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Abstract

Dysregulated processing of natural rewards may be a central pathogenic process in the etiology 

and maintenance of prescription opioid misuse and addiction among chronic pain patients. This 

study examined whether a Mindfulness-Oriented Recovery Enhancement (MORE) intervention 

could enhance natural reward processing through training in savoring as indicated by event-related 

brain potentials (ERPs). Participants were chronic pain patients at risk for opioid misuse who were 

randomized to eight weeks of MORE (n=11) or a support group control condition (n=18). ERPs to 

images representing naturally rewarding stimuli (e.g., beautiful landscapes, intimate couples) and 

neutral images were measured before and after 8 weeks of treatment. Analyses focused on the late 

positive potential (LPP) - an ERP response in the 400 – 1000 ms time window thought to index 

allocation of attention to emotional information. Treatment with MORE was associated with 

significant increases in LPP response to natural reward stimuli relative to neutral stimuli which 

were correlated with enhanced positive affective cue-responses and reductions in opioid craving 

from pre- to post-treatment. Findings suggest that cognitive training regimens centered on 

strengthening attention to natural rewards may remediate reward processing deficits underpinning 

addictive behavior.
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Dysregulated processing of natural rewards is a key mechanism subserving the maintenance 

of drug addiction. Preclinical and clinical studies indicate that drug addiction results in 
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attenuated dopaminergic neurotransmission in response to natural rewards; this phenomenon 

has been observed among individuals with cocaine, methamphetamine, nicotine, alcohol, 

and opiate dependencies (Heinz et al. 2004; Kalivas and Volkow 2005; Lee et al. 2009; 

Lintas et al. 2012; Gipson et al. 2013). Substance dependent persons exhibit diminished 

subjective reward responsiveness and reduced brain activation to natural rewards compared 

to healthy control subjects (Volkow et al. 2010). Such reward processing deficits may have 

serious consequences for persons with substance use disorders. Indeed, reward valuation of 

salutary objects and events, encoded in dopaminergic activations of mesocorticolimbic brain 

circuits, is fundamental to flexible goal selection and the conservation of physical and 

psychological well-being. However, neurocognitive resources required for processing 

natural rewards may be hijacked by chronic exposure to psychoactive drugs, which, by 

eliciting changes to brain structure and function, reorganize basic learning mechanisms 

around pursuit of drug-induced reward and the alleviation of withdrawal-induced dysphoria 

and other aversive states (e.g., stress and pain) (Alcaro and Panksepp 2011). Putatively, this 

process is underpinned by allostatic changes to neural circuits subserving stress (e.g., 

amygdala) and reward (e.g., ventral striatum), through which the addict becomes 

increasingly insensitive to reward from healthful and socially affiliative stimuli, while 

becoming increasingly dependent on drug use to preserve hedonic homeostasis (Koob and 

Le Moal 2008).

Reward processing may be disrupted by illegal substances and prescription drugs alike. 

Indeed, emerging neuropsychopharmacologic models (Garland, Froeliger, Zeidan, Partin, & 

Howard, 2013) suggest that dyregulated reward processing is a central pathogenic process in 

the etiology of prescription opioid misuse and addiction among chronic pain patients. 

Chronic pain, coupled with opioid dose escalation, results in allostatic load on limbic-striatal 

neurocircuitry, resulting in decreased reward derived from healthful objects and events 

(Shurman, Koob, & Gutstein, 2010). The drive to alleviate dysphoria resulting from this 

reward deficit is manifested as craving, and may progress to the compulsive pattern of 

opioid use characteristic of opioid addiction (Koob & Le Moal, 2008). Evidence for 

dysregulation of natural reward processing in opioid addiction has been generated by studies 

showing reduced cue-elicited event-related brain potentials (ERPs) to images depicting 

natural rewards among opioid dependent individuals (Lubman et al. 2007, 2008) which 

predict future drug use (Lubman et al., 2009).

If dysregulated processing of natural rewards fuels the cycle of behavioral escalation from 

prescription opioid use to misuse and addiction, then enhancing natural reward processing 

may be a means of ameliorating or even reversing this pathogenic process. Plausibly, 

adaptive reward processing may be bolstered by therapeutic approaches which provide 

training in attending to and savoring naturally rewarding objects and events. Mindfulness 

training, which promotes emotion regulation through present-oriented attention (Holzel et 

al., 2011), may be especially efficacious in this regard. Though not the explicit goal of most 

mindfulness-based interventions, mindfulness may nonetheless amplify pleasure from 

perceptual and sensorimotor experiences in a fashion similar to sensate-focus techniques 

(Masters & Johnson, 1970) and promote positive emotion regulation by amplifying selective 

attentional processes (Wadlinger & Isaacowitz, 2010). We hypothesize that mindful 
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savoring increases attentional capacity to focus more intensely on both the pleasurable 

features of objects, persons, and events, as well as the positive emotions that arise from 

experiencing them.

Increased attention to sensory experience has been shown to elevate pleasure in eating and 

sex (Heiman & Meston, 1997; LeBel & Dubé, 2001), and attending to present-moment 

experience robustly predicts happiness in large-scale, time-lagged analyses (Killingsworth & 

Gilbert, 2010). More directly supportive of the “mindful savoring” hypothesis, mindful 

eating was found to increase ratings of subsequent food liking and enjoyment (Hong, 

Lishner, Han, & Huss, 2011; Hong, Lishner, & Han, 2014). Even stronger support may be 

derived from a randomized controlled trial (RCT) of Mindfulness-Based Cognitive Therapy 

(MBCT) with adults with residual depressive symptoms, which found that mindfulness 

training increased the experience of reward and positive emotion from pleasant daily life 

activities (Geschwind, Peeters, Drukker, van Os, &Wichers, 2011).

We recently conducted an early-stage RCT of Mindfulness-Oriented Recovery Enhancement 

(MORE) (Garland, Gaylord, Boettiger, & Howard, 2010; Garland, Manusov, Froeliger, 

Kelly, Williams, & Howard, 2014), a new multimodal intervention designed to address 

chronic pain, craving, and opioid misuse behaviors, which integrates training in savoring 

natural rewards with training in mindfulness and positive reappraisal techniques. Results of 

this RCT demonstrated that relative to a support group (SG) control condition, MORE 

significantly decreased pain severity and functional impairment, as well as opioid craving 

and opioid misuse (Garland et al., 2014). A subsequent analysis of data from a subset of 

individuals in this trial revealed that MORE led to enhanced cardiac-autonomic responses to 

natural reward cues which statistically mediated the effect of the intervention on reductions 

in opioid craving (Garland, Froeliger, & Howard, 2014). These findings are perhaps the first 

in the scientific literature to support the notion that a behavioral intervention can restore 

natural reward processing in addiction. Despite the compelling nature of the findings, 

autonomic psychophysiological indices measured in blocks of trials, as in the previous 

study, may not capture the time course of neural mechanisms involved in natural reward 

processing. Hence, in the present study, we examined a neurophysiological marker of 

reward processing using ERPs. ERPs, which have a temporal resolution on the order of 

milliseconds, can allow us to determine how MORE might impact both the temporal 

dynamics and magnitude of natural reward processing. In this investigation, we focused on 

an ERP waveform that has been linked to reward processing in studies of persons with 

substance use disorders and healthy controls: the late positive potential (LPP).

The LPP is a positive deflection of the EEG waveform that tends to reach maximum 

amplitude 400–800 ms at parietal sites (Pz) after onset of a motivationally salient stimulus. 

LPP amplitude is robustly correlated with subjective ratings of arousal in response to 

viewing emotional pictures (Cuthbert, Schupp, Bradley, Birbaumer, & Lang, 2000). Studies 

indicate that earlier time windows (< 1000 ms) of the LPP can be modulated by attentional 

manipulations (e.g., Olofsson, Nordin, Sequeira, & Polich, 2008), suggesting that this stage 

of the LPP indexes allocation of attention to emotional information. LPP activation is 

strongly correlated with activity in orbitofrontal and medial prefrontal cortex, amygdala, and 

insula as measured by fMRI (Liu, Huang, McGinnis-Deweese, Keil, & Ding, 2012; 
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Sabatinelli, Keil, Frank, & Lang, 2013). Of central importance to the current study, the LPP 

is also sensitive to top-down attentional control (Dunning & Hajcak, 2009; Scharmüller, 

Leutgeb, Schäfer, Köchel, & Schienle, 2011). In that regard, conscious down-regulation of 

negative emotional responses via reappraisal and reorienting of attention can reliably reduce 

the early and late time windows of the LPP (Hajcak & Nieuwenhuis, 2006; Moser, Hartwig, 

Moran, Jendrusina, & Kross, 2014; Schönfelder, Kanske, Heissler, & Wessa, 2013). 

Moreover, mindfulness training and related forms of meditation appear to reduce the LPP to 

negative affective stimuli (Gootjes, Franken, & Van Strien, 2011; Sobolewski, Holt, Kublik, 

& Wróbel, 2011). However, top-down enhancement of the LPP to positive emotional stimuli 

has proved to be an elusive target. Krompinger, Moser, and Simons (2008) found no effects 

on LPP magnitude when subjects were instructed to enhance positive emotions in response 

to pleasant photographs representing naturally rewarding stimuli.

If brain reward circuits instantiate a fundamental logic for goal selection (Shizgal and 

Hyman 2013), training in selective attention to natural rewards over drug rewards may 

reduce addictive propensities by shifting reward processing back to valuation of healthful 

and socially affiliative objects and behaviors. Hence, this study tested whether MORE could 

increase the LPP to natural reward cues in a sample of chronic pain patients at risk for 

prescription opioid misuse. We hypothesized that MORE would increase the parietal LPP to 

natural reward cues relative to neutral cues in the early time window where attention 

allocation predominates, and that this increase in LPP would be correlated with increased 

positive affective response to reward stimuli in individual difference analyses. Furthermore, 

given the clinical implications of the cardiac-autonomic findings in Garland, Froeliger, and 

Howard (2014), we hypothesized that increased LPP response to reward cues would be 

correlated with decreased opioid craving.

Method

Participants

This study examined data from a subset of participants (12 men and 17 women, mean age = 

47.1, SD = 15.2) in a previously published RCT of MORE vs. a support group (SG) for 

chronic pain and prescription opioid misuse (Garland et al., 2014). Individuals with 

complete pre-post treatment EEG data (MORE, n = 11; SG, n = 18) from a 

psychophysiological assessment conducted one week before, and one week after, the study 

treatments were selected for the present investigation. Participants were recruited from 

primary care, pain, and neurology clinics, and met study inclusion criteria if they reported 

recurrent pain on more days than not stemming from chronic non-cancer-related pain 

conditions (participants had been in chronic pain for an average of 12.7 years) and had taken 

opioid analgesics daily or nearly every day for at least the past 90 days (Chou et al., 2009). 

At each assessment point, participants completed self-report measures of opioid craving and 

then participated in a lab protocol which involved passively viewing visual images of 

naturally rewarding stimuli and neutral stimuli while EEG was recorded. The protocol was 

approved by the Florida State University IRB, and all procedures complied with standards 

set forth in the Helsinki Declaration of 1975. Participants were assessed for comorbid 

psychiatric disorders with the Mini-International Neuropsychiatric Interview 6.0 (MINI) 
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(Sheehan et al. 1998) and excluded if they were suicidal or psychotic. There were no 

significant pre-treatment between-groups differences in clinical characteristics (see Garland 

et al., 2014). Although all participants reported symptoms of physiological dependence (i.e., 

tolerance and withdrawal) on the MINI resulting from regular and prolonged opioid use , a 

smaller percentage (34.5%) met DSM-IV criteria for prescription opioid dependence (which 

includes psychological and behavioral as well as physiological signs and symptoms). 

However, most (86.2%) participants reported opioid analgesic misuse as defined by a 

validated cut-point on the Current Opioid Misuse Measure (COMM; Butler et al., 2007). 

Common comorbid psychiatric diagnoses included major depressive disorder (70.4%) and 

generalized anxiety disorder (33.3%); two participants also met criteria for post-traumatic 

stress disorder and alcohol abuse. Participants were paid $200 for the study. Following the 

pre-treatment assessment, participants were randomly assigned to an 8-week MORE group 

or SG.

MORE Group

The manualized 8-session MORE intervention (Garland, 2013) involved group training in 

mindfulness, reappraisal, and savoring skills designed to address mechanisms implicated in 

chronic pain and prescription opioid misuse. Group sessions were 2 hours long and led by a 

Masters-level social worker with over a decade of experience delivering mindfulness-based 

interventions to patients with psychiatric disorders. This clinician was supervised by the 

developer of MORE (the first author and an experienced, licensed psychotherapist). The first 

author reviewed video/audio-recordings of the sessions to monitor adherence to the MORE 

treatment manual and maintain treatment fidelity. MORE participants were asked to engage 

in daily 15 minute mindfulness practice sessions at home guided by a CD. Participants were 

instructed in savoring techniques which involved the use of mindfulness meditation to 

intentionally orient and sustain attention on the sensory features (i.e., visual, auditory, 

olfactory, gustatory, or tactile) of a pleasant experience or object (e.g., a beautiful nature 

scene like a sunset) while metacognitively reflecting on and absorbing any positive emotions 

arising in response to the pleasant event. For instance, participants were taught to mindfully 

focus their attention on the pleasant colors, textures, and scents of a bouquet of fresh flowers 

over a 20-minute long meditation session, and to attend to emotions of contentment and joy 

arising from this savoring practice. Comparable savoring techniques using an array of 

sensory targets were discussed across multiple sessions and prescribed as homework 

practice.

Support Group

The active control condition in this study consisted of 8 weekly, 2-hour support group 

sessions, in which a Master's-level clinical social worker facilitated emotional expression 

and discussion of topics pertinent to chronic pain and opioid use/misuse. This Rogerian, 

client-centered (Rogers, 2003) support group format was based on the evidence-based 

Matrix Model intensive outpatient treatment manual (Rawson & McCann, 2006). The first 

author reviewed video/audio-recordings of the sessions to monitor therapist adherence to the 

support group treatment manual and maintain treatment fidelity. Support group participants 

were asked to engage in 15 minutes of journaling a day on chronic pain-related themes at 

home.
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Measures

Procedures and Stimuli—Participants were first given a general description of the 

experiment, and then electroencephalogram/electro-oculogram (EEG/EOG) sensor 

electrodes were attached. Participants were seated approximately 0.5 m directly in front of a 

17-in computer monitor. Participants performed a randomized, event-related affective 

picture viewing task (Cuthbert et al., 2000) administered on computer, using Eprime 2.0 

software to control the presentation and timing of all stimuli. During the task, full-screen 

pictures from the International Affective Picture System (IAPS; Lang, Bradley, & Cuthbert, 

1997) were displayed in random order. Participants viewed 18 pleasant and 18 neutral IAPS 

pictures and were instructed to simply view the pictures as they were presented and allow 

themselves to respond naturally. A fixation cross (+) was presented for 500 ms at the 

beginning of each trial to orient participants to the center of the screen, and IAPS images 

were presented for 6 seconds following offset of the fixation cross. Responses were recorded 

for 6 seconds to measure effects on slower autonomic responses (not reported here), but in 

the present study, data from only the first second were analyzed to determine effects of 

MORE on LPP maxima. The inter-trial interval was randomly jittered from 2000 – 4000 ms. 

Following offset of the image, participants rated the valence of their affective response to 

the photograph (“How pleasant or unpleasant did you feel while viewing this photograph?”) 

on a 9-point scale ranging from “extremely unpleasant” to “extremely pleasant” and their 

degree of arousal (“How aroused or calm did you feel while viewing this photograph?”) 

from “extremely calm” to “extremely aroused.”

The natural reward picture set include images of endearing children and animals, athletic 

triumphs, appealing foods, beautiful landscapes, persons with happy facial expressions, and 

intimate/erotic couples. The neutral picture set included images of household items, 

furniture, and persons with neutral facial expressions. Natural reward and neutral images 

differed significantly on IAPS normative valence ratings (M = 7.09 and 5.05, respectively) 

and arousal ratings (M = 5.03 and 2.89, respectively).

ERPs—Continuous encephalographic (EEG) activity was recorded during the affective 

picture viewing paradigm described above using an ECI electrocap and a BIOPAC MP150 

system (BIOPAC, Goleta, CA). During the task, data was recorded from Pz, as well as Cz, 

Fz, F3, and F4 (although data from these sites are not reported in the present manuscript 

because our a prior hypotheses were focused on Pz --- see below), and reference electrodes 

were placed on the earlobes. Also using the BIOPAC, vertical and horizontal electro-

oculograms (EOG) recorded eye blinks and eye movements with miniature electrodes placed 

approximately 1 cm above and below the participant's right eye. All electrophysiological 

signals were digitized and analyzed on a computer with Acqknowledge 4.3 software 

(BIOPAC, Goleta, CA). The EEG was sampled at 1000 Hz, and signals were filtered online 

with a 35 Hz low pass filter. Off-line, the EEG for each trial was re-referenced to the mean 

of the ears, band-pass filtered between 0.01 and 30 Hz and artifact corrected for vertical and 

horizontal EOG movements using Gratton, Coles, and Donchin's (1983) classical approach. 

Trials were rejected for subsequent analyses if they were contaminated by excessive 

physiological artifacts. A semi-automated procedure identified and rejected physiological 

artifacts according to the following validated criteria: a voltage step > 50.0 μV between 

Garland et al. Page 6

J Behav Med. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sample points, a voltage difference of > 300.0 μV within a trial, and a maximum voltage 

difference < 0.50 μV within any 100-ms interval (Dunning & Hajcak, 2009; Hajcak, 

Dunning, & Foti, 2009). EEG signals were smoothed digitally off-line for visualization 

purposes but analyses were conducted on the pre-smoothed data.

For each participant, an average ERP waveform was generated separately for natural reward 

and neutral trials. To depict overall effects and identify the time window for establishing the 

largest LPP to be used in analyses of the effects of MORE on reward processing, grand 

average waveforms were generated by averaging individual participant waveforms across 

the MORE group (# of reward trials retained for analysis: M = 12.6±2.7; # of neutral trials: 

M = 12.8±2.9) and SG (# of reward trials retained for analysis: M = 12.4±2.7; # of neutral 

trials: M = 13.1±3.2). Statistical analyses for the LPP component (defined below) were 

conducted on averages from each participant. Given ample evidence in the literature that the 

LPP is maximized at parietal sites (e.g., Hajcak & Nieuwenhuis, 2006; Krompinger et al., 

2008; Olofsson et al., 2008), as well as after visually inspecting our own data for maximal 

LPP effects, we focused our LPP analyses on parietal site Pz. The LPP was quantified with 

the following procedure. First, a baseline equal to the average activity in the 150 ms window 

prior to image onset was subtracted from data points subsequent to image onset. Based on 

visual inspection and following conventions from previous research (Cuthbert et al., 2000), 

we defined the parietal LPP maxima as the average voltage in the time window from 400–

1000 ms. Because age and gender are known to significantly influence the LPP to affective 

picture viewing (cf., Olofsson et al., 2008), we controlled for these variables in all ERP 

analyses.

Opioid craving—A single item “How much do you want your opioids right now?” 

anchored on a 10-point scale (1 = not at all, 10 = extremely) assessed current opioid craving 

once during the assessment session in the week prior to intervention and once during the 

assessment session in the week following intervention. Opioid craving scores as measured 

by this item have been significantly positively correlated with scores on the COMM, a 

validated measure of opioid misuse (Garland et al., 2014). Similar single-item measures of 

craving have been validated and shown to distinguish high- from low-risk opioid-using 

chronic pain patients and predict opioid misuse (Wasan et al., 2009).

Results

Pre-treatment LPP Response

Figure 1 presents the ERP waveforms associated with natural reward and neutral stimuli 

during passive viewing. In this sample, there was a small positive deflection in the EEG 

consistent with the LPP which began approximately 400 ms after stimulus onset and 

continued for several hundred ms. To determine if natural reward cues elicited a 

significantly greater LPP than neutral cues prior to treatment, a one-way (Cue Type: Natural 

Reward vs. Neutral) ANOVA was conducted, F(1,25) = 2.04, p = .16, indicating that, on 

average, natural reward cues did not elicit significantly greater LPP activation than neutral 

cues. There were also no significant between-groups differences in pre-treatment LPP 

activation to natural reward or neutral cues.
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Effects of Treatment on LPP to Natural Reward Cues

Figure 2a and 2b depict changes in LPP response to reward cues from pre- to post-treatment 

in the MORE group and SG, respectively. Following convention (Cuthbert et al., 2000; 

Moser et al., 2009; 2014), and because visual inspection of our data indicated that the 

parietal LPP began around 400 ms and ended around 1000 ms, effects of treatment on the 

LPP were examined from 400 – 1000 ms with repeated measures ANOVA. Emerging from 

this analysis was a significant Treatment Group (MORE vs. SG) × Time (Pre-Post 

Treatment) × Cue Type (Natural Reward vs. Neutral) interaction, F(1,25) = 4.99, p = .035, 

ηpartial
2 = .17. Compared to the SG, the MORE group evidenced pre-post treatment 

increases in LPP activation to natural reward cues across the 400 – 1000 ms window, 

indicating that MORE enhanced electrocortical indices of reward processing. The Treatment 

Group × Time × Cue Type interaction remained significant in a sensitivity analysis 

controlling for pre-treatment opioid dependence status, F(1,24) = 4.80, p = .038, ηpartial
2 = .

17.

Individual Differences in Psychological Correlates of Treatment-Related Change in Natural 
Reward Processing

Linear regression analyses were used to examine individual differences in psychological 

correlates of natural reward cue-specific changes in LPP response over time. For these 

analyses, we created difference scores subtracting LPP activation to neutral cues from LPP 

activation to natural reward cues. These scores represent LPP activation that is specific to 

natural reward processing. In light of the phenotypic variability in the sample, we used 

regression models to assess increased LPP reward response as a predictor of residualized 

change in affect and craving, covarying pre-treatment levels of these psychological variables 

as well as pre-treatment opioid dependence status to control for subject heterogeneity.

We found that pre-post treatment increases in LPP activation during natural reward 

processing predicted residualized change in affective response elicited by natural reward 

cues (β = .66, p < .001, model R2 = .52). Individuals who exhibited greater LPP responses to 

natural reward cues reported greater increases in pleasant (positive) affect in response to 

those cues from pre- to post-treatment. In contrast, pre-post treatment increases in LPP 

activation did not significantly predict residualized change in subjective arousal response 

elicited by natural reward cues (p > .10).

In an additional regression model, we found that pre-post treatment increases in LPP 

activation during natural reward processing predicted residualized change in self-reported 

opioid craving (β = -.42, p = .03, model R2 = .29). Individuals who exhibited greater LPP 

responses to natural reward cues reported greater decreases in opioid craving from pre- to 

post-treatment.

Discussion

The present study provides direct neurophysiological evidence in support of the hypothesis 

that MORE modulates natural reward processing in opioid (mis)using chronic pain patients 

by enhancing the LPP at the stage of attentional allocation. After completing 8 weeks of 
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treatment and in comparison to the SG, participants in the MORE group exhibited a 

heightened LPP response to natural reward stimuli relative to neutral stimuli. In individual 

difference analyses, increases in electrocortical activity during reward processing predicted 

enhanced positive affective responses to the photographs and reductions in opioid craving 

from pre- to post-treatment.

Study findings have implications for clinical and basic science. From a clinical standpoint, 

enhancement of natural reward processing in a sample of chronic pain patients at risk for 

opioid misuse by a multimodal, mindfulness-oriented intervention suggests that allostatic 

processes in addiction might be countered by cognitive training regimens centered on 

strengthening selective attention to natural rewards. MORE provides training in mindful 

savoring techniques, which involve intentional deployment and maintenance of attention on 

the pleasant features of healthful and socially affiliative objects and events, coupled with 

cultivation of reflexive awareness of positive emotional states without clinging. This latter 

point is of critical importance, given the impermanent nature of positive emotions and the 

ubiquity of pain, suffering, and stressful events in life (and particularly so in the patient 

population under investigation in the present study). MORE does not promote attachment to 

positive experience, but rather aims to foster a deep appreciation of moment-by-moment 

positive experience no matter how fleeting. Further, in the MORE treatment approach, 

mindful savoring techniques are tempered by other mindfulness techniques designed to 

promote attention to and acceptance of pain, craving, and negative emotions (Garland, 

2013). Through such an approach, it is plausible that learning to mindfully attend to and 

savor positive events may offset the negative affect and anhedonia characteristic of persons 

suffering from chronic pain and opioid use disorders.

From a basic affective neuroscience perspective, current study findings suggest that repeated 

practice of conscious, top-down modulation of attentional allocation onto the positive 

features of a stimulus context can in fact amplify ERPs during motivated attention to natural 

reward stimuli. That these effects were observed for the LPP when it reached its maximum 

amplitude between 400 – 1000 ms suggests that mindful savoring may be an “antecedent” 

emotion regulation strategy (Gross, 1998) that can “boost the gain” on downstream 

emotional experience. In that regard, individuals who experienced the largest increases in 

LPP from pre- to post-treatment also reported the greatest increases in positive affective 

response during picture viewing. Hypothetically, this process may involve strengthening 

functional connectivity between a predominately left-lateralized metacognitive attentional 

control network (comprised of dorsolateral PFC, dorsal anterior cingulate cortex, and 

parietal cortex), the amgydala and insula, and the striatum, which, when operating in 

concert, may remediate impaired dopaminergic responses to hedonic stimuli and help to 

regulate craving (Garland, Froeliger, & Howard, 2014). This speculation is consistent with 

neuroimaging data indicating that volitional up-regulation of positive emotion is subserved 

by increased activation in PFC, caudate, and putamen (Kim & Hamann, 2007), and studies 

demonstrating that a prefrontal-striatal pathway is involved in the regulation of substance 

craving (Kober et al., 2011). Several prior reports suggest that meditation practice can 

enhance dopaminergic tone (Hagerty et al., 2013; Kjaer et al., 2002) and increase left-

lateralized activation in prefrontal cortex (Davidson et al., 2003).
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That said, LPP responses during the affective picture viewing task are at best indirect 

proxies of potential neural correlates of clinical outcome. Thus, it is unknown whether the 

observed modulations in LPP responses reflect changes in therapeutic mechanism or 

outcomes. To probe this question, future neuroimaging studies are needed to assess the 

neural correlates of outcome, including possible changes in underlying reward circuitry 

(e.g., corticostriatal) function. For example, resting-state functional connectivity analyses 

would allow for investigation of MORE's effects on the strength of basal reward circuitry 

function, whereas explicit emotion regulation paradigms would enable examination of 

MORE's effects on restoration of proactive, prefrontally mediated control over reward 

processes.

As a plausible alternative interpretation of the current study findings, it is possible that the 

observed modulations of LPP function were due to reductions in opioid intake over the 

course of the study. Reduction in opioid intake might improve dopaminergic pathway 

functioning, in light of the known effects of opioids on dopamine signaling in the nucleus 

accumbens (for a review, see Garland et al., 2013). However, we were unable to test this 

hypothesis due to the lack of a quantitative measure of opioid dosing. Although we 

attempted to administer a self-report measure of daily opioid dosing, we were unable to 

obtain accurate opioid dosing data for the entire sample due to non-responses and 

ambiguous responses (e.g., reporting the opioid dose without reporting number of pills taken 

per day). Consequently, we do not know to what extent MORE increased reward processing 

by reducing opioid use, or vice versa.

This study was limited in several other respects. First, MORE is a multimodal intervention 

that integrates mindfulness training with reappraisal and savoring techniques, and it is 

possible that any of these techniques separately, or in synergy, might enhance reward 

processing. Thus, we cannot disentangle the unique contribution that each of these 

techniques may have had on LPP response to natural reward cues. Future studies could 

employ dismantling designs and/or instruct participants to actively up-regulate positive 

emotion while viewing positive affective stimuli to parse the effects of mindful savoring 

from other intervention components. Further, the sample was small and heterogeneous, 

comprised of opioid misusers and those who met full DSM criteria for opioid dependence; 

the distinct nature of these phenotypes may have contributed to the degree of variability in 

the present study findings. Also, our LPP results might have been attenuated because the 

athletic photos from the IAPS we used tend to elicit weaker LPPs (Weinberg & Hajcak, 

2010). To overcome these limitations, future studies should employ larger, more 

homogenous samples, as well as evaluate opioid dosing usage via a multi-pronged approach 

including toxicology screens, prescription history, pill count, and self-report.

Although the findings should be considered preliminary and heuristically informative given 

the limitations outlined above, the present exploratory study suggests that MORE may 

remediate deficits in natural reward processing among chronic pain patients at risk for 

opioid misuse by enhancing the allocation of attention to salutary objects and events. 

Restoration of the ability to extract a sense of reward, fulfillment, and meaning out of 

everyday pleasures may be crucial to the ability to self-generate positive emotions and to 

resilience itself (Garland et al., 2010). Research demonstrates that pleasant events actually 
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outnumber unpleasant events by a 3-to-1 margin in everyday life (Oishi, Diener, Choi, Kim-

Prieto, & Choi, 2007). Thus, naturally rewarding experiences are abundant, if people notice 

and appreciate them. Teaching clients to mindfully attend to positive aspects of their life 

experience (e.g., the sight of a beautiful sunset, the touch of a cherished loved one, or the 

taste of a nourishing meal) may increase the perceived value of natural rewards, and thereby 

counter the insensitivity to pleasurable objects, events, and experiences that can result from 

chronic pain and addiction. Future behavioral medicine research using neurophysiological 

measures may reveal that focusing one's attentional lens to more richly process the 

pleasurable, interesting, and meaningful experiences in life may make the painful and 

dissatisfying ones insignificant by comparison.
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Figure 1. 
Grand average picture-locked event-related potentials at site Pz during viewing of natural 

reward and neutral cues by chronic pain patients (N = 29) prior to participation in study 

treatments. The y-axis is in microvolts; the x-axis is time in milliseconds.
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Figure 2. 
Figure 2a & 2b. Pre-post treatment changes in LPP (400 – 1000 ms) response at Pz during 

viewing of natural reward cues for A) Mindfulness-Oriented Recovery Enhancement 

(MORE) participants (n = 11) and B) Support Group (SG) participants (n = 18). The y-axis 

is in microvolts; the x-axis is time in milliseconds.
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Figure 3. 
Difference waves at Pz (mean activation to natural reward cues – mean activation to neutral 

cues) for the Mindfulness-Oriented Recovery Enhancement (MORE, n = 11) and Support 

Groups (SG, n = 18). The y-axis is in microvolts; the x-axis is time in milliseconds.
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