypervigilance rhythm’ [102]. These observations presaged today’s

notion of enhanced gamma rhythm as a physiological fingerprint of attention

[312,270,311] (Fig. 1B). The next major advance was the observation of gamma

oscillations in spiking activity of neurons of the primary visual cortex by Gray and

Singer and by Eckhorn and his collaborators, first in anesthetized animals

[374,376,263], later in alert animals [309,533,375,307,630]. Gamma-frequency

synchronization between neural assemblies were suggested to play a role in

integration of sensory information [372,877], a hypothesis that has spurred an

avalanche of experimental and theoretical studies on cortical rhythms and their

possible functions.

5. Slow (< 1 Hz) oscillations of Up and Down states, discovered in 1993 by Steriade

and collaborators [912,911,907], are the overriding EEG pattern during non-REM

(slow wave) sleep [4,19,240,207]. During large-amplitude EEG slow oscillations,

virtually all cell types in the cerebral cortex repetitively switch between two

membrane potential states: an Up state (where neurons are depolarized at about

−65 mV and fire at a low rate) and a Down state (where neurons are hyperpolarized

by 10–15 mV) [679,912,190,916,839], and the neocortex entrains other brain

structures such as cerebellum [820] and amygdala [200]. Recent work on human
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subjects and behaving animals indicates that non-REM sleep might play a role in

memory consolidation [449,919,100,920] and that this function might be related to

the slow oscillation itself [565,449,647,478].

This review will focus on these synchronous cortical oscillations directly associated with

cognitive behavior.

C. Interplay between neuronal and synaptic dynamics

The last two decades have seen the accumulation of a wealth of our knowledge about brain

rhythms during behavior, thanks to a confluence of experimental advances. First, in human

studies, magnetoencephalogram (MEG), and iEEG recordings using as subjects epileptic

patients (who are undergoing iEEG for localization of the seizure onset regions before

surgery), provide measurements with a higher spatiotemporal resolution and much better

signal-to-noise ratio than the scalp EEG. Second, an increasing number of physiologists

record simultaneously LFP and single units from animals performing cognitive tasks, it is

thus possible to examine the timing of spiking activity of individual cells relative to LFP

oscillations during behavior. Third, new techniques make it possible to record in vivo from

identified neuron types (pyramidal cells or different subclasses of GABAergic interneurons),

yielding valuable information about how they relate to each other and to a population

rhythm. Fourth, network oscillations similar to behaviorally relevant rhythms such as

gamma and theta can be reproduced in cortical slices in vitro, where the circuit mechanisms

underlying rhythm generation can be thoroughly analyzed. At the same time, it has been

increasingly recognized that the membrane dynamics of single neurons are determined by a

diverse set of voltage-gated and calcium-gated ion channels. As a result, some subclass of

cortical cells display intrinsic oscillations and are potentially capable of serving as

pacemakers of network rhythms. The history of research on synchronous neural oscillations

is an excellent case of progressive advances from macroscopic (average) description of

neural populations to a microscopic understanding of circuit dynamics of interconnected

neurons endowed with all their glorious electrophysiological details. Fifth, with the new

targeted optogenetic manipuation that allows one to rapidly and selectively activate or de-

activate a subtype of nerve cells [227,613,411], it is now possible to establish causal links

between an observed neural activity pattern and its underlying circuit mechanism(s). Sixth

and finally, mathematical theory and ever more sophisticated biophysically-based neuronal

network modeling provide valuable tools for exploring the dynamic behavior of such

recurrent neural circuits, sometimes with surprising results.

What are the cellular mechanisms of synchronous cortical rhythms? In his 1958 review,

Bremer articulated the idea that ‘the cortical waves are the synchronized pulsations of

cortical neurons’, and proposed that synchronization of large-amplitude alpha oscillations

across the two hemispheres was produced by intracortical excitatory connections. The idea

of synchronization by excitatory connections is intuitively appealing, as one would expect

that mutual excitation between principal neurons should bring them into firing together. This

idea gained support from experimental and computational studies on epilepsy, where

blockade of synaptic inhibition in a cortical network led to extremely synchronous neural

firing patterns, resembling epileptic discharges [969,968]. In the 1990’s, however, modeling

studies have begin to question the generality of this mechanism, with the finding that

whether excitation synchronizes coupled neurons depends on the membrane properties of

the constituent cells and the time courses of synaptic currents [415,1000,527]. On the other

hand, it has been known for a long time [21,1060,1061,303,318] that synchronous rhythms

can be generated by an interplay between excitation and inhibition, as fast recurrent

excitation followed by slower feedback inhibition readily gives rise to oscillations. In this

scenario, inhibition plays an important role in rhythmogenesis. More surprisingly, in the

early 1990’s Wang and Rinzel found, in modeling studies, that mutually inhibitory synaptic
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interactions can synchronize a population of GABAergic neurons, therefore coherent

oscillations can emerge in a purely inhibitory neuronal network [1036,1037]. This

‘interneuronal network scenario’ was initially revealed in a model of thalamic oscillations

[1036,1037], but has proven to be a general principle [1000,1035,275,970]. In particular,

theoretical and experimental work found that this mechanism is capable of generating

synchronous gamma (~ 40 Hz) oscillations in a hippocampal network of inhibitory neurons

in vitro [1053,1035,970]. Both the interneuronal network and the excitatory- inhibitory loop

scenarios critically depend on synaptic inhibition, which thus does not merely control the

overall network excitability but plays an essential role in temporally sculpting cortical

network activity patterns during behavior.

D. Organization of this review

In the first part of this review, I will cover a rich variety of single neuron properties (Section

II), basic synaptic circuit mechanisms and network architectures (Sections III-IV)

underlying the generation of cortical network oscillations associated with cognition. Then, I

will marshal the evidence showing that the theory of coupled oscillators is not adequate for

capturing the salient characteristics of cortical dynamics of the waking brain. I will present

an alternative theoretical framework for describing weakly synchronous population rhythms

in which single cells fire action potentials irregularly and intermittently in time (Section V).

This is followed by Section VI, which is devoted to recent work on behaving animals and

human that explore functional implications of synchrony and coherent rhythms, with an

emphasis on long-distance neural communication and top-down signaling. In Section VII, I

will briefly discuss possible implications for abnormal neural synchronization associated

with mental disorders. Finally, I will summarize some general insights that have been gained

from experimental and theoretical studies (Section VIII).

II. Single neurons as building blocks of network oscillations

Single neurons in the cortex are endowed with a rich repertoire of active ion channels that

are distributed across the somatodendritic membrane [597,623,899,879]. As a result, diverse

cell types display a variety of subthreshold membrane response dynamics and spike firing

patterns. Synchronization of a circuit depends critically on the intrinsic membrane properties

of its constituent cells. In a recurrent network, precisely how single neurons adjust the

timing of action potentials in response to phasic synaptic inputs from other neurons greatly

affects whether the network ultimately becomes synchronized or not. Moreover, the

selection of a frequency band at which coherent oscillations occur is shaped by pacemaker

or resonance properties of individual cells. Thanks to many studies over the last two

decades, with close two-way interactions between experiments and theory, we now know a

lot about the interplay between single neuron dynamics and network synchronization. In

fact, this area represents an example par excellence of why detailed single cell properties do

matter with regard to collective network dynamics. In this Section, I shall review important

aspects of cellular electroresponsiveness relevant to network oscillations.

A. Phase-response properties of type I and type II neurons

All single neurons are oscillators, insofar as they respond to a constant input current I by

repetitive firing of action potentials at a certain frequency f (period T0 = 1/f). In the classic

Hodgkin-Huxley model of action potential [437], this periodic behavior is mathematically

described as a stable oscillatory state. Since action potentials are stereotypical events, it

makes intuitive sense to focus on the timing of action potential, or the phase (between 0 to

360 degrees), relative to the oscillatory cycle. In this view, the issue of network

synchronization can be formulated in terms of how synaptic interactions affect the phases of

action potential among connected neurons. This ‘phase reduction theory’, pioneered by
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Kopell, Ermentrout and others, is well founded under the ‘weak coupling condition’, when

synaptic interactions are not too strong to greatly alter the intrinsic frequency of neural

oscillators [539,524,276,280,1065,999,413,525]. Even when synaptic interactions are not

weak, the phase reduction theory still provides useful insights. For a sinusoidal oscillation,

sin(2πft), which arises from a linear system, phase shift induced by a brief pulse perturbation

is the same regardless of when the pulse is applied. In contrast, neuronal oscillators are

highly nonlinear, characterized by a stereotypical fast event (the action potential) followed

by a slow refractory and recovery period. For such ‘relaxation type’ oscillators [25,922], the

phase response highly depends on the timing of the input pulse. This is quantified by a

‘phase response curve’ (PRC), where the induced phase shift of spike is plotted as a function

of the phase at which a brief depolarizing current pulse is applied [359,1065,811,279,210].

The classic Hodgkin-Huxley model exhibits a biphasic ‘type II’ PRC (Fig. 2A) [415,119]: a

depolarizing pulse induces a phase advance (making the spike to fire earlier), when it is

applied some time before the next spike is expected to occur, but it actually delays the phase

of the next spike when applied soon after the spike discharge. This is because during that

time the neuron is recovering from afterhyperpolarization, as the delayed rectifier potassium

current decays away and the fast sodium current de-inactivates. Both decay processes are

slowed momentarily by the brief depolarization, therefore it takes longer for the next spike

to be generated.

Intuitively, synaptic excitation is expected to synchronize coupled neurons, if neurons that

happen to fire earlier in an oscillatory cycle advance the spike times of other (‘later firing’)

neurons, which in turn delay the spike times of ‘earlier firing’ neurons, so that all neurons

will tend to fire more synchronously in the next oscillatory cycle and the network will be

brought in phase. This is precisely what happens for type II neurons coupled by fast

(‘instantaneous’) excitatory synapses (Fig. 2B). Assume that initially cell #1 fires ahead of

cell #2. Then synaptic excitation from cell #1 advances the next spike in cell #2. When cell

#2 fires, cell #1 is still in the recovery phase, so synaptic excitation from cell #2 actually

delays the next spike in cell #1. Therefore, interactions in both directions tend to reduce the

phase difference between the two cells, eventually leading to spike-to-spike synchrony.

However, this intuitive reasoning is no longer sufficient if synaptic interactions are not brief

instantaneous perturbations, but have significant time courses of their own (see below).

Unlike the classic Hodgkin-Huxley model, a neuronal PRC may not display a significant

‘negative lobe’ [275,119,658]. That is, the spike phase is always advanced regardless of the

stimulus timing, even though the amount of induced phase shift depends on the timing of the

pulse perturbation. Such a ‘type I’ PRC is shown in Fig. 2C (upper panel), using a model

modified from the classic Hodgkin-Huxley model with some parameter variations [1035].

The parameter changes reduce the potassium conductance and speed up the sodium and

potassium current kinetics. As a result, the recovery from hyperpolarization is fast, and the

delay portion of the PRC essentially disappears. Therefore, type I and type II PRCs can be

produced by the same set of ion channels but with quantitatively different properties.

For type I neurons, a cell that fires earlier is phase-advanced by another cell that fires later,

which acts against reducing the relative phase difference between the two. Hence it is not

straightforward to ascertain intuitively synchronization by mutual excitation to type I

neurons. As it turns out, a mathematical analysis using the phase reduction theory, which

will be discussed in Section III, found that type I neurons tend to be much more easily

synchronized by mutual inhibition than excitation [415,998,275]. This theoretical finding

shows that single cell properties can qualitatively alter network behavior in a completely

counter-intuitive way.
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Phase response properties have been routinely characterized for neurons in central pattern

generator systems [772,638]. More recently, in vitro slice studies have directly assessed

PRCs of neurons in the mammalian cerebral cortex, using current perturbations that mimic

excitatory or inhibitory postsynaptic potential (EPSP or IPSP) [802,719,978,936]. It was

generally found that for a given cell, the classification of its PRC into type I or type II is

consistent for a range of intrinsic oscillation frequencies, and not sensitive to the exact

amplitude of PSP perturbations [719,936]. Distinct neuron types exhibit differential

preponderance for phase response properties. Nevertheless, neurons within a neural

population are heterogeneous and exhibit both type I and type II PRCs [978], possibly as a

result of quantitative differences in the expression of ion channels across neurons in a

population.

The precise shape of PRC of a neuron depends on its repertoire and somatodendritic

distribution of various ion channels. In general, regenerative currents (such as a persistent

sodium current INaP that provides a positive feedback for membrane depolarization) tend to

shift leftward a PRC and eradicate the negative lobe, thereby favoring type I behavior

[766,362]. On the other hand, restorative currents (such as a voltage-activated M-type

potassium current IM that acts as a negative feedback for voltage changes) tend to accentuate

the negative lobe [1044,206,277,362]. This is because a current like IM is activated by

depolarization during an action potential, and decays afterwards as the membrane recovers

from afterhyperpolarization. A brief depolarization soon after a spike would counter this

decay process, hence delaying the timing of the next spike. The hyperpolarization activated

cation current IH de-activates with depolarization, hence has a similar effect as a

depolarization-activated outward current. IH is thus expected to accentuate the negative lobe

and favors type II PRC behavior, a prediction that was confirmed with pharmacologically

blockade of IH in pyramidal neurons [362]. Another important issue is how PRC depends on

the location of synaptic inputs in a spatially complex neuron [362,799]. Goldberg et al. [362]

addressed this question using both modeling and patch-clamp recording in vitro. They found

that dendritic PRC (obtained using a current pulse applied onto the dendrite, 35 to 250 μm
from the soma) is a linearly filtered version of somatic PRC (obtained using a current pulse

applied onto the soma); the filter depends on the passive and active properties of the

dendrite. As a result, somatic and dendritic PRCs can in principle show disparate behaviors.

For example, because of an increasing gradient of expression of the H ion channel

conductance from soma to distal dendrite [624], dendrites of a pyramidal cell can display

type II PRC, whereas its somatic PRC can be type I.

A calcium-activated potassium current (IKCa) and, to a lesser degree, IM and IH, underlie

spike-frequency adaptation, which is a common characteristic of pyramidal neurons

[668,619,620,650,293,1027,793] and certain subclasses of inhibitory cells [499,500]. As it

turns out, a large IM (which has a low voltage threshold and is significant at resting

membrane potential), but not IKCa (which depends on calcium influx through the opening of

high-threshold calcium channels during action potentials), can switch a neuron from type I

to type II [277,782]. Conversely, a reduction of IM (e.g. by cholinergic modulation) can

transform a pyramidal cell from type II to type I [921]. Hence, type I versus type II PRC

behavior depends on low-threshold potassium currents, but is not necessarily correlated with

a neuron’s (primarily IKCa dependent) spike-frequency adaptation. Indeed, in vitro

pyramidal cells display strong spike-frequency adaptation, yet show mostly type I behavior;

when they do display type II PRCs the negative lobe is fairly shallow [802,395,978,362].

Also, ‘low-threshold spiking’ (LTS) interneurons display spike-frequency adaptation,

whereas fast spiking (FS) interneurons do not [668,499,500,645]. At the same time, the

observed tendency appears to be type I behavior for LTS cells and type II behavior for FS

cells [936]. Such differential PRC properties of different neural types have important

implications for their distinct roles in generating network rhythms (see Section III).
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B. Resonance

Resonance refers to the phenomenon of band-passed neuronal response, with maximal

response at a preferred input frequency. In studies using sinusoidal input currents of varying

frequencies, or the ‘impedance amplitude profile’ protocol that sweeps through many

frequencies in a single stimulus [784,455,454,453], many neuron types were found to

display resonance, namely a peak in their impedance (the ratio of the subthreshold

membrane potential response and the input current intensity) at a particular (resonance)

stimulus frequency. Resonance is intuitively expected when single neurons are damped

oscillators hence display an intrinsic preferred frequency [1025,552]. However, resonance

does not necessarily require damped oscillation of single neurons [453,805]. It readily takes

place when there are two opposing processes, one counteracts membrane potential Vm

changes at low frequencies (with a time constant τ1), the other does the same at high

frequencies (with a time constant τ2)). The combination of the two gives rise to a peaked

response at a frequency fR intermediate between 1/(2πτ1) and 1/(2πτ2) [453].

Membrane passive properties (e.g. the leak conductance) naturally act as a low-pass filter (τ2
= τm ~ 10 ms), whereas voltage-gated active channels give rise to high-pass filtering. For

example, an IH opposes voltage changes in a subthreshold voltage range: a hyperpolarization

of Vm is counteracted by an increased inward IH, whereas when Vm is depolarized IH

inactivation has the same effect as activation of an outward current. IH has a time constant

on the order of a hundred milliseconds, thus behaves as a high-pass filter. The interplay with

the leak conductance as a low-pass filter results in a resonance at fR ~ 5–10 Hz. An H-

current dependent mechanism underlies resonance observed in layer II stellate cells of

entorhinal cortex, and combined with membrane noise gives rise to subthreshold oscillations

in these cells [519,242,396,298,397,356]. Interestingly, IH-dependent resonance is most

prominent when the inputs are located at distal dendrites [991,191,192,637], consistent with

an increasing gradient of IH expression from soma to distal dendrite of pyramidal neurons

[624]. Another example is a voltage-gated potassium current, like IM or a low-threshold

slowly inactivating potassium current IKS, which counter-acts membrane potential changes

in a depolarized range. Together with suppressed responses at high frequencies by the leak

conductance, such a current produces resonance when neurons are excited to significantly

above the resting membrane potential but below firing threshold [453,445]. A single neuron

may display more than one resonance (bandpass) filters that are spatially segregated, for

instance an IH dependent mechanism in the dendrite and an IM dependent mechanism in the

soma [446].

Typically, resonance by a depolarization-activated K+ current is greatly amplified by the

presence of a persistent sodium current INaP, which is a positive feedback operating in the

same voltage range as IM or IKS [1025,601,394,455,454,1047,453,463,445,705]. The

resonance frequency fR critically depends on the activation time constant of the slow

potassium current [1025], often in the theta (4–8 Hz) [1025,394,1046,445] or gamma (~ 40

Hz) frequency range [1025].

How does subthreshold resonance relate to neuronal firing of action potentials? It has been

shown that, in hippocampus, neurons display similar frequency preference for membrane

potential responses and spike discharges at low firing rates (when Vm stays below firing

threshold most of the time) [769]. Moreover, resonance frequency is in the theta frequency

range for pyramidal cells, and in the gamma frequency range for fast spiking interneurons,

suggesting differential roles of these two major cell types in theta- versus gamma-frequency

network oscillations [769]. In a systematical modeling study of neuronal resonance,

Richardson et al [805] considered two model neurons with resonance frequency at fR, one

based on IH and the other on IKS and INaP. They used input currents composed of three

components: a baseline that controls the overall average spike rate r0 of the model neuron, a
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weak sinusoidal wave at frequency f and a background noise term mimicking stochastic

synaptic bombardments in vivo [236]. They found that, interestingly, subthreshold resonance

may or may not be reflected in the spike firing activity, depending on the degree of neural

firing variability. When noise is weak and firing is regular, the maximal modulation by the

sinusoidal input occurs at f ≃ r0, so the preferred frequency is the firing rate itself. By

contrast, when noise is strong and firing irregular, the firing response is best modulated by

the subthreshold resonance frequency at f ≃ fR. This is true even when the mean firing rate r0

is much higher than fR, e.g. r0 = 20 Hz and fR = 5 Hz (Fig. 3). Although somewhat

surprising, this result may be explained by observing that, with a stronger noise, a lower

mean input is needed to produce the same mean firing rate r0, because spikes are more often

triggered by stochastic input fluctuations. Therefore on average the membrane potential is

lower where subthreshold resonance plays a more important role. In other words, noise is

important for unmasking a subthreshold resonance in the spike firing patterns. This insight is

likely to have implications for understanding the relationship between highly irregular

neural discharges and coherent network rhythms (Section V).

C. Subthreshold and mixed-mode membrane oscillations

Strong resonance is usually a manifestation of membrane potential oscillations, because

even a transient (‘damped’) oscillation endows a neuron with an intrinsic preferred

frequency and an sinusoidal input with matched frequency evokes maximal responses

[453,805]. A neuron becomes a pacemaker if it displays sustained intrinsic oscillations

[599,15,600,106,1038]. In the neocortex, membrane potential oscillations below spike

threshold were first reported at theta frequency in layer II entorhinal cortical neurons by

Alonso and Llinás in 1989 [15] and at gamma frequency in neocortical neurons by Llinás et

al. in 1991 [600]. In both cases the intrinsic rhythmicity was shown to be TTX sensitive,

suggesting that a low threshold Na+ current plays a critical role. These findings motivated a

computational model, published in 1993, proposing that the observed intrinsic membrane

potential oscillations arise from the interplay between a low-threshold persistent Na+ current

INaP and a slow low-threshold K+ current (IKS) [1025]. Oscillation naturally occurs as a

result of the interaction between a positive feedback (between Vm depolarization and INaP

activation) and a slower negative feedback (depolarization induced IKS activation). The

activation time constant of IKS controls the recovery phase of the oscillation cycle hence

largely determines the rhythmic frequency which can be in the gamma or theta frequency

range [1025]. The same model was analyzed in the study of resonance by Richardson et al.

[805].

Notably, the model of [1025] predicts a different relationship between the oscillation

frequency and the input drive in these two cases. In the gamma frequency regime,

subthreshold oscillation frequency increases with the input drive (see Section II-C). In the

theta frequency regime, the frequency remains roughly constant (exhibiting a plateau) as

long as the oscillation is subthreshold, and starts to increase with the applied current

intensity when spike firing becomes significant. The predicted plateau phenomenon was

observed in stellate cells of entorhinal cortex (Fig. 5F in [13].)

Among neural types that exhibit subthreshold membrane oscillations, of special interest are

GABAergic neurons in the nucleus basalis [16] and medial septum [858] (Fig. 4A). The

nucleus basalis and medial septum are the major parts of the basal forebrain that provide the

neuromodulatory transmitter acetylcholine to the neocortex and hippocampus, respectively

[833,909,910,669]. In addition to cholinergic cells, these structures also contain GABAergic

cells with axonal projections to the cortical mantle. GABAergic cells in the medial septum

are believed to act as a pacemaker for theta rhythm in the hippocampus, and those in the

nucleus basalis may play a similar role for theta rhythm in the neocortex. As shown in Fig.

4A, medial septum non-cholinergic (putative GABAergic) cells display ‘mixed-mode
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oscillations’ in which periodic repetition of clusters of spikes are interspersed in time with

epochs of subthreshold oscillations. The inter-cluster oscillation is in the theta frequency

range, whereas both subthreshold membrane potential oscillations and intra-cluster spike

firing rate are in the gamma frequency range. Such mixed-mode oscillations are especially

interesting because in the entorhinal cortex and hippocampus theta rhythm is often

temporally nested with faster gamma-frequency oscillations

[923,146,888,104,176,148,472,358,181]. Cluster firing was first reported experimentally in

1939 by Arvanitaki [34]; it was modeled and analyzed mathematically in the 1980’s by

Rinzel [810]. A biophysical basis of such inter-nested gamma and theta mixed-mode

oscillation was described by the aforementioned ionic channel model [1025,1031] (Fig. 4B).

The mechanism relies on two assumptions. First, a low-threshold K+ current, like a slow A-

type current, should be transient and inactivates slowly. Second, the neuronal spike

afterhyperpolarization is strong, so that the average membrane potential is lower during

spike discharges than during subthreshold epochs. Thus, when the neuron fires a cluster of

spikes, the de-inactivation of IKS slowly builds up during spike afterhyperpolarizations, so

the amplitude of IKS increases gradually and eventually becomes large enough to terminate a

spiking episode. When the cell does not fire spikes in a subsequent subthreshold epoch, the

membrane potential is relatively depolarized and IKS slowly decreases due to inactivation,

until the cell is sufficiently recovered and can start to fire again. The subthreshold

oscillations are produced by the interplay between a Na+ current and the low-threshold

activation of IKS; the same oscillatory wave modulates repetitive action potentials during

clustered spike firing, hence the frequency is similar for the two. In this scenario, the theta

frequency of intrinsic oscillations in septal GABAergic cells is largely controlled by a single

current (IKS). This model prediction has not yet been tested experimentally.

Interestingly, in recent years such subthreshold oscillations have been observed in many cell

types, including neocortical neurons [394], mitral cells in the olfactory bulb [231,48],

magnocellular neuron in hypothalamus [90], mesencephalic trigeminal neurons [755], dorsal

column nuclei neurons in culture [798], hippocampal interneurons in the lacunosum-

moleculare layer [101]. Fig. 4C shows an example of olfactory mitral cell. Similar to the

model (Fig. 4B, lower right), in this cell the frequency of subthreshold oscillation and the

rate of intra-cluster spike discharges remain similar, when they both vary with increased

input current drive (hence mean Vm depolarization). In all these diverse cell types, Vm

oscillations were shown to be blocked by TTX but not by calcium channel blockers,

confirming the model prediction that subthreshold oscillations are independent of calcium

channels. Moreover, in some studies, voltage-gated K+ currents have been shown to play a

critical role. Membrane potential oscillations were abolished by TEA (15 mM) in

neocortical cells (3–15 Hz at 34°) [394] and hypothalamic magnocellular neurons (10–70 Hz

at 32°) [90], and by 4-AP in mitral cells of the olfactory bulb (20–40 Hz at 30°) [48] and

hippocampal lacunosum-moleculare interneurons (7 Hz at 32°) [101].

If a K+ current that opposes INaP does not inactivate, for example of an M-type, clustered

spiking interspersed with subthreshold oscillatory episodes is still possible, but no longer

displays regular periodicity [394,6,271]. In this case, spikes are triggered by noise, on top of

the membrane potential oscillatory wave [1047]. Also, whereas some cell types are able to

exhibit purely subthreshold oscillations [13,519,231,798], in other neurons subthreshold

membrane oscillations always occur interspersed with spike clusters [16,858,755,101]. This

difference presumably reflects whether the spike threshold is significantly above, or

overlaps with, the voltage range for activation of the low-threshold ion channels responsible

for generating membrane potential oscillations [1031]. In either case, with increasing

amplitude of input current, the number of spikes per cluster increases, and spike firing

becomes dominant over subthreshold oscillatory episodes.
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Taken together, there is a convergence of evidence in support of a general ion channel

mechanism for subthreshold rhythmogenesis. This mechanism involves a voltage-gated Na+

current, and the oscillation frequency is controlled by the activation kinetics of K+ currents.

There exist a wide diversity of voltage-gated K+ currents with disparate kinetic properties

and operating in different voltage ranges [893,859,178]. This offers a powerful means for

generating membrane oscillations at distinct frequencies, by a selective expression of a

subset of these currents in distinct cell types.

D. Rhythmic bursting

Like pacemaker neurons in central pattern generators [638], subtypes of cortical cells fire

bursts of spikes (brief clusters of spikes) rhythmically at preferred frequencies [597].

Bursting neurons have the potential to serve as pacemakers for synchronous network

oscillations [193], and bursts of spikes may underlie or enhance neuronal resonance

[435,956]. In the cortex, two types of rhythmic bursting neurons have been observed.

Hippocampal pyramidal cells [968] and layer 5 neocortical pyramidal neurons [875] show a

preponderance for slow rhythmic bursting at 4–15 Hz. High frequency (> 300 Hz) action

potential burst firing depends on rapid regenerative processes mediated by voltage-gated

calcium and sodium channels [494,1072,875,968,1058,506]. Calcium-activated potassium

currents (with time constants ~ 100 ms) terminate the burst, control the time course of after-

burst recovery, hence help set the oscillation frequency (~ 10 Hz) [10,875,968,369,159].

Interestingly, bursting occurs more readily, when its underlying inward and outward

channels are located in the dendrite, separated from the perisomatic region where action

potentials are produced [968,773,629,506]. Furthermore, phasic burst firing in layer 5

pyramidal neurons [292] (and in dopaminergic neurons [481,583,228]) depends on the

voltage-gated NMDA receptors for glutamate mediated synaptic transmission.

In the neocortex, another class of pyramidal neurons (called ‘chattering cells’) exhibit fast

rhythmic bursting in the gamma frequency range, with intraburst spike rates of 300–500 Hz

(Fig. 5A) [373,904,307,122,730,211,154,220]. Because the gamma cycle is only tens of

milliseconds, potassium currents such as IM and IKCa are likely to be too slow to set the

periodicity of fast bursting in chattering cells. A compartmental model [1028] suggests that

the fast rhythmic bursting in chattering neurons can be generated by a Ca2+-independent

ionic mechanism (Fig. 5B). Instead, it relies on a voltage-gated persistent Na+ current (INaP )

that is electrotonically separated from the action potential initiation zone. In one scenario,

perisomatic action potentials propagate back to the dendritic sites, where a Na+-dependent

after-depolarization is produced, which in turn triggers more spikes in the perisomatic

region. Alternatively, the Na+ channels underlying after-depolarization may be near the

soma, whereas the spike generation zone is in the initial segment of the axon. In either case,

the ‘ping-pong’ iterative interplay between spikes and after-depolarization underlies a burst

of spikes, which is terminated by the activation of a K+ current. The de-activation of the K+

current during hyperpolarization leads to the recovery and eventually to the start of a new

burst [1028]. It has also been proposed that after-depolarization depends on a calcium-

activated cation current [27]. The sodium-dependent and calcium-independent model was

supported by an in vitro experiment which showed that the spike afterdepolarization and the

generation of spike bursts were suppressed by phenytoin which blocked persistent Na+

channels, but not sensitive to blocking calcium transmembrane influx or intracellular

chelation of free Ca2+ [122,211]. Interestingly, a TTX-sensitive sodium channel in interplay

with a Kv3 channel in the dendrites were also found to underlie oscillatory bursting in a

sensory neuron in electric fish [984,574,247,985], suggesting that this mechanism may be

versatile in vertebrates. Moreover, calcium-dependent processes can modulate, rather than

generate, chattering behavior. In chattering neuron models, slow K+ currents like IM and

IKCa tend to suppress burst firing by virtue of reduced cellular excitability, and a reduction
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of these currents by neuromodulators like acytelcholine can transform a cell from tonic

spiking to fast rhythmic bursting [1028,972]. Since arousal and attention are associated with

cholinergic activation of the cortical system [908,909,669,913], this result suggest a

cholinergic mechanism for promoting neocortical gamma oscillations in attentive states.

To summarize, putative pacemaker neurons for the gamma and theta rhythms of the waking

brain seem to critically rely on Na+ and K+ currents, which give rise to either subthreshold

membrane oscillations or rhythmic bursting. Subthreshold oscillations and repetitive

bursting may have different implications for synchronization of coupled neurons.

Subthreshold oscillations could subserve a signal carrier for phase-locking and resonance,

by virtue of the cell’s sensitivity to small but precisely timed inputs [13,106,177,1048,217].

On the other hand, bursts may provide a reliable signal for the rhythmicity to be transmitted

across probabilistic and unreliable synapses between neurons [590,1028,659].

III. Basic mechanisms for network synchronization

A generic cortical circuit consists of two major cell types: excitatory principal neurons and

inhibitory interneurons. It follows that three types of synchronization mechanisms by

chemical synapses are conceivable: recurrent excitation between principal neurons, mutual

inhibition between interneurons, and feedback inhibition through the excitatory-inhibitory

loop. More recently, electrical synapses by gap junctions have also been proposed to

contribute to neural synchrony. Here I will describe each of these mechanisms in turn.

A. Mutual excitation between pyramidal neurons

For any type of synaptic coupling, a general mathematical approach for studying synchrony

of neural oscillators is provided by the theory of phase-coupled oscillators

[539,524,276,415]. The idea is that, if synaptic interactions are relatively weak, their effect

is the synaptic current from the presynaptic neuron into the postsynaptic neuron, averaged

over the oscillation period. Specifically, consider two oscillatory neurons with an intrinsic

period of T0 (frequency f = 1/T0), described by their respective phases φ1 and φ2 (defined

between 0 and 2π, with the spike time defined at zero phase by convention). The synaptic

current from cell #2 to cell #1 is Isyn(φ1, φ2) = gsyns2(φ2)(V (φ1) − Vsyn) where s2 is a ‘gating

variable’ for the synaptic current and activated by spike firing of cell #2, gsyn is the

maximum synaptic conductance and Vsyn is the synaptic reversal potential. The interaction

function H(φ1, φ2) is given by the average of the product of Isyn(φ1, φ2) and Z(φ1) (a single

neuron’s phase response curve, see Section II-A) over an oscillatory period. Mathematically,

we have [276,1000,415,279]

(1)

where Cm is the membrane capacitance.

The dynamical equations for describing the two interacting neurons are given by

(2)
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(3)

Subtracting these two equations yields the following equation for the phase difference Φ =

φ1 − φ2:

(4)

where Hodd(Φ) is the odd part of the H function, which determines the phase relationship.

Any steady state phase locking at Φss is given by solving Hodd(Φ) = 0, which means that at

Φ = Φss, dΦ/dt is zero hence the relative phase no longer changes over time. The stability of

a steady state phase locking is determined by the slope of Hodd through the steady state.

Consider a steady state Φss at which point the slope of Hodd is negative. Combined with the

fact that Hodd is zero at Φss, we know that dΦ/dt = Hodd is positive for Φ slightly smaller

than Φss, and negative otherwise. As a result, if Φ is perturbed to be below (respectively,

above) Φss, then it is predicted to increase (respectively decrease) over time; in either case

the system evolves back to Φss. In other words, coupling acts to attenuate any small

perturbation away from the steady state and Φss is stable. Conversely, a steady state is

dynamically unstable if the slope of Hodd at Φss is positive.

The phase reduction theory thus provides a general framework for predicting the

synchronization properties of neurons that behave as oscillators and are coupled by

relatively weak synaptic interactions. In general, type II neurons are synchronized by

sufficiently fast synapses (as illustrated in II-A, Fig. 2B), relative to the oscillation period

[415,1000]. For a higher frequency rhythm, the period is shorter, and faster synaptic kinetics

are required to produce synchrony. Moreover, the stronger the ‘negative lobe’ of the type II

PRC, the higher the likelihood for synchrony by mutual excitation. This is why the presence

of voltage-gated K+ currents encourages synchrony by excitatory connections between

pyramidal neurons [206]. The same qualitative explanation applies to synchronization of

slow rhythmic firing of epileptic discharges (characterized by large after-hyperpolarizations)

in a disinhibited pyramidal cell population [964,968,773].

As shown above, a key insight from theoretical analysis is that in order to determine

network synchrony, interactions between spiking neurons cannot be treated as instantaneous,

quantitative synaptic time courses matter a great deal. Furthermore, the required synaptic

kinetics is different for different oscillation frequencies. Thus, AMPA receptor mediated

glutamatergic transmission, with a decay time constant τsyn in the millisecond range, may be

suited for synchronizing slow rhythms at a few hertz [415,718]. For example, in

hippocampal slices, activation of cholinergic muscarinic receptors by carbachol can induce

theta frequency oscillation that is independent of synaptic inhibition [965]. Experiments and

modeling showed that AMPA receptor mediated excitatory synapses (time constant of a few

milliseconds) are suffcient for synchronizing 5–10 Hz rhythmic bursting (with a period ~

100 ms) in the carbachol induced rhythm in vitro [965]. This rhythm, however, is quite

different from theta oscillations in behaving animals during spatial navigation, as it will be

discussed later (Section IV-F).

On the other hand, an excitatory-excitatory mechanism does not seem to be suitable for

robustly synchronizing faster rhythms (with a much shorter period of tens of milliseconds),

such as gamma (~ 40 Hz) oscillations. This is the case even when single neurons display

intrinsic rhythmic bursting, as shown in a model of coupled chattering cells [28]. Thus,
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synaptic excitation mediated by ionotropic glutamate receptors, alone, is likely to be

insufficient for generating coherent network oscillations at high frequencies.

B. Inhibitory interneuronal network

With slow synapses (relative to an oscillation period), inhibition rather than excitation

generates neural synchrony [1036,1037,1000,415]. For type I neurons, even fast excitation

does not lead to zero-phase synchrony [415,275]. Indeed, it was found that type I neurons

typically show anti-phase behavior with excitatory coupling [415,275,1035]. On the other

hand, reciprocal inhibition turned out to be an effective mechanism for neuronal synchrony.

This is illustrated in Fig. 2C (lower panel), where the function Hodd(Φ) is shown for a pair of

type I model neurons characterized by the PRC given in Fig. 2C (upper panel). With kinetics

of GABAA receptor mediated synaptic currents (τsyn ≃ 10 ms), the anti-phase state is

unstable while the zero-phase state is stable, hence the pair of neurons are perfectly

synchronized.

Wang and Buzsaki [1035] found that, in this network model of GABAergic interneurons,

spike firing (oscillation) frequency of individual neurons can be varied in a broad range, e.g.

by changing the mean external drive or the strength of synaptic interactions among neurons

in the network; yet the synchrony is high only in the gamma frequency band [1035].

Therefore, networks of inhibitory interneurons provide a mechanism for coherent brain

oscillations, in particularly gamma rhythm. Whittington, Traub and collaborators [1053,970]

were the first to report experimentally synchronous ~ 40 Hz oscillations in rat hippocampus

in vitro, when fast excitatory glutamate synaptic transmissions mediated by AMPA and

NMDA receptors were blocked [1053]. In the experiment, when metabotropic glutamate

receptors were activated pharmacologically, hippocampal slices exhibited oscillatory

activity patterns. Oscillatory IPSPs in the 40 Hz frequency range were observed in

simultaneously recorded pyramidal cells. These IPSPs presumably originated from the firing

activities of GABAergic interneurons. Drugs that slowed down the kinetics of GABAA

receptor mediated synaptic currents led to lower oscillation frequency, confirming a model

prediction and lending support of an interneuronal network mechanism for gamma

oscillations [1053,970,1035].

At first sight it seems paradoxical that reciprocal inhibition can bring coupled neurons to fire

spikes synchronously, since spiking in one neuron triggers a synaptic current that

hyperpolarizes the membrane potentials of target neurons. In fact, ‘half-center’ oscillators

consisting of two reciprocally inhibitory neurons (or neural pools) in anti-phase represent a

standard circuit mechanism for central pattern generators that, by innervating antagonistic

sets of muscles, produce rhythmic motor patterns such as walking and swimming

[856,347,638]. As depicted in a classic model [757], consider a pair of neurons endowed

with some slow fatigue process and coupled reciprocally by fast synaptic inhibition. At any

moment one (neuron #1) is active and effectively suppresses the other (neuron #2). When

this inhibition wanes over time and eventually falls below a critical level, for example due to

spike rate adaptation of neuron #1 or short-term depression of synapses, neuron #2 is

‘released’ from inhibition, becomes active and suppresses neuron #1 in turn. In the ‘release

scenario’, coupled inhibitory neurons tend to fire out-of-phase with each other. There is,

however, a fundamentally different mode of behavior for coupled inhibitory neurons, called

the ‘escape scenario’ [1036]. In this scenario, coupled by slower synapses, GABAergic

neurons can simultaneously fire action potentials, undergo inhibition together and ‘escape’

from it synchronously. Whether an inhibitory neural network displays release or escape type

behavior depends on the details of active neural properties and synaptic kinetics [882,638],

and a dynamic clamp experiment suggests that the same circuit can be switched from one to

the other mode by neuromodulation [866].
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It is worth emphasizing again that different synaptic subtypes are suitable for synchronizing

circuit rhythms at different frequency ranges. Thus, whereas GABAB receptor mediated

inhibitory synapses (τsyn ≃ 100 ms) may play a role in synchronizing slow rhythms at a few

hertz, GABAA receptor dependent inhibition (τsyn ≃ 5–10 ms) may be adequate for

synchronizing fast rhythms in the gamma frequency band. Of course, synaptic currents

cannot be too slow relative to the oscillation cycle, otherwise interactions between neurons

would become roughly tonic and phasic information critical for synchronization would be

lost [1035,1049]. For type I neurons, synchrony can be realized even with relatively fast

inhibitory synapses [275]. Synaptic latency (including axonal delay) [123,621] and rise-time

[1000,1049,33], as well as the decay time, contribute to determining the synchronous firing

patterns. These theoretical results are supported by the observation that, during development

of the rodent brain, the frequency and synchrony of gamma oscillations reach adult levels in

a time course that parallels with that of cellular properties of basket cells and kinetic time

constants of their synaptic connections [547,250].

Just as it is difficult to synchronize an array of clocks with a wide range of intrinsic periods,

neural synchrony is more difficult to achieve in the presence of heterogeneity, which

introduces a variety of intrinsic oscillation frequencies among individual neurons

[539,1035]. This is an important issue because the oscillation frequency of a neuron varies

considerably with the input current intensity, with type I neurons typically showing a much

wider range of firing frequencies than type II neurons [811,937]. For example, the

frequency-current relationship of a fast-spiking interneuron has a slope of about 400 Hz/nA

[668,730,542]. In a ‘regular spiking’ pyramidal cell that displays spike-frequency

adaptation, the f-I slope is similar (about 350 Hz/nA) for the initial spike firing and ~ 150

Hz/nA in the adapted steady state [650,730]. This implies that a small variation in the net

input current leads to a large change in the oscillation frequency. In vivo, excitatory synaptic

currents evoked by sensory stimulation were estimated to be in the range of 0.5–1.0 nA in

cortical neurons [11,23,405]. Given such input variations, and the high heterogeneity of both

cellular and synaptic properties in interneurons [887], how can synchronous oscillations be

maintained robustly? Modeling studies suggest that synchrony can be more robustly realized

in spite of heterogeneity when GABAA receptor mediated synaptic inhibition is strong

[947,53,1008,54]. Furthermore, network oscillations may be enhanced by subclasses of

specialized neurons with distinct frequency preference due to their resonance or pacemaker

biophysical properties (Section II). Finally, as we shall see in Section V, sparsely

synchronized oscillations, characterized by irregular firing of individual cells, are more

robust in the presence of heterogeneities.

C. Excitatory-inhibitory feedback loop

Back in the early 1970’s, Wilson and Cowan [1060] showed that, in a population firing rate

model, network oscillation emerges naturally from reciprocal interactions between

excitatory and inhibitory neural pools, under the condition that recurrent connections are

strong and inhibition is slower or delayed relative to excitation. Such a model was proposed

for gamma oscillations in the olfactory bulb [300,303] and in the hippocampus [443,578].

The mechanism is easy to understand as follows. An oscillatory cycle begins when fast

excitation drives up neural firing in a positive feedback, until slower inhibition is recruited

to eventually bring down population activity. As the excitatory drive to interneurons wanes,

the network recovers from inhibition and the next cycle starts anew, leading to rhythmic

behavior [318,976,1028,414,747].

In contrast to ‘rate synchrony’ at the level of population activities, ‘spike-to-spike

synchrony’ refers to precise phase-locking of spike times among neurons in a network

oscillation. In the scenario in which a coherent oscillation is generated among a population

of GABAergic cells, pyramidal neurons are presumably synchronized by inhibitory inputs to
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produce a population rhythm. Consistent with this scenario, an early modeling study by

Lytton and Sejnowski found that IPSPs impinging on the somatic region were more

effective than EPSPs on dendrites at rhythmically entraining the spike discharges of a

pyramidal cell in the gamma frequency band, suggesting that perisoma-targeting basket cells

play a role in phase locking pyramidal neurons [616]. This idea was supported

experimentally by Cobb et al. [177], who showed that in hippocampal slices, spiking

activity of pyramidal cells could be entrained with a high temporal precision by a single

basket cell. This is demonstrated again recently using optogenetic method to activate a

subtype of genetically targeted neurons in the intact brain. Two groups reported that

activating channorodopsin-2 (a cation channel) in fast spiking interneurons led to

entrainment of pyramidal cells preferentially at gamma frequencies in mouse frontal [885]

and somatosensory [155] cortex. When photoactivation was administrated at different

frequencies in fast spiking interneurons but not pyramidal cells, the LFP power at the

stimulus frequency exhibited a pronounced peak in the gamma frequency band (Fig. 7)

[155].

Entrainment involves unidirectional inhibitory-to-excitatory coupling, whereas in the

hippocampus [305] and neocortex [85] interneurons and pyramidal cells are reciprocally

connected. An alternative to the interneuronal network model is that spike-to-spike

synchrony emerges from the interplay between excitatory principal neurons and inhibitory

interneurons. In models of interacting excitatory and inhibitory neural oscillators, two

regimes were identified [1062,96,414,62]. In the first regime, interneurons are sufficiently

driven by external inputs and show a phase advance relative to excitatory neurons. The

oscillation frequency is comparable to single neuron firing rates. In the other, recurrent

excitatory inputs provide a major drive to interneurons, which lag behind excitatory cells but

the phase delay is never larger than a quarter of the oscillation cycle (π/2 radians, or 90

degrees). Although mutual excitation between principal neurons cannot by itself produce

synchrony, it enhances oscillation generated by the feedback inhibition through amplifying

excitatory neural population activity. A mathematical analysis found that the second regime

is less sensitive to heterogeneity hence more robust than the first regime [414].

In a local cortical circuit of the intact brain, both the interneuronal network mechanism and

the excitatory-inhibitory feedback loop mechanism are present, and one or the other may be

more predominant depending on the relative strengths of the two [127,414,96,949]. To some

extent these two mechanisms may be redundant to ensure the robustness of a synchronous

rhythm. However, they are not likely to behave exactly the same way. For example,

synchrony by the excitatory-inhibitory feedback loop mechanism is actually less prominent

in the presence, than in the absence, of the inhibitory-to-inhibitory coupling between

GABAergic neurons [413,939,414]. This is because I-to-I coupling reduces the effective

time constant of the inhibitory neural population, an accelerated dynamics of interneurons

runs counter to a significant delay of feedback inhibition that is required in the excitatory-

inhibitory loop scenario for rhythmogenesis [939]. More importantly, in cortical circuits

where neuronal activity is highly irregular, the interneuronal network and the excitatory-

inhibitory loop give rise to synchronous oscillations in different frequency bands, which

potentially are predominant in different brain states or serving different functions (see

Section V).

D. Synaptic filtering

Short-term synaptic plasticity induces temporal filtering of presynaptic inputs, with the

characteristic frequency dependence determined by the relative strength and time constants

of facilitation and depression [1098,942,944]. At a synaptic connection exhibiting both

facilitation and depression, the release probability of transmitters (hence the synaptic

response per presynaptic spike) could be a non-monotonic function of the presynaptic firing
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frequency: an increased firing rate induces facilitation leading to a larger release probability;

this release probability reaches a maximum at a preferred input frequency, then decreases at

higher frequencies where depression becomes dominant [644,659]. This by itself does not

constitute a ‘synaptic resonance’, because the synaptic response per unit time, which is the

product of the release probability and the presynaptic firing rate, is still a monotonic

function of the firing rate. Some synapses in cortical neurons also display a ‘notch’ (a dip) of

synaptic response in a narrow range of presynaptic firing frequencies [942]. Synaptic

filtering may contribute to frequency- dependent neural responses, often in interplay with

presynaptic burst firing [659,296,466,696]. Its role in synchronous oscillations awaits to be

fully elucidated in the future.

E. Slow negative feedback

As indicated above, combining fast positive feedback and slow negative feedback offers a

general recipes for rhythmogenesis. Delayed negative feedback [359] is a versatile

mechanism that can be realized, in diverse forms and on multiple timescales, in neural

circuits without synaptic inhibition. A common negative feedback process at the single cell

level is spike-rate adaptation of pyramidal neurons, originating from depolarization induced

activations of voltage-gated and calcium-gated potassium currents (IM and IKCa), which in

turn reduce the neuronal excitability. In a population of interacting pyramidal cells, such a

negative feedback (with a kinetic time constant of ~ 100 ms) in interplay with fast recurrent

synaptic excitation can give rise to network oscillations at ~ 10 Hz [1029,999,321,929].

Another slow negative feedback for generating rhythmic patterns is short-term synaptic

depression of recurrent synapses onto excitatory neurons [1029,928,603,929,827,508], or

short-term facilitation of excitatory synapses onto inhibitory interneurons [675]. In these

cases, the biophysical time constants of facilitation and depression, ranging from several

hundreds of milliseconds to a few seconds, set the scale of network oscillation periodicity.

The ~ 10Hz oscillations observed in layer 5 of the neocortex appears to be generated by such

a mechanism, in which the positive feedback relies on intrinsic voltage-gated inward

currents as well as synaptic excitation, and the negative feedback is independent of the

GABAA receptor mediated synaptic inhibition [875,292]. The independence from synaptic

inhibition was recently confirmed by an in vivo study with anesthetized rats, in which patch-

clamp intracellular recording revealed that 10–15 Hz membrane oscillations were prominent

in layer 5 but not layer 2/3 neurons of the primary visual cortex and that these oscillations

disappeared when the voltage of the recorded cell was near 0 mV (the reversal potential of

excitatory postsynaptic currents) [924].

A qualitatively similar scenario underlies the generation of slow (< 1 Hz) oscillations

observed in quiet sleep [679,912,190,916,553,839,915,905,195,610,779,776]. In this case,

negative feedbacks operate on longer timescales (a few seconds) that are mediated by

activity-dependent K+ conductances in single neurons [839,183,752] and synaptic

depression [190,68,440]. According to this scenario, the Up state is maintained through

synaptic interactions between pyramidal cells; this excitation wanes over time due to

synaptic depression or/and reduced neural spike discharges, and when it falls below a

threshold level the network undergoes a transition to the Down state, which is quasi-stable

with the help of an inwardly rectifying K+ channel [916]. In the Down state neurons are

hyperpolarized and largely silent, the activity-dependent negative feedback processes decay

away, and the network recovers leading to the onset of the next Up state [183]. The

dynamics of Up and Down states vary greatly: the Up states can be longer than Down states

[198,190,916,954] or otherwise [912,911]; transitions between Up and Down states are

sometimes nearly periodic [912,751] but often highly stochastic [198,916,553,225]. In an in

vitro preparation, slow (< 1 Hz) oscillations spontaneously occur in ferret cortical slices that

resemble slow oscillations observed in vivo, offering an opportunity to identify its
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underlying cellular and circuit mechanisms [839]. Experiments [841] and computational

modeling [183] suggest that the transition from the Up state to the Down state is induced, at

least in part, by the opening of a Na+-activated K+ current (IKNa), known to exist in these

neurons. Here, the negative feedback is activated by the buildup of the intracelluar Na+

concentration through sodium spikes, and the recovery is due to the extrusion of Na+ ions by

a Na+/K+ pump (operating on a timescale of ~ 10 s) [1041]. A network model [183] of

interconnected pyramidal and interneuron populations, endowed with this cellular

mechanism, reproduced salient in vivo and in vitro observations, including a gradual

increase in the input resistance of pyramidal cells over the course of an Up state [190] and a

maintained balance between synaptic excitation and inhibition in spite of changes in the

firing rate [869,405,268,240]. A more recent study showed that the same model exhibits beta

and gamma frequency oscillations in the Up state similar to those observed in vivo in awake

animals. This result is in line with the increasing evidence that Up states of slow oscillations

during non-REM sleep resemble closely to the activated state of wakefulness in

characteristics ranging from EEG or LFP patterns and spatial correlation length, to

membrane fluctuations of single cells [914,234,239,830,831] (reviewed in [240,404]).

F. Electrical coupling

Electrical synapses are gap junction mediated connections between neurons. In the

mammalian brain, neuronal gap junctions are prevalent during postnatal development, and

remain present in adulthood at least in certain classes of neurons, such as parvalbumin-

expressing GABAergic cells [333,680,322]. A direct demonstration of gap junctions

requires intracellular recording simultaneously from two neurons, by depolarizing or

hyperpolarizing one neuron with current injection and measuring the resulting change in the

membrane potential of another neuron. Such experiments became possible only recently

with the advance of new techniques, like infrared-differential interference contrast optics

that allows the experimenter to visually identify recorded neurons. Remarkably, it was found

that gap junctions almost exclusively connect GABAergic interneurons within the same

class. For example, perisomatic-targeting, parvalbumin-expressing FS cells are connected

among themselves by gap junctions; so are dendrite-targeting, somatostatin-expressing LTS

cells, but electrical synapses are rare between mixed-type (FS-LTS) cell pairs [331,350]. So

far, at least five such distinct networks of electrically coupled GABAergic interneurons have

been identified (for a review see [434]).

Compared to chemical synapses, electrical coupling has properties that seem especially

desirable for subserving neural synchronization: it is fast and usually bidirectional (at least

between neurons of the same type), and acts to equalize the membrane potentials of the

connected neurons. This mechanism of intra-population coordination may be especially

important for some cell types, such as LTS interneurons which exhibit a paucity of

inhibitory synapses among themselves [350]. Electrical synapses have been suggested to

promote oscillatory activity [331,350] and contribute to coincidence detection in inhibitory

neurons [332]. Computational modeling studies generally found that sufficiently strong

electrical synapses encourage synchrony [971,175,966,767,351,631,927], but can also have

desynchronizing effects depending on the interplay with inhibitory synapses and the intrinsic

membrane properties of the constituent cells [867,729,767]. A pair of FS interneurons or

LTS neurons coupled by gap junctions showed similar phase-locking behavior, despite their

differences in the biophysical properties. Interestingly, FS and LTS neurons are

synchronized preferentially in the gamma and beta frequency bands, respectively [631]. It

should be noted that in the cortex gap junctions are restricted to neighboring neurons, within

50 μm [351]. Therefore, electrical coupling is spatially very localized, like diffusion in

physical and chemical systems.
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To experimentally assess the role of electrical synapses in brain rhythms, one must be able

to induce a disruption of gap junction communications and examine its impact on a network

oscillation. Presently there are no drugs that block gap junctions with a high degree of

selectivity, but genetic manipulations have proven a powerful tool. Connexin 36 is the

predominant gap junction protein expressed in neurons of the mammalian brain [186]. Both

in vitro [442] and in vivo [131] studies showed that in mice, connexin 36 knockout only

produced a reduction of the field potential gamma power (or the degree of network

synchronization), without affecting the oscillation frequency. Given that electrical synapses

are much faster than chemical synapses, they may be especially important for synchronizing

the ultrafast (100–200 Hz) sharp wave ripples. An in vitro experiment supports a critical

involvement of gap junctions in the generation of sharp wave ripples [256]. Electrical

coupling between Purkinje cells, provided that it is sufficiently strong, has also been

proposed as a mechanism for sustaining ultrafast oscillations in the cerebellum [622,681].

On the other hand, connexin 36 knockout had no effect on ultrafast (> 100 Hz) field ripple

oscillations in mice in vitro [442] or in vivo [131]. Traub and colleagues proposed that other

connexin subtypes, forming electrical synapses between the axons of excitatory cells,

underlie fast oscillations in the hippocampus [971,849,967,211,409]. This idea arose from a

network model in which single neurons were described with elaborated dendritic and axonal

arbors [971], which is rarely done in theoretical studies of large-scale cortical networks.

Unlike gap junctions at the dendrite, those located between axons make it possible for a

spike in one neuron to directly trigger a spike in another neuron, which was found to be

necessary to generate ultrafast oscillations in a sparsely connected model network [971].

Other modeling studies suggest that chemical synapses may be sufficient to generate > 100

Hz fast oscillations in an interneuronal network [127,342,125,222] (see Section V).

G. Correlation-induced stochastic synchrony

Mechanisms for synchronizing neurons discussed above rely on oscillatory synaptic inputs,

which are produced in a recurrent network. Synchronization between neural oscillators can

also be realized by shared but random inputs in a network where neurons do not directly

interact with each other [770,940,714,898,329,330]. In this scenario, common (correlated)

noise gives rise to phase synchronization of otherwise uncoupled oscillators, when two

conditions are satisfied [329]. First, single neurons are intrinsic oscillators with roughly the

same frequency. For this to be realized in spite of input heterogeneity, this scenario is better

suited and more robust for type II cells (which display a relatively flat current-frequency

curve [811,937]) than for type I cells (which display a steep current-frequency curve

[1035,658,639]). Second, neurons receive partially correlated fluctuating synaptic inputs,

that can be broad-band (i.e. they do not have to be rhythmic) but should be fast relative to

the period of the intrinsic neuronal oscillation. Under these conditions, brief (compared to

the intrinsic oscillation period) and correlated fluctuations in the inputs act as a common

pulse to reset the oscillation phases of neurons in a network. This can be understood by

considering a population of uncoupled neural oscillators, which is initially asynchronous.

This means that spike times of neurons are uniformly distributed on the oscillation cycle.

The response of each neuron to a common pulse is given by the phase response curve

(which may be type I or type II) (Section II-A). This brief input would speed up those that

fire later than the others, and either slow down (for type II cells) or do not significant alter

(for type I cells) the spiking phase of those cells that are ‘ahead’, thereby leading to

population synchrony [281]. As expected intuitively, an intermediate level of noise is

optimal: too little noise would not be sufficient to induce phase synchronization, whereas

too much noise would overwhelm and destroy intrinsic neuronal oscillations.

Synchronous fast oscillations are prominent in the olfactory system, and play a major role in

odor stimulus processing [303,584,556,1043,308,441,555,501,117,847,79,503,161,461].
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Numerous studies have shown that coherent rhythmicity in the rat olfactory bulb depends on

the reciprocal, dendrodendritic synaptic interactions between excitatory principal mitral cells

and inhibitory granule interneurons [791,700,734,218,544,545], with possibly additional

contribution of electrical coupling [306,683]. Many models for gamma oscillations in the

olfactory bulb are based on a feedback inhibition mechanism [303,584,67,66,61,109]. Galán

et al. [329] noted, however, that so far there is no direct proof that inhibitory synaptic

potentials are synchronized in mitral cells. They proposed to apply the scenario of

correlation-induced stochastic synchrony to the olfactory bulb, where shared noisy synaptic

inputs could synchronize mitral neurons endowed with subthreshold oscillations (their

membrane oscillation frequency as well as spiking rate are in the gamma band and relatively

insensitive to input strength (Fig. 4C)) [231,640,48]. What are the sources of common

synaptic noise and, more generally, whether this scenario or the excitatory-inhibitory loop

scenario is responsible for the rhythmogenesis in the olfactory bulb, remain to be determined

in future experiments.

In summary, two-way interactions between theory and experimentation have proven

extremely fruitful in uncovering fundamental processes through which neural networks

(cortical circuits in particular) are synchronized. Mutual excitation between principal cells,

in conjunction with some negative feedback process other than synaptic inhibition, is

suitable for generating certain forms of slow oscillations. On the other hand, mutual

inhibition between interneurons and reciprocal loop between excitatory and inhibitory cells

provide two general mechanisms for rhythmogenesis, especially fast cortical oscillations. In

addition, gap junctions contribute to population synchrony. Finally, correlated noise may

also lead to spike-to-spike synchrony of otherwise uncoupled neural oscillators. These

diverse core mechanisms may be deployed differentially, or in any combinations, in

different cortical circuits.

IV. Network architecture

Studies of a couple of neurons have yielded valuable information about the synchro nization

mechanisms (Section III). To go beyond neural pairs toward predicting the behavior of large

populations of neurons, a key step is to have a firm grasp of how network connectivity

properties sculpt activity patterns. Recent advances in neural anatomy and imaging have

opened a new era of experimental studies of detailed ‘wiring diagrams’ of a functional

circuit [173,586,860]. In computational studies of synchronous oscillations, different types

of network architectures have been considered, which will be reviewed below.

A. All-to-all networks: synchrony, asynchrony and clustering

Some basic insights into neural synchronization were obtained in studies of models where

neurons are coupled globally (every neuron is connected to every other neuron). When

perfect (zero phase) synchrony is predicted for a pair of neurons, the same often holds true

for an all-to-tall network. For example, Fig. 6A shows synchronous gamma oscillations of a

population of type I neurons coupled globally by synaptic inhibition, with the behavior of a

pair of the same neurons described in Fig. 2C. On the other hand, when a pair of neurons

display phase shift relative to each other, the activity pattern of an all-to-all coupled

population of such neurons could be totally asynchronous, or exhibit a variety of complex

patterns. Perhaps the most commonly observed pattern is clustering, where a network breaks

into a small number of fixed clusters of neurons [367,526,1040,1035,1049,366,413,53,5].

Neurons within a cluster fire together, and different clusters take turn to fire over time,

hence single neurons fire intermittently (only once in a few oscillation cycle). The network

frequency is equal to the number of clusters times the firing frequency of single cells. In a

clustering state, single cells still discharge spikes in a fairly regular fashion. Moreover,

clustering states usually occur in a restricted range of noise [126].
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B. Sparse random networks

In local cortical circuits, synaptic connections are sparse [892,902]; the probability for a pair

of pyramidal cells to be connected in either direction is about 0.1–0.2 [892,573]. Coherent

oscillations require a minimum connectedness. Consider a network in which any neuron

make synaptic contacts on average with Msyn neurons. Modeling work revealed that, in a

randomly connected interneuronal network model, synchrony depends on Msyn in a highly

nonlinear fashion. Obviously, if Msyn is zero, neurons are not connected to each other and

fire independently. It turns out that, if Msyn is below a threshold Mcrit, the network remains

completely asynchronous. Coherent oscillation emerges as a qualitatively new type of

collective network behavior when Msyn is above Mthr (Fig. 6B). Importantly, this threshold

does not depend on the network size, thus small and very large networks can have the same

threshold connectedness for synchrony. Intuitively, synchronization requires a sufficient

amount of network connectedness, e.g. there should be a large connected neural cluster of

rougly the same size as the entire network. For random graphs, this only requires that the

number of links per node be larger than a threshold value, independent of the network size

[273,12]. Interestingly, synchronization of a neural rhythm also depends on the biophysics

of synaptic interactions and intrinsic cellular dynamics. This is strikingly demonstrated in a

network model of mutually inhibitory neurons where, given similar synaptic coupling time

constants, the threshold connectedness Mthr is about 50 with conductance-based Hodgkin-

Huxley type (type I) model interneurons [1035], but is several thousands with ‘leaky

integrate-and-fire’ (LIF) model neurons [366]. By comparison, In the hippocampus CA1, the

axon arbor of a single basket cell contacts, on average, about 60 other basket neurons within

a spatial span of approximately 500 μm [874]. Hence a model with Hodgkin-Huxley type

neurons but not LIF neurons would predict that gamma synchrony can be realized with

realistic sparse connectivity in a population of fast spiking interneurons. These findings

underscored the importance of detailed physiological properties of single neurons in

determining collective network behavior. The conclusion about the small minimum number

of synapses per neuron required for synchrony in a random network also holds for two

population models of excitatory and inhibitory neurons [1040,96].

C. Complex networks

Connectivity in a local cortical network is not completely random [892,149,699,554]. In

particular, synaptic connections depend on the spatial distance between connected neurons,

which can greatly affect global synchrony [63], or generate propagating waves (Section IV-

D).

Consider, again, a population of mutually inhibitory interneurons. Even if interneurons and

their connections are distributed homogeneously, high-density local connectivity alone may

not give rise to global coherence in large networks. The reason is that with an increasing

network size, the average ‘path length’ (the minimum distance between two neurons through

intermediate connected neurons) and the associated synaptic delays become excessively

high. As suggested by Watts and Strogatz ([1042], however, the path length can be

dramatically decreased by a few randomly placed ‘short-cuts’ that connect distant parts of

the network. Can a small number of ‘long-range’ interneurons serve this exact role? To

assess this possibility, we simulated a network model of 4,000 inhibitory cells [149], which

corresponds to approximately all basket cells in the dorsal hippocampus of the rat [304]. We

considered how re-wiring from local to long-range connections affects the synchronization

behavior of the network. With a local architecture, the connection probability between two

neurons decreases with their distance, according to a Gaussian distribution. When the

Gaussian distribution is narrow (characteristic range ≃ 20 neurons), the network is

asynchronous and the population firing rate is essentially constant in time (Fig. 8A). Next,

while fixing the average number of connections per neuron, a fraction p of the existing
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connections are re-wired according to a probability that falls off as an inverse power law

with the distance. The power distribution makes it much more likely to have long-range

connections than a Gaussian or exponential distribution (Fig. 8C). The network synchrony

becomes significant with p > 0.1 (Fig. 8D). As illustrated in Fig. 8B, the network with p =

0.25 exhibits highly synchronous network oscillations at 150 Hz, in the frequency range of

sharp wave ripples (100–200 Hz). Therefore, wide-range network synchrony could be

achieved with a small fraction of the local connectivity was removed and replaced by long-

range connections. In fact, increasing p above 0.4 only enhances the network synchrony

modestly. On the other hand, the ‘wire length’ of the network (the total length of inter-

neuronal connections) obviously increases with p (Fig. 8D). Therefore, there is a trade-off

between the need of long-range connections for network synchronization, and minimizing

the cost for these long-range wires (Fig. 8D). Hence, an optimal design for network

synchronization with a minimal wire-cost can be achieved by a division of labor between a

large subpopulation of short-range interneurons and a small subpopulation of long-range

interneurons cells in the hippocampus. Another modeling study also found that spiking

coherence between neural pairs could be maximal in the small-world network topology

[510].

Complex networks have been the subject of active research in recent years [1042,12], and

various types of network connectivity schemes have begun to be applied to Neuroscience:

small-world networks (with predominantly local connections and rare long-distance

connections) [546,823,149,806,1085], networks endowed with ‘hubs’ (a few nodes with an

unusually large number of connections with the rest of the network) [699] or a community

structure [721], networks with dynamic motifs (elementary building blocks from which

more complex dynamic behavior can be assembled) [1095,464]. For example, even a few

percent of neurons with an exceptionally large number of connections (‘hubs’) can

dramatically alter a circuit’s dynamical behavior [699].

The proposal of GABAergic ‘hub neurons’ has gained some empirical support from a recent

work [94]. Monitoring multiple neurons by calcium imaging of spontaneous activity and

assessing functional connectivity by pair-wise correlation analysis of the observed calcium

activity, Bonifazi et al found that hippocampal CA3 networks in the developing rats and

mice exhibit a scale-free topology. The distribution of the number of output links per neuron

decays as a power law, with an exponent of ~ 1.2, and ‘hub neurons’ (defined as the top

40% highest-connected) are a subpopulation of GABAergic cells with widespread axonal

arbors. Stimulation of hub neurons, but not those with low connectivity, affected

synchronous network dynamics, demonstrating the functional importance of these hub

neurons [94]. The simple models discussed above were designed for a local area; in a large-

scale cortical network, the spatial structure of coherent oscillations is likely to be much more

complex. In awake states, the correlation between LFPs decays with the distance between

the recording electrodes, with a characteristic spatial length of ~ 3–5 millimeters within a

cortical area [134,238]. On the other hand, long-distance synchronization among selective

neural populations in disparate cortical regions has been reported during cognitive tasks (see

Section VI). A future challenge is to elucidate the wiring topology and statistics that underlie

brainwide synchronization.

D. Spatially structured networks: propagating waves

Sensory processing, decision making, motor action all engage selective neural populations.

Localized neural activity either remains spatially confined in time, or propagates as a wave

among neural pools that are spatially separated but engaged in the same computation or

behavioral state. Wave propagation has been observed on multiple spatial scales. MEG

studies of human subjects revealed gamma oscillatory episodes that started in the frontal

cortex and propagated front-to-back across the cortical surface (Fig. 9A) [804,598]. Slow
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sleep oscillations measured with high-density EEG recordings also appear to start in the

frontal cortex and travel in an antero-posterior direction [652,654]; slow waves primarily

involve areas in the pre-frontal cortex [214,709] that overlap with the default network in the

human resting state [393]. In alert monkeys performing an instructed delayed reaching task,

LFP beta oscillations, evoked by the instruction cue in the motor and premotor cortical

areas, are not synchronous globally but propagate as waves whose latencies and amplitudes

provide information about the visual target to be reached [828]. In vivo multi-electrode EEG

recording or voltage-sensitive dye imaging has also revealed stimulus-induced waves in the

olfactory bulb [301,743,264], turtle visual cortex [781] and rat somatosensory cortex [761].

Numerous studies have also demonstrated wave propagation of evoked responses in cortical

slices in vitro [935,189,1079,1076] (for movie demos, see

http://www9.georgetown.edu/faculty/wuj/propagationwave.html). Wave propagation

naturally occurs because connections between neurons are spatially confined. Within a

cortical area, the probability of synaptic contact decreases with the physical distance

between a pair of neurons for both excitatory pyramidal cells and inhibitory interneurons

[353,874,902]. Therefore, spiking activity spreads from a group of neurons to its neighbors

and onto the rest of the network as a propagating wave. Wave propagation can also take

place in an electrically coupled neural network, when the distance-dependence of electrical

coupling is taken into account [581], just as expected for ‘excitable media’, diffusion-

coupled spatially extended chemical or biological systems [710].

A key characteristic of brain waves is propagation speed [282]. A ‘wavefront’ is an activity

packet that sweeps across a network, such as a brief burst of spikes, a response evoked by

sensory stimulus, or the event of switching from an inactive (Down) state to an active (Up)

state. For a wavefront, the propagation speed is determined by cellular and synaptic

properties that control the surge of activity, but not what happens afterwards such as the

slow afterhyperpolarization [278,459,815,282]. In vivo (using anesthetized animals)

[383,115,762,410] and in vitro [1075,839] studies estimated propagation speeds to be on the

order of ~ 10 mm/sec in the rodent cortex. A similar wave speed was observed in a human

study of binocular rivalry. As a subject experienced an alternation from one to another

perceived pattern, functional brain imaging showed that the dominance of the new pattern

emerged locally and propagated like a traveling wave as it rendered the old pattern invisible

[572]. Much faster propagating waves, at ~ 100 mm/sec, have been reported in ferret

piriform cortex [840], in rodent cortex (using voltage-sensitive dye imaging) in vivo (Fig.

9B) [1079] and in vitro [189,74], and in the motor cortex of behaving monkeys [828]. Wave

speed appears to be sensitive to modest changes of synaptic inhibition that sculpts cortical

local circuits, as it is known that ~ 10–20 % suppression of GABAA receptor mediated

inhibition can increase wave speed by tenfold [172,162,839,183,448]. Moreover, the

inclusion of a small amount of long-distance connections, in addition to predominantly local

connections, reminiscent of ‘small-world’ type architecture with a mixture of mostly local

and sparsely long-distance connections (Section III-C), significantly increases the signal

propagation speed [183].

In contrast to smooth wavefront propagation, another, ‘lurching’ type of waves propagates

in a discontinuous manner [368,812,170]. Imagine a spatially structured inhibitory circuit of

GABAergic neurons that are endowed with a ‘postinhibitory rebound’ property (spike

discharges triggered by a long-lasting hyperpolarization) [908,597,196,47,1039,1026,237].

A group of cells fire a burst of spikes, inhibiting for a period of time their neighboring cells.

The latter, when synaptic inhibition has waned, escape from it and discharge in turn, leading

to another episode of activity that lurches forward across the neural population. Because the

network is silent during periods when synaptic inhibition is strong, the activity pattern is

discontinuous in a lurching wave. Lurching waves may also take place in an excitatory

network, provided that synaptic transmission has a sufficiently long latency [113,365].
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Wave fronts should be distinguished from traveling waves, in which neurons fire

rhythmically and the oscillation phase φ varies as a function of time and spatial location

[279]. For a plane wave, the phase is linear with the spatial position x and time t, like φ =

2π(ft − (f/υ)x), where f is the oscillation frequency, υ is the propagation velocity, and λ = υ/f
is the wavelength. In two or three dimensional nerve tissues, more complex waves such as

spiral wave (Fig. 9C) can take place [686,448,508]. Traveling waves have been observed in

a number of studies (reviewed in [279,1076]), including MEG gamma oscillations [804],

EEG slow sleep oscillations [652], evoked responses in the cortex [32,781,302], and

hippocampal theta oscillations [609]. Traveling waves during theta oscillations in CA1

propagate along the septotemporal axis of the hippocampus, with υ ≃ 80 – 100 mm/sec and λ
≃ 10 – 15 mm. Given that the length of the septotemporal axis of CA1 is L ~ 10 mm, the

total phase difference is L/λ, between 240 and 360 degrees, i.e. two thirds to a full theta

cycle [609]. Interestingly, in all existing studies, the total phase shift is often ~ π/2, never

larger than 2π. In other words, the observed spatial variation in peak amplitude is less than

the full oscillation cycle, regardless of oscillation frequency (e.g. theta or gamma), the

physical size of the neural system or species examined [279]. Modeling studies showed that

a phase wave depends on the spatial extent and connectivity delay (including the axonal

delay and synaptic latency). In the same model, a gradual increase in the connection delay

can lead to an abrupt transition from global synchronous oscillation (when delays are short)

to phase waves (when delays are long) [205].

E. Interaction between diverse cell types

So far I have discussed networks consisting of either one neural population or two

(excitatory and inhibitory) neural populations. However, neural circuits in the cerebral

cortex are more complex. In particular, given the wide diversity of inhibitory cell subtypes

[305,645], what are their relative roles in rhythmogenesis? In this regard, the best studied

case is theta and gamma rhythms in the hippocampus. Early pioneering in vivo studies found

that, in the rat hippocampus, putative pyramidal cells (p) show overall maximal firing rate

close to the trough of the LFP theta (recorded in the pyramidal layer of CA1), and fast-

spiking interneurons in the pyramidal layer (int(p)) preceded pyramidal cells by about 60°

[208,209]. In vitro and modeling studies suggested that different interneurons play

differential roles in theta oscillations [354,89,821]. More recently, using juxtacellular

recording that allowed investigators to identify the cell type of the recorded neuron,

Somogyi, Klausberger, and their collaborators were able to characterize theta phase

preferences of diverse hippocampal interneurons in vivo of rats under urethane anesthesia

(Fig. 10A) [512,513,514,889,511]. Interestingly, two types of phase relationships were

observed. Basket and axon-axonic interneurons, which control the spiking output of

pyramidal cells are roughly out of phase with the pyramidal cells; whereas bistratified and

oriens-lacunosum-moleculare (O-LM) interneurons, which gate synaptic inputs to pyramidal

dendrites, are approximately in phase with the pyramidal cells. More precisely, maximal

firing occured at 20° for pyramidal cells, 271° for parvalbumin basket cells, 185° for axo-

axonic cells, 1° for bistratified cells and 19° for O-LM cells (0° is at the trough). Phase

relationships between several cell types during hippocampal theta have been analyzed in

modeling studies [341,406,744], but remain only partially understood. Note that the phase

difference between fast spiking neurons and pyramidal cells appears to be much smaller in

the awake than anesthetized condition, therefore the phase relationships between different

cell types depend on the animal’s behavioral state.

The juxtacellular recording technique applied to gamma rhythm revealed that, in CA1,

dendrite-targeting bistratified cells (rather than perisoma-targeting basket cells) exhibited the

strongest modulation by field oscillations [982,511]. This does not necessarily imply,

however, that bistratified cells play a more important role than basket cells in the
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rhythmogenesis. One reason is that neural activity in CA1 might reflect oscillatory inputs

from CA3 as a ‘source area’ for gamma rhythm [291,209]. In cholinergically induced

gamma oscillations in CA3 slices, basket and axoaxonal cells were found to display the

largest rhythmic modulation among diverse interneurons [408]. Moreover, spike firing of

these interneuron subtypes and pyramidal cells displayed different preferred phases of the

gamma cycle [408,407] (Fig. 10B). These phase relationships provide clues with

unprecedented detail about the organization and temporal dynamics of the underlying

complex circuit.

F. Interaction across multiple network circuits

Whereas local circuits are capable of generating gamma oscillations

[104,291,53,209,632,35], the mechanism of the hippocampal theta rhythm appears to

involve larger systems. Lesioning the fornix-fimbria abolished hippocampal theta, while

rhythmic firings persisted in septal cells [763,1012,22], leading to the hypothesis that the

hippocampal theta rhythm depends on the afferent inputs from the medial septum

[87,918,1006]. The medial septum supplies acetylcholine to the hippocampus, this

modulation of excitability is believed to be important for promoting theta rhythm in the

hippocampus [141]. In in vitro hippocampal slices, cholinergic activation alone, e.g. by the

muscarinic receptor agonist carbachol, can induce oscillations at theta frequency

[618,965,290]. This rhythmic phenomenon in vitro differs from theta rhythm in vivo in that

it is independent of GABAergic synaptic transmission [618,965] and becomes similar to

epileptic discharges with a high dose of carbachol [1057]. Pyramidal cells fire bursts of

spikes regularly in carbachol induced theta in vitro [965], whereas they fire sparsely in

behaving animals [208]. Interestingly, a recent study [370] found that the intact isolated

hippocampus in toto (but not 500 μm thick slices) displayed spontaneous, atropine (a

muscarinic receptor antagonist) resistant, theta (~ 5 Hz) oscillations, while pyramidal cells

fired spikes sparsely (less than 0.5 Hz). This self-generated theta appeared to originate in

CA1; there are multiple theta oscillators along the septotemporal axis in CA1, with faster

oscillators entraining slower ones. The circuit mechanism of this in vitro theta rhythm,

possibly involving specific type(s) of GABAergic cells [1050], remains to be elucidated in

future experiments. Thus, under certain conditions, theta frequency oscillations could

emerge within the hippocampal circuit. The fact remains, however, that in vivo the medial

septum is necessary for generating theta oscillations in the hippocampus and entorhinal

cortex. Perhaps, the propensity of hippocampal networks to oscillate at theta frequency

reflects a resonance mechanism (Section II-B) rather than theta rhythmogenesis itself.

Indeed, hippocampal pyramidal cells show maximal subthreshold membrane potential

changes (resonance) as well as firing preference to sinusoidal inputs in the theta frequency

range [577,769].

Interestingly, theta oscillation observed in anesthetized animals is blocked by atropine, but

theta oscillation associated with free movements in behaving animals is insensitive to

atropine (hence independent of muscarinic activation) [1002,531,918]. If movement-related

theta is atropine-resistant, precisely how does it depend on the medial septum? As

mentioned in Section II-C, medial septum contains two major types of neurons [105,384],

which are thought to play distinct roles in theta rhythm generation: cholinergic cells acting

via muscarinic receptors modulate slowly the excitability of hippocampal neurons

[180,326]; whereas GABAergic cells play a role of pacemakers via fast GABAA receptor

mediated synaptic transmission [918], by selectively innervating GABAergic interneurons

but not pyramidal cells in the hippocampus [304]. Septal GABAergic cells display rhythmic

firing at theta frequency in vivo [340,509,255,99,1005], are endowed with a significant H-

current thus likely to display resonance in the theta frequency range [1005,635], and display

a temporal lead over the hippocampal local field theta oscillation [412]. It has therefore been
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hypothesized that septal GABAergic afferents impose theta rhythmicity upon GABAergic

cells in the hippocampus [304], that in turn phasically pace spike firing of pyramidal

neurons [1083,963]. This scenario was supported by several lines of evidence. First, when

cholinergic neurons (but not GABAergic neurons) in the medial septum were chemically

damaged, the frequency of hippocampal theta was found to remain unchanged, but the

power was dramatically reduced [571,29], consistent with the view that cholinergic cells

contribute to theta rhythm by providing a tonic drive to the hippocampus. Second, GABAA

receptors in septal GABAergic cells but not cholinergic cells contain α1 subunit [334], and

zolpidem (a preferential GABAA α1 subunit modulator) suppressed theta oscillation both in

the hippocampus and septum [990]. Third, local injection of GABA A receptor antagonist in

the medial septum eliminated theta rhythmicity in the putative cholinergic cells, but not that

in the putative GABAergic cells (as differentiated by broad- versus brief- spikes,

respectively) [107]. This last result could be interpreted as evidence that oscillations in

cholinergic cells depend on the inhibitory synaptic inputs from GABAergic neurons, which

may behave as pacemakers for the hippocampal theta [918,141] (see Section II-C). There is

also evidence that non-cholinergic (putative GABAergic) cells in the nucleus basalis

promote LFP oscillations in the neocortex [588].

Somewhat surprisingly, a modeling study found that synaptic interactions could not

synchronize a medial septum network of interconnected GABAergic cells endowed with

intrinsic mixed-mode oscillations (as in Fig. 4B); but synchronization was realized in a

reciprocal loop between these septal GABAergic cells and a subtype of GABAergic cells in

the hippocampus [1031]. This result suggests a critical role in theta synchrony of

backprojections from the hippocampus to the medial septum. The latter do not originate

from pyramidal cells, but a subpopulation of GABAergic, calbindin- and somatostatin-

containing cells with horizontally oriented dendrites located in stratum oriens [14,962,479].

Septally projecting hippocampal cells fire at the trough of the theta cycle [479] (like O-LM

cell in Fig. 9A). A reciprocal GABA-GABA septohippocampal loop is well established

anatomically: septally projecting hippocampal GABAergic cells receive a large proportion

(up to 54% on somata and 27% on dendrites) of GABAergic inputs from the medial septum

[930], and hippocamposeptal fibers innervate hippocampally projecting GABAergic, but not

cholinergic, neurons in the medial septum [962]. Inhibitory feedback projection from the

hippocampus onto GABAergic cells in the medial septum was also physiologically

confirmed in an in vitro septohippocampal preparation containing the intact interconnecting

fornix/fimbria pathway [635]. Whether the reciprocal loop is critical for theta

synchronization can be directly tested by selectively disabling the hippocamposeptal

pathway with pharmacological, transgenic or optogenetic manipulations.

One of the open issues is the synaptic mechanism that can account for the observed

relationship between theta oscillations in the entorhinal cortex and hippocampus. The

atropine-resistant form of theta oscillation in the hippocampus depends on the integrity of

afferent inputs from the entorhinal cortex [492,141], therefore movement-related

hippocampal theta involves the entorhinal cortex and the medial septum in a interconnected

large circuitry. There are multiple generators for field theta oscillations in the entorhinal

cortex and hippocampus [522,702,695,691]. CA1 pyramidal neurons fire with the lowest

probability at a phase of the theta cycle where the direct synaptic excitation from the

entorhinal cortex into their distal dendrites is maximal [492,208,141]. Simultaneous

recording from the two structures in awake behaving rats revealed that the peak of the

population activity in the entorhinal cortex is aligned with the timing of dendritic excitation

of hippocampal target neurons, but the firing of the latter is typically offset by a half theta

cycle [691]. Note that, in anesthetized animals, perisoma-targeting interneurons show

maximal firing ~ 100–180 degrees out of phase with pyramidal cells [889] (Fig. 9A), hence

at the same preferred theta phase as the entorhinal inputs onto the CA1 distal dendrites. This
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output-controlling inhibition could veto direct entorhinal excitation, thereby rendering the

activities of the hippocampus and entorhinal cortex relatively independent on some

timescale. However, in non-anesthetized animals, putative perisoma-targeting interneurons

fire roughly 60° ahead of pyramidal cells, not 180° out of phase [208]. Furthermore, even if

the activity of perisomsa-targeting interneurons is phasically aligned with the synaptic

excitation from the entorhinal cortex, it should delay firing of pyramidal cells by a few

milliseconds, but not a half theta cycle (~ 60 ms). It will be a challenge to understand, using

both experiments and modeling, how perisoma-targeting and dendrite-targeting inhibitory

neural types in interplay with pyramidal cells give rise to the observed theta phase

relationships, as well as their computational implications.

In summary, network architecture is a predominant determinant of spatiotemporal neural

activity patterns, the richness and complexity have only beginning to be revealed and

promise to be a fertile ground in the coming years with the accelerated pace of knowledge

accumulation about neural circuit wiring properties. Yet, connectivity alone does not predict

behavior. As illustrated by examples above, synchrony depends on a combination of the

required network properties (such as the minimal connectedness) and the dynamics of

constituent single neurons and synapses.

V. Synchronous rhythms with irregular neural activity

In the cortex, especially in awake behaving conditions, even when a synchronous oscillation

is detected in LFP, it is often not readily discernable in highly irregular spike trains of single

units [706,468]. To resolve this puzzle, a necessary step is to understand the physical basis

of EEG and LFP signals and how they relate to the electrical activity of single cells. There is

a reasonable consensus that LFP is a weighted spatial average of the flow of currents along

the dendrosomatic axis of pyramidal neurons [201,202,690,144]. The spatial extent over

which neural signals are integrated by LFP has been estimated to be ~ 500 μm [532,595,75],

based on a model of the columnar structure for some stimulus selectivity. Recent work used

more direct analysis. Optical imaging from the cat visual cortex revealed that LFP could be

quantitatively accounted for by membrane potentials, filtered by a Gaussian kernel with a

width of σ ~ 100 μm. It follows that more than 95% of the LFP signals originated within a

radius of 250 μm (2.5σ) of the recording electrode tip [498]. Another study, using LFP and

MUA recordings, obtained similar estimates in the monkey visual cortex: LFP sums signals

spatially with a radius of ~ 120 μm in layer 4B, and 200 μm in superficial and deep layers

[1078]. Therefore, LFP appears to reflect neural signals within a narrower spatial extent than

previously thought.

The relationship between LFP and spiking activity remains a topic of active research. A

recent monkey physiological study found that a linear filter operation on the activity of a

few neurons can account for a significant fraction of the LFP time course [792]; and a study

combining LFP and single-unit recording from epileptic human subjects found that broad-

band (2–150 Hz) LFP power is positively correlated with the single- unit firing rate [634].

Yet, it is generally held that LFP primarily reflects synaptic inputs rather than spiking

outputs [164,690,37]. For example, in anesthetized monkeys, LFP in the visual cortex was

not significantly affected when spike activity was reduced by pharmacologically induced

hyperpolarization [794]. There is also evidence that LFP in a visual cortical area shows

similar stimulus-feature selectivity as the spiking output of upstream neurons that project to

the recorded site [507]. However, this does not mean that LFP exclusively reflects afferent

inputs from outside of the recorded brain area, because cortical networks are endowed with

an abundance of intrinsic connections, therefore a large fraction of synaptic connections

onto a cortical neuron originate within the local circuit [253,85]. A recent study showed that

a recurrent cortical network model can reproduce many features of LFP observed in a
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monkey experiment, suggesting precisely how spike rates relate to EEG power in different

frequency bands [663]. Furthermore, voltage-dependent membrane changes other than

synaptic events, including spike afterhyperpolarization, also contribute to the generation of

LFP signals [144,492].

A. Local field oscillations versus stochastic spike discharges of single cells

Isolated cortical neurons fire regularly under certain conditions, e.g. when driven by a

constant current injection in vitro. In the intact brain, however, cortical cells are bombarded

by highly fluctuating synaptic inputs, and typically fire seemingly random spike trains. A

simple statistic of variability is Fano factor, defined as the ratio of the variance over the

mean of spike count (in a proper time window). Another measure is the coefficient of

variation (CV) of inter-spike intervals (ISIs). Fano factor and CV are both zero for periodic

responses, and one for Poisson processes. Variability of spiking responses is higher in the

cortex than in the periphery [495]. In cat and monkey primary visual cortex, Fano factor ~ 1

for neurons recorded from anesthetised [958,957,884,153] and awake [430,1014,883,742]

animals (but see [495,392]). Fano factor or CV is also close to 1 for spiking activity of

single-units recorded in extrastriate cortical areas of alert behaving monkeys, including the

middle temporal area MT [883,116,863,39], V4 [664,688], prefrontal cortex [184,864], and

motor cortex [716]. A recent study compared CV of neural activity in several cortical areas,

and found that the average CV of single units is ~ 1.0 for MT, ~ 0.96 for the lateral

intraparietal association area (LIP), and ~ 0.87 for motor-like area 5 in the parietal cortex

[628]. In all three areas examined, ISI histograms are well fitted by gamma distributions

without repetitive peaks, hence neural activity is typically far from being clock-like.

However, a high (~ 1) Fano factor or CV is not necessarily inconsistent with the presence of

synchronous oscillations. Although these are useful measures of neural variability, they do

not probe temporal structures and are not sufficient to determine whether a spike train is

consistent with a Poisson process [497,17]. In particular, importantly, a significant fraction

of measured variability is likely due to the variability of neural firing rates (rather than

Poissonian spiking with a fixed firing rate) [863].

Nevertheless, it is notable that, even when simultaneously recorded LFP exhibits coherent

fast oscillations, spike trains of cortical neurons are still highly irregular (Fig. 11). In the

neocortex and hippocampus, gamma oscillations observed in in vivo are typically associated

with stochastic and sparse spiking activity of individual cells

[263,377,104,238,208,312,759,209,185,181]. Csicsvari et al. [208] examined spiking

activity of hippocampal pyramidal neurons and interneurons that were associated with field

oscillations. During sharp-wave ripples, CA1 cells fire at much lower rates (~ 5 Hz for

pyramidal cells; ~ 30 Hz for interneurons) than LFP oscillations (100–200 Hz). Similarly,

during inter-nested theta (3–7 Hz) and gamma (30–70 Hz) rhythms, pyramidal cells and

interneurons fire stochastically at lower rates compared to gamma (~ 1.5 Hz for pyramidal

cells, 15 Hz for interneurons) [208]. During both sharp-wave ripples and theta oscillations,

the interspike intervals are broadly distributed with CV ~1 for pyramidal cells and ~0.7 for

interneurons [208]. Caution is warranted in interpreting the reported CV values, since a high

CV might, at least partly, be due to the burstiness of spike discharges [1056]. Moreover,

distinct cell types display different degrees of modulation by a field rhythm (Fig. 9); a

minority of neurons might conceivably behave as a pacemaker [559] but are not clearly

reflected in the population averages. Also, the aforementioned statistics are global averages,

and may be different for any neuron at specific times, for example when a hippocampal cell

fires at a high rate and may display prominent oscillations as the rat traverses across its place

field (Fig. 1A). On the other hand, it is also true that theta rhythm in the rat hippocampus

represents perhaps the most prominent rhythm observed in the mammalian cortex during

behavior. In the neocortex, field oscillations associated with cognitive tasks are generally
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much weaker. There is a dearth of work in which the variability of single-unit spike trains

and field oscillations are analyzed at the same time. Such studies in the future would be

highly desirable, particularly in behaving animals.

Assuming that LFP monitors subthreshold membrane changes, can LFP oscillations in a

cortical circuit coexist with predominantly random spiking output of constituent single cells?

B. Sparsely synchronized oscillations

To reconcile irregular neural firing with a LFP rhythm, one possibility is that the majority of

neurons in a network fire irregularly and asynchronously so that they are largely averaged

out in LFP, and field oscillations are generated by a small subset of neurons endowed with

pacemaker properties (like chattering cells in the neocortex). This is unlikely. In a study

with in vivo intracellular recordings [154], fast rhythmic bursting (chattering) neurons were

identified by their responses to constant current injection. Interestingly, it was found that,

when these cells responded to visual stimuli, hyperpolarization of the membrane potential

did not reduce the relative power of visually evoked gamma oscillations in the voltage

response, suggesting that gamma oscillations triggered by visual stimulation are

predominantly produced by synaptic inputs, not intrinsic rhythmic bursting of single cells.

In an alternative scenario, most neurons participate in the generation of field oscillations, but

the rhythmic modulation of neural firing probability is small, as illustrated in Fig. 12B for

hippocampal pyramidal cells during gamma oscillations. A framework to describe such

network oscillatory dynamics has been developed, taking a diametrically opposite view from

that of coupled oscillators. The idea is to start with a network in which neurons

predominantly behave as ‘Geiger counters’, and examine how a coherent rhythm might

emerge from a dynamical destabilization of the asynchronous network state

[124,123,127,342,126,125]. Brunel and Hakim [124] and Brunel [123] assumed that isolated

neurons are driven by a large amount of background synaptic noise and generate Poisson-

like spike trains, and considered populations of such neurons randomly connected by

delayed synaptic interactions (while neglecting synaptic current time courses). It is intuitive

to see why oscillations occur in such a network of inhibitory cells: neurons fire spikes

together, generating IPSPs that occur only after a delay τ. The shared feedback inhibition

hyperpolarizes neurons synchronously. When this inhibition wanes over time, another

collective firing episode can occur again, leading to a population oscillation with the period

roughly equals to 2τ [124]. Given that monosynaptic transmission latency is typically only a

few milliseconds, the frequency of oscillations based on synaptic delay in a local circuit is

typically very high (e.g. 200 Hz with τ = 2.5 ms). This conceptual framework can be

generalized by taking into account realistic synaptic kinetics and applied to physiologically

realistic rhythms [127,342]. In addition, delays are longer for long-distance synaptic

interactions, and delayed inhibitory feedback has been proposed as a mechanism of

rhythmogenesis in systems ranging from the electric fish [248,249,589,641] to the basal

ganglia-thalamoc-cortical system of the mammalian brain [563].

Brunel and Hakim [124] analyzed the network behavior as a function of the synaptic

coupling strength. When the coupling strength is zero, neurons do not interact with each

other, the completely asynchronous network is characterized by a constant (r0) population

firing rate over time. When the coupling strength is gradually increased beyond a certain

threshold level, the asynchronous state is no longer stable because small perturbations are

amplified by strong synaptic interactions, and a network rhythm emerges. The transition

from asynchrony to collective rhythmicity can be described mathematically by the theory of

bifurcations in nonlinear dynamical systems [922]. Biologically, this illustrates how graded

changes in network property (like the coupling strength) can yield qualitatively different

behavior in a recurrent neural circuit. Because the oscillatory component is significantly
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smaller than the tonic component and noise, spike output of single cells remains highly

irregular; and the mean firing rate of neurons (r0) can be essentially uncorrelated with the

network oscillation frequency (f). Therefore, a measure of LFP (based on an averaged

synaptic current) displays small oscillations superimposed on a large baseline component,

and the presence of field oscillation coexists with Poisson-like spike discharges of single

cells.

If single neurons discharge spikes irregularly with no intrinsic periodicity, what determine

the frequency f of a network rhythm? Under the condition that the oscillatory component is

small, a systematic answer is provided by a linear analysis [127]. Consider a population of

mutually inhibitory neurons. Assume that an oscillatory population firing rate is given by

r(t) ≃ r0 + r1 sin(2πft), where f is the oscillation frequency and the oscillation amplitude r1 is

small compared to r0 (Fig. 12A). The recurrent network synaptic current produced by this

neural firing is given by Isyn(t) = I0 + I1 sin(2πft + Φsyn(f)), where the synaptic phase shift

Φsyn(f) is determined by the synaptic filtering properties such as the latency, rise time and

decay time. On the other hand, given a sinusoidal input current (the sum of noisy

background drive and −Isyn(t), where the minus sign originates from the inhibitory nature of

the inputs and yields an additional phase shift of π), the spiking response of a neuron is

determined by its intrinsic membrane properties. The rate of spiking output r(t) is a tonic

component plus a sinusoidal wave, characterized by an amplitude r1(f) and a phase shift

Φcell(f) with respect to the input current, or r(t) ≃ r0 + r1 sin(2πft + Φsyn(f) + Φcell(f) + π).
Because this r(t) is the same as the one that gives rise to Isyn(t), self-consistency implies that

[127]

(5)

Solving this equation determines the frequency f. It is remarkable that this equation (hence

the network oscillation frequency f) is independent of the neuronal firing rate r0,

demonstrating a salient characteristic of such sparsely synchronized rhythms. The

analytically predicted network oscillation frequency has been checked and shown to be

fairly accurate in direct simulations of spiking neural network models [127,342]. This

theoretical framework can be extended to two populations of pyramidal cells and inhibitory

interneurons [123,127,342]. An example is shown in Fig. 13, where the model network

displays gamma oscillations while single cells fire sparsely with wide distributions of firing

rates across neural populations.

This analysis shows that even though single-neuron activity is highly irregular, the

frequency of a collective network rhythm is determined by both the synaptic properties

(Φsyn(f)) and single cell’s membrane properties (Φcell(f)). The amplitude factor r1(f) and the

phase shift Φcell(f) can be analyzed by studying a single neuron in response to an injected

current with three components (a baseline I0, a small sinusoidal wave, and a noise filtered by

a synaptic time constant τsyn). This insight inspired a number of studies using different types

of single neuron models. It turns out that, with realistic synaptic filtering time constants, for

a leaky integrate-and-fire (LIF) neuron model, both r1 and Φcell are approximately

insensitive to the frequency f [128]. On the other hand, for a Hodgkin-Huxley type I neuron

[1035], r1(f) decays like 1/f, and Φcell shows an increased lag with larger f, independent of

τsyn [297,342]. This is captured by a simpler, ‘exponential LIF’ model (taking into account

the nonlinear action potential upstroke) [297,342].

Motivated by these theoretical predictions, an in vitro experiment has been carried out,

where single cortical pyramidal cells were driven by the same type of noisy current as in
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modeling studies [523]. It was found that, as predicted theoretically, in pyramidal cells the

phase delay Φcell(f) increases with f, and the phase shift curve is insensitive to the noise

filtering time constant. Moreover, at low frequency f ~ 10 Hz, pyramidal neurons actually

show a phase advance with respective to the current drive [523]. This phase advance may

result from a potassium current [668,650,293,1027] or an H-type hyperpolarization activated

cation current [715], which produces a preferred spike timing at the upstroke (phase-

advanced relative to the peak) of a sinusoidal input current

[492,623,625,95,506,321,338,715]. At high input frequencies, such slow ionic currents are

less effective, and the cellular phase shift becomes a lag due to the passive membrane RC

property [297,342,125]. These results highlight the point that single neuron properties do

matter with regard to determining collective network synchrony, even in the cases where

single neuron behavior is highly irregular. Since different single neuron models (e.g. the

linear LIF or a Hodgkin-Huxley type neuron) are characterized by different Φcell(f), different

choices of single cell models can lead to divergent conclusions about a network oscillation’s

frequency.

In a network of interconnected pyramidal cells and interneurons, a synchronous rhythm can

predominantly arise from an interneuronal (I-I loop) mechanism or an excitatory-inhibitory

(E-I) loop mechanism (Fig. 14A). The latter is akin to that proposed in previous firing-rate

models [1060,303,578,318,976]; what is new is a framework for quantitatively predicting

the oscillation frequency and the phase relationships in terms of cellular and synaptic

properties. Interestingly, it can be shown that the oscillation frequency produced by the E-I

loop is generally slower than that by the I-I loop [127,342]. Thus, given typical synaptic

time constants of AMPA receptor mediated excitation and GABAA receptor mediated

inhibition, it is expected that 100–200 Hz ultrafast rhythms could arise from an I-I scenario,

with the frequency largely controlled by the synaptic transmission latency and rise time; and

~40 Hz gamma rhythm primarily depend on an E-I scenario, which is more sensitive to

synaptic decay times (Fig. 14B). This is in stark contrast to networks of coupled oscillators

for which the interneuronal circuit mechanism preferentially synchronizes in the gamma

frequency range (Fig. 6).

Generally, the network dynamics involves a mixture of both the I-I loop and E-I loop

scenarios. One such a situation is when the synaptic excitation and inhibition balance is the

same in pyramidal cells and interneurons. In a model, when the excitation/inhibition ratio is

gradually increased (for both E and I neural populations at the same time), the network

oscillation frequency can either decrease, or first increase then show an abrupt drop and then

decrease continuously [342], illustrating complex behaviors that can occur even in a rather

simple system of two randomly connected neural populations.

As a rule, stronger recurrent synaptic interactions greatly enhance the network’s propensity

to exhibit synchronous oscillations (Fig. 14A). This result sheds insight onto why gamma-

band oscillations naturally occur in CA3 [291,632] which is endowed with more excitatory

local collaterals than CA1 in the hippocampus [671], or superficial layers 2/3 of the necortex

[132], which are endowed with a higher abundance of local horizontal connections than in

deep layers 5/6 (in the cat V1, 21.6%, 0.9% and 4.6% of all excitatory-excitatory synapses

are horizontal synaptic connections between pyramidal cells in layer 2/3, layer 5 and layer 6,

respectively [85]). Furthermore, as we shall discuss in Section VI, cognitive functions such

as selective attention involve highly recurrent areas like the prefrontal cortex prone to fast

oscillations, which may explain why beta and gamma rhythms are often enhanced

throughout the brain with the engagement of ‘cognitive-type’ cortical circuitry.
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C. Specific cases: fast cortical rhythms

There is increasing experimental evidence that fast rhythms in the cerebral cortex display

salient characteristics of sparsely synchronized oscillations.

1. Ultrafast (100–200 Hz) rhythm—As mentioned earlier, data from Csicsvari et al.

[208] and others showed that sharp-wave ripples appear to represent an example of sparsely

synchronized oscillation, with both pyramidal cells and interneurons showing a high degree

of irregularity and firing intermittently at much lower firing rates than field oscillations

(100–200 Hz), and pyramidal cells typically firing ahead of fast spiking interneurons during

the oscillation cycle [140,147,208,148,561].

Fast (~200 Hz) rhythm has also been observed, first by Adrian [7,460,171], in the

cerebellum. The cerebellum is a structure critical for fine motor coordination, and it has

been hypothesized [460] that precise timing required for motor control involves millisecond-

scale synchrony between Purkinje cells [73,261,868]. A recent study, using tetrode

recordings from multiple single- units in vivo, found that precise synchrony between

Purkinje neurons is directly related to fast field oscillations of the rat cerebellum in vivo

[222]. This cerebellar rhythm shared characteristics of a sparsely synchronized oscillation.

The field oscillation frequency was ~150–250 Hz, whereas an average firing rate of

individual Purkinje cells was about 38 Hz. Neuronal spike discharges did not occur at

multiple intervals of the field oscillatory period. Cross-correlation of neighboring Purkinje

cells displayed a peak at ~ 1–5 ms, but quickly (within 2 cycles) decayed to a large baseline,

as expected from highly stochastic neural dynamics.

Current-source density analysis suggested that the fast oscillations were generated in the

layers containing soma and proximal dendrites of Purkinje cells. The precise synchrony did

not appear to be caused by common excitation from parallel fiber inputs, because the spatial

extent of coherence was similar in the direction ‘on beam’ (along the parallel fibers) or ‘off

beam’ (parasagittally). Moreover, blocking AMPA receptor mediated excitation by GYKI

52466 actually enhanced the oscillation power. On the other hand, blocking GABAA

receptors by picrotoxin reduced the oscillation power by about 40%, suggesting that

synaptic inhibition contributes to in vivo ~200 Hz cerebellar oscillations. This conclusion

was in contrast to another study reporting that gap junctions played a critical role in ~ 100

Hz oscillations induced by nicotine receptor activation in in vitro cerebellar slices [681]. De

Solages et al. replicated salient in vivo experimental observations in an inhibitory neural

network model, and Equation (5) predicted approximately the network oscillation frequency.

Interestingly, the generation of ~200 Hz oscillations requires fast time constants of

inhibitory postsynaptic currents, consistent with the measurements in vitro from the mature

cerebellum (> 3 fold quicker compared to those in the developing cerebellum). Moreover,

using a two-compartment neuron model for Purkinje cells, with recurrent synaptic inhibition

near the soma relatively isolated from a large dendrite, produced significantly higher

oscillation frequencies than when Purkinje cells were described by a one-compartment

model. These results illustrate, again, how detailed synaptic and cellular properties together

determine the frequency of a collective network oscillation with irregular neuronal

discharges.

2. Gamma and beta rhythms—In vivo gamma rhythm in the olfactory bulb

[264,496,816], hippocampus [104,208,209], neocortex [914,238,423,783], all displays

features of a sparsely synchronized oscillation, with single neurons firing irregularly at

lower rates than LFP oscillations. In in vitro neocortical or hippocampal slices, when gamma

rhythm is induced by muscarinic acetylcholine receptor activation, pyramidal neurons fire

sparsely in less than 5% of the cycles [291,132]. Intracellular voltage measurements and
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voltage-clamp recordings of synaptic currents provided a wealth of evidence that strongly

supports of the excitatory-inhibitory loop mechanism for beta and gamma oscillations. First,

spiking probability of single neurons displays a peaked distribution of phases with respect to

the field gamma cycle, with pyramidal cells leading perisomatic-targeting interneurons by a

few (ranging from 2 to 8) milliseconds [209,408,632,423,746]. This means that inhibitory

neurons lag pyramidal cells by a significant phase difference (In vivo, ~ 60° [209]; in vitro, ~

55° [632] or ~ 23° [408,746]). This phase lag is qualitatively consistent with the feedback

inhibition model proposed by Freeman [300] and Leung [578].

Second, synaptic excitation is not tonic, as expected for a predominantly interneuronal

network mechanism. During spontaneous gamma oscillations in the hippocampus [35] and

odor evoked beta oscillations in the piriform cortex [775], in vivo whole-cell voltage-clamp

measurements from neurons in revealed that EPSCs precede IPSCs by a few milliseconds.

Both in vivo and in vitro, excitatory and inhibitory synaptic conductances in a single neuron

fluctuate together on a rapid timescale, leading to considerable cycle-by-cycle variations of

the gamma cycle duration [35].

Third, in vitro carbachol induced fast oscillations were abolished by blockade of either fast

excitatory AMPA receptors or inhibitory GABAA receptors in the hippocampus [291,632]

and neocortex [132,155]. A reduction by genetic manipulation of glutamatergic synaptic

transmission in parvalbumin-expressing fast spiking interneurons led to a reduced gamma

oscillations [320]. It might be argued that, in these experiments, blocking AMPA receptors

deprived a cortical network of its main excitatory drive (which was not compensated by

other means) necessary to induce synchronous activity in an interneuronal network.

Nevertheless, these studies lend strong support of a feedback loop mechanism for self-

sustained gamma rhythm in hippocampus and neocortex. In recent optogenetic studies,

gamma oscillations were induced by light stimulation of fast spiking interneurons, but they

were largely eliminated by blocking AMPA and NMDA receptors [155], and optically

stimulating pyramidal cells enhanced gamma oscillations [885], suggesting that gamma

rhythomogenesis depended on excitatory drive of interneurons by pyramidal cells, in a

feedback loop.

LFP beta (~ 15–30 Hz) rhythm is also consistent with the sparsely synchronized oscillation

behavior, as evident in single neuron activity recorded from the motor cortex in behaving

monkeys (see, for example. Fig. 3 in [713]). The mechanisms of beta-band oscillations have

been much less studied but may be generated by a similar circuit mechanism as gamma

rhythm. For example, two Hodgkin-Huxley type models of interacting pyramidal neurons

and interneurons, with a number of commonalities but also some differences, exhibit

network oscillations either in the gamma band [342] or beta band [183,185]. The timescale

of beta rhythmicity is comparable with the spike afterhyperpolarization lasting for 30–100

ms that has been revealed by intracellular recording of motor cortex neurons in awake

monkeys [169]. The slower frequency may be determined by a mixture of cellular and

synaptic properties, including voltage- and calcium-gated potassium currents in pyramidal

cells and the strength of recurrent excitatory connections [1052,1054,817], perhaps also

involving specific subtypes of interneurons [758,682,667].

It is presently not fully understood what are the circuit properties required to quantitatively

explain the observed relative phase lag between excitatory and inhibitory cells during

gamma and beta rhythms [342]. A critical step forward is to not just look at the phase

relationship of spike firing of different neural populations, but also the phase relationship

between the spiking activity of a neural population and the synaptic current produced in

target neural populations. In a remarkable paper, again studying in vitro cholinergically

induced gamma oscillations, Oren et al. [746] measured phase distributions of excitatory and
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inhibitory synaptic currents in the pyramidal cells and three different types of interneurons.

It will be interesting to see, in future work, whether the observed phase relationships of

firing activity and synaptic currents can be quantitatively accounted for by the theory of

sparsely synchronized oscillations [124,127,342,662].

Even when fast oscillations are generated by reciprocal interactions between pyramidal cells

and interneurons, inhibitory synaptic inputs may be especially suited for mediating precise

synchrony in a cortical circuit [616,177,756,778,666,934,701], and subclasses of

interneurons that target soma or dendrites of pyramidal cells produce entrainment in a

frequency- and phase-specific manner [934]. This is consistent with the finding in vivo that

inhibitory synaptic potentials contained more power in the gamma frequency range than

excitatory synaptic potentials (Fig. 15C), and barrages of IPSPs but not EPSPs showed

marked synchrony between simultaneously recorded pyramidal neurons [423,405,35,404].

In this view, high frequency LFP fluctuations are likely to reflect more synaptic inhibition

than excitation.

To conclude, the theory of sparsely synchronized oscillations provides a promising new

framework, that goes beyond the idea of coupled oscillators, for describing fast rhythms in

the cerebral cortex. These two theories make distinct predictions. In particular, according to

the model of coupled oscillators the interneuronal mechanism generates synchrony

preferentially in the gamma frequency range; in contrast, the theory of sparsely

synchronized oscillations predicts that gamma rhythms primarily arises from interactions

between excitatory and inhibitory neurons, whereas mutual inhibition between interneurons

naturally gives rise to ultrafast (> 100 Hz) oscillations. Importantly, the theory of sparsely

synchronized oscillations makes it possible to reconcile population oscillations with highly

stochastic firing of single neurons.

VI. Functional implications: synchronization and long-distance

communication

The previous sections covered the basic physiological mechanisms of brain oscillations

observed in behaving conditions, and a framework for describing cortical rhythms with

irregular firing of single neurons as commonly seen in alert behaving states. We are thus in a

position to discuss how cortical synchronization may contribute to cognitive functions. Most

of the work summarized here involves descending top-down signaling in the neocortex of

monkeys and humans.

A. Methodological considerations

Recent years have seen a surge of research on oscillations and their synchronization across

cortical areas during a variety of cognitive tasks. While these studies hold great promises,

they also brought into the fore many methodological issues that remain to be resolved. As

pointed out by Uhlhaas et al. [987]: ‘In contrast to conventional analyses of ERP [evoked

response potential], e.g., there are currently no general guidances and standards regarding

the analyses of task-related oscillations and their synchronization. Analyses of oscillations

are dependent upon several parameters, such as the choice of size of the width of the

analysis window, the assessment of pre-task baseline activity, the methods to assess spectral

densities, phase locking, and coherence. Last but not least, even details such as the

definition of reference electrodes in EEG recordings need to be standardized to guarantee

replicability and comparison of results’.

Without diverting into technical details, it is worth briefly pointing out here a number of

issues, some of which are not only about measurement or analysis but fundamentally depend
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on our understanding of the nature of neural dynamics (e.g. neurons are viewed as regular

oscillators or irregularly firing devices) in the cerebral cortex.

First, caution must be exercised with interpreting scalp EEGs [1088,314]. For example,

certain forms of induced gamma band responses from scalp EEG, characterized by transient

enhancement of broad band (30–100 Hz) power ~200–300 ms after stimulus onset [932],

may actually be an artifact related to eye muscles that produce miniature saccades [1088]

(see [676,1089] for a debate; among the contentious issues is the choice of the reference

point for EEG data). MEG, intracranial EEG and LFP are less prone to such artifacts.

Second, unlike clock-like rhythm (with a narrowly peaked power spectrum) observed in

vitro under certain conditions (Fig. 15A), the power spectrum of LFP recorded in vivo is

typically dominated by a power-law (~ 1/fα) over a wide range of frequencies

[148,576,431,185]. A rhythm, if present, is manifested by the existence of a small peak

superimposed on this broad power spectrum (Fig. 15B). A common practice is to filter out

this power decay (‘normalizing the power spectrum’) prior spectral analysis [689,878,873],

often assuming α = 1 (‘1/f noise’). This, however, could lead to artifacts. For example,

frequency scaling of LFP power spectrum may depend on the behavioral state, with α
varying between 1 and 2 [70,69].

The power law of LFP spectrum is partly due to low-pass filtering by the extracellular

medium [70,71], but also reflects fluctuations of neuronal signals on multiple timescales.

Indeed, during episodes of spontaneous network activity (‘Up state’) [240,404] or sensory

responses [269], excitatory and inhibitory synaptic potentials in a single neuron display

fluctuations on a range of timescales (Fig. 15C); and such synaptic currents across the

dendrosomatic membrane are a major component of the physiological substrate of LFP.

Further, it has been suggested that, in some cases, an enhanced high-frequency power might

not reflect synchronous rhythms but a decrease in the low frequency power and a

concomitant broadband power increase [684]. Therefore, in order to assess synchronous

oscillations, it is important to understand better LFP broadband power structure and its

dependence on behavioral conditions.

Third, since the voltage produced by volume conducting currents decays inversely with

distance from the point sources, LFPs in neighboring structures might be synchronous

merely as a result of volume conduction [732,955] (but see [906]). Current source density

(CSD) analysis [722,299,690,266,764] avoids this problem. On the other hand, rhythms are

often not detectable in the spike trains of individual cells. For these reasons, spike-field

coherence has become a measure of choice for assessing relative timing of neural activity to

a population rhythm, or synchronization between brain regions (with LFP recorded in one

area, and spiking activity in another). Statistically reliable estimation of spike-field

coherence, however, remains a difficult problem. For example, results of multitaper spectral

analysis are sensitive to the number of tapers used and to a suitable smoothing frequency

window. The values of these parameters are often chosen ad hoc; a disciplined approach is

lacking [314]. Observed coherence (defined between 0 and 1) is usually quite small: in

attention studies, with LFP and spiking activity recorded from the same area, spike-field

coherence is typically on the order of 0.1 for multi-unit spike trains [1070] and single-unit

spike trains [84], whereas spike-spike coherence of multi-units is ~ 0.05 [314]. This

underscores the notion that oscillatory synchrony, if present, is weak between neurons.

Fourth, a peak in the coherence spectrum of two neural signals is readily interpretable when

both signals are rhythmic (each with a peaked power spectrum) (Fig. 15D). However, it can

happen that one of the signals is rhythmic while the other is not. This is illustrated by a study

with awake cats [64]. It was found that LFP coherence between the basolateral amygdala
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and the rhinal cortical areas was peaked in the gamma (35–45 Hz) frequency range; the LFP

of the amygdala showed a peak in the same gamma band, but those from the perihinal and

entorhinal cortices did not.

Moreover, in principle, it is conceivable that a coherence spectrum exhibits a peak, in the

absence of a rhythm. Fig. 15E shows an example in which, while the LFP power spectrum is

devoid of a clear peak, spike-field (between LFP and a multi-unit spike train) and spike-

spike (between spike trains of two multi-units recorded from different electrodes) coherence

spectra display a peak in the gamma band [314]. Thus, a peaked coherence spectrum does

not necessarily imply the presence of a rhythm.

Fifth, LFP signals may be distorted because the circuit of a metal microelectrode operates as

a voltage divider with a frequency-dependent gain [814]. This results in frequency-

dependent phase shifts and amplitude attenuation when the electrode impedance is not

negligible relative to the effective input impedance of the head-stage amplifier [717].

Consequently, caution is warranted in the analysis of frequency-dependent phase shifts

(such as the relative phase between LFP and spike discharges) and interpreting them as

evidence of a ‘phase code’.

Sixth, synchronous events occur episodically, typically lasting only for ~ 200 – 500 ms

[378,711,678,285,349,760] (Fig. 15D). Several methods have been developed, including

multitapering [759,1069,1091,560], wavelet transforms [932,566,549,550,561], empirical

mode decomposition using short-term Hilbert transform [585], ‘matching pursuit’ using

Gabor functions [796]. But the relative advantages and shortcomings of these methods are

not fully understood. At the very least, it should be insisted that reported oscilatory/

synchronous episodes must last much longer than the time window used in such analyses.

In response to long-lasting inputs, short oscillation episodes may reoccur intermittently in a

slow temporal pattern [378,711,1043,67,788,557]. Modeling studies discussed above are not

adequate to account for recurrence of transient episodes of neural activity, which remain to

be better understood theoretically (but see [789]).

Seventh, coherence spectrum reflects both correlation of power amplitudes and phase

synchronization. To avoid this confound, elaborated methods such as phase-locking

statistics [543,1004] and power-correlation as a function of the relative phase [1070] have

been developed to more directly assess phase coherence of two neural signals. However,

such methods are justified if the two signals are strongly oscillatory with a nearly identical

rhythmic frequency (so the phase is well defined in the same way for both signals). By

contrast, the applicability of such methods is not entirely clear if the two signals have broad

band power spectra, as is generally the case. At a minimum, such studies need to ensure that

each of the two signals does display a peaked power spectrum (hence a rhythm is present),

and that the peaks of the two spectra have a considerable overlapping frequency range. Lack

of such information would render it difficult to evaluate the meaning and implications of

reported phase coherence.

Eighth, as there are often two or more inter-nested rhythms [548,907,143,819], analysis

techniques have been proposed to describe cross-frequency coupling (e.g. to examine how

the gamma amplitude depends on the theta phase). A common practice is to compute band-

passed signals at two different frequencies f1 and f2 (e.g. theta and gamma), and assess the

statistical dependence between the two amplitude time series, the two phase time series, or

one amplitude and the other phase time series [150,748,229,216,1084]. Clearly, many of the

aforementioned concerns also apply to the analysis of cross- frequency coupling.
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Ninth, long-distance communication involves interactions between multiple cortical areas.

Analysis methods have been developed to interrogate the directionality of the flow of signals

between two or multiple recorded areas, such as the Granger causality analysis

[371,118,244,560,93,381] and its frequency-domain representation [244,38]. It is currently

unclear how directionality inferred from such methods can be mapped onto the actual

anatomical and functional connectivity in the brain [288,402]. A fusion of several

techniques may help make progress on this important issue.

Tenth, even when there is no rhythm (in the sense that an LFP power spectrum does not

exhibit a well defined peak), it is a common practice to divide an LFP power spectrum into

different frequency bands [112,1017,1018,704,57,204,80]. This is often done with an

arbitrary choice of passbands, but methods such as the empirical mode decomposition

[447,585] have been developed that decompose a time-series into narrow-band components

by identifying the physical time scales intrinsic to the data. This approach has been used, for

instance, in investigations of the physiological basis of functional magnetic resonance

imaging, by examining the correlation between blood oxygenation level-dependent (BOLD)

responses and LFP power in different frequency bands. Correlations were found especially

strong between BOLD and LFP gamma power in the neocortex

[606,604,704,725,727,636,1013,361,605,1090] and theta power in the hippocampus [267].

Similarly, a coherence spectrum may not show a peak at all, but one can still consider the

coherence in different frequency bands, and seek whether the coherence at a particular

frequency is enhanced or decreased in a comparison between two stimulation or behavioral

conditions. For example, a recent study [138] examined LFP coherence between the lateral

intraparietal area (LIP) in the parietal cortex and the frontal eye field (FEF) in the frontal

cortex of behaving monkeys, during visual search which is either based on bottom-up

attention (when a salient target ‘pops up’) or top-down attention (looking for a target that is

similar to distractors). The coherence spectrum did not display a clear peak under either of

the two conditions. The difference between the two coherence spectra, however, showed that

top-down attention was associated with a differential enhancement in the beta frequency

range and a suppression in the gamma frequency range.

It stands to reason that LFP powers or coherence powers in different frequency bands

provide different information about the recorded signals and its neuronal underpinning.

Nevertheless, confusion often arises if band-passed powers are identified with various

rhythms, whereas there is no explicit assessment as to whether a well defined rhythm or

peaked coherence spectrum actually exists. Conceptually, will we be able to achieve a

fundamental understanding of the cortical dynamics, by dividing a broad power spectrum

into frequency bands and theorizing the band-passed powers in terms of oscillations?

Probably not. An adequate framework is presently lacking to explain these diverse types of

network coherence.

For the sake of clarity, below I will review studies of neural synchronization in cognitive

behaviors without dwelling on methodological issues. However, it is worth keeping in mind

the potential pitfalls discussed above, which call forth a concerted effort to set the standards

for the field.

B. Phase coding

Phase coding is a key, yet still controversial, concept in studies of the role of neural

oscillations in local circuit functions and in long-distance communication between brain

areas [144,143,850,313,951,786,955], as well as in memory functions

[594,591,425,488,592]. In general, the phase coding hypothesis posits that neurons represent

information in terms of spike times with respect to the phases of ongoing network
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fluctuations, rather than only by spike rates. In a simple situation, network fluctuations (e.g.

measured by LFP) are rhythmic with a well defined periodicity T. If neuronal spike times

(defined in the phase variable φ = 2πt/T mod(2π)) are not uniformly distributed between 0

and 2π, but narrowly concentrated around a preferred phase of the LFP oscillation, then

spike phases may convey information (e.g. about a sensory stimulus or behavioral metrics),

above and beyond average spike counts.

An extensively studied example of phase coding is the neural representation of space in the

hippocampus and entorhinal cortex. As introduced at the beginning of this article, during

exploration in a familiar environment, a pyramidal ‘place cell’ in the hippocampus is

activated when the animal passes through its ‘place field’ [739], hence it shows a bell-

shaped activity profile in space and (given a constant velocity) over time (Fig. 16A).

Furthermore, spike firing exhibits phase precession, shifting to earlier phases of the theta

cycle as the animal moves across the place field (Fig. 1A). Pooled-trial phase precession

ranges over 360 degrees (a full theta cycle) [740,881,418,456,1099,661,1081,660]; there is a

large trial-to-trial variability and single-trial phase precession range is limited to ~ 180°

[848]. The firing rate of a place cell is a bell-shaped function of spatial location, hence is

roughly the same for the animal to be at different locations of equal distance to the center of

the place field. In contrast, because of the phase precession phenomenon, the preferred

phase of neural firing relative to the theta cycle is a linear function of the animal’s location

across the place field, thus can potentially disambiguate locations that spike counts alone

cannot. Indeed, analyses suggest that position reconstruction from activity of hippocampal

place cells can be improved by taking into account the contributions of phase coding

[881,473,456,865].

Phase precession of hippocampal place cells has been proposed to result from recurrent

network dynamics [977,1021,674,945]. However, neurons in the medial entorhinal cortex

layer II, which provide the main inputs to the hippocampus, also display hippocampus-

independent phase precession [401]. Another, ‘somadendritic interference model’ for phase

precession [492,625,338] assumes the interplay of two oscillatory inputs onto pyramidal

cells: a pacemaker input (e.g. somatic inhibition driven by the medial septum) and a

dendritic excitation (e.g. from the entorhinal cortex) that is spatially dependent hence

increases as the animal moves toward the center of the place field. A somewhat different,

‘dual oscillator interference model’ assumes the linear addition of two independent

oscillatory influences onto pyramidal cells [740,575]. Consider a place cell that receives the

sum of two sinusoidal inputs I = A(sin(2πf0t) + sin(2πfit)), where f0 represents an external

input (and reflected by LFP), fi is determined by some intrinsic mechanism and is higher

than f0. If the difference between fi and f0 is small, the two waves move in and out of phase

in an interference pattern, with the beating frequency  proportional to (fi − f0). Assume

further that the neuron fires spikes when the total input exceeds a threshold, then spike

timing naturally displays phase precession with respect to the LFP theta wave at f0. Since the

change in the firing phase Δφ ~ fbt, and the location of the rat in the place field Δx ≃ vt

(where v is the running speed), Δφ ≃ (fb/v)Δx grows linearly with the spatial location.

Moreover, if the intrinsic frequency fi increases with v, such that fb ≃ κv, then Δφ ≃ κΔx, i.e.

the linear relationship between the spike phase and the spatial location does not depend on

the running speed. This prediction has been confirmed experimentally [343].

The membrane potential oscillation during phase precession is differentially predicted by the

three models: it exhibits a beating pattern in the dual oscillator interference model, a ramp-

like depolarization with increasing theta oscillation amplitudes in the soma-dendritic

interference model, and a ramp-like depolarization with a constant theta oscillation

amplitude in the recurrent network model (Fig. 16B). In a tour de force, Harvey et al. tested

these models by intracellular recording from hippocampal cells in mice performing virtual
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navigation [422]. It was revealed that the membrane potential of pyramidal neurons exhibits

the time course predicted by the ‘soma-dendrite interference model’ but not other models

(Fig. 16C). Furthermore, the membrane potential undergoes phase precession with respect to

LFP, whereas spiking always occurs at the peak of the transmembrane voltage oscillations

(Fig. 16D–F), in agreement with the ‘soma-dendritic interference model’. It remains to be

seen whether the recurrent network model can be modified to account for these data.

The dual oscillator interference model has also been applied to the entorhinal cortex, where

layer II pyramidal cells display multiple firing fields as predicted by the model (Fig. 15B,

top trace). Indeed, these ‘grid cells’ fire whenever the rat is on any vertex of a triangular

lattice spanning the whole surface of the environment [400,843,703]. In recent years, the

dual oscillator interference model has been proposed to account for phase precession as well

as the spatial pattern itself of grid cell activity [737,136,135,426]. The basic insight is that

given animal’s running speed v, a temporal interference pattern is converted into a spatial

interference pattern (a grid) of firing activity, with the characteristic spatial length 

[136,135,86]. The model predicts that the grid scale decreases with the frequency of theta

modulation of grid cells, but does not depend on the animal’s running speed, which was

supported by experimental measurements from behaving rats [471]. Furthermore, the grid

scale increases from dorsal to ventral medial entorhinal cortex [400]. Assuming that the

frequency fi reflects intrinsic membrane oscillations of stellate cells in layer II of the

entorhinal cortex [13,1047,272], the oscillatory interference model predicts a decreasing

gradient of the oscillation frequency along the dorso-ventral axis. Consistent with this

prediction, an in vitro study found that stellate cells near the dorsal border have slightly

higher frequencies (by ~ 2 Hz) of subthreshold membrane oscillations than those near the

ventral border of entorhinal cortex [357,426]. It remains to be seen whether this modest

variation in the oscillation frequency is sufficient to account for the observed grid scale

gradient from dorsal to ventral medial entorhinal cortex. One potential weakness of this

scenario is its extreme sensitivity to noise: computer model simulations found that the grid

structure is completely lost when a noise as small as 0.003 Hz was added to the intrinsic

frequency fi [355]; and it was estimated that a biologically constrained oscillatory

interference scenario predicts a stable grid pattern only for less than 1 sec, far less than what

is observed experimentally [1096]. Understanding whether the model can be rendered

robustly in spite of neural variability will critically test the oscillatory interference model.

In the neocortex, the idea of phase coding at <10 Hz is supported by evidence from a

number of physiological work on rats, monkeys and humans. In a study of visual responses

to natural visual stimuli (movies) in anesthetized monkeys, phase coding was examined in

different frequency bands of LFP fluctuations. It was found that spike phases of low-band

(1–4 Hz [693,1051] or 8–12 Hz [504,750]) passed LFP conveyed a significant amount of

additional information about movie stimuli beyond that conveyed by spike counts alone.

Such a phase dependence may come about through a conversion from the strength of

afferent input into a particular phase of neuronal firing (the ‘rate-to-phase transform’ ).

Mclelland and Paulsen examined the ‘rate-to-phase transform’ of single pyramidal cells in

rat neocortex in vitro and found that, in the presence of a theta-band membrane oscillation,

the level of a tonic excitation could be linearly converted onto a preferred firing phase [670].

In human studies, it was reported that detection of a near-threshold stimulus depends on the

stimulus onset time relative to the phase of ongoing 5–10 Hz oscillations in the frontal

cortex [137] or parietal cortex [657]. The likelihood of perception of a faint stimulus

depends on neural excitability, which covaries with EEG fluctuations on a fine timescale. As

a result, the threshold of conscious perception varies with the phase of theta/alpha band EEG

oscillations [274,995,657,137,1077].
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Phase coding has also been proposed for fast gamma-band oscillations [313]. A recent study

reported that, in a task when monkey must remember two stimulus items during the

mnemonic delay period, spikes of neurons in the prefrontal cortex carried most information

about the individual memorized objects at different gamma oscillatory phases according to

their order of presentation [873]. In addition, it has been reported that, in visual cortex of

awake monkeys, gamma-band phase of neural spiking (in response to visual stimulation)

displayed a systematical relationship with the firing rate [1011]. Other studies raised

questions about the robustness of phase coding at gamma frequencies. Gamma oscillations

are very variable in the neocortex; the oscillation frequencies range widely, and the moment-

to-moment LFP cycle duration and phases fluctuate greatly over time. For instance, in an in

vivo rat experiment, the gamma cycle duration was found to vary considerably (12 to 40

ms), whereas the timing of maximum neural firing relative to the gamma peak remained

fixed, implying that the preferred oscillatory phase of neural activity is not reliable [35]. In

the aforementioned monkey experiment using movie stimuli, at higher frequencies (> 12

Hz), the phases of band-passed LFP were highly unrepeatable across different trials at fixed

sensory input (Fig. 17) [693], hence phase coding at higher frequencies (including the

gamma band) was unreliable (see also [797]). Search for stimulus coding by EEG gamma

phase in human studies has yielded mixed results [975,518]. Finally, in their in vitro work

Mclelland and Paulsen did not observe the ‘rate-to-phase transform’ of single pyramidal

cells (the firing phase was independent of the tonic input intensity), if the ongoing rhythm

was at gamma rather than theta frequency [670], in discord with the idea that the input

intensity could be encoded by the gamma phase of spiking discharges.

In general, phase noise represents a hindrance for phase modulation as a communication

scheme [325]. Quite unlike sinusoidal waves typically analyzed in artificial communication

systems, neural circuit oscillations are nonlinear. Nevertheless, whereas stable nonlinear

oscillators are resistant to amplitude perturbations, they are sensitive to phase perturbations

[359,710,922,465]. Therefore, noise is a considerable concern for the phase coding concept,

more so for higher frequency rhythms (e.g. gamma-versus theta-band). Quantifying the

variability of LFP phases, the variability and the fraction of spikes phase-locked to LFP

fluctuations, will help clarify the concept of phase coding in studies of local processing as

well as synchronization between cortical areas discussed below.

C. Learning and memory

Insofar as spike synchrony represents a versatile mechanism for sculpting neural temporal

correlations, it is a significant factor in determining synaptic learning by virtue of STDP. In

line with the facts that theta phase coding of information is reliable (Section VI-B), and

activity induced synaptic plasticity depends on spike timing relative to theta phase

[753,450], numerous studies on behaving humans and animals have implicated theta phase

modulation in memory formation and retrieval [515,424,60,425,488,518,432,156,24]. A

focus of recent research is the interaction between the hippocampus and neocortex, which is

functionally important for memory consolidation [931]. Simultaneous recordings from the

hippocampus and medial prefrontal cortex in freely behaving rats found that many prefrontal

neurons discharge spikes that are phase-locked to the hippocampal theta rhythm

[484,870,458,878,260], presumably driven by monosynaptic connections from the the

ventral CA1 [470,421]; and gamma oscillations generated locally in the neocortex are

entrained by the hippocampal theta rhythm [878]. Correlated neural firing and LFP

coherence between the hippocampus and frontal cortex were enhanced at the theta frequency

during a spatial memory task [484], correlation analysis of simultaneously recorded single

hippocampal and frontal neurons revealed a hippocampofrontal directionality [870]. This

theta-entrained communication may play a role in inducing spike-timing dependent plastic

changes across these networks. Furthermore, intracranial EEG recording in epilepsy patients
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[287,854], rat [1045,961] and monkey physiology [486] indicate that gamma-band

oscillations and gamma-theta coupling may also contribute to learning and memory

processes. In particular, the dialog between hippocampus and neocortex is mediated through

the perirhinal and entorhinal cortices. The rhinal cortices are also strongly and reciprocally

connected with amygdala; this connection is thought to be important to facilitate learning in

emotionally arousing situations. In awake and behaving rats, coherence of gamma

oscillations is prominent in LFPs simultaneously recorded from the rhinal cortices and

amygdala, and single-unit spiking activity in both structures was modulated by field

oscillations, suggesting a role of gamma-band coherence in effective communication

between the amygdala and rhinal cortices [64]. There is also evidence for gamma band

coupling between the frontal cortex and striatum [76] and theta-band coupling between the

hippocampus and striatum [960] during action selection, and gamma-band coupling between

the amygdala and striatum during learning [777].

Sleep has long been thought to aid consolidation of newly acquired information in the

memory system, and there is accumulating evidence for a beneficial effect of sleep on

memory consolidation [919,100,1020,920]. Interestingly, while dreams during REM sleep

are often thought of as reactivated memories, recent work suggests that non-REM, slow

wave sleep is also involved with memory consolidation. In a spatial task where rats

repeatedly ran through a sequence of place fields of several simultaneously recorded

hippocampal place cells, it was found that immediately following the experience, these cells

repeatedly fired in the precisely same sequential order during slow wave sleep [565].

Furthermore, during slow wave sleep, hippocampal neurons are phase locked to neocortical

Up and Down states [403]. Frontal neurons consistently fire within 100 ms after

hippocampal neurons and this coupling is much stronger during sharp wave sleep than REM

sleep [1055]. Coordinated activity in hippocampal and neocortical neurons displayed replay

of temporal patterns observed in the previous awake experience, suggesting that slow wave

sleep may facilitate simultaneous reactivation of coherent memory traces in the

hippocampus and neocortex [478]. In human studies, motor learning increased slow wave

activity during subsequent sleep, locally in specific brain regions, and this local increase

after learning correlated with improved performance of the task after sleep [449]. In another

study, boosting slow oscillations artificially by transcranial electrical field stimulation

enhanced hippocampus-dependent memory [647].

Precisely how slow wave sleep might contribute to memory consolidation remains unclear

presently. Compared to wakefulness, slow wave sleep is characterized by a breakdown of

effective connectivity in the cortex, as assessed by how the activation of one cortical area

(evoked by transcranial magnetic stimulation) is transmitted to the rest of the brain

[653,284]. At the same time, during slow wave sleep the cortex undergoes synchronous Up

and Down states, which might be particularly suited for inducing some form of spike-timing

dependent plasticity across brain regions. The sign (potentiation versus depression),

however, depends on precise timing relationship between neurons [81,213]. In fact, there is

evidence that excitatory synaptic connections in the cortex are overall depressed in sleep and

potentiated in wakefulness [1019], suggesting that a primary function of slow wave sleep is

homeostatic regulation of synaptic circuitry [959,283,655].

A correlation between neural coherence and memory behavior, whenever observed, is

typically weak. For example, Jutras et al. [486] recorded from single units and LFP in

hippocampus of monkeys on a recognition memory task. In the experiment, each visual

stimulus was presented twice, randomly interleaved with other stimuli. Although the

monkeys were not required to produce a behavioral response, memory recall was assessed

by monkey’s looking time on a stimulus which is shorter with a repeated item compared to

its first presentation. It was found that spike-field coherence increased by ~ 10% from a

Wang Page 42

Physiol Rev. Author manuscript; available in PMC 2010 August 19.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



baseline of ~ 0.1 in the gamma frequency range during encoding of stimuli (at their first

presentations) that were subsequently well recognized relative to those stimuli that were

poorly recognized (at their repeat presentations). The increased coherence may aid STDP

hence learning [486,1067]. One may reasonably ask: why does this ten percent of ten

percent coherence matter, and how about the majority of spikes that are not correlated with

field gamma? Stable computation may require that spiking activity of neurons is

predominantly asynchronous, and learning through STDP relies on a small fraction of

synchronous spikes, but at the present we do not know if that is the case. It will be a

challenge, in future research, to develop a quantitative, biophysical, model that can account

for memory behavior (good versus poor recognition) based on the observed small change in

spike-field coherence.

D. Multisensory integration

While wakefulness is not associated with large-amplitude EEG synchronization, subtle

synchronous coordination is thought to be important for the integrative brain functions in

behaving states. A general computation of this kind is to combine information from different

sensory modalities, such as binding of vocalized sounds with vocalizing faces in speech

perception [257]. The traditional hierarchical model posits that crossmodal integration is

instantiated by convergence of input pathways from different senses to higher-level

multisensory areas. Recent experimental evidence, however, points to the possibility that

multisensory interplay involves coherent oscillations across cortical areas

[490,687,1087,549,349,627,857,551].

Ghazanfar and colleagues investigated binding of a vocalized sound and its associated

mouth movement in monkeys [349]. They recorded LFP and single units from the auditory

cortex and the superior temporal sulcus (STS, an association area involved with integrating

audiovisual biological motion). While the power spectrum of LFP displays a peak in the

gamma band in the auditory cortex when a voice stimulus was presented, and in STS when a

face was presented, the inter-areal coherence shows a peak only when both stimuli were

presented simultaneously (Fig. 15D), hence gamma band coherence across areas is

correlated with multisensory integration. Another study by the same group used visual and

auditory inputs that were either looming or receding. It was found that coincident looming

visual and auditory stimuli to be particularly salient behaviorally (presumably mimicking an

approaching object, potentially a predator) [626]. Gamma power in an auditory cortical area

or STS was no different in the unisensory versus multisensory condition. On the other hand,

gamma-band coherence between the two areas was significantly larger with congruent visual

and auditory looming stimuli, compared to a looming visual or auditory stimulus alone, or to

incongruent visual and auditory stimuli (one was looming, the other was receding) [627].

This finding suggests that synchronization may act as a mechanism for rapidly and

transiently enhancing functional connections between selective neural populations that

encode stimuli of different modalities. The resulting correlated activity of the two cortical

areas may impact more effectively on downstream neurons [838,287,310,1068,549], as a

potential mechanism for integration of sensory information across modalities.

E. Selective attention and working memory

As noted at the beginning of this review, gamma oscillation was initially called a

‘hypervigilance rhythm’, because of its correlate with highly alert brain states [102]. Over

the years, this idea has received increasing supporting evidence. EEG or MEG recordings in

human studies have shown that attention is associated with a reduced EEG alpha rhythm

[1073,452,845,780,946,983,152] and increased gamma rhythm [311,852,224]. A recent

study using ‘dynamic causal models’ of MEG data found that forward and backward

functional connections between cortical areas are asymmetric and frequency-dependent;
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high (gamma) frequencies in higher cortical areas suppressed low (alpha) frequencies in

lower areas [168]. Enhanced gamma power associated with attention has been documented

for various sensory modalities: audition [328,952,482,785,886,388,203,223,285], vision

[270,938,754,245,797,872], somatosensation [65,824,427,797,521] and pain [386,427]. For

example, Ray et al. [797] recorded subdural electrocorticography (ECoG) in epileptic

patients, when they were asked to pay attention to either auditory stimuli or vibrotactile

stimuli. ECoG in the auditory and somatosensory cortical areas showed an early and a late

component of event-related gamma-band activity. The early component was localized in

modality specific cortical areas, and not modulated by attention. By contrast, the late

component (400 ms after the target stimulus onset) is larger in the somatosensory

(respectively auditory) cortex when subjects attended vibrotactile (respectively sound)

stimuli. Moreover, at electrode sites in the prefrontal cortex, ECoG gamma activity was

negligible when a stimulus was presented in an unattended modality, but large in response to

the presentation of an attended stimulus regardless of whether it was auditory or vibrotactile.

These observations suggest that gamma-band oscillations in a sensory area are enhanced by

selective attention, involving top-down signals from the prefrontal cortex.

In a groundbreaking study, Fries and collaborators [312] combined neuronal recording with

LFP measurements in monkeys performing a task that depended on location-specific visual

attention. In this task, monkeys were required to direct attention to one of two visual

(moving grating) stimuli which were inside and outside, respectively, the receptive field

(RF) of recorded neurons (multi-unit activity) and LFP in the cortical area V4 (an important

area for visual object processing) [312]. It was found that attention into the RF, compared to

attention outside the RF, reduced LFP power at low frequencies (< 15 Hz) and enhanced

gamma power (at 30–90 Hz) (Fig. 1B). Local synchronization was assessed using spike-

triggered averaging of LFPs, which was enhanced by attention while multi-unit spike

activity remains seemingly stochastic (Fig. 1B). This observation was confirmed with spike-

field coherence, which measures phase synchronization between spikes and LFP as a

function of frequency. Subsequently, using the same task paradigm. it was reported that

large spike-field coherence immediately before the onset of a test stimulus was correlated

with faster response times, demonstrating an effect at the behavioral level [1069]. In a

separate study using a visual search paradigm (where the subject looks for a target stimulus

surrounded by distractor stimuli) while recording from monkey’s V4, spike-field coherence

displayed a peak in the gamma band when a preferred stimulus was presented in the RF of a

recorded neuron and it matched a feature of the target [84]. Because it occurred even when

the preferred stimulus is a distractor and the target itself is not in the RF, the finding

suggests a role of gamma band coherence in parallel processing of all objects in a cluttered

scene. Finally, the same group recently carried out simultaneous recording from neurons in

V4 and in FEF (a putative ‘source area’ for top-down attention signal) and found that

attention to a stimulus in their joint RFs increased inter-areal coherence especially in the

gamma band, with a time shift consistent with the idea that FEF initiates attention induced

enhancement of gamma oscillations [381].

How enhanced synchrony might contribute to selective attention has been investigated in

modeling work. In an early study, Niebur et al. [724,723] proposed that an attentional signal

increases synchrony among sensory neurons, and this enhanced temporal correlation is

detected by interneurons, which in turn suppress other neurons selective for non-attended

stimuli thereby implementing biased competition [698,230,803]. Other work argued that

competitive advantage by attention is amplified if an attentional signal directly targets

interneurons engaged in gamma oscillations [950,948,133,97,98,1092,949]. Assuming that

oscillations are generated by an interneuronal mechanism, Tiesinga and collaborators

[950,948] examined the impact of random jitters among (otherwise perfectly clock-like)

inhibitory inputs to a pyramidal cell, and showed that less jitter (higher synchrony) leads to a
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larger slope of the pyramidal cell’s input-output relationship, suggesting that synchrony

contributes to gain modulation [665,974,973]. This scenario for the multiplicative gain

modulation requires that jitters of spike times be small (< 5 ms), thus interneurons must

behave almost like regular oscillators. A related but more general mechanism for gain

modulation is mediated by correlated excitatory and inhibitory inputs [837,838]. A fairly

consistent observation that has not been taken into account in these models is that the

variability of spike trains, measured by the Fano factor, is typically high (~ 1 or larger) and

is either unaffected [664,900] or only slightly decreased [688] by selective attention. Note

that both competition and gain modulation can be realized by mechanisms solely based on

rate modulation: e.g. competition through feedback inhibition [803,30] and gain modulation

by balanced inputs [163] or by a noise-induced input-output power law [708]. Nevertheless,

rate modulation may be enhanced by the presence of gamma oscillations [129], which might

lead to improved sensory processing such as signal discrimination [656].

These modeling studies focused on how a tonic attentional input modulates oscillations

intrinsically generated in a sensory circuit. On the other hand, top-down attentional signals

may themselves be endowed with rhythmicity. The parietal and prefrontal cortical areas are

‘source areas’ for top-down attentional signals to sensory systems [230,194,179,697], and

coherence between these areas and early visual areas is modulated by attention [872]. The

parieto-prefrontal circuit is also important for working memory, brain’s ability to temporally

hold information ‘online’ [324]. In monkey experiments where subjects were required to

remember the location of a stimulus cue across a delay period (a few seconds), neurons in

the parietal cortex [360] and prefrontal cortex [323] exhibited location-selective persistent

activity during the delay (see [188] for a review). Such persistent neural activity could also

serve spatial attention by providing a location-specific and internally sustained top-down

attention signal to bias sensory processing. Therefore, working memory and attention

control may share a common cortical circuit substrate. There is also evidence that, whereas

fast gamma oscillations are involved in the maintenance of relevant information, the slow

alpha rhythm is implicated in suppressing irrelevant information in memory

[517,475,748,749,846] and attention [845,946,246] tasks. Hence, at a given cortical site,

alpha rhythm may be reduced when attention is focused on external stimuli processed by

that brain area, but enhanced when sensory information flow to that area is behaviorally

irrelevant and should be ignored.

Does activation of the parieto-prefrontal circuit induce similar synchronous oscillations

during working memory tasks as in attention tasks? Indeed, MEG, EEG and intracranial

EEG recordings in human studies have revealed strong gamma oscillations in parietal,

frontal and other cortical areas during working memory tasks [614,444,476,994,477].

Moreover, in a monkey experiment using a spatial working memory task, LFP and spike-

field coherence in the lateral intraparietal (LIP) area showed enhanced gamma oscillations

during a mnemonic delay period [759]. A small number of single units in LIP also displayed

a peaked power spectrum in the gamma frequency range. In contrast, other studies using the

same spatial working memory task, did not find gamma oscillations in the majority of

single-units recorded from the posterior parietal cortex area 7a [480] or dorsolateral

prefrontal cortex [184]. These results highlighted the need of simultaneous recording of LFP

as well as single-unit activity, in order to resolve the discrepancy between studies and better

assess coherent oscillations in an activated parieto-prefrontal network.

Self-sustained persistent activity has been hypothesized to be generated by reverberatory

local circuit dynamics [18,364,1030]. Interestingly, in biophysically realistic models of

working memory [1029,182,939], highly recurrent networks naturally give rise to fast

coherent oscillations. The amplitude of network gamma oscillations is controlled not only by

the strength of recurrent connections, but also the ratio of NMDA and AMPA receptors at
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the horizontal excitatory connections [1029,182,939,129]. This is because, as discussed in

Sections III-C and V-C, oscillations readily occur in an excitatory-inhibitory loop, when

synaptic excitation is mediated by AMPA receptors and faster than inhibition.

If the working memory/attention circuit is prone to fast oscillations, attention induced

enhancement of gamma oscillations in sensory circuits may simply be a signature of the

engagement of such a ‘source area’ for top-down biasing signals. To test this idea, Ardid et

al. [31] considered a two-module model of spiking neurons that consists of a reciprocal loop

between a sensory (e.g. MT) network and a working memory (e.g. PFC) network. In this

model, feature-selective attentional signal, originating in the working memory circuit,

projects top-down to bias stimulus processing in the sensory circuit (Fig. 18A). The model

captures biased competition and provides a circuit implementation of the ‘feature-similarity

gain principle’, namely the attentional effect on a neuron’s firing rate is a graded ‘gain

modulation function’ of the difference between the neuron’s preferred feature and the

attended feature [973,649]. The sensory circuit (in response to a stimulus) and the working

memory circuit (when activated during sustained attention), both display sparsely

synchronized gamma-band oscillations (Fig. 18B,D) while spiking of sensory neurons is

highly irregular (with the Fano factor close to 1) (Fig. 18C,E). Thus, the model reproduces

the common observation from monkey experiments that weak network rhythmicity coexists

with highly irregular neuronal spike discharges, which is important since how synchrony

affects attention depends on the dynamical state of the network. In this model, the activation

of the ‘source area’ (which itself is oscillatory) during selective attention results in an

enhancement of oscillations in the sensory circuit (Fig. 18D) and inter-areal coherence in the

gamma frequency band. In this model, a manipulation that abolishes inter-areal coherence

reduced attentional gain modulation by about 10% [31]. Therefore, in a dynamic state where

single neurons fire stochastically rather than behaving like oscillators, gamma-band

coherence across areas may play a modest but significant role in boosting sensory

processing during selective attention.

F. Top-down signaling in a cortical circuit loop with layered structure

Curiously, while gamma oscillations are commonly enhanced under conditions that involve

cognitive control, top-down signaling itself may be particularly associated with beta-band

neural activity. As mentioned in Section I, numerous studies have documented beta

oscillations associated with movement behavior

[765,103,711,842,712,713,617,41,286,45,26,252,562,42,735,43,197,836,567,46,44,1001]

and response inhibition [536,537,520,1094,925,774]. But beta power has also been

implicated in broader cognitive processes. Descending control in cognitive tasks was

examined in several recent monkey physiological experiments, used LFP and single-unit

recordings from two cortical areas. In a delayed match-to-sample task, when the subjects

had to retain in working memory the identity and spatial location of a visual sample

stimulus, in order to decide whether it matches a second stimulus presented a delay later,

there was an enhanced coherence at ~ 20 Hz between MT (a sensory area) and LIP (a

cognitive area), in LFP or neural spikes, in a way that is specific to the preferred location

and feature of the recording sites [834]. A second study used a visual search task, and found

that the LFP coherence between LIP and FEF is enhanced at ~ 20 Hz in guided search

(which involves top-down signaling from FEF) when distractors resemble the target in some

feature (color or orientation of a visual stimulus), compared to ‘pop-up’ (which is a feed-

forward process) when the target is dissimilar to the distractors [138]. In a third experiment,

subjects performed a reach movement either freely or according to an instructed cue, and

spike-field coherence at ~ 15 Hz was enhanced between a parietal (‘reach’) area and a

frontal (premotor) area in free choices compared to forced choices [760]. It is noteworthy
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that in all three experiments, the enhanced coherence was observed in the beta, not gamma,

frequency range.

Why would beta oscillations play a special role in top-down signaling? To answer this

question, it is essential to consider in more detail reciprocal interactions between cortical

areas with laminar structures [611,612,787,167,943]. In the neocortex, gamma-band

oscillations is prominent in superficial layers 2/3 [132], which is endowed with abundant

horizontal connections [85]. In contrast, deep layers 5/6 seem to have a propensity to display

lower-frequency beta-band oscillations. In an experiment with monkeys performing an

attention task, lamina-localized recording revealed gamma oscillations in superficial layers

and beta oscillations in deep layers [130]. In consonance with this observation is the finding

from an in vitro somatosensory rat cortical slice preparation with application of kainate

[817]. When the superficial and deep layers were separated by a cut through layer 4, they

were found to exhibit oscillations in the gamma versus beta frequency ranges, respectively

[817] (see [530] for a detailed model with multiple cortical layers). Consider two

reciprocally connected cortical areas, as schematically illustrated in Fig. 19. Feedforward

projections from a ‘lower’ cortical area to a ‘higher’ area originate in the superficial layers,

whereas the deep layers of the higher area mediate feedback projections to the lower area as

well as to subcortical brain structures [352,50,253]. A recent model of the thalamocortical

system also proposes that beta rhythm primarily emerges in the deep layers of the cortex

[387]. Thus, beta oscillations produced in the deep layers may be especially involved in

long-distance signaling along feedback pathways. Top-down signals may encode

expectation that guides learning; consistent with this idea was the finding that, in the

hippocampus, beta oscillations were prominent especially in the early phase of learning in a

novel environment [77].

Beta oscillations in top-down signaling are especially well documented in the rat olfactory

system. Field oscillations occur in both gamma and beta frequency bands in the olfactory

bulb [111,91,1003,795,648,607] and the piriform cortex [111,720,775]. Simultaneous field

potential recordings in behaving rats indicated that beta band oscillations originate in the

cortex [502]. This is reinforced by a study with urethane-anesthetized rat showing that beta,

but not gamma, rhythm was abolished by lesion of the cortifugal pathway (the lateral

olfactory tract), hence beta oscillations may be produced within the piriform cortex and

(from the deep layers) projected back to the olfactory bulb [720]. Recent two-photon guided

microstimulation experiments [49] demonstrated that feedback projections from the piriform

cortex target inhibitory granule cells in the olfactory bulb, with synapses that exhibited

short-term facilitation when tested at ~ 20 Hz, suggesting a specific pathway for beta

frequency top-down signaling in the olfactory system.

A prominent role of beta-band oscillations in top-down projections would explain why inter-

areal coherence associated with selective attention [385,834], working memory [933],

guided search [726,138,139], object recognition [855], perception [327,251] or sensori-

motor integration [121,118,57,1066] is especially conspicuous in the beta frequency range.

It may also account for beta rhythm observed during attention in the basal ganglia [197] or

in the thalamus [1074], as a result of inputs from deep layers of cortical areas upstream.

Interestingly, modeling studies showed that synchronization can tolerate longer synaptic

delays for beta than gamma oscillation [282,528,83], suggesting that long-distance

oscillatory synchronization may be more robustly realized at beta frequencies.

Theta band oscillations may also play a role in top-down processing [1017,1018,871]. Just

as gamma rhythm is commonly associated with working memory and attention, so are field

theta oscillations [489,790,569,677,981] and theta-band inter-areal synchronization [844]. In

anesthetized rats, theta frequency oscillations are especially prominent in deep layers of the
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neocortex [924]. In a study with behaving cats performing a visual discrimination task

(stimulus 1, go; stimulus 2, nogo) [1018], it was found that cross-correlation of field

potentials from the primary visual cortex and the association area 7 was enhanced on go

stimulus trials, in the theta- but not gamma-band. This increased coherence is selective

between the infragranular layer of area 7 and supragranular layer of V1 (with area 7 leading

V1 by a time lag), suggesting a top-down influence. This and other studies ( reviewed in

[1017]) are consistent with the view that long-distance neural synchronization might

primarily occur in slower (beta and theta) frequency bands.

If the top-down signaling carries beta-band rhythms, how does this fit with the idea of

enhanced gamma-band oscillations during attention and working memory, as discussed

above? Feedback projections from a cognitive-type area to a sensory area preferentially

synapses onto neurons in the superficial layers 2/3, including pyramidal cells, perisoma-

targeting and dendrite-targeting interneurons (Fig. 19) [51,672]. Therefore, such top-down

signals are well suited to modulate gamma oscillations, locally generated in the superficial

layers in a context dependent manner.

Synchronization also involves interactions between the neocortex and the thalamus

[601,235,391,483,451,907,1007]. In particular, the widespread cortical projections of matrix

cells in the dorsal thalamic nuclei [483] and the intralaminar nonspecific thalamic nuclei

[601] appear to be well suited for synchronizing disparate cortical areas. The relative

importance of cortico-cortical versus cortico-thalamic connections remains to be elucidated

in the future.

VII. Synchronization dysfunction associated with mental disorders

Data reviewed above begin to reveal specific roles of cortical oscillations in integrative brain

processes and executive control. To demonstrate that these contributions are critical, one

way would be to disrupt oscillations (e.g. by optogenetic methods) and assess the

consequences in cognitive behaviors. Another direction is to examine how neural

synchronization may be impaired in patients known to exhibit deficits in information

integration, working memory and selective attention. Insights gained along this line would

not only clarify whether, or in what specific ways, cortical oscillations are truly important

for cognition, but also might help us understand the neural circuit basis of cognitive

impairments associated with brain disorders. Summarized here briefly, this area of research

is still new, but with potentially significant implications in Psychiatry and Neurology

[986,564,428,989].

A. Schizophrenia

Cognitive deficits are at the core of a wide range of mental pathologies in schizophrenia

[379]. Friston argued that key cognitive functions that are impaired in schizophrenia, such as

distractibility of attention and loosening of association in thought, could be caused by

abnormal functional connections in the brain [316]. A number of theoretical, behavioral and

fMRI studies reported impaired connectivity in the schizophrenic brain

[438,558,439,1059,336,212,596,1063]. In physiological studies, there have been an

avalanche of recent publications reporting impaired beta-and gamma-band synchronization

in schizophrenic patients in a variety of behavioral tasks

[541,570,894,895,534,926,986,926,174,587,398,295,987,55] (reviewed in [988]). Some of

these studies are not free from confounds discussed in Section VI-A but, taken together, a

consistent observation is that EEG fluctuations in the beta and gamma bands are abnormal in

schizophrenia. For example, while subjects viewed a Gestalt stimulus, phase coherence

between distributed cortical areas was reduced in schizophrenic subjects compared to

control, in either gamma [894] or beta [986] frequency range. A few studies attempted to
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directly assess the correlation between synchrony and behavior. Spencer and collaborators

[895] found that in response to a Gestalt stimulus, there was a brief (~ 100 ms) burst of

gamma-band EEG power phase-locked to the reaction time in the occipital cortex of healthy

subjects, but the peaked power was weaker and at lower frequencies in schizophrenic

patients. In another study, the behavioral task had two conditions under which the demand

for cognitive control was either high or low [174]. It was found that gamma-band power was

enhanced under the higher than the low demand condition, in healthy subjects but not in

schizophrenic patients (who performed worse than the control group). In yet another

experiment, schizophrenic patients did not perform as well as the control group in a

perception task (detection of human faces in degraded pictures); at the same time, MEG over

parietal cortical sites displayed sensory responses concentrated in the beta/gamma frequency

range, that was smaller in schizophrenia than in healthy subjects [953,989]. Recent studies

found abnormal gamma-band EEG signals [399], and abnormal brain network connectivity

as assessed by correlations of beta-band MEG signals recorded in the prefrontal and parietal

cortices [59], during working memory in schizophrenia.

Inter-areal connections may well be aberrant in schizophrenia, but physiologically measured

alternation in inter-areal coherence may also arise from impaired dynamics in circumscribed

brain structures leading to abnormal brainwide neural signals. For example, a computational

study suggests that the lower frequency of EEG oscillations seen in schizophrenic subjects

[895] could be explained by some observed deficits in the inhibitory GABA system of

schizophrenic patients in the prefrontal cortex. Specifically, decreased GABA transporter 1

(GAT1) and the 67 kiloDalton isoform of glutamate decarboxylase (GAD67, an enzyme that

synthesizes GABA) [579,580] may lead to a slower GABAA receptor mediated IPSCs,

hence lower-frequency oscillations [1009]. Moreover, in a rat model of schizophrenia, a

reduction of parvalbumin-expressing interneurons in the medial prefrontal cortex and ventral

subiculum gave rise to a reduced gamma-band response to a conditioned tone during a latent

inhibition paradigm and an impaired behavioral expression of latent inhibition [602].

On the other hand, schizophrenia is associated with NMDA hypofunction (especially in the

prefrontal cortex) [535,199], which may cause cognitive dysfunctions in multiple ways.

First, NMDA receptors are important for synaptic plasticity hence abnormal NMDA

signaling is detrimental to learning and memory [903]. Second, working memory may be

impaired because persistent activity cannot be stably maintained by fast AMPA receptor

mediated excitation alone [1029,182,259,1030,939,800,1023]. Third, NMDA receptor

mediated excitatory reverberation may be critical for slow time integration of information

underlying decision making computations [1032,1071,1034]. Fourth, NMDA hypofunction

leads to a selective reduction of the excitatory drive for a subpopulation of interneurons

[389,582,1024,72], one of the consequences could be abnormal inhibition-dependent

synchronous oscillations [593,818,633]. The precise mechanism remains controversial, in

part because in the adult rodent frontal cortex, the majority of parvalbumin-expressing fast

spiking interneurons, which should play a critical role in gamma oscillations, are devoid of

the NMDA receptors [1024]. Such changes could occur throughout the cortex, or more

selectively in certain cortical regions like the PFC. Since strongly recurrent working

memory circuits are particularly prone to fast oscillations, as we discussed above (Section

VI-E), abnormal gamma or beta rhythm observed in schizophrenia could be a sign of an

impaired working memory circuitry [1033], in line with the well documented working

memory and selective attention deficits associated with schizophrenia [363,379,52,258]. In

addition, cortical oscillations are strongly influenced by the activation of neuromodulators,

and an early lesion study [692] showed that cortical gamma rhythm in the parietal and

frontal cortices depended on dopamine signaling which, as is well known, is severely

impaired in the PFC associated with schizophrenia [363,265,853].
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In summary, extant empirical evidence points to two candidate explanations for reduced

beta- and gamma-band synchronization associated with schizophrenia: (a) dysfunctional

operations in the prefronto-parietal circuit of critical importance to working memory,

attention and decision making, and (b) impairments in long-range connections throughout

the brainweb. Obviously, these two are not mutually exclusive, and may both be affected by

the disease. Future experiments designed to differentially elucidate these two scenarios

would shed important insights onto the brain circuit basis of integration dysfunctions in

schizophrenia.

B. Autism spectrum disorders

Patients with autism spectrum disorders (ASD) have impaired sociability, communication

deficits, and unusual patterns of restricted activities. Individuals with ASD commonly show

‘persistent preoccupation with parts of objects’; they are superior at certain tasks that require

attention to local details, but poor at performing tasks based on global meaning. Therefore, a

characteristic of ASD appears to be a relative inability to integrate pieces of information into

coherent wholes [317,416,346,417]. The ‘weak coherence account’ has recently been

examined using fMRI and EEG/MEG techniques. fMRI experiments consistently reported a

reduced functional connectivity in ASD subjects [158,485,529,1010,493]. Of particular

interest were the observations of a reduced connectivity in the cortical language system

during sentence comprehension [485], and in the prefronto-parietal system of ‘theory of

mind’ when patients were asked to attribute a mental state to animated geometric figures

with implied intentions (e.g. coaxing, tricking) [493]. More recently, EEG/MEG studies,

with much better time resolution (but poor spatial resolution) than fMRI, have been carried

out to assess neural synchronization in ASD subjects [382,120,707,1064,78,745,685]

(reviewed in [986,813,989]). The results so far are inconclusive, and reported abnormality of

gamma-band EEG power in ASD patients was not correlated to behavioral difference with

the healthy control group. Among possible reasons are that most published work looked at

band-passed EEG powers in different locations rather than inter-areal coherence, and that in

these studies subjects were either in the resting state or viewing visual stimuli, but not

engaged in processes (such as mentalizing, or communicative intent) that are dysfunctional

in ASD. Future studies will undoubtedly address these issues. It will also be interesting, in

future work, to combine fMRI with simultaneous EEG/MEG recording in order to

investigate whether and how abnormal neural synchrony in the brain system directly

correlates with atypical functional connectivity measured by fMRI in ASD subjects.

Interestingly, whereas schizophrenia is associated with NMDA hypofunction, the autistic

brain appears to exhibit NMDA hyperfunction. Studies using a rat model of autism (with

prenatal exposure to valproic acid) suggest that ASD is associated with an abnormal increase

in the NMDA receptor expression, leading to hyper-plasticity and hyperconnectivity

between pyramidal cells in local cortical circuits [807,808,809,646]. This would provide an

explanation for dysfunctional brain connectivity. In addition, as discussed in Sections III and

V (Fig. 14), a tightly maintained balance between synaptic excitation and inhibition is

critical to normal neural synchronization. Hence, an abnormal excitation/inhibition ratio (in

part due to excessive NMDA receptor expression) associated with heterogeneous subtypes

of autism [825,215] could give rise to aberrant neural synchronization (and potentially the

resulting behavioral symptoms) associated with autism spectrum disorders. Therefore, in

principle, the same molecular alternation (impaired NMDA signaling) can cause abnormal

connectivity assessed by fMRI and abnormal synchrony measured by EEG/MEG, hence the

two must be correlated; but they occur through separate processes (synaptic plasticity and

‘online’ excitation/inhibition dynamics, respectively).

Brain dysfunctional connectivity has drawn increasing attention not only in schizophrenia

and autism research, but also in the fields of neurodegenerative diseases [429] and
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neurological disorders [428]. This in part arose from a growing appreciation that inasmuch

as cognitive functions are carried out through coordinated action of multiple interacting

brain structures, cognitive deficits associated with brain disorders cannot be fully understood

in terms of focal abnormalities confined to certain brain regions. To make progress, we need

to know a lot more about the brain connectome [897,586,92,860,996]. What are the defining

features of the brainwide architecture? Can it be described by the small-world network or

other types of complex networks [436,896,56,3,491,993]? Can we use graph theoretical

analysis to assess circuit properties (such as the path length (a measure of effective

communication), the clustering coefficient (the degree of clustering of connections), cost

efficiency, hub structures (nodes with an exceptionally large number of connections and low

clustering)), as a tool to quantify the network basis of mental illness? For example, the

brains of both Alzheimer’s disease [901,219] and schizophrenia [58,829] show shorter path

lengths (indicative of network randomization), but what are the differences in their

connectivity properties that can account for the entirely different behavioral symptoms of

these two brain diseases? Likewise, abnormal gamma and beta oscillations have been

observed in patients with schizophrenia, ASD and other brain disorders, but are these

deficits specific in each disorder to serve as a biomaker and phenotype for diagnostic

purpose? Future research along these lines is needed to identify distinct types of network

dysfunctional connectivity associated with different disorders.

VIII. Concluding remarks

Remarkable progress has been made over the last two decades in our understanding of the

physiological basis of synchronous oscillations such as gamma and theta rhythms, which

occur in the cerebral cortex of awake behaving mammals. We have learnt that there is a

wide diversity of cellular and circuit mechanisms underlying the generation of such

rhythms; at the same time some unifying themes and general principles have begun to

emerge. Impact of single neuron properties on network oscillations can be systematically

characterized according to whether they display type I or type II phase response dynamics,

resonance, or pacemaker properties. Intrinsic gamma or theta (subthreshold or bursting)

oscillations in individual neurons appear to critically depend on voltage-gated sodium and

potassium channels. This is in contrast to, for example, spindle waves during quiet sleep or

epileptic discharges where rhythmogenesis of pacemaker neurons relies on calcium channels

[964,908,968,236].

As a general rule, for cortical rhythms observed in awake states, circuit synchronization

depends on synaptic inhibition, either through mutual inhibition in an interneuronal network,

or feedback inhibition in a reciprocal loop between excitatory and inhibitory neural

populations. Subclasses of GABAergic cells contribute differentially to different rhythms,

and to the timing of pyramidal neuronal activity at different phases of an oscillation cycle.

Cortical rhythms can arise from synchronization of coupled oscillators when noise is absent

or small, which are well described in the framework of coupled oscillators. Alternatively,

they can emerge from strong feedback synaptic interactions in a predominantly

asynchronous circuit with highly stochastic spiking activity of individual cells, which are

captured by the theory of sparsely synchronized oscillations. These two scenarios should be

readily distinguishable when the level of population rhythmicity or coherence is

quantitatively assessed at the same time as the variability of single neuron spike activity.

Furthermore, importantly, they have contrasting predictions about the circuit mechanisms of

different fast cortical rhythms. As we have seen, rhythms produced by an interneuronal

mechanism in cortical circuits are ultrafast (> 100 Hz) when single neurons fire irregularly

in a sparsely synchronized oscillation, but at ~ 40 Hz when single neurons behave like

regular oscillators. With highly irregular firing of single neurons, the excitatory-inhibitory

loop mechanism naturally gives rise to gamma-and beta-band oscillations. The propensity is
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especially high when recurrent connections are strong, a characteristic of ‘cognitive-type’

(working memory and decision making) cortical areas like the prefrontal or posterior

parietal cortex. Therefore, gamma and beta oscillations are expected to be naturally

enhanced in any behavioral task that engages top-down control signals from these areas. In a

laminar cortical circuit, descending signals originate in the deep layers (which are prone to

beta rhythm) of a ‘source area’, and project to the superficial layers (where gamma

oscillations are prevalent) of a recipient area. This model remains to be tested

experimentally, and computational implications of the proposed dynamic interplay between

beta and gamma oscillations deserve to be explored in the future.

An increasing number of recent studies have documented long-distance coherence in

specific cognitive processes. Under the premise that stochasticity predominates in the cortex,

in the sense that single neuron firing is irregular and population activity is prevalently

asynchronous, functional implications of weak synchrony embedded in highly stochastic

neural activity patterns can be more appropriately appraised in the framework of sparsely

synchronized oscillations rather than coupled regular oscillators. Two possible views are

conceivable with regard to the role of weak synchrony in long-distance neuronal

communication. In the first scenario, the bulk of (asynchronous) spike firing might be

somehow blocked, e.g. due to a strict balance between excitation and inhibition [1015].

Consequently, as a ‘default mode’ inter-areal communication channel is closed in the

absence of synchronization, and transient coherence provides a temporal window of

opportunity for effective communication. In an alternative scenario, spike firing

(synchronous or not) carries the main flow of information among cortical areas. Some types

of computation and synaptic plasticity critically depend on correlations in fluctuating neural

activity, and synchronous oscillations provide an appealing means for modulating

spatiotemporal neural correlations. This modulation may be modest but important, in the

same vein as gain modulation of sensory neurons by selective attention which is typically

weak yet functionally significant (e.g. leading to our ability to filter out unattended sensory

objects at the behavioral level). While neural firing rates and correlations may co-vary under

some conditions [165,166,221], they may be independent from each other under other

circumstances [114,312]. If so, enhanced neuronal correlation by weak synchrony could be a

viable mechanism to implement flexible and guided communications across the complex

brainwide neural network in cognition.

Looking forward, we must be cognizant that weak oscillations are only partial clues of

spatiotemporal spiking activity patterns in the cortex that are far from being well

understood. The advance of techniques such as high-density multi-electrode recording

[142,560,771] and two-photon imaging with bulk loading of calcium sensitive dyes

[736,335,380] has opened up the possibility to monitor simultaneously many single cells;

such data will give rise to insights into, and inspire novel mathematical models of, neural

circuit dynamics. The challenge is not only technical but also conceptual. Cortical neural

circuits are extraordinarily complex, and complex dynamical systems (such as turbulent

fluids with a hierarchy of coherent structures embedded in stochastic spatiotemporal

processes) cannot be described solely in terms of oscillations or even low-dimensional

aperiodic (chaotic) dynamics [337]. New developments lay ahead in our quest of

understanding the nature of the coordinated and gated brain dynamic operations underlying

flexible cognitive behavior.
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Figure 1. Examples of synchronous oscillations in cognitive behaviors

(A) Theta rhythm in the hippocampus during spatial navigation. Top: in the task, rat shuttles

back and forth along a linear track between food rewards contained in cups attached to

movable walls. Middle: color- coded firing field of a place cell created from multiple runs in

the eastward direction. Bottom: EEG theta rhythm and place cell firing (in red) for the same

cell on a single eastward run. Ticks above the spikes indicate 0°/360° phase for each theta

cycle, lines through theta waves indicate 270°. Bursts of spikes occur at higher than theta

frequency causing each successive burst to move to an earlier phase of the theta cycle,

despite initially rising, then falling firing rate. (B) Attention induces changes in synchrony in

the visual cortex. Data shown are from experiments in which two visual stimuli were

presented, one inside and one outside the receptive field of a neuron in area V4 of a

behaving monkey. In the schematics (left), the green box represents the receptive field: this

was not presented on the screen in the experiment. Red traces correspond to attention

directed inside the receptive field of the recorded neuron; blue traces correspond to attention

directed outside. Stimuli were the same in the two conditions. a and b: The continuous traces

show the stimulus-driven local field potentials (LFPs). The spikes below were recorded

simultaneously from different electrodes. c and d: Spike-triggered averages (STAs)

computed during the stimulus presentation period. The STA corresponds to the average LFP

waveform that is seen at the time of a spike. The y axes indicate the mean LFP; the x axes
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indicate time relative to the occurrence of a spike. e: Power spectra of the two STAs shown

in c and d. When attention is focused inside the receptive field, the recorded neurons tend to

fire more in phase with the frequency components around 50 Hz, and less so with respect to

the frequencies around 10 Hz. (A) Reproduced with permission from [456], (B) from [838]

with the original experimental data reported in [312].
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Figure 2. Theory of coupled oscillators

(A) Phase response curve of the classical (type II) Hodgkin-Huxley model of action

potential [437]. Top: a small and brief depolarizing current pulse leads to either a phase

delay (blue) or phase advance (red), depending on the timing of the pulse perturbation. T0 is

the oscillation period in the absence of perturbation. Bottom: induced phase change (positive

for advance, negative for delay) as a function of the oscillatory phase at which the pulse

perturbation is applied. Superimposed is the membrane potential for a full oscillation cycle

(spike peak corresponds to zero phase). (B) Fast mutual excitation naturally gives rise to

synchrony for two coupled Hodgkin-Huxley model neurons, as a cell firing slightly earlier

advances the firing of the other cell, while the synaptic input back from the other cell delays
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its own firing, leading to reduced phase difference between the two in successive cycles.

Dashed vertical lines: spike times for isolated neurons. Solid lines: actual spike times in the

presence of synaptic interaction. (C) Perfect synchronization by mutual inhibition. Top:

phase response curve of a modified (type I) Hodgkin-Huxley model [1035], which does not

exhibit significant phase delay (the negative lobe). Bottom: the phase reduction theory

predicts the behavior of coupled neurons by the function Hodd(Φ), where Φ is the phase

difference between the two neurons (Eq. 4). Hodd was computed using a synapse model with

a reversal potential of −75 mV and a decay time constant of 10 ms. Steady state behaviors

correspond to Φ values such that Hodd(Φ) = 0. In this example, zero-phase synchrony (Φ =

0) is stable (where Hodd has a negative slope); 180 degree antiphase is unstable (where Hodd

has a positive slope).
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Figure 3. Subthreshold and spiking resonance of a model neuron in the presence of noise

The model neuron exhibits subthreshold membrane resonance at frequency fR ≃ 5 Hz. (A)

Response with low noise. Top: input current with three (tonic, 5 Hz and 20 Hz sinusoidal

current injection) epochs. The mean output firing rate remains constant (r0 = 20 Hz)

throughout. Middle: a sample membrane trace. Bottom: poststimulus histogram. (B)

Response with high noise. Same format as in (A). (C) Signal gain amplitude versus input

frequency f (normalized to be one at f = 0). Firing rate resonance occurs at the subthreshold

resonance frequency (f ≃ fR) with high noise (blue), but at the mean firing frequency (f ≃ r0)

with low noise (red). D: Phase shift of the firing response relative to the sinusoidal input

(positive: phase advance; negative: phase delay). Adapted with permission from [805].
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Figure 4. Mixed-mode membrane oscillations in a single neuron

(A) A non-cholinergic (putative GABAergic) cell in the rat medial septum displays rhythmic

alternations at theta frequency between ‘clusters’ of spikes and epochs of sub-threshold

membrane potential oscillations. (B) A model of GABAergic neurons in the medial septum.

Upper: a membrane trace. The simulated oscillation is faster than the experimental data (see

the different time scales), because the model simulation was done at body temperature

(37°C), whereas the in vitro trace was recorded at 32°. Lower left: membrane potential

versus the inactivation gating variable q for a low-threshold potassium channel (IKS). IKS

gradually de-inactivates (increase of q, hence IKS) during the hyperpolarizing phases of

spikes (arrows to the right), whereas it inactivates (decreasing q) during subthreshold
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membrane oscillations (arrows to the left). Lower right: the frequency of subthreshold

oscillations (open circle) and intra-cluster spike firing rate (filled circle) co-vary as a

function of the input current intensity. (C) Similar behavior of principal (mitral) cells of the

rat olfactory bulb. Left: mixed subthreshold oscillation and clustered spike firing of a mitral

cell in response to three current intensities. Right: frequencies of subthreshold oscillation

and intra-cluster spike firing versus the mean membrane potential which was varied by

current injection. (A) Reproduced with permission from [858]; (B) from [1031]; (C) from

[231].
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Figure 5. Rhythmic bursting of cortical neurons

(A) A chattering neuron recorded in vivo from the cat visual cortex shows rhythmic bursting

in the gamma frequency range. (B) A model chattering neuron endowed with a ping-pong

interplay between two electrotonic compartments. (A) Reproduced with permission from

[373], (B) from [1028].
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Figure 6. Synchronization in an inhibitory interneuronal network

(A) An example of network synchronization in a fully connected network of type I

conductance-based neurons. Upper panel: rastergram where each row of dots represents

spikes discharged by one of the neurons in the network. Lower panel: membrane potentials

of two neurons. Neurons initially fire asynchronized, but quickly become perfectly

synchronized by mutual inhibition. (B) In a random network, the network coherence is

plotted versus the mean number of recurrent synapses per cell Msyn (The correction term (~

1/N) takes into account the finite network size effect). Different curves correspond to

different network size (N=100, 200, 500, 1000). There is a critical threshold for the
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connectedness above which network synchrony occurs. This threshold connectivity is

independent of the network size. Adapted with permission from [1035] and [142].
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Figure 7. Entrainment of a cortical network in vivo by optogenetically activating fast spiking
interneurons

(A) Spiking activity of neurons in mouse somatosensory cortex in response to

channorodopsin-2 activation of FS interneurons by repetitive light pulses at 40 Hz. Top:

LFP and raster plots of an FS cell (blue) and nearby regular spiking pyramidal cells recorded

simultaneously (RS1-3, green). Middle: Overlay of the FS (blue) and RS (green) spike

probability profiles, computed from 17 RS cells and 9 FS cells. Light pulses at 0 ms evoked

FS spikes with a delay of 1–2 ms, followed by an increase in RS spiking at 17–24 ms.

Bottom: Power spectrum of LFP in control (black, with a broad profile) and with activation

of FS cells by 40 Hz light pulses (blue, with a sharp peak at 40 Hz). (B) Mean LFP power
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ratio in each frequency band in response to light activation of FS (filled circles) and RS

(open circles) cells at those stimulus frequencies. (A) Top and middle panels kindly

provided by Jessica Cardin, (A) bottom panel and (B) reproduced with permission from

[155].
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Figure 8. Trade-off between synchronization by long-range connections and minimization of the
network wire cost

(A) Oscillations in a network of interneurons coupled by inhibitory synapses, with local

(Gaussian) connectivity (spatial length is 20 neurons, in a network of 4000 neurons). The

network is essentially asynchronous. Upper panel: spike raster of sample neurons; middle

panel: the voltage trace of a representative neuron; lower panel: the population firing rate.

(B) Oscillations in a network with local and long-range connections. Neurons are connected

with Gaussian distributed synapses (as in A) but p = 25% of the synapses are reconnected

with a power law distribution. Note strong oscillatory rhythm. (C) Illustration of the

connectivity probability functions: the Gaussian distributed connections are local (blue line),
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whereas long-range connections are described by a power distribution (red line). (D) With

increasing reconnection probability p from the local Gaussian distribution to the power

distribution, the network synchrony increases while the inverse of the wire-length of

connections decreases. High synchrony at a low wire-cost corresponds to an optimal range

of p values (a small ratio of long-range and short-range connections, shaded region).

Reproduced with permission from [142].
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Figure 9. Propagating waves

(A) Rostrocaudal phase shift of 40 Hz oscillation during rapid eye movement (REM) sleep

as measured using MEG. (A1) shows synchronous activation in 37 channels during a 600 ms

period. The oscillation in the left part of trace A1 has been expanded in trace A2 to show

five different recording sites over the head. The five recording sites of trace (A2) are

displayed in diagram (A3) for a single epoch, to illustrate the phase shift for the different 40

Hz waves during REM sleep. The direction of the phase shift is illustrated by an arrow

above diagram (A3). The actual traces and their sites of recordings for a single epoch are

shown in diagram (A4) for all 37 channels (ft: femtotesla). (B) Voltage-sensitive dye

imaging of propagating waves in rat visual cortex in vivo. A rat visual cortex was imaged

through a cranial window. (B1) A snapshot of visually evoked cortical activity propagating
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through the border of V1 and V2 areas. (B2) A spatial- temporal map made from one row of

optical detectors (small boxes in B1) showing the time course of wave propagation. A visual

stimulation to the eye evoked an activity in area V1 and propagated to V2. The map starts at

108 ms post stimulus. The propagating velocity in both V1 and V2 is about 100 mm/sec (the

oblique broken line marks the velocity of 100 mm/sec). Propagating velocity is greatly

reduced at the border between V1-V2 areas (marked by a horizontal broken line). (B3 )

When the cortical inhibition is slightly suppressed by GABAergic antagonist bicuculline, the

slowing down at the V1/V2 border is completely eliminated. (C) Propagating waves during

carbachol induced ~ 10 Hz oscillations in a brain slice cut from rat visual cortex (tangential

section). Images are the phase map during the oscillation. From left: At the beginning of an

oscillation cycle a propagating wave is started from a small region (red area at image of 0

ms) and propagating outward as a ring wave. The ring wave breaks and generates two phase

singularities (at 33.1 ms). One of them further develops into a rotating spiral (after 58.9 ms).

The spiral wave further sustains for ~ 1000 ms (~ 10 more rotations, images not shown). (A)

Modified with permission from [598], (B) from [1079], (C) from [448].
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Figure 10. Complex circuit dynamics in multiple neuron types during synchronous oscillations

(A) Behavior of four (basket, axo-axonic, bistratified, oriens-lacunosum-moleculare)

subclasses of inhibitory interneurons and pyramidal cells during theta rhythm (left) and

sharp-wave ripples (right) recorded in vivo from the hippocampus of anesthetized rats. In

each panel are plotted LFP (top) and juxtacellularly recorded spike train of an identified cell

(bottom). During theta oscillations, while basket and axo-axonic cells (which control the

output of pyramidal neurons) tend to fire at the peak, bistratified and O-LM cells (which

control the inputs to pyramidal cells) as well as pyramidal cells tend to fire at the trough, of

field theta. Note also intermittent firing characteristic of pyramidal neurons in both theta

rhythm and fast ripples. (B) Behavior of several subtypes of interneurons (basket/axo-axonal

cells, interneurons targeting proximate dendrites in the stratium radiatum (RC), interneuron-

targeting cells (IS), interneurons in the stratum oriens projecting to the distal dendrites in the

stratum lacunosummoleculare (OLM)) and pyramidal cells during gamma oscillations

induced by cholinergic activation in rat hippocampal slices in vitro. Note that pyramidal

cells fire maximally at the trough of the local field oscillation, and ahead of interneurons

(left panel). (A) Modified from [889], kindly provided by Drs. Thomas Klausberger and

Peter Somogyi; (B) reproduced with permission from [408].
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Figure 11. Field oscillation and spiking activity of interneurons and pyramidal cells in the
hippocampus of behaving rats

(A) Episodes of sharp-wave ripples during slow-wave sleep. (B) Theta rhythm during rapid-

eye movement sleep. Filtered (upper) and wide-band (lower) local field traces recorded from

one of the tetrodes. Below LFP traces are shown action potentials of isolated neurons

(vertical ticks) for three interneurons (int(p)) in the CA1 pyramidal layer, and 15 pyramidal

(pyr) cells recorded by four tetrodes. Reproduced with permission from [208].
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Figure 12. Population rhythmicity with irregular spike activity of single neurons

(A) Network dynamics is schematically illustrated here in the form of single neuron activity

in response to network inputs composed of a large amount of noise and a weak sinusoidal

wave (top). The raster plot (middle) reveals the modulation of the instantaneous firing rate,

which has a large tonic component (r0) and a small sinusoidal component (of amplitude r1)

(bottom). (B) Distributions of spike times across phases of 25–50 Hz gamma oscillations for

CA1 place cells in freely moving rats, showing a small rhythmic modulation on top of a

tonic baseline. (A) adapted with permission from [805], (B) from [181].
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Figure 13. Excitatory-inhibitory feedback loop for synchronous gamma oscillations with
irregularly firing neurons

Computer simulation of a model with two neural populations (pyramidal cells and

interneurons) in a sparsely connected random network. The network shows a collective

oscillation at 55 Hz (see population rates, and the power spectrum), whereas single neurons

fire spikes intermittently in time at low rates (2 Hz for pyramidal cells, 10 Hz for

interneurons; see rastergrams). Reproduced with permission from [127].
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Figure 14. Dependence of sparsely synchronized oscillations on the strength and relative speeds
of synaptic excitation and inhibition

(A) Network dynamical behavior as a function of the excitatory (τE) and inhibitory (τI)
synaptic time constants. A line separates the asynchronous state (upper right region) from

the synchronous oscillation state (lower left region). This is shown with three levels of

recurrent connection strength; coherent oscillations become more prevalent with stronger

recurrence of the network. (B) population frequency as a function of the excitatory synaptic

decay time constant τE, with fixed τI= 5 ms. Qualitatively, there are two kinds of instability

from the asynchronous state to coherent oscillation. On one hand, when τE is much smaller

than τI, the asynchronous dynamics is destabilized and oscillation develops through delayed

inhibition in an excitatory-inhibitory loop scenario. On the other hand, when τE is

sufficiently large, the excitatory drive is roughly tonic and the interneuronal network by

itself generates synchronous oscillation. The oscillation frequency is much lower with

shorter τE (gamma rhythm by the pyramid-interneuron loop mechanism) than with longer τE
(ultrafast rhythm by the interneuronal network mechanism). Adapted with permission from

[127].
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Figure 15. Local and long-distance synchronization in the gamma frequency range

(A) Under certain conditions in vitro LFP gamma may exhibit a sharp peak in the power

spectrum. In this case, gamma rhythm was induced pharmacologically by metabotropic

gluatamte receptor activation in a rat hippocampal slice where fast synaptic excitations

mediated by AMPA and NMDA receptors were blocked. (B) By contrast, in vivo LFP

oscillations are typically manifested by small peaks superimposed on high powers at low

frequencies (reflecting slow fluctuations or drifts over time). Data were obtained in a single

mice during wheel running (red), REM sleep (blue) and slow-wave sleep (SWS, black). (C)

Power spectra of intracellularly recorded synaptic potentials recorded from a pyramidal

neuron of ferret in vivo. Membrane fluctuations are dominated by inhibitory postsynaptic

potentials near 0 mV (blue), and by excitatory synaptic potentials near −80 mV (red). The

peak in the gamma band is more significant at 0 mV, suggesting a prominent role for

synaptic inhibition in rhythmic fluctuations. (D) Coherence between two cortical areas of
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alert monkeys in cross-modal information processing. LFPs were measured from the

auditory cortex and the superior temporal sulcus (STS), an association area involved with

face processing and cross-modal integration. Voice: trials when a naturalistic sound

(monkey’s vocalization) was played; Face: trials when the corresponding mouth movement

was shown visually; face+voice: trials when both stimuli were presented concurrently. Left:

LFP power spectrum displays a peak in the gamma frequency range for both the auditory

cortex and STS (red) in the face+voice condition, but there is no significant gamma-band

peak in the auditory cortex with voice alone (green). Middle: inter-areal coherence displays

a maximum in the gamma-band correlated with cross-modal integration (red), but not when

face (blue) or voice (green) was presented alone. Right: Time-frequency cross-areal

coherence as a function of time in the face+voice condition, showing coherence at gamma

interspersed with theta transiently (for about 300 ms). (E) Coherence in V4 during sustained

stimulation from behaving monkeys in an attention task. Red: attended condition; grey: non-

attended condition. Left: LFP power spectrum from area V4. Middle: spike-to-field

coherence (between multiunit activity and LFP). Right: spike-to-spike coherence between

two simultaneously recorded multiunit spike trains. SSC (defined between 0 and 1) is less

than 5%. (A) reproduced with permission from [1053], (B) from [148], (C) from [423], (D)

from [349] (with left panel kindly produced by Dr. A Ghazanfar), (E) from [315].
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Figure 16. Phase coding by place cells in the hippocampus of mouse performing a virtual
navigation task

(A) Schematic of a place cells firing rate. (B) Schematics of predicted subthreshold

membrane potentials (aligned to A) from three different models. Top: in a dual oscillator

interference model, two sets of theta-modulated inputs at different frequencies interfere to

create a beat-like pattern of membrane potential fluctuations. Middle: in a soma-dendritic

interference model, the cell receives theta-modulated inhibitory and excitatory inputs. In the

place field, the excitatory drive increases, resulting in a ramp-like depolarization and an

increase in the amplitude of excitatory theta oscillations. Bottom: in a network model, a

ramp of excitatory drive interacts with theta-modulated inhibitory inputs. (C) Example of a

subthreshold membrane potential (filtered from DC-10 Hz) recorded intracellularly from a

place cell. Note the simultaneous ramp of depolarization and increase in theta oscillation

amplitude. Scale bars refer to the experimentally measured trace only. (D) Schematics of the

LFP theta rhythm (Top) and predicted relationships between intracellular and LFP theta to

account for phase precession (Middle and Bottom). Middle panel: intracellular and LFP

theta have the same frequency. Phase precession of spikes occurs relative to both

intracellular and LFP theta owing to a ramp of depolarization. An asymmetric ramp is

shown. Bottom panel: intracellular theta in the place field has a higher frequency than LFP

theta. Spikes precess relative to LFP theta but not intracellular theta. (E) Filtered (610 Hz)

membrane potential and LFP traces in the place field from a simultaneous LFP and whole-

cell recording. The times of LFP theta peaks (grey lines), intracellular theta peaks (circles)

and spikes (crosses) are shown to illustrate the phase precession of spikes and intracellular

theta relative to LFP theta oscillations, and the absence of phase precession of spikes relative

to intracellular theta oscillations. (F) Phase precession of spike times relative to intracellular

theta (left) and phase precession of intracellular theta peak times relative to LFP theta (right)

from a simultaneous LFP and whole-cell recording. Adapted with permission from [422].
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Figure 17. Phase reliability of LFPs strongly depends on the frequency bands

Under natural visual stimulation (movies) in anesthetized monkeys, for band-passed LFPs in

a given frequency range (y axis, in 4-Hz-wide nonoverlapping intervals), the LFP phase at

any fixed time during the movie fluctuates from trial to trial, and this phase (un)reliability of

V1 LFPs was assessed by the circular variance across trials (defined between 0 (total

reliability) and 1 (total unreliability). It is plotted as function of the spike rate in the

corresponding window, since the reliable phase values must be observed during periods of

firing in order to be useful for phase-of-spiking stimulus coding. Phase coding is reliable if

the circular variance is small; this is the case only at low frequencies (a few hertz).

Reproduced with permission from [693].
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Figure 18. Synchronous field gamma oscillation with irregular neural firing in a spiking network
model of selective attention

(A) Schematic model architecture of a reciprocal loop between a sensory (MT) circuit and a

working memory (PFC) circuit (‘source area’ for top-down attention signals). Each of the

two circuits includes excitatory pyramidal neurons (E cells) and inhibitory interneurons (I

cells), that are selective for a stimulus feature. Local connections within each circuit and

cross-areal connections between excitatory cells depend on their respective preferred

stimulus features. Top-down projection from the working memory circuit targets both

excitatory and inhibitory cells in the sensory circuit. (B) Network activity for an unattended

(left) and an attended trial (right). x-Axis, Time; y-axis, neurons labeled by preferred
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feature. Activity is color-coded. C, Cue period when an attentional cue is presented; D,

delay period; T, test period when a sensory stimulus is presented. Note that in the attended

trial (right), the attention cue triggers a self-sustained activity pattern in PFC, and enhanced

sensory response in MT during tested period. Also note strip-like structure in the

spatiotemporal activity pattern, indicating synchronous oscillations. (C) Activity of a neuron

in response to a preferred stimulus. Top, Sample membrane potential; middle, spike trains in

several trials; bottom, trial-averaged activity (red, attended; black, unattended trials). (D)

Average coherence between the LFP and MUA in the sensory circuit increases in the

gamma-frequency range for attention (red) relative to non-attention (black) trials during test

stimulus presentation. (E) The variance versus mean of spike counts (Fano factor is given by

the slope) for E cells and I cells in attended (red) and unattended (black) trials. (A–C)

reproduced with permission from [30], (D–E) unpublished data taken from [31].
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Figure 19. Schematic circuit for the interplay between beta- and gamma-band oscillations in top-
down signaling

Shown is a reciprocally connected loop between a sensory-type area and a cognitive-type

area. In each area, the superficial layers are endowed with strong intrinsic synaptic

connections and generate synchronous oscillations in the gamma frequency range, whereas

the deep layers has a propensity to display oscillations in the beta frequency range. Top-

down projections originate in the deep layers and predominantly target the superficial layers,

where they innervate pyramidal cells (red), as well as dendrite-targeting (purple) and

perisoma-targeting (blue) inhibitory interneurons. In this scenario, beta oscillations are

Wang Page 131

Physiol Rev. Author manuscript; available in PMC 2010 August 19.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



directly involved in top-down signaling, which interacts with locally generated gamma

oscillations.
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