
Review

Neuroplasticity in Alzheimer’s Disease

Bruce Teter1* and J. Wesson Ashford2

1Department of Medicine, University of California Los Angeles, California and Veteran’s Affairs–Greater
Los Angeles Healthcare System, Sepulveda, California
2Departments of Psychiatry and Neurology, and the Sanders-Brown Center on Aging, University of Kentucky,
Lexington, Kentucky and Veteran’s Affairs Medical Center, Lexington, Kentucky

Ramon y Cajal proclaimed in 1928 that “once develop-
ment was ended, the founts of growth and regeneration
of the axons and dendrites dried up irrevocably. In the
adult centers the nerve paths are something fixed, ended
and immutable. Everything must die, nothing may be
regenerated. It is for the science of the future to change,
if possible, this harsh decree.” (Ramon y Cajal, 1928). In
large part, despite the extensive knowledge gained since
then, the latter directive has not yet been achieved by
‘modern’ science. Although we know now that Ramon y
Cajal’s observation on CNS plasticity is largely true (for
lower brain and primary cortical structures), there are
mechanisms for recovery from CNS injury. These mech-
anisms, however, may contribute to the vulnerability to
neurodegenerative disease. They may also be exploited
therapeutically to help alleviate the suffering from neuro-
degenerative conditions. Published 2002 Wiley-Liss, Inc.†
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1. INTRODUCTION
Alzheimer’s disease (AD) displays aspects of mecha-

nisms related to all the major theories of aging: mitochon-
drial decline in energy production, deregulation of cal-
cium homeostasis, ROS generation and accumulation of
its damage products, immune/inflammation dysfunction,
hormone deregulation, and loss of regenerative ability
(Brewer, 2000). The information storage defect in AD is
represented at all levels of systems functions: biological,
psychological and sociological (Ashford et al., 1998a). All
these factors and levels can be traced to basic mechanisms
of memory storage and retrieval. The contribution of
neuroplasticity to AD, as a compensatory response or a
fundamental defect, is gaining recognition, from the orig-
inal recognition of the implications of dystrophic neurites
by Alzheimer and others to more recent evidence of
plasticity at many levels (Fischer, 1907; Simchowicz, 1911;
Scheibel and Tomiyasu, 1978; Scheibel, 1982). That AD is
a fundamental defect in such mechanisms was first pro-
posed in 1985 (Ashford and Jarvik, 1985) and has been
recently reviewed (Neill, 1995; Mesulam, 2000; Arendt,
2001a,b). This common downstream target can explain
how numerous genes and factors cause the same clinical
and neuropathological phenotype.

AD is characterized by ongoing neurodegeneration,
yet in AD and in normal aging neuronal loss is not a
prerequisite for functional deficits (reviewed in Morrison
and Hof, 1997; Mrak et al., 1997). Synaptic pathology is
an early marker of both AD and aging (Greenough et al.,
1978; Agnati et al., 1992; Martin et al., 1994). Is AD an
inevitable consequence of aging-related processes, simply a
faster deterioration of the capacity for plasticity? Even
‘normal aging’ can change its course at some point: en-
hanced dendritic growth in early aging (70s) is followed by
regression of dendritic arbor in the oldest old (90s) (Flood
et al., 1985). Plasticity in AD may be a process of com-
pensatory, albeit futile sprouting in vulnerable neurons. In
this scheme, mechanisms of plasticity and their physiolog-
ical burden are overstimulated in AD, leading to secondary
neurodegenerative effects, which then feed a vicious cycle
of increasing plasticity burden (Mesulam, 2000; Joseph et
al., 2001). The increasing burden of plasticity is initially an
adaptive response that also includes upregulation of �
phosphorylation and APP turnover, with subsequent for-
mation of neurofibrillary tangles (NFT) and amyloid
plaques as consequences that eventually lead to neurode-
generative events including loss of synapses, axons, and
dendrites, and eventually cell death (Mesulam, 2000). The
two pathologic hallmarks of AD, neuritic plaques and
NFT, could be both causative in memory deficits and
result from more fundamental failures of memory, where
positive feedback in vicious cycles could feed initially
minor disturbances (Geddes et al., 1985). AD synaptic
degeneration can also be viewed as an adaptive ‘rescue
program’ in response to metabolic fuel deprivation, by
pruning of the axonal tree to reduce energy-consuming
neuronal activity, as suggested by the decrease in synaptic
metabolic activity with age and in AD (Heininger, 2000).

The vulnerability of neurons to the effects of such
plasticity-elicited degeneration reflects their capacity for
plasticity. A simplistic analogy is found in cancer, where
cells with a predilection to divide are the most vulnerable
to failure of mitogenic control. Failure of neuroplasticity
ultimately unleashes the onset of clinical AD symptomol-
ogy by disrupting the balance between degenerative and
regenerative processes (reviewed in Mesulam, 2000;
Arendt, 2001a).

It is remarkable that all genetic causes and risk factors
of AD can impinge on neuroplasticity. Instead of causing
AD, these genetic mutations can be viewed as interacting
with ongoing, age-related impaired plasticity activity to
accelerate the events that lead to its failure. Alternatively,
they could initiate stress-related repair mechanisms that fail
because of downstream defects in or blocks to plasticity.
Are genetic factors in AD progeroid genes? For example,
ApoE4 is associated with decreased longevity compared to
E2 (Corder et al., 1994). What do genetic mutations tell
about the distinction between AD and ‘normal’ aging? Do
genetic mutations decrease the natural activity of the wild-
type protein, or are they gain-of-function mutations that
create altogether new activities? Only parallel analysis of
wild-type and mutant forms address such questions. In
addition, most of the genes and factors discussed here are
pleiotropic and interact at various levels. Such interactions
create many secondary, indirect effects that exponentially
expand the complexity of AD etiology, and full coverage
of these is beyond the scope of this review (extensively
reviewed in Arendt, 2001a). Further, because most factors
also show effects in neurodegeneration, the interactive
relationship between neurodegeneration and the capacity
for neuroplasticity adds yet more to this complexity (see
Section 8).

2.1 NEUROPLASTICITY: AN OVERVIEW
Neuroplasticity is both a substrate of learning and

memory and a mediator of responses to neuronal attrition
and injury (compensatory plasticity). It is a continuous
process in reaction to neuronal activity and neuron injury,
death, and genesis, which involves modulation of struc-
tural and functional processes of axons, dendrites, and
synapses. The varied structural elements that embody plas-
ticity include LTP, synaptic efficacy, synaptic remodeling,
synaptogenesis, neurite extension including axonal sprout-
ing and dendritic remodeling, and neurogenesis and re-
cruitment. In a broader sense, phenomenological processes
that manifest plasticity are: synapses (electrical, biochemi-
cal, structural), neurite (axon, dendrite), neuron cell bod-
ies, anterograde (toward distal neurites) and retrograde
(from distal neurites) transport, cell interactions (neuron-
glia), neural networks, and behavioral, psychological, and
sociological activities.

The rules of synaptic strengthening postulated by
Hebb (1949), which require a concerted activation of pre-
and postsynaptic elements (see Sections 2.2, 8), subserve
the phenomenon of LTP as a model of memory forma-
tion, and which is also associated with synapse dynamics
including formation and removal of synapses and changes

Neuroplasticity in Alzheimer’s Disease 403



in synapse morphology (Chang and Greenough, 1984;
Toni et al., 1999; Martin et al., 2000) (see Section 2.2).
Signals of plasticity include intraneuronal (anterograde and
retrograde), interneuronal (transsynaptic and extra/
parasynaptic) as well as intercellular signaling through glia
(Cotman and Nieto-Sampedro, 1984; Neill, 1995). They
include many molecules in the following families: extra-
cellular matrix molecules, semaphorins/collapsins, immu-
noglobulins, myelin-associated inhibitors, tyrosine kinase
receptors, netrins, neurotrophic factors, growth factors,
inflammatory cytokines, and neurotransmitters; further-
more, many inhibitory molecules also come from the same
classes (reviewed in Horner and Gage, 2000). Many mu-
tant and transgenic mice have helped elucidate aspects of
plasticity (reviewed in Chen and Tonegawa, 1997).

The adult central nervous system responds to injury
with limited yet sometimes effective restoration of synap-
tic circuitry. Whether compensatory growth is widespread
and whether it reverses cognitive deficits has been debated
(Cotman et al., 1991; Poirier, 1994; Masliah et al., 1995b).
Functional recovery requires that reactive synaptogenesis
not exacerbate circuitry dysfunction, as has been proposed
(Cotman et al., 1991; Masliah et al., 1991c). If reactive
plasticity leads to aberrant misconnection by innervating
the wrong target, there may be intrinsic, inhibitory or
limiting mechanisms to attenuate such misguided synap-
togenesis. Clearly, brain self-organization continuously
balances synapse formation and removal as well as neurite
sprouting and retraction, and in some conditions, inhibi-
tion of sprouting may actually be protective by sequester-
ing dysfunctional neurons. Such inhibition of distal plas-
ticity events could signal plasticity-related events in the
perikaryon (Mesulam, 2000). Chronic stimulation, how-
ever, may become unsustainable resulting in a plasticity
‘burden’ that leads to degenerative events.

2.2 Synapses
The balance between dynamic stabilization and de-

stabilization of synapses may provide the basis for failure of
plasticity with age and disease. Aspects of LTP are medi-
ated by rapid generation of new spines, presumably guided
by actin-mediated shape changes (Engert and Bonhoeffer,
1999; Maletic-Savatic et al., 1999; reviewed in Luscher et
al., 2000). The shape of dendrites, as well as cell survival,
can be modified by neurotrophins (McAllister et al., 1999;
reviewed in Huang and Reichardt, 2001). The cytoskel-
eton also mediates aspects of signal transduction, as shown
by microtubule involvement with effector molecules in
the hedgehog, Wnt, JNK, and ERK pathways (reviewed
in Gundersen and Cook, 1999). Actin controls the gen-
eration and motility of growth cones, spines and dendrites.
F-actin assembly at the leading edge of growth cones is
regulated by many factors, especially those of the substrate
(Suter and Forscher, 1998; Hynes, 1999) and by small
receptor-activated GTPases including rac, rho and Cdc42
(Lanier and Gertler, 2000). Dendritic spines are enriched
in actin (reviewed in Matus, 1999). Not only are they
highly motile structures covered with presynaptic struc-
tures, they may coordinate with the postsynaptic complex,

moving together, mechanically stabilizing the synapse
(Barres and Smith, 2001). Synapse formation during de-
velopment may be a collaborative process involving
growth of a presynaptic element on a site where a postsyn-
aptic spine is either present or ready to form (Horner,
1993) (see Section 9.1). Further, the cadherin/catenin
systems play an important role in the recognition between
presynaptic growth cones and its postsynaptic dendritic
target (Brose, 1999). Subsequent actions of immediate
early genes like Narp, Arc, and synaptotagmin recruit and
localize synaptic protein components. Arc stimulates both
activity and plasticity of synapses and is modulated by the
insulin receptor signal cascade. The cellular sorting, direc-
tional transport, and specific accumulation of axonal and
dendritic components (including certain mRNAs) (Schu-
man, 1999; Winckler et al., 1999; Wells et al., 2000) are
affected by AD-related pathology like NFTs (see Section
6) and APP (see Section 5.2).

Interestingly, mRNAs for GAP-43 and Arc have
been found in growth cones, and NR1 and Arc in den-
drites, implicating the important need for their activities at
these sites and their synapse-specific regulation (Crino and
Eberwine, 1996; Gazzaley et al., 1997; reviewed in
Huang, 1999; Martin et al., 2000; Campenot and Eng,
2000; Steward and Schuman, 2001). Translation-
dependent synapse formation can occur even in the ab-
sence of cell bodies (Schacher and Wu, 2002).

Presynaptic markers include GAP-43, SNAP25, syn-
taxin, synaptotagmin, synaptoporin, synaptophysin, and
the synapsins. GAP-43 is highly expressed in neural de-
velopment, axon regeneration and neuritic sprouting
(Neve et al., 1988; Masliah et al., 1991a ; de la Monte et
al., 1995; Benowitz and Routtenberg, 1997). Postsynaptic
markers include MAP-2, PSD-95, NR1, spinophillin, and
dendritic actin (reviewed in McEwen, 2001).

2.3 Adhesion Molecules
Optimal cell adhesion is required for synaptic plas-

ticity (Schubert, 1991). Presynaptic differentiation is trig-
gered by molecules associated with the synaptic basal
lamina (reviewed in McGowan and Marinkovich, 2000).
Adhesion molecules also communicate directly with sig-
naling cascades regulating cell proliferation and differenti-
ation, like FAK and MAP cascade, which are also impli-
cated in AD (Shirazi and Wood, 1993; Zhang et al., 1994;
Gartner et al., 1999). L1 and PSA-NCAM are associated
with regenerating hippocampal axons (Aubert et al., 1998;
Seki and Rutishauser, 1998; Ronn et al., 1999; Weidner
et al., 1999). NCAM-I, a marker of plasticity (Ronn et al.,
1998), is increased in hippocampal regions, but in a dis-
organized way in more AD-affected hippocampal areas
(Mikkonen et al., 1999). Proteolytic disassembly of the
extracellular matrix is regulated by MMP-9 during den-
dritic remodeling in the adult hippocampus (Szklarczyk et
al., 2002). Laminin stimulates neurite outgrowth (Baron-
Van Evercooren et al., 1982), is reorganized with
estradiol-induced neurite outgrowth (Rozovsky et al.,
2002), is found around plaques in AD brain (McKee et al.,
1991; Murtomaki et al., 1992), and its mRNA and protein
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are elevated in AD brain. Laminin interacts with many
factors and systems reviewed here (see Sections 3.3, 3.4,
5.3, 5.4, 6, 8, 9.3).

2.4 Glia: Astrocytes and Microglia
Astrocytes and microglia play critical roles in CNS

response to and recovery from injury (Gage et al., 1988;
Frederickson, 1992; Norenberg, 1994; Chao et al., 1996;
Bechmann and Nitsch, 1997; Rabchevsky, 2002). Astro-
cytes have been shown to play important roles in nutrient
supply, waste removal, and axonal guidance. More recent
work reveals that astrocytes play a more active role in
neuronal activity, including regulating ion flux currents,
energy production, neurotransmitter release, and synapto-
genesis. The latter includes the activity of glia cell appo-
sition to synapses and the regulation of synapse elimination
by ensheathment (known as glial swelling) (reviewed in
Laming et al., 2000). Ultrastructurally, this is seen as close
apposition of GFAP-positive processes (astrocyte end-feet)
that undergo rearrangement associated with changes in
GFAP expression and localization. This has been observed
not only in the hypothalamus during estrus cycle-
dependent synaptogenesis, but also in hippocampus and
visual cortex, and may mediate the astrocyte control of
synapse number in the developing cerebellum (Lino et al.,
2001). Age-related increases in GFAP as an astrocyte ac-
tivation marker, involved in astrocytic morphologic
changes in responses to injury and stress (Nichols et al.,
1993; David et al., 1997), may adversely affect their sup-
port of synaptogenesis (Vernadakis, 1996); indeed, repres-
sion of GFAP is associated with estradiol-induced neurite
outgrowth (Rozovsky et al., 2002). Astrocytes can couple
directly to neurons and directly regulate synaptic activity
(Alvarez-Maubecin et al., 2000). Neurons signal to astro-
cyte through neuronally-derived glial growth factors
(GGF) (Verdi et al., 1996). Glia (astrocytes, microglia and
oligodendrocytes) secrete growth-promoting factors like
neurotrophins (NT-3) and cytokines, and show age-
dependent changes in this activity (Sievers et al., 1995;
reviewed in Goldberg and Barres, 2000). Other possible
mediators and modulators include S100b (Whitaker-
Azmitia et al., 1997), taurine, PS-NCAM, tenascin,
NT-3, and cytokines. Glia mediate many effects of estro-
gen on plasticity (Garcia-Segura et al., 2001) (see Section
9), and are major producers of apoE lipoprotein particles
(see Section 2.4, 4).

Glia also play roles in failure of plasticity (reviewed in
Lemke, 2001). When activated, microglia and astrocytes
secrete potent inhibitors of neurite outgrowth (Snow et
al., 1990; McKeon et al., 1991; Canning et al., 1996).
White matter actively inhibits axon outgrowth through
secretion of inhibitory proteins like myelin protein IN-1,
proteoglycans, semaphorins and slit proteins; however,
responsiveness of neurons to this kind of inhibition can
depend on their ability to survive (Davies et al., 1997) (see
Section 8). These may contribute to or mimic the
astrocyte-induced physiological ‘stop’ signal to growth
cone progression (Reier et al., 1983; Liuzzi and Lasek,
1987).

2.5 Age
Age diminishes many aspects of plasticity including

LTP induction and maintenance, compensatory synapto-
genesis after injury, and reactive synaptogenesis in re-
sponse to complex experience (Scheff et al., 1980; Mori,
1993; Lanahan et al., 1997). The interplay of many factors
contributes to decreased synaptoplastic potential in the
aging brain, with resulting delay of axonal sprouting and
less effective formation of new connections to replace
those lost (McWilliams and Lynch, 1984; Anderson et al.,
1986). The capacity of neurons to elaborate neurites is
reduced with age but is not lost completely (Brewer, 2000;
Brewer et al., 2001). The failure of granule cell axon
sprouting is inherent in the age of the sprouting neuron,
not the age of its targets (Li et al., 1995). Ca2� homeostasis
is disrupted with aging and can contribute to disrupted
neuronal plasticity (Mattson et al., 1992; Teyler et al.,
1994; Ghosh and Greenberg, 1995; Foster and Norris,
1997; O’Neill et al., 2001).

Is this age-related loss in plasticity capacity due to
reduced intrinsic neuronal capacity, reduced stimulation,
or increased inhibition, which can be the same as reduced
stimulation in terms of neuronal permissiveness or respon-
siveness (Tuttle and O’Leary, 1998)? It seems all three are
involved, and future experimental directions will focus on
determining whether boosting the extrinsic signaling can
ameliorate the reduction in intrinsic growth ability (Aub-
ert et al., 1995; Neumann and Woolf, 1999; Cai et al.,
1999; reviewed in Goldberg and Barres, 2000). The de-
creased capacity for plasticity with age might represent a
continuous process of which AD is an inevitable endpoint,
although there are many differences between normal aging
and AD that support AD as a partly age-independent
disease (see Section 1).

3. ALZHEIMER’S DISEASE

3.1 Temporal and Spatial Course
AD pathology progresses over a typical spatial and

temporal course of events, with the sequential involve-
ment of basal forebrain, entorhinal cortex, hippocampus,
amygdala, and association cortices (Braak and Braak, 1991,
1997). This sequence of events can be understood from a
perspective of the functional network through which
these areas associate. AD-vulnerable regions like hip-
pocampus and amygdala are related by ancient projections
of the olfactory bulb. The entorhinal cortex sits at the
evolutionary crossroads between the highly plastic olfac-
tory system, with its distributed representation of infor-
mation, and the archi-cortex (hippocampus), paleocortex
(amygdala), and neocortex (see Section 3.6). These evo-
lutionary relationships may underlie the neural network of
initiating and propagating processes in AD (Ashford et al.,
1998a).

AD pathology affects CNS regions involved in
higher brain functions that are synaptically (structurally
and functionally) plastic, and involved in acquisition of
new epigenetic information. The limbic system has per-
haps the highest potential for neuroplasticity compared to
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other parts of the cerebral cortex (indicated by high level
expression of GAP-43, particularly in the entorhinal-
hippocampal pathway (see Section 3.6)) (Neve et al.,
1988; Lin et al., 1992). Plasticity-related dendritic remod-
eling (length and branching) is most extensive in limbic
and paralimbic regions (entorhinal-hippocampal), less in
association cortices, and undetectable in primary sensory
and motor areas (Arendt et al., 1998a). The lifelong in-
creased neuroplasticity burden and chronic upregulation
of plasticity-related cellular activities of the limbic system
could increase its vulnerability to NFT formation. Degen-
eration in limbic structures could then spread to adjacent
limbic and paralimbic neurons in reciprocally connected
association cortices to increase their plasticity burden. This
would induce reactive synaptogenesis to replace the syn-
apses provided originally by the degenerating axons of
NFT-bearing neurons and induce dendritic remodeling to
receive synapses once associated with the dendritic trees of
adjacent degenerating neurons. If these reactive neurons
cannot respond to the challenge of this increased plasticity
burden due to barriers to plasticity, they too might then be
subjected to similar � events and subsequent NFT forma-
tion with cytoskeletal disruption.

In AD there is extensive loss of cholinergic input
into the hippocampus (reviewed in Francis et al., 1999).
Cholinergic neurotransmission plays an essential role in
reactive and experience-induced synaptic reorganization
(Baskerville et al., 1997; Kilgard and Merzenich, 1998;
Zhu and Waite, 1998), and induces production of neuro-
trophic secreted APP (Nitsch et al., 1992) (see Sections
5.3, 10.3). Cortical cholinergic depletion in AD (Geula
and Mesulam, 1999) arises from loss of neurons that
project from nucleus basalis of Meynert, a limbic structure
that retains high plasticity in late adulthood (Arendt et al.,
1995) and contains some of the first neurons to show NFT
pathology (Mesulam, 1996).

3.2 Development, Differentiation Recapitulation
Mechanisms of plasticity in adults overlap those used

in brain maturation in early development (Cotman et al.,
1990; Eriksson et al., 1998; Wheal et al., 1998). Regions
with the highest degree of structural plasticity are those
that take the longest to mature during childhood (Braak
and Braak, 1996) and are the same regions most vulnerable
in AD (reviewed in Arendt, 2001b). Although many re-
gions undergo critical periods of intense plasticity, many
become relatively quiescent at maturity and the regions
that retain high levels of plasticity correlate with AD
vulnerability (Ashford et al., 1995, 2000; Alexander et al.,
2002). This may allow for the evolutionary acquisition of
higher brain functions; regions vulnerable in AD share a
common evolutionary foundation in the massive enlarge-
ment of the association cortices and functionally linked
regions (Rapoport, 1990; Neill, 1995) (see Section 3.1).

The differential susceptibility of AD-specific regions
and neurons may be related to the degree of retained
capacity for plastic remodeling (Arendt et al., 1998a). In
vivo, synaptogenesis rates decline with developmental age
(Gall et al., 1979) and there is recapitulation of develop-

mental gene expression responses in adult lesion and aging,
including AD (Kondo et al., 1996; Styren et al., 1999).
The Nun Study indicates that the risk of AD can be
determined as early as 20years of age, implicating genetic
and developmental factors (Ashford and Mortimer, 2002).
If such mechanisms controlling developmental plasticity
are defective and are later reactivated (in aging, or AD, or
pre-AD), they would contribute to ineffective plasticity
responses and exacerbate the plasticity burden of aging and
AD.

It has been hypothesized that a ‘labile state of differ-
entiation’ of neurons allows for neuroplasticity after de-
velopment but also renders these neurons vulnerable to
degenerative effects (Arendt, 2000, 2001a,b). In AD, the
differentiation control may be in some way disrupted,
involving expression or re-expression of genes (dediffer-
entiation) that contribute to making new neuronal con-
nections in regenerative plasticity, i.e., genes involved in
both growth cones and synaptic connections (Pfenninger
et al., 1991) (see Sections 3.1, 3.3), as a necessary compo-
nent of the ability to maintain a high degree of plasticity
throughout life. This retention of plasticity potential leads
to or may require re-expression of developmentally reg-
ulated genes, alteration of posttranslational modifications
and imbalance of gene products, and re-activation of cell
cycle genes such as cyclin B and E, as observed in neurons
in healthy, elderly individuals (Nagy et al., 1997; Smith et
al., 1999) and in phospho-�-expressing neurons (Nagy et
al., 1997). This confounds irreversible block of entry into
the cell cycle of the neuron, a situation that may trigger
cell death (Heintz, 1993) (see Sections 8.2, 8.3). For
example, developmentally regulated genes like MAP1B-P,
involved in axon growth (Gordon-Weeks and Fischer,
2000; Mack et al., 2000), are downregulated postnatally
but remains active in regions of plasticity (Nothias et al.,
1996). Its distribution parallels PSA-NCAM, involved in
neurite growth and synaptogenesis (Seki and Arai, 1993;
Muller et al., 1996; Cremer et al., 1997). The capacities for
plasticity may depend on specific kinases, high levels of
neurofilaments, and � isoforms (Myoken et al., 1990; Hof
and Morrison, 1994; Bahr and Vicente, 1998; Delacourte
et al., 1998; Esclaire et al., 1998; Morrison et al., 1998),
some of which also mark neurons destined for degenera-
tion in AD (see Section 8).

3.3 Synaptic Loss
Synaptic loss is an early event in AD and is a struc-

tural correlate of cognitive dysfunction (Gonatas et al.,
1967; Gibson, 1983; Davies et al., 1987; Bertoni-Freddari
et al., 1989; Hamos et al., 1989; Scheff et al., 1990; Weiler
et al., 1990; Brunelli et al., 1991; Terry et al., 1991; Honer
et al., 1992; Lassmann et al., 1992, 1993; Zhan et al., 1993;
Martin et al., 1994; Masliah et al., 1994, 1995a; Dickson et
al., 1995; Heinonen et al., 1995; DeKosky et al., 1996; Sze
et al., 1997; Cotman and Anderson, 2000; Mattson et al.,
2001; reviewed in Arendt, 2001a). Memory loss in AD
may result from synaptic dysfunction that precedes large-
scale neurodegeneration, where the synapse-to-neuron ra-
tio is decreased by about 50% (Cullen et al., 1997; Lambert
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et al., 1998; Chapman et al., 1999; Hsia et al., 1999; Chen
G et al., 2000; Tezuka et al., 2001; reviewed in Arendt,
2001a). Synapse and dendrite loss in AD exceeds that seen
with normal aging (reviewed in Terry et al., 1994; Ander-
ton et al., 1998). Synaptic degeneration, like early AD,
progresses slowly at first, perhaps reflecting attempts for
compensatory plasticity, and as such could be initially
reversible, but eventually becomes irreversible due to
marked synapse loss (Rapoport, 1999).

In early AD, a number of growth-associated proteins
are upregulated, which may reflect attempts to stimulate
plasticity, including GAP-43, MARCKS, spectrin, heparan-
sulfate, laminin (see Sections 2.3, 6), NCAM, various
cytokines and neurotrophic factors including NGF (see
Section 10.4), bFGF, EGF, IL-1, Il-2, IL-6, IGF-1,
IGF-2, PDGF, HGF/SF, and several growth factor recep-
tors (reviewed in Arendt, 2001b: see Section 3.2). Dereg-
ulation of proteins involved in structural plasticity of axons
and dendrites (Jorgensen et al., 1990; Hatanpaa et al.,
1999; Lubec et al., 1999; Mikkonen et al., 1999) and
computational studies (Horn et al., 1996; Hasselmo, 1997)
indicate a failure of plasticity mechanisms, and support a
disruption of synapse turnover as a primary mechanism in
AD (Arendt, 2001b) (see Section 3.2). For example, syn-
apsin IIa mRNA is downregulated in early AD, as de-
tected by gene chip microarray analysis (Ho et al., 2001;
Pasinetti, 2001). Synaptic remodeling in AD brain is de-
tected also by elevation in the NCAM/SNAP-25 ratio
(Jorgensen et al., 1990, 1997; Jorgensen, 1993, 1995).
Although these structural and biochemical changes in AD
provide understanding of aspects of plasticity, their rela-
tion to the properties of LTP in relation to AD are poorly
understood (Dawson et al., 1992; Farooqui and Horrocks,
1994; Nalbantoglu et al., 1997).

3.4 Axonal and Dendritic Remodeling
Extracts of AD brain increase axonal branching of

neurons grown on laminin (Kittur et al., 1992; Jorgensen,
1993), and AD brain and CSF extracts sustain neuron
growth and survival (Uchida et al., 1988; Uchida and
Tomonaga, 1989; Pauwels et al., 1993; Erickson et al.,
1994). Axonal and dendritic remodeling in AD show
restricted regional and temporal localization (Arendt et al.,
1995, 1997, 1998a). Neocortex and hippocampus exhibit
increased sprouting and synaptogenesis in AD (Grady et
al., 1989; Masliah et al., 1991a,c; Jobst et al., 1994).
Sprouting of commissural and associational fiber axons in
AD is indicated by expansion of kainic acid receptor
distribution that matches that seen in entorhinal cortex
lesions (see Section 3.6); hippocampal sprouting of septal
afferents is indicated by the pattern of AchE innervation in
the perforant path terminal zone (Geddes et al., 1985;
Gertz et al., 1987; Hyman et al., 1987; Masliah et al.,
1991c) (see Section 3.6). In AD, axon length correlates
with dementia severity suggesting regressive axonal events
may be more relevant than dendritic attrition or neuron
loss (Anderson, 1996). This is consistent with degenera-
tion of presynaptic termini that then leads to secondary

transneuronal degeneration of postsynaptic dendrites (Su
et al., 1997).

Dendritic extent in the hippocampus can increase
with age itself, possibly a compensatory response to loss of
synaptic connections (Flood and Coleman, 1990). This
may not be sustainable, however, because enhanced den-
dritic growth in the early aging (70s) is followed by
regression of dendritic arbor in the oldest old (90s) (Flood
et al., 1985). Neocortex and hippocampus in AD also
show massive somatodendritic sprouting (Ihara, 1988; Jor-
gensen et al., 1997), which may reflect unsuccessful re-
modeling in response to presynaptic or axonal damage
(Scott, 1993). Such somatodendritic sprouts, which have
filopodium-like structures resembling growth cones, con-
tain � and MAP2, which recapitulates their codistribution
in neurite sprouting during development (reviewed in
Arendt, 2001a). These dendritic changes therefore may be
secondary to deafferentation, signal transduction failures,
or cytoskeletal abnormalities (Anderton et al., 1998). As in
aging, dendritic sprouting in AD may not be sustainable, as
dendritic extent can decline (Flood and Coleman, 1990),
particularly dendrites of hippocampal granule cells (Ein-
stein et al., 1994). Some neuropil threads (curly fibers)
show preferential development at dendritic branch points,
suggesting that blocking dendritic transport could lead to
dendrite pruning, and the loss of associated synapses (Ash-
ford et al., 1998b).

3.5 Aberrant Sprouting and Dystrophic Neurites as
Dendritic Sprouting

Neuronal sprouting in AD can be aberrant based on
its localization, morphology, cytoskeletal composition
(Arendt et al., 1986, 1998b; Arendt and Zvegintseva,
1987; McKee et al., 1989; Ferrer et al., 1990; Phinney et
al., 1999), and synaptic protein expression (Geddes et al.,
1985; Ihara, 1988). Aberrant sprouting can be an early
feature of AD (Ihara, 1988), preceding detectable tangle
formation and extensive neuron loss (Su et al., 1993;
Arendt et al., 1998b), and therefore might represent a
fundamental defect in AD rather than an overt response to
ongoing degeneration (Geddes et al., 1991; Cotman et al.,
1993; Masliah et al., 1993a,b). Abnormal neurite growth
might be associated with the elevation of NGF receptors
(Ernfors et al., 1990; Mufson and Kordower, 1992) that
precedes neurofibrillary degeneration (Arendt, 1993). APP
transgenic mice also show behavioral and synaptic changes
before plaque formation (Holcomb et al., 1998; Hsia et al.,
1999; Moechars et al., 1999; Chen G et al., 2000) (see
Section 5). Transgenic mice expressing APP show in-
creased hippocampal synaptophysin that correlates with
impaired learning and memory (King and Arendash, 2002).

Dystrophic neurites (mainly dendritic) within or
near plaques (Gonatas et al., 1967; Probst et al., 1983;
Benzing et al., 1993; Su et al., 1993), as a consistent
component of AD pathology, were originally regarded as
aberrant sprouts by Alzheimer and others (Fischer, 1907;
Simchowicz, 1911; Scheibel and Tomiyasu, 1978). This is
supported by Golgi (Scheibel and Tomiyasu, 1978; Ferrer
et al., 1983, 1990; Arendt et al., 1986; Ihara, 1988),
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ultrastructure (Paula-Barbosa et al., 1980), and association
of GAP-43, MARCKS, spectrin, and synaptic, axonal,
and cytoskeletal proteins (Geddes et al., 1985, 1986, 1990;
Masliah et al., 1989, 1990, 1991a,Masliah et al.,b,d, 1992,
1993a; Cotman et al., 1990; Kosik, 1991; Saitoh et al.,
1993; Phinney et al., 1999) (see Section 5.4). Abnormally
dilated synaptic terminals, indicative of a compensatory
response, are found in both aged and demented brains
(Braak and Braak, 1988; DeKosky and Scheff, 1990; Ferrer
et al., 1990) (see Section 5.4).

Mega neurites, which represent a specific subpopu-
lation of dystrophic neurites (�10 �M diameter), are
often associated with plaques, contain synaptophysin, hy-
perphosphorylated PHF-�, GAP-43, and are modified by
sialic acid addition and glycosylation. These characteristics
suggest that they are abnormal neuritic sprouts of atrophic
dendritic structures (Espinosa et al., 2001). Such modifi-
cations may represent early events in neurofibrillary de-
generation mediated by microtubule depolymerization at
the growth cone and adhesion interactions (Araujo et al.,
1997).

3.6 Entorhinal Cortex, Hippocampal Pathway, and
Lesion Models

In AD, the entorhinal cortex (EC) shows extensive
loss of neurons (Hyman et al., 1984; Geddes et al., 1985)
and neuronal cytoskeletal disruption (McKee et al., 1991)
whereas the hippocampal region that receives EC inner-
vation (the molecular layer) shows plaque-independent
granule cell dendritic pathology (Einstein et al., 1994) and
loss of synaptophysin immunoreactivity (Heinonen et al.,
1995). In response to these degenerative effects, some
patients show regenerative changes in the dentate gyrus
(Geddes et al., 1985; Arendt et al., 1998a) and apoE4
patients are impaired in this compared to apoE3 (Arendt et
al., 1997; reviewed in Arendt, 2001b). Aged human brain
shows increased granule cell axon sprouting, suggesting
that the molecular layer might be partially deafferented
with age (Cassell and Brown, 1984). The dendritic spine
density of granule cells is reduced in AD only in distal
segments, possibly indicating sprouting of undamaged
proximal segments.

In mice and rats, the entorhinal cortex lesion (ECL)
is a well-established model of synaptic plasticity (Poirier et
al., 1991a,b; Masliah et al., 1995d, 1996; Danik and
Poirier, 1998) and behavioral correlates (Miwa and Ueki,
1996; Good and Honey, 1997; Hardman et al., 1997).
ECL-induced deafferentation of the EC input models
aspects of AD, albeit in an acute model, and has been used
to show age-dependent reduction in sprouting in response
to ECL (Scheff et al., 1980). The major neuron type that
undergoes sprouting is the granule cell of the dentate
gyrus, whose dendritic field is the target of EC innerva-
tion. Granule cell axons, so-called mossy fibers, sprout and
are detected by Timm’s stain (for vesicular zinc) (Dan-
scher, 1981; Gaarskjaer, 1986), or other markers of neurite
sprouting GAP-43, synaptophysin; these latter markers
also detect sprouting of commissural/associational fibers
(Cotman et al., 1991). The ECL paradigm recapitulates

developmental gene expression responses seen in adult
lesion models, aging, and AD (Kondo et al., 1996; Styren
et al., 1999) (see Section 3.2). Such similarities to devel-
opmental events include expression of synapsin I,
eNCAM, and fetal ALZ-50 reactive clone 1 (FAC1) (re-
viewed in Bulinski et al., 1998; Styren et al., 1999) and
partial similarity to changes in dendritic structure, micro-
tubule (MAP2) metabolism, intermediate filament expres-
sion (nestin, vimentin), trkB expression, and glutamate
and GABA receptor expression.

Organotypic hippocampal slice culture (OHSC) is a
semi-simplified yet physiologically and neuro-organo-
relevant in vitro system of postnatal hippocampal tissue,
widely regarded as a bridge between in vivo and in vitro
models, powerful in elucidating mechanisms of complex
and necessarily emergent CNS phenomena (Zimmer et
al., 1999). OHSCs are typically derived from early post-
natal rodents although adult OHSC methods are now
available (Temple and Malouf, 2000; Xiang et al., 2000).
OHSCs continue to develop and retain organotypic fea-
tures of the intact hippocampus (Bruce et al., 1995),
including development of the mossy fiber pathway that
arises from dentate granule cells and projects to the CA3
pyramidal cells (Zimmer and Gahwiler, 1987; Sutula et al.,
1989), as well as other synaptic development phenomenon
that parallel those observed in vivo (Buchs et al., 1993;
Muller et al., 1993; Stoppini et al., 1993).

OHSC is an in vitro model of deafferentation-
induced hippocampal neuron sprouting that replicates as-
pects of ECL. In addition to C/A connections (Frotscher,
1992), the preparation of OHSC transects the perforant
path and thereby removes the major extrinsic innervation
by the entorhinal cortex (EC) to the granule cell dendritic
field in the OML, as well as the commissural projection to
the IML. Like ECL in vivo, this deafferentation stimulates
sprouting of granule cell mossy axon collaterals into the
dentate molecular layer, where they are not normally
found in abundance (Gaarskjaer, 1986; Sekiguchi et al.,
1996). There they make aberrant synapses (Rudling and
Angelin, 1993) with dendrites of the deafferented granule
cells that are electrophysiologically functional (Wong and
Moss, 1992). Granule cell axon sprouting is altered by
intrinsic neural excitability in the absence of cell death
(Stringer et al., 1997) (see Sections 3.1, 3.4, 4.2, 8.1).

3.7 Cholesterol in the CNS and AD
Metabolism of cholesterol in the brain and cross-talk

with peripheral lipid metabolism (reviewed in Dietschy
and Turley, 2001; Rapoport, 2001) is an emerging con-
sideration for AD etiology and possible therapeutic targets
(Roses and Saunders, 1997; Vance et al., 2000). Levels of
cholesterol in the brain are critical for synapse formation
and maintenance and recent studies identify cholesterol as
a limiting factor in synaptogenesis (reviewed in Koudinov
and Koudinova, 2001). Reduced cholesterol may place a
limit on plastic processes thus reducing the tendency to
develop AD. An issue for very long axons is the ability to
supply sufficient cholesterol for rapid axonal growth, es-
pecially in regeneration. What proportion of axonal mem-
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brane phospholipid is synthesized in situ in axons com-
pared to that made in cell bodies and transported to axons?
(reviewed in Vance et al., 2000).

AD brain contains less cholesterol, perhaps because
of enhanced efflux of derivatized cholesterol from the
brain (Koudinov and Koudinova, 2001). This contributes
to AD-related alterations in membrane composition
(Bertoni-Freddari, 1988; Majocha et al., 1989; Svenner-
holm and Gottfries, 1994; Gottfries et al., 1996), mem-
brane fluidity (Scott et al., 1994; Fernandes et al., 1999;
Zubenko et al., 1999), and lipid bilayer structure and
dynamics (Mason et al., 1992; Mulder et al., 1998) (see
Section 4.4). Cholesterol also influences the phosphoryla-
tion status of � (Distl and Meske, 2000; Fan et al., 2001;
Koudinov and Koudinova, 2001; Ohm et al., 2001),
MAP2 phosphorylation in the context of dendrite out-
growth (Fan et al., 2002), and amyloid metabolism (in-
cluding AB production) and its related membrane fluidity
effects (Hartmann, 2001; Buxbaum et al., 2002; Ji et al.,
2002; Runz et al., 2002; Wahrle et al., 2002) (see Sec-
tion 5).

Statins, as inhibitors of cholesterol synthesis, may
reduce the prevalence of AD (Jick et al., 2000; Wolozin et
al., 2000; Buxbaum et al., 2002; Rockwood et al., 2002;
Yaffe et al., 2002), possibly by reducing cholesterol turn-
over in the brain (Locatelli et al., 2002). Axonal growth
ceases when cholesterol synthesis is inhibited by pravasta-
tin and could be reactivated by addition of cholesterol to
either cell bodies or distal axons (Posse de Chaves et al.,
1997). LTP is inhibited by cholesterol biosynthesis inhib-
itors (Matthies et al., 1997) and LTP induction is associ-
ated with pathway-specific increases in lipid production
(Koudinov and Koudinova, 2001). An important contri-
bution of glia is their production of apoE-bound lipopro-
tein particles to deliver rate-limiting cholesterol to neu-
rons, stimulating both synaptogenesis and stable
maintenance of synapses, as measured by synapsin and
synaptophysin (Kosik, 1992; Pfrieger and Barres, 1997;
Barres and Smith, 2001; Mauch et al., 2001; Ullian et al.,
2001) (see Section 4.4). Possible mechanisms include cho-
lesterol as a limiting factor in the structural demands of
synaptogenesis including membrane formation, synaptic
vesicle formation, and clustering of postsynaptic receptors
(Gimpl et al., 1997; Martens et al., 2000; Thiele et al.,
2000; Bruses et al., 2001; Lang et al., 2001), activation of
synaptogenesis by cholesterol signaling through the apoE
receptor LRP (see Section 4.1), or other pathways such as
hedgehog, Wnt, and reelin (Herz, 2001a; Rice et al.,
2001). Future goals should include determining whether
these cellular effects can be generalized to synaptogenesis
during learning and memory, whether astrocyte-derived
cholesterol is a limiting factor in vivo (see Section 2.4),
and evaluating the differential effects apoE isotypes in
these phenomena.

4.1 APOLIPOPROTEIN E
Apolipoprotein E (apoE) is a component of several

classes of lipoproteins regulating lipid metabolism and
redistribution (Mahley and Huang, 1999; LaDu et al.,

2000; Mahley and Rall, 2000). ApoE isotype E4 is a risk
factor for familial and late-onset AD, showing increased
risk particularly in the 60–80 year age group (Breitner et
al., 1999), and earlier age of onset (Roses et al., 1995;
Blacker et al., 1997; Meyer, 1998) ApoE4 influences the
risk of AD through pleiotropic effects on both the pathol-
ogy of AD and the environmental and developmental
factors influencing its etiologies (reviewed in Teter, 2000;
Teter et al., 2002). This pleiotropy obscures the mecha-
nism for apoE4, and may involve a balance or interaction
between neurodegenerative (Poirier, 1994; Buttini et al.,
1999; reviewed in Teter et al., 2002) and neuroregenera-
tive effects (see Section 8). The major epidemiological
effect of E4 in AD is to promote an earlier age of onset
than E3, typically by �5 years but as much as 15 years
(reviewed in Hyman et al., 1996; Blacker et al., 1997;
Meyer, 1998; Mesulam, 1999; Arendt, 2001b; Ashford
and Mortimer, 2002). Because AD is characterized by
ongoing neurodegeneration, accelerated clinical onset
could be caused by defects in apoE-related compensatory
mechanisms that repair circuitry (reviewed in Mesulam,
1999; Teter, 2000; Arendt, 2001a) This is only one of
several mechanisms that could delay the onset of AD.

A great deal of evidence implicates a role for apoE in
AD-associated plasticity (Poirier, 1994; Masliah et al.,
1995d, 1996), possibly through its isoform-specific func-
tions in cholesterol and phospholipid metabolism and
membrane lipid recycling and trafficking, which facilitate
neuronal sprouting (Mahley, 1988). ApoE plays a role in
both PNS and CNS synaptic remodeling (Poirier et al.,
1993a; Poirier, 1994; Laskowitz et al., 1998) although
apoE deficiency does not compromise PNS regeneration,
perhaps by compensatory overproduction of another apo-
lipoprotein (Popko et al., 1993), it seems to be essential in
the CNS (Poirier et al., 1993a; Masliah et al., 1995b).
Evolutionary perspectives of apoE allele frequencies are
consistent with roles in diet and lipid metabolism (Corbo
and Scacchi, 1999).

Differential intracellular trafficking may underlie
apoE isotype effects on plasticity. ApoE isotypes localize
differentially and accumulate in neurons and astrocytes
(Xu et al., 1998). ApoE isotypes may be sorted into late
endosomes, escaping lysosomal hydrolysis, where they can
then differentially mediate intracellular process like stim-
ulating neurite outgrowth (Mahley and Rall, 2000). E4
may not be able to escape the endocytic pathway to
interact with � or contribute other functions (Hardy et al.,
1998; Tesseur et al., 2000).

Many of the activities of apoE are dependent on
receptor-mediated events, involving any of a number of
low-and high-affinity receptors, including the LDL recep-
tor family of lipoprotein receptors (reviewed in Herz,
2001a), like LRP and HSPG. Several of the neurite
outgrowth-promoting properties of apoE isotypes have
been shown to be dependent on LRP, both in vitro (Table
I) and in vivo (Veinbergs et al., 2001). LRP decreases with
age (Kang et al., 2000; Herz, 2001a) and is implicated in
AD (Rebeck et al., 1993), with LRP and VLDL polymor-
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phisms increasing AD risk (Kang et al., 1997; Helbecque
et al., 1998). LRP is implicated in LTP in OHSC (Zhou
et al., 2000). LRP signaling roles may modulate synaptic
plasticity because it interacts with NMDA receptors via
the multivalent scaffold protein PSD-95 in postsynaptic
membranes, among many possible mechanisms (Gotthardt
et al., 2000; reviewed in Herz, 2001a,b; Herz and Strick-
land, 2001). LRP may mediate the effect of E4 but not E3
stimulating the ERK cascade and CREB (Ohkubo et al.,
2001). ApoE isotypes show other signaling-dependent ef-
fects (reviewed in Ohm et al., 2001).

ApoE expression is increased in early postnatal de-
velopment (Muller et al., 1997), which correlates with the
onset of synaptic development. ApoE is upregulated by
estrogen and in association with estrogen-stimulated,
apoE-dependent plasticity (Tam et al., 1986; Stone et al.,
1997; Srivastava et al., 1997), and in glia (primarily astro-
cytes) in regions that undergo estrus cycle-dependent syn-
aptic remodeling (Stone et al., 1997) (see Section 4.11).
ApoE mRNA is upregulated in AD (Poirier, 1994) and in
the entorhinal cortex lesion model (Poirier et al., 1991a;
McRae et al., 1997). Besides effects of apoE levels on
plaque development (Bales et al., 1997), levels of expres-
sion of the apoE protein have a profound effect on the
isotype-specific activity in supporting compensatory sprout-
ing in vitro and in lesion responses and behavior effects in
vivo (see Section 4.10). The dose-responsiveness of isotype-
specific activities also bears on the therapeutic implications of
altering apoE expression levels (see Section 4.12).

4.2 ApoE-Dependent Sprouting (reviewed in
Teter, 2000; Teter et al., 2002)

4.3 Alzheimer’s Disease. There is epidemio-
logic evidence for failure of plasticity in E4 patients with
Alzheimer’s disease. For example, in later stages of AD, E4
brains show reduced dendritic remodeling of pyramidal

and subcortical neurons in addition to more severe degen-
eration. ApoE E4 copy number also affects the relationship
between (and possible coupling between) neuronal loss
and dendritic growth (see Section 8), with E4/E4 showing
no relationship, and shows a shift toward proximal branch-
ing (Arendt et al., 1997; 1998a; reviewed in Arendt,
2001b). Interestingly, basal dendrites do not consolidate
LTP unlike apical dendrites (Arai et al., 1994a) (see Sec-
tions 3.4, 3.6, 4.9 for proximal branching effects).

4.4 Sprouting mechanisms and the lipid me-
tabolism model. The role of apoE in stimulating neu-
ronal regeneration has received much support. E4 consis-
tently shows defects (reviewed in Poirier, 1994, 1995;
Danik and Poirier, 1998; Holtzman and Fagan, 1998;
Laskowitz et al., 1998; Kerr and Kraus, 1998); unfortu-
nately, no studies have examined the relative capacity of
E2 to support neurite sprouting. A well-established mech-
anism involves the role of apoE in lipid metabolism.
Among the many activities that apoE has demonstrated
that could account for its CNS effects (see Sections 4.1,
4.4), its definitive role in cholesterol and phospholipid
scavenging, metabolism, and transport has defined its role
in CNS and PNS plasticity after injury (Masliah et al.,
1995d, 1996). The central model of this latter role has
been described (Boyles et al., 1989; Poirier et al., 1993a,
1994; Laskowitz et al., 1998) where glia phagocytosing
degenerating terminals esterify cholesterol from scavenged
membrane lipid, repackage it with apoE as a lipoprotein
particle and deliver it to neurons to supply cholesterol for
neurite growth via their apoE receptors, LDLR or LRP.
Aspects of this mechanism were demonstrated originally in
the PNS (Boyles et al., 1989; Saada et al., 1995). Recently,
apoE and the cholesterol it carries was identified as the
glial factor that stimulates new synapse formation in cul-
tured neurons (Mauch et al., 2001; Ullian et al., 2001).

TABLE I. ApoE4 is Defective in Supporting Neurite Sprouting In Vitro

apoE source Neurite source
apoE4 effect

(apoE3 stimulates) Depends on References

Pure DRG and 1° cortical neuron Inhibit Lipoprotein,
apoE levels

Handelmann et al., 1992; Nathan et al., 1994;
Nathan et al., 2002

Pure N2A Inhibit �-VLDL,
LDLR/LRP

Nathan et al., 1994; Nathan et al., 1995

Transfected N2A low
expressing

N2A Inhibit �-VLDL,
HSPG/LRP

Bellosta et al., 1995

Transfected N2A high
expressing

N2A Neutral De Mattos et al., 1998

Pure GT1-1 (a HT line) Neutral �-VLDL, LRP Holtzman et al., 1995b
Human plasma HDL,

CSF lipoproteins
GT1-1 (a HT line) Neutral LRP Fagan et al., 1996

GFAP transgenic
astrocyte

1° HC neuron Neutral LRP Sun et al., 1998

Pure (no lipid) �
laminin

1° HC neuron Stimulates (	E3) Huang et al., 1995

Transfected HEK cells 1° HC neuron Stimulates (	E3) Puttfarcken et al., 1997
Human APOE

transgenic OHSC
Granule neurons Stimulates (	58% E3)

“Inhibits” by dose apoE levels
Teter et al., 1999b
Teter et al., 2002
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Besides lipid metabolism, isotype-specific effects
could be mediated by specific association with lipoprotein
particles, inter- and intracellular apoE trafficking, and ox-
idative effects of apoE. The defective ability of E4 to
support neurite sprouting could involve the isotype- and
cell type-specific differential localization and accumulation
of apoE (see Section 4.1). Stimulation of neurite out-
growth by E3 in vitro is associated with greater neuronal
apoE accumulation (Nathan et al., 1994) and E3 extends
along neurites more than E4 (Nathan et al., 1995). Studies
have shown that apoE isotypes experimentally directed to
cytoplasmic compartmentalization exhibited the E4 defect
in sprouting of N2A cells; that the carboxy terminus
determined intracellular distribution whereas the amino
terminus mediated neurite sprouting suggests that the E4
defect may be due to differential cytoplasmic compart-
mentalization (Huang et al., 1999).

ApoE could play a role in lipid metabolism through
its oxidative effects (see Section 10.2). ApoE-dependent
effects on oxidative stress could modulate its ability to
support neurite sprouting and could account for synaptic
disruption observed in apoE-ko mice. Lipid peroxidation
toxicity could inhibit sprouting by the inability to efflux
such toxins. In humans, E4 genotype shows higher plasma
lipid peroxide that correlates with apoE levels (Smith et
al., 1998) and higher lipid peroxidation in brain (Ra-
massamy et al., 2000). The lack of apoE in the apoE-ko
mice results in oxidative stress in the periphery and CNS,
e.g., increased CNS F2-isoprostanes (Montine et al., 1999;
Pratico et al., 1999), which are suppressed in the plasma by
vitamin E (Pratico et al., 1998). Vitamin E ameliorates
cognitive deficits in apoE-ko mice (Veinbergs et al.,
2000); apoE-ko animals demonstrate increased susceptibil-
ity to oxidative stress conditions including global ischemia
where neuronal damage correlates with 4-HNE (Hors-
burgh et al., 1999). Lack of apoE, however, (in apoE-ko
mice) was found to increase CNS lipid peroxidation with-
out neurodegenerative or synaptic changes, perhaps be-
cause of an oxidative magnitude issue (Montine et al.,
1999) (see Section 10.2).

4.5 Model systems
4.6 ApoE-knockout mice. Studies of the

apoE-ko mouse (Piedrahita et al., 1992) reveal insight into
functions of apoE, peripherally and centrally. Although
neuropathologically normal, apoE-ko mice show numer-
ous CNS defects including impaired memory and learning
deficits, some of which are age-dependent (Gordon et al.,
1995; Masliah et al., 1995b,c, 1996; Krzywkowski et al.,
1997, 1999; Veinbergs et al., 1997; Veinbergs and Masliah,
1999; Keller et al., 2000; Bi et al., 2001), changes in
cholinergic responses (Gordon et al., 1995), age-related
disruption in the dendritic cytoskeleton, and reduced syn-
aptophysin and MAP2 in the hippocampus (Masliah et al.,
1995a; Veinbergs and Masliah, 1999; reviewed in Masliah
et al., 1996;). Some effects, however, may be strain-
dependent (Gandy et al., 1995; Masliah et al., 1996).
ApoE-ko mice also demonstrate deficits in response to
injury, including cerebral ischemia (Connolly et al., 1996;

Laskowitz et al., 1997), and impaired synaptic regenera-
tion (recovery of synaptophysin to entorhinal cortex deaf-
ferentation) (Masliah et al., 1995b; Chen Y et al., 1997;
Laskowitz et al., 1997; Fagan et al., 1998) (see Section
3.6). Neurotrophic compounds like cerebrolysin that
ameliorate behavioral and neurodegenerative changes in
apoE-ko mice are associated with upregulation of GAP-43
(Masliah et al., 1999). Some evidence suggests, however,
that synapse formation in development is normal in
apoE-ko mice, and humans who lack apoE are apparently
cognitively normal (Feussner et al., 1996), suggesting the
existence of redundant pathways replacing some apoE
functions. It may be that in the aging brain these redun-
dant pathways are ineffective, increasing the reliance on
apoE activity for plasticity. Loss of synaptic and dendritic
density seen separately with age or with absence of apoE
expression are synergistic in aged apoE-ko mice (Masliah
et al., 1995d).

4.7 Human apoE isotype transgenics. Several
lines of transgenic mice have been developed that express
the human apoE isotypes under the transcriptional control
of various promoters: the natural human apoE promoter
(human apoE); the astrocyte-specific GFAP promoter
(GFAP); the neuron-specific NSE promoter (NSE); and
recently, the natural mouse apoE promoter (mouse apoE ),
so-called knock-in mice. Clearly, each has strengths and
limitations experimentally and in their relevance to AD.
For example, the GFAP transgenic mice have provided
what is considered a natural source of lipoprotein particles
as synthesized by astrocytes. E3 produced by primary
astrocyte cultures from transgenic mice (GFAP) is better
than E4 at promoting neurite outgrowth in primary cul-
tured neurons (Sun et al., 1998, Table I). This is also an
advantage of the human apoE transgenic mice (see Section
3.6); transgenic line also expresses apoE in vivo with
cellular specificity like that seen in humans (Xu et al.,
1996, 1998, 1999) (see Section 4.1). Sprouting responses
and synaptic disruptions in hippocampal pyramidal neu-
rons of aged apoE-ko mice (GAP-43, MAP-2) and be-
havioral deficits are better ameliorated by E3 than E4
transgene (human apoE) expression (Veinbergs et al.,
1999). Similar results were obtained by infusion of apoE
isotypes directly into the brain of apoE-ko mice (Masliah
et al., 1997). Behavioral and structural alterations are seen
in female E4 but not E3 transgenic mice (NSE) (see
Section 4.11). E4 transgenic mice (human ApoE) are un-
able to compensate for age-related neuronal loss by syn-
aptic remodeling of the residual neurons (Hoffman and
Chernak, 1994; Cambon et al., 2000). E4 transgenic mice
(NSE) show less synaptophysin (a presynaptic marker) and
MAP-2 (a dendritic marker) and behavioral deficits
(Buttini et al., 1999; Raber et al., 1998, 2000, 2002). The
effects of neuronal expression of human ApoE on sprout-
ing have not been addressed adequately.

4.8 In vitro sprouting systems. The mecha-
nisms by which apoE facilitates neuronal sprouting have
been studied extensively in vitro. In most studies, E4 was
defective in supporting neurite sprouting (Table I). In
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these studies, the apoE source varied between pure (re-
combinant) protein, lipoprotein particles produced by
transfected neurons or liver cells (HEK-293), particles
produced by transgenic astrocytes (GFAP promoter-
driven), or by a balanced production by all CNS cells
(human ApoE transgenics). Neurite sprouting was mea-
sured in neuron cell lines N2A or GT1-1 (a hypothalamic
line), primary hippocampal neurons, or hippocampal gran-
ule neuron mossy fibers in OHSC (see Section 3.6). In all
these studies, E3 stimulated sprouting, whereas E4 showed
an inhibitory effect, no effect, or weakly stimulatory ef-
fects on sprouting, always less than (or equal to) E3 (re-
viewed in Teter, 2000).

Important findings include consideration of the lipi-
dation state of the apoE isoforms to reveal isoform-specific
activities. For example, pure E4 inhibits N2A sprouting
only when reconstituted with b-VLDL or with other lipid
sources (also required for the defect in N2A-expressed
apoE4) (Nathan et al., 1994, 1995; Bellosta et al., 1995;
Holtzman et al., 1995b), and apoE isoforms expressed in
lipoprotein particles by transfected HEK cells do not reveal
the E4 defect (Puttfarcken et al., 1997) whereas those
produced by transgenic astrocytes do (Sun et al., 1998).
The lipidation state of apoE is a critical issue yet to be
resolved fully because not all apoE isotype-specific effects,
including sprouting, depend on lipidation (reviewed in
Nathan et al., 1994, 2002; Jordan et al., 1998; Teter, 2000).

Possible mechanisms of isotype-specific sprouting
include isotype-specific effects on lipid efflux (see Sections
3.7, 4.9); apoE cellular accumulation (Ji et al., 1998) (see
Section 4.1), microtubule depolymerization and destabili-
zation (Nathan et al., 1995; Pitas, 1996; Roses et al., 1996;
Pitas et al., 1998), and neurotoxicity (Marques et al., 1996;
reviewed in Teter, 2000; Teter et al., 2002). Several
studies show a dependence of E3-stimulated sprouting on
the LRP receptor or the HSPG/LRP receptor system
(Table I) (Bellosta et al., 1995; Holtzman et al., 1995b;
Nathan et al., 1995; Fagan et al., 1996; Sun et al., 1998).
Interestingly, exogenous E3 does not rescue the E4 defect
in stimulating sprouting (Nathan et al., 1994; Holtzman et
al., 1995b).

4.9 Isotype-dependent granule cell mossy fiber
sprouting. In early development and in OHSC in vitro
(see Section 3.6), the early postnatal development of the
granule cell mossy fiber system (Gaarskjaer, 1986; Slo-
mianka and Geneser, 1997) parallels the large increase in
apoE expression at this time (Muller et al., 1997). Mossy
fiber sprouting in OHSC is found to be regionally depen-
dent on apoE expression, where only dorsal dentate gran-
ule cells fail to sprout in apoE-ko OHSC (Teter et al.,
1999a). These studies indicate that apoE-dependent spout-
ing is region-specific, perhaps reflecting a developmental
age-dependent difference in the capability of the granule
cells to react to deafferentation. Aspects of this region-
specific, apoE-dependent sprouting have been demon-
strated independently in adult animals, where apoE-ko
mice show deficient sprouting in response to ECL (Masliah
et al., 1995b; Stone et al., 1998) (see Section 4.11).

Granule cell sprouting in OHSC derived from E3
and E4 transgenics (human ApoE) showed that E4 induced
sprouting to a level only 50% of that induced by E3 (Teter
et al., 1999b). This E4 defect in sprouting was demon-
strated recently in vivo using the same transgenic mice and
the ECL paradigm, where compensatory sprouting mea-
sured by GAP-43 and synaptophysin immunoreactivity
did not recover as effectively in E4 as in E3, nor did
morphometric measures of sprouting extent (White et al.,
2001). ApoE4 transgenic mice (NSE) also show poorer
recovery from other lesion paradigms, such as excitotoxic
injury (Buttini et al., 2000). The reduced distal mossy fiber
sprouting measured in E4 OHSC (outer molecular layer
sprouting) may be explained by effects on neurite branch-
ing. The effect of apoE4 on proximal neurite branching in
AD (see Section 4.3) is also seen in sprouting responses in
vitro (Nathan et al., 1995).

4.10 ApoE gain-of-function defect in sprout-
ing. Although E4 reduced sprouting activity in most
studies, several studies indicate that the E4 activity in the
inhibition of neurite sprouting actually represents a gain-
of-negative function. First, Nathan et al. (1994) found that
dorsal root ganglion (DRG) neurons, Neuro2A cells (Bel-
losta et al., 1995), and primary cortical neurons (Nathan et
al., 2002) extend neurites in the presence of E3, but
decreased neurite extension with E4 is dose-dependent.
Importantly, E4 inhibition dominates over E3 stimulation,
an effect seen in other in vitro systems (Holtzman et al.,
1995b) and in bigenic mice (Nathan et al., 1995; Buttini et
al., 2000) (see below). Second, in the OHSC model of
denervation-induced fiber sprouting (see Section 4.9),
transgenic (human apoE) expression of E4 is not only
defective in supporting neurite sprouting compared to E3,
but increased expression of E4 (by doubling the transgene
copy number) inhibited sprouting whereas increasing E3
expression stimulated sprouting (Teter et al., 2002). The
apparent gain-of-negative activity of apoE4 could be a
form of toxicity (reviewed in Teter, 2000; Teter et al.,
2002) that, at higher expression levels, dominates its weak
sprouting activity. This could be relevant at the apoE
levels measured in OHSC media because similar levels are
found in human CSF and brain (2–6 �g/ml) (Hesse et al.,
2000). Two studies show in vivo evidence consistent with
E4 dominant negative inhibition of neurite sprouting.
First, in the loss of synaptic markers (synaptophysin,
MAP2 and neurofilament) in response to kainate lesion-
ing, whereas E4 transgenics (NSE) show reduced synap-
tophysin that is equal to apoE-ko mice, doubling the gene
dose causes even greater reductions; notably, the E4 effect
dominates over E3 (Buttini et al., 2000). Second, E4-
specifc cognitive impairments in these same mice (NSE)
are not present in nontransgenic apoE-ko littermates (this
“gain of function” is in comparison to apoE-ko, not a dose
response of E4) (Raber et al., 1998, 2000; reviewed in
Teter et al., 2002).

4.11 ApoE, Gender, Estrogen (see Section 9).
Gender has an impact on ApoE4 effects, further increasing
AD risk and diminishing ERT treatment response in post-
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menopausal women (Corder et al., 1993; Poirier et al.,
1993b; Farrer et al., 1995, 1997; Schneider and Farlow,
1997; Yaffe et al., 1997, 2000; Bretsky et al., 1999). These
results from human studies are paralleled to some extent by
results from studies of transgenic animals.

In OHSC, granule cell sprouting is regionally de-
pendent on apoE expression (see Section 4.6). Although
sprouting in wild-type, apoE-expressing OHSC is stimu-
lated by physiological levels of estrogen, an effect that is
blocked by both progesterone and tamoxifen, as seen in
purified neuron cultures (Chawen et al., 1992; Woolley
and McEwen, 1993), estrogen does not stimulate sprout-
ing in apoE-ko OHSC, showing that neuronal sprouting
is increased by estrogen in the same hippocampal region
where sprouting is dependent on apoE. Likewise, whereas
apoE-ko animals show compromised compensatory
sprouting in response to ECL lesion in vivo (Masliah et al.,
1995a; Masliah et al., 1996; Anderson et al., 1998; Stone
et al., 1998), estrogen replacement in ovariectomized mice
stimulates sprouting only in wild-type but not apoE-ko
mice (Stone et al., 1998). Like the region-specific apoE
dependency of estrogen-stimulated granule cell sprouting
in OHSC, granule cells in the dorsal region are sensitive
specifically to estrogen-stimulated increases in spine den-
sity (Miranda et al., 1999). Sprouting may be stimulated by
estrogen through upregulation of apoE expression (see
Section 4.1). Upregulation of apoE synthesis in glia (pri-
marily astrocytes) occurs in CNS regions that undergo
estrus cycle-dependent synaptic remodeling (Stone et al.,
1997). Estrogen and apoE may therefore interact in their
modulation of both AD risk and CNS plasticity. This is
consistent with a postmenopausal decline in peripheral apoE
levels (Kushwaha et al., 1991; Muesing et al., 1992). Other
possible mechanisms of apoE and estrogen interaction in-
clude estrogen receptor polymorphism (Mattila et al., 2000)
and oxidation (Inestrosa et al., 1998) (see Section 10.2).

Only female E4 transgenic mice (NSE) develop age-
related progressive impairments in spatial learning and
memory in the water maze and nonspatial novel object
recognition memory (Raber et al., 1998; 2000, reviewed
in Teter et al., 2002). These cognitive impairments are
independent of the cellular source of apoE as they are
observed in mice expressing E4 in neurons (NSE trans-
genics) and in astrocytes (GFAP transgenics) (see Section
4.7). The findings that the detrimental effects of E4 are
greater in female than in male transgenic mice is consistent
with the epidemiological interaction of apoE4 and female
gender on increased risk to develop AD.

4.12 ApoE Therapeutic Implications: Drug
Interactions and Pharmacogenetics

ApoE4 plays a major role in the risk and onset of AD
for �50% of AD cases in the United States (Ashford and
Mortimer, 2002); therefore, therapies that target the
mechanism of increased risk for apoE4 and reduced risk
for apoE3 and E2 would greatly impact AD prevalence.
Possible targets include apoE expression levels and regu-
lation, apoE protein structure or gene replacement, and
primary targets or secondary effects of apoE activity. The

protein structural determinants of apoE4 are known
(Weisgraber, 2001); with further understanding of how
structure modulates various apoE activities, this avenue
holds promise for drugs that convert the E4 protein to a
structure that resembles E3 or E2. Gene replacement may
capitalize on emerging stem cell technology, or using cell
precursors in the bone marrow that can cross the blood
brain barrier and differentiate into a variety of CNS cell
types (see Section 10.5).

Reducing the expression of the human apoE4 gene
could reduce apoE4-related risk, however, the relevance
of apoE gain- and loss-of-function effects are not well
understood. Further, human apoE gene regulation is very
poorly understood, particularly with respect to effects of
current and candidate therapeutic drugs. Estrogen is
known to regulate apoE expression, and this may mediate,
at least in part, the effect of estrogen replacement therapy
(ERT) in improving the cognitive deficits in postmeno-
pausal women with AD and the poorer response of apoE4
women (see Section 4.11). These effects of the efficacy of
ERT in AD will be better understood with results from
several clinical trials currently in progress (WHIMS and
others) as apoE genotype is monitored routinely.

Other therapeutic drugs show apoE isotype-
dependent effects that may interact with primary targets or
secondary effects of apoE activity (reviewed in Poirier,
1999). Tacrine (an anti-cholinesterase) therapy has lower
efficacy in E4 (Poirier et al., 1995) and in women with E4,
no effect by genotype in men (Farlow et al., 1998), and
lower efficacy in E4 women on combination tacrine plus
ERT (Schneider and Farlow, 1997). There are indications,
however, that apoE genotype may affect only longer-term
tacrine therapy (MacGowan et al., 1998). The efficacy of
a noradrenergic and vasopressinergic activity facilitator is
also higher in E4 (Richard et al., 1997). Citicoline, an
intermediate of lipid and acetylcholine biosynthesis that
increases cerebral blood flow, shows greater efficacy with
E4 (Alvarez et al., 1999). Growth hormone therapy is poor
in E4 (Johannsson et al., 1995), possibly involving the
mechanisms of GH regulation of plasma ApoE levels
(Sjoberg et al., 1994). Other drugs that could modulate
apoE expression include therapeutic agents that target
oxidative mechanisms, such as vitamin E, selegiline (Sano
et al., 1997b), and Ginkgo biloba extract (EGb 761) (Le Bars
et al., 1997) (see Sections 4.4, 10.2), anti-inflammatory
drugs like NSAIDs that could impact apoE expression
through glial responses to inflammation (see Section 10.3),
and statins that modulate cholesterol levels and may
thereby regulate apoE expression (see Section 3.7).

The gain-of-negative function of E4 could have
important clinical implications for the pharmacogenomic
efficacy of therapeutic drugs that impact or target apoE
expression (Poirier, 1999; Saunders et al., 2000) to the
extent that E4-defective sprouting contributes to neuro-
regenerative events in neurodegenerative conditions (or,
for that matter, any toxic activity of E4 that prevents
neuroregeneration or promotes neurodegeneration). A
drug that increases apoE expression might show efficacy in
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E3 but not in E4, and may even exacerbate the E4
condition, whereas the opposite is predicted for E4 defects
that are simple loss-of-functions. As in the ERT trials, it
will be important to evaluate apoE genotype effects in
trials of other drugs that can modulate apoE expression.
With the implementation of pharmacogenetic approaches
to therapeutic drug design and with testing and efficacious
matching of treatment protocol to the genetic polymor-
phism fingerprint of the patient, understanding of genetic
influences on neurodegenerative disease will see rational
therapeutic application.

Therapeutic strategies must also consider both when
and how the drug target contributes to disease etiology.
For example, the apoE4 phenotype of accelerating the age
of onset requires prevention strategies and may not re-
spond to drugs designed to slow disease progression. The
pleiotropic effects of apoE and its isotypes raise the strong
possibility that the isotypes differ in the mechanism by
which they contribute to AD etiology. Although apoE has
emerged as the strongest genetic risk factor for sporadic
AD and is implicated in other neurodegenerative diseases,
many other genes are also implicated. Identification of
these genes (Tanzi, 1999) has been slow methodologically,
but the availability of human genomic sequence to reveal
other polymorphisms linked to AD will help pharmaco-
genetic drug design.

5.1 APP AND AB
Other than production of AB, the functions of APP

relevant to AD etiology include neuronal development,
synaptogenesis, synaptic plasticity, and cell signaling (Luo
et al., 1992; Moya et al., 1994; Mucke et al., 1994; Muller
et al., 1994; Roch et al., 1994; Qiu et al., 1995; reviewed
in Neve et al., 2000, 2001; Neve, 2001; Arendt, 2001a).
APP and PS are expressed at higher levels in neurons in
regions most affected in AD: hippocampal CA fields,
amygdala subregions, and neocortex (Lee et al., 1996).
APP gene expression and processing is regulated by
NF-�B as an injury-responsive cytokine/neurotrophic
factor (Mattson and Camandola, 2001; Weggen et al.,
2001) (see Section 10.3). Injury and denervation that
induces plasticity also upregulate APP (Banati et al., 1993;
Wallace et al., 1993; Beeson et al., 1994; Chauvet et al.,
1997), as does cholinergic innervation (Nitsch et al., 1995)
(see Section 3.1). APP interacts with substrate adhesion in
many ways, including association with adhesion patch
components, integrins, transglutaminase, glycosaminogly-
cans, and collagen (reviewed in Arendt, 2001a).

5.2 APP Trophic Effects and Axonal Transport
The superfamily of amyloid precursor proteins (APP,

APLP1,2) is associated with axonal outgrowth in several
neural systems (Ohta et al., 1993; Arai et al., 1994b; Moya
et al., 1994; Thinakaran et al., 1995; Lyckman et al., 1998)
and neurite outgrowth that is APP isoform-dependent
(Milward et al., 1992; Qiu et al., 1995). APP is secreted
from neurons in response to electrical activity and induces
neurite outgrowth, synaptogenesis, and LTP (Roch et al.,
1994; Huber et al., 1997; Ishida et al., 1997; Mattson,

1997). Transgenic mice expressing various forms of APP
exhibit both degenerative and regenerative changes that
depend on age and APP genotype. Transgenic mice ex-
pressing APP show increased synaptophysin (King and
Arendash, 2002), even at low levels of APP (Mucke et al.,
1994), and secreted APP promotes dendrite outgrowth at
pM concentrations (Mattson, 1994). APP transgenic mice
undergo synaptic, electrophysiologic, and behavioral
changes before plaque formation and in the absence of
overt neurodegeneration (Hsia et al., 1999; Mucke et al.,
2000), although some models do show plaque-associated
neuron loss (Calhoun et al., 1998). APP transgenic mice
have increased numbers of synapses (Mucke et al., 1994)
and increased cortical neuron number before plaque for-
mation (Bondolfi et al., 2002) (see Section 3.5). APP may
enhance proliferation of neural stem cells (Ohsawa et al.,
1999) (see Section 10.5). In contrast, degenerative changes
are expressed in older animals, perhaps reflecting accumu-
lated AB/amyloid or soluble AB toxicity (see Section 5.4).

Members of the APP superfamily of proteins are
transported by and play a role in the fast anterograde
transport system (Koo et al., 1990; Sisodia et al., 1993);
they also accumulate in presynaptic membranes. Axonal
pathology is reflected by diminished axonal transport
(Geinisman et al., 1977). This may involve the role of APP
in chaperoning NCAM and sialic acid to the presynapse.
Aging is associated with decreased axonal transport, which
may be caused by AB (Kasa et al., 2000). The insulin
receptor signaling cascade also affects APP trafficking.
Reduction in axonal transport (anterograde) would de-
plete APP at the presynapse and cause accumulation in
other cell compartments where AB production may be
favored (Golde et al., 1992). Conversely, reducing APP
proteolysis to AB is predicted to lead to trophic APP
accumulation at the presynapse (see Sections 3.4, 5.3).

5.3 APP Processing Balance
The processing of APP by � secretase produces

soluble/secreted APP that promotes new synapse forma-
tion. Decreasing the amount of functional APP or shifting
toward � secretase products could contribute to failure of
plasticity and elimination of synapses. This situation could
be induced by mutations that inhibit any of these trophic
activities of APP, or by mutations or other factors that shift
the APP processing balance to produce nonfunctional
fragments. Mutations in APP and other situations that shift
the processing balance away from secreted APP toward
AB42 would interfere with APP-induced plasticity.
Transgenic mice expressing such mutated APP show de-
creased synaptic and dendritic density in the hippocampus,
impaired LTP, decreased compensatory synaptogenesis in
response to injury, and impaired spatial memory (Games et
al., 1995; Masliah et al., 1995b; Chapman et al., 1999).
Conceivably, any event that promotes AB deposition
could do so by shifting the processing toward more AB
production (albeit, ignoring clearance effects). With age,
the processing of APP also shifts away from producing the
neurotrophic secreted APP form (Palmert et al., 1990; van
Gool et al., 1994). APP metabolism is also influenced by
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laminin (Monning et al., 1995; Narindrasorasak et al.,
1995; Bronfman et al., 1996), cholesterol (Jick et al., 2000;
Refolo et al., 2000; Wolozin, 2001), and NSAIDs (see
Section 10.3). APP-knockout mice show loss of presyn-
aptic markers, reduced CA1 dendritic length, impaired
LTP and cognitive performance, and reduced axon and
dendrite growth in vitro (reviewed in Arendt, 2001a).

5.4 Amyloid-� and Amyloid Plaques
A major issue facing the amyloid hypothesis of AD is

the relative contributions of the various forms of AB, the
peptide released from � secretase-processed APP. AB
forms a continuum of aggregation species: monomeric
AB, soluble AB, ADDLs, insoluble AB, diffuse amyloid,
compact amyloid, and neuritic amyloid, the latter two
being the pathologic and diagnostic hallmarks of AD.
Independent of fibril or plaque formation, however, AB
can alter membrane potential and firing, synaptic trans-
mission, synaptic plasticity, and learning (Cullen et al.,
1997; Lambert et al., 1998; Hartley et al., 1999; Chen G
et al., 2000; Chen QS et al., 2000; Chapman et al., 2001).
AB, especially AB1–42, shows neurotoxic, neurite-
inhibiting, and LTP-inhibiting properties (Freir et al.,
2001; Dewachter et al., 2002). Soluble AB and AB oli-
gomers inhibit LTP but not LDP, resulting in a ‘neuro-
plasticity imbalance’ in the competition for synaptic sta-
bilization (Cullen et al., 1997; Wang et al., 2002), as
occurs in development (Constantine-Paton, 1990). Oligo-
meric, but not monomeric AB inhibits LTP in vivo (Lam-
bert et al., 1998; Walsh et al., 2002).

Negative effects of AB on plasticity are also revealed
in studies of vaccination/immunization in mouse models.
Active immunization reduces both brain AB/amyloid
burden and cognitive impairments in APP transgenic mice
(Janus et al., 2000; Morgan et al., 2000). Recent studies
using the passive immunization approach in APP trans-
genic mice also indicate such a correlation, but impor-
tantly, very rapid behavioral effects are achieved (within
days), even without changing global AB levels in the brain
(Dodart et al., 2002). Perhaps relatively minor compart-
ments of AB that inhibit learning are reduced rapidly by
peripheral immunization, which is consistent with reports
that soluble AB is a better correlate of memory impair-
ment (Lue et al., 1999; McLean et al., 1999; Koistinaho et
al., 2001). Clinical immunization for AB, despite an early
setback, remains a potential therapeutic strategy.

These neurotoxic effects of AB may act to destroy
synapses that are no longer required or are underutilized.
In contrast to these neurotoxic effects, however, low
concentrations of AB can show neurotrophic effects (Ca-
labrese, 2001), and laminin and AB act synergistically in
stimulating neurite outgrowth (Koo et al., 1993). Low
levels of AB can modulate the activity of the transcription
factor CREB (Sato et al., 1997), a factor necessary for
neuronal plasticity (Segal and Murphy, 1998; Silva et al.,
1998). AB may play a functional role in membrane lipid
dynamics (Muller et al., 2001; Chochina et al., 2001). AB
enhances the transport, uptake, and oxidative metabolism
of lipids, acting much like an apolipoprotein (Wood et al.,

1999), a process that takes place in the ER/trans Golgi and
endolysosomal pathways, which are also utilized by apoE
(Jensen et al., 1994). The possible equilibrium between
plaque-bound AB and soluble AB is not understood.
Plaques could be a localized source of soluble AB which,
when released, could impact plasticity responses, and con-
tribute to the plaque-association of dystrophic neurites,
growth-promoting factors, and synaptic proteins (SNAP-
25, synaptophysin, synaptotagmin, chromogranins, NT75,
spectrin), as reviewed by Arendt (2001a) (see Section 3.5).
Numerous growth-promoting factors associated with
plaques could contribute to stimulated sprouting, such as
S100b, bFGF, HGF, PDGF, Trk receptors, proteoglycans,
EGF-R, ICAM, integrins, collagen, laminin (reviewed in
Arendt, 2001a). Other plaque constituents like perlecan,
agrin, and laminin could also contribute to localized
sprouting responses (Phinney et al., 1999).

6. TAU
Tau is a member of the MAP family (reviewed in

Maccioni and Cambiazo, 1995). Aggregated, hyperphos-
phorylated � forms neurofibrillary tangles (NFT), the in-
tracellular pathological hallmark of AD (reviewed in Love-
stone and Reynolds 1997; Lovestone et al., 2001). Its
expression and phosphorylation is associated with in-
creased neuroplasticity in vivo and in vitro (Busciglio et
al., 1987; Viereck et al., 1989; Trojanowski et al., 1993;
Brion et al., 1994; Black et al., 1996; Lovestone and
Reynolds, 1997). Hyperphosphorylation may also cause
deleterious effects on plasticity, however, and may under-
lie its role in the etiology of AD (Maccioni and Cambiazo,
1995; Mandelkow et al., 1995). Tau modulates cytoskel-
etal and microtubule dynamics that contribute to growth
cone migration and collateral branching (Gallo and Le-
tourneau, 1999). Tau plays a major role in the outgrowth
of neurites and axonal development (Maccioni and Cam-
biazo, 1995). NFT-bearing hippocampal neurons show
more extensive dendritic trees, suggesting a concurrent or
previous induction of reactive plasticity (Gertz et al., 1990)
(see Section 3.4). NFT-bearing neurons contain numer-
ous growth-associated proteins (reviewed in Arendt,
2001a). Antisense to tau mRNA suppresses neurite for-
mation in B103 cells (Lambert et al., 1995). Tau overex-
pression by PC12 cells induces neurite extension, and
NGF-induced extension is associated with large upregu-
lation of � (Drubin et al., 1985; Esmaeli-Azad et al., 1994).

The equilibrium between � phosphorylation and de-
phosphorylation modulates the stability of the cytoskele-
ton and thereby the axonal morphology. Tau is phosphor-
ylated by several kinases including GSK3b and Cdk5, and
broken down by several phosphatases including A and B.
Breakdown of this equilibrium causes structural and con-
formational changes in �, thus affecting binding with tu-
bulin and the capacity to promote microtubule assembly
(Mandelkow et al., 1995; von Bergen et al., 2000). This
may promote NFT, particularly in limbic structures (see
Section 3.1), leading to cytoskeletal dysfunction. Dentate
granule cell mossy fiber axons that undergo deaffer-
entation-induced sprouting (see Sections 3.6, 4.6) display
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excessive � phosphorylation (Koudinov and Koudinova,
2001). It is not clear whether neurofibrillary-induced neu-
rodegeneration is a later event in AD or whether its
pathology simply cannot be detected in early AD (see
Sections 3.4, 3.5).

Tau can link trophic signaling with cytoskeletal re-
arrangements involved with dendritic sprouting (see Sec-
tions 8.2, 8.3). The protein kinase Cdk5 and its neuron-
specific activator p35 are essential molecules for neuronal
migration and regulate axonal extension through phos-
phorylation of MAPs including � (Pigino et al., 1997;
Paglini et al., 1998). The formation of a stable Cdk5/p35
complex in hippocampal neurons (Alvarez et al., 1999)
may lead to constitutive activation of the protein kinase
with a consequent increase in � phosphorylation. The
complex concentrates at the leading edge of the growth
cone (Pigino et al., 1997). Laminin stimulates p35 expres-
sion, increasing its redistribution to the growth cone
(Ramirez et al., 1999), contributing to the axon-
outgrowth activity of laminin (Paglini et al., 1998). Cdk5
may link � hyperphosphorylation and AB (Alvarez et al.,
1999; Maccioni et al., 2001). Therefore, the Cdk5 system
may provide an important regulatory link between extra-
cellular signals like laminin and the intracellular organiza-
tion of MAPs and other cytoskeletal proteins involved in
axon elongation (Maccioni et al., 2001). Cdk5 interacting
proteins include �, synapsin, CK1, b- and g-catenins,
N-cadherins, Rac GTPase and Pak1 (which impacts actin
cytoskeleton dynamics) (reviewed in Maccioni et al.,
2001) (see Sections 3.4, 8.2).

7. PRESENILINS
PS-1 is necessary for normal neurogenesis and sur-

vival (Shen et al., 1997; Wong et al., 1997) and localizes to
synaptic membranes and neurite growth cones. Presenilins
are involved in intracellular trafficking, developmental
signaling pathways, and Ca2� homeostasis (Shen et al.,
1997; Wong et al., 1997; Naruse et al., 1998; Nishimura
et al., 1999). Ca2� dysregulation could underlie effects of
PS-1 on LTP: wild-type PS-1 underexpression impairs
LTP in mice (Morton et al., 2002) and rats (Dewachter et
al., 2002), mutant PS-1 alters LTP (Parent et al., 1999;
Zaman et al., 2000); however, mutant but not wild-type
PS-1 and mutant PS-2 facilitate weak-stimulation LTP in
brain slices (Schneider et al., 2001). Mutant PS-1 may
interfere with metabolism of �- and 
-catenin, which are
involved in synapse formation and stabilization (Zhang et
al., 1998; Kang et al., 1999) and cell adhesion (Noll et al.,
2000) (see Section 6). Wild-type PS-1 stimulates whereas
mutant PS1 inhibits NGF-induced neurite outgrowth
(Furukawa et al., 1998; Dowjat et al., 1999; reviewed in
Arendt, 2001a). PS-1 cleaves Notch, which inhibits neu-
rite outgrowth (Berezovska et al., 1999; Sestan et al., 1999;
Figueroa et al., 2002). Presenilins are also considered as a
therapeutic target for AD (Golde and Younkin, 2001),
however, the negative secondary effects of inhibiting pre-
senilin need further investigation (Dewachter et al., 2002).

8. NEURODEGENERATION AND
NEUROREGENERATION INTERACTIONS

8.1 Degeneration-Regeneration Cross Talk and
Combinatorial Signaling

The same trophic signals that control survival can
also promote neurite outgrowth (Campenot, 1994;
Meyer-Franke et al., 1995). This could allow for a mech-
anism whereby simply promoting survival stimulates plas-
ticity (Goldberg and Barres, 2000). Trophic responsiveness
can be dependent on continuous trophic stimulation,
where competition for limited target-derived trophic fac-
tors can ultimately decide cell fate, and thus it is possible
that continuous availability of trophic stimulation could be
limiting for plasticity mechanisms as well (Goldberg and
Barres, 2000).

Neurons do not extend axons by default but must be
signaled specifically to do so (Goldberg and Barres, 2000).
Promotion of plasticity requires both presentation of an
extrinsic stimulus and the intrinsic responsiveness of the
neuron, which includes states that can be induced tran-
scriptionally (Smith and Skene, 1997). Responsiveness of
neurons to intrinsic and extrinsic signals that promote
plasticity may come from combinatorial signaling, e.g.,
simultaneous presentation of electrical activity and growth
factors, like BDNF. (McAllister et al., 1996; (reviewed in
Goldberg and Barres, 2000). Electrically and biochemi-
cally active neurites would therefore survive and grow in
response to trophic stimulation; for example, granule cell
axon sprouting can result from alteration of the intrinsic
neural excitability in the absence of cell death (Stringer et
al., 1997). Thus, reduced neuronal activity would reduce
its responsiveness to stimulation of plasticity.

Many factors influence both neuronal death and
neurite sprouting, for example, c-Jun and GAP-43 (Herd-
egen et al., 1997; Gagliardini et al., 2000; Wehrle et al.,
2001), and neurotrophins that promote neurite growth
(Levi-Montalcini, 1987; Campenot, 1994; Meyer-Franke
et al., 1995; Henderson, 1996). Other factors include
substrate molecules like laminins, although this may be
insufficient (Goldberg and Barres, 2000). Retrogradely
transported signals like CREB (Silva et al., 1998) and
signaling by the ras/raf/MAP pathway may play important
roles in intra-neuronal signaling of plasticity (Perron and
Bixby, 1999) (see Sections 3.2, 6).

The relationship between plasticity and the classical
plaque pathology of AD is unclear. Granule cell dendritic
regression is not modified by plaque association (Einstein
et al., 1994). Transgenic mice expressing anti-NGF anti-
body develop amyloid plaques, NFT-like inclusions, neu-
ron losses, and behavioral deficiencies with age (Capsoni
et al., 2000) including impaired spatial learning (Van der
Zee et al., 1995a,b; Chen KS et al., 1997). Ex-boxers with
an increased plasticity burden (injury-induced) have AD-
like neuropathological changes (Tokuda et al., 1991; Ged-
des et al., 1996). The increased risk of AD with head
injury and stroke (Salib and Hillier, 1997; Snowdon et al.,
1997) may require widespread or chronic injury combined
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with factors or events that inhibit neuroplasticity responses
(see Sections 3.5, 5.4).

8.2 Cell Cycle
If a neuron that is committed to permanent cessation

of cell division is forced, through ectopic expression of cell
cycle proteins, to reenter the cell cycle, it may die. In AD
frontal cortex during the early Braak I/II stage, when there
in no � or amyloid pathology or related dementia, mitotic
events are activated including increased MAP2 and
ERK1/2, which may lead to cell death (Arendt, 2001b).
Tau kinases like MAP kinases, Cdk5, and others, are all
associated with the cell cycle (reviewed in Arendt, 2001a,b).
MAP kinases are activated by cell surface receptors
through p21ras (Stokoe et al., 1994), which also plays a
role in dendritic proliferation and synaptogenesis (Phillips
and Belardo, 1994) (see Section 8.3).

8.3 Nitric Oxide (NO)
NO participates in axonal remodeling at the growth

cone and synaptogenesis during development and regen-
eration (Hess et al., 1993; Wu et al., 1994; Yu, 1994; Luth
et al., 1995; Rossiter et al., 1996; Yan et al., 1996;
Downen et al., 1999). NO may be the retrograde mes-
senger in LTP and may serve to help maintain normal
LTP; however, NO also mediates some excitotoxicity
(glutaminergic) mechanisms and has anti-proliferative ef-
fects (Arendt, 2001b). The NO synthesizing enzyme
nNOS is dynamically regulated in neuronal development,
plasticity, and responses to injury (Dawson et al., 1994,
1998; Dawson and Snyder, 1994; Forstermann et al.,
1995). Activation of NF-�B in astrocytes increases iNOS
expression and NO production. Changes of NOS (nNOS,
neuronal) and iNOS (glial) (Srivastava et al., 1997) in AD
are inconsistent (Law et al., 2001). Endothelial eNOS
mediates neuroprotective actions of NO in ischemia and
multi-infarct dementia (Law et al., 2001).

NO and other oxidative stress intermediates activate
p21ras, a potential endogenous NO-redox-sensitive effec-
tor molecule (Yun et al., 1998). p21ras is highly colocal-
ized with nNOS expression in AD and in NFT-bearing
neurons (Luth et al., 2000). P21ras is overexpressed in
advanced AD (Gartner et al., 1995), and is upregulated in
early AD in affected regions before neurofibrillary degen-
eration (Gartner et al., 1999) (see Sections 3.4, 10.4),
paralleling nNOS (Luth and Arendt, 1998; Luth et al.,
2000). This may set up an autocrine loop (Lander et al.,
1997) and may exacerbate neurofibrillary degeneration
and limit the ability to terminate the vicious cycle. This
relationship may switch two potentially neuroprotective
mechanisms of NO and p21ras into a chronic neurode-
generative process (Arendt, 2001b).

9.1 GENDER AND ESTROGEN
Estrogen plays a powerful, pleiotropic role in many

neurodegenerative conditions including AD (reviewed in
Brinton, 2001; Garcia-Segura et al., 2001; McEwen, 2001;
Wise et al., 2001a,b). Women have been shown to have
increased risk, earlier onset, and more rapid progression of

AD than men, although gender-specific morbidity is an
issue (Sanderson et al., 2002). Postmenopausal loss of
estrogens leads to generally reversible decreases in memory
that respond to ERT (Sherwin and Tulandi, 1996). Be-
sides mechanisms of blocking neurotoxicity directly, es-
trogen acts at various levels of plasticity: axon sprouting,
synaptogenesis, and promoting synaptic transmission
(electrophysiologically and biochemically). These effects
can be ascribed to either receptor-dependent mechanisms,
primarily transcriptional, including direct effects of ER in
transcription and indirect effects through other transcrip-
tion factors like CREB and Akt, as well as their retrograde
transport (McEwen, 2001) or receptor-independent (rap-
id) mechanisms involving activational effects of second
messenger systems, coexisting neurotransmission, or coor-
dinated activation of both (Kelly et al., 1977; Nabekura et
al., 1986; Wong and Moss, 1992; Garcia-Segura et al.,
2001) (see Section 8.1), as well as oxidative effects of the
estrogen molecule (see Section 9.3). Other secondary ef-
fects could be mediated through effects on AB, �, micro-
tubules, apoE, GAP-43, BDNF, ERK, IGF-1, NF-�B,
CREB, gliosis, neurogenesis (Blanco et al., 1990; Gould et
al., 1999; Tanapat et al., 1999), differentiation, or many
other modulators of plasticity.

9.2 Estrogen Replacement Therapy (ERT)
Estrogen replacement decreases the risk of AD in

postmenopausal women (Paganini-Hill, 1996; Kawas et
al., 1997), delays the age of onset (Tang et al., 1996), and
perhaps slows the decline; however, it remains controver-
sial whether ERT can treat the disease once it has reached
the clinical stage (Henderson et al., 2000; Marder and
Sano, 2000; Mulnard et al., 2000; Wang et al., 2000). This
latter effect is consistent with experimental results indicat-
ing that neuroprotective effects of estrogen occur only
when administered before or during the neurodegenera-
tive stimulus, but not after (Garcia-Segura et al., 2001).
The therapeutic efficacy of ERT depends on its adminis-
tration protocol: time course, treatment window, endog-
enous vs. exogenous hormone, and neuron population-
specific effects on promoting survival vs. death. The
mechanism of ERT efficacy is unlikely to include antiox-
idant effects as they require very high hormone concen-
trations to reduce lipid peroxidation (Vedder et al., 1999)
(see Sections 4.4, 10.2); however, whether hormone con-
centrations are modulated by local aromatase expression
are not known (Garcia-Segura et al., 2001). This is critical
for considerations of testosterone therapy for men, in
terms of its estrogenic actions (Cyr et al., 2000; Good-
enough et al., 2000; Twist et al., 2000; Bowen, 2001).
Testosterone also has estrogen-independent, potentially
beneficial actions on amyloid toxicity (Pike, 2001).

9.3 Estrogen/Plasticity
(Reviewed in Toran-Allerand et al., 1999; Brinton,

2001; McEwen, 2001; Kelly and Levin, 2001).
Estrogen stimulates axon and dendrite plasticity in

the limbic neurons of both male and female brain (Ferreira
and Caceres, 1991; Lorenzo et al., 1992; Woolley and
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McEwen, 1992; Woolley et al., 1996; McEwen et al.,
1997; Teter et al., 1999a). Estrogens may support neuronal
functions and confer resistance to neural damage by their
ability to maintain synaptic connections (McEwen, 2001).
Many studies demonstrate neuroprotective effects of es-
trogen in a variety of systems, and these are often associ-
ated with changes in gene expression, including genes that
effect axonal elongation and synaptogenesis (GAP-43, �,
microtubules) (Ferreira and Caceres, 1991; Shughrue and
Dorsa, 1993). Estrogen modulates plasticity during devel-
opment and in adult CNS (Matsumoto, 1991; Garcia-
Segura et al., 1994; McEwen, 1996; Woolley, 1998).
Estrogen enhances neurite outgrowth by repressing GFAP
and reorganizing laminin (Rozovsky et al., 2002). Estro-
gen can activate neurite mRNA translation (Pierce et al.,
2000; Tiedge et al., 2001; Steward and Schuman, 2001).

Granule cell sprouting is stimulated by physiological
levels of estrogen (which is blocked by progesterone and
tamoxifen) in both wild-type OHSC (Teter et al., 1999a)
(see Sections 4.6, 4.11) and in purified neuron cultures
(Chawen et al., 1992; Woolley and McEwen, 1993). This
effect is hippocampal region-specific, occurring only in
the dorsal dentate region, both in OHSC (in the same
region that is also dependent on apoE expression) and in
vivo in adult, female rats, where short-term estrogen re-
placement in long-term estrogen-deprived females in-
creases dentate granule cell spine density primarily by the
dorsal region (Miranda et al., 1999). Sprouting of hip-
pocampal neurons in response to ECL (see Section 3.6)
was reduced by ovariectomy in rats and mice (Stone et al.,
1998, 2000), and estrogen replacement rescues sprouting
(Morse et al., 1986, 1992; Stone et al., 1998) (see Section
4.11).

Estrogen stimulates cyclic induction of synapses and
dendritic spines in the hypothalamus and hippocampus of
female rats (reviewed in Woolley and McEwen, 1992;
McEwen, 2001). Synapse formation induced by estrogen
may differ from that occurring during development, how-
ever (see Section 2.2): estrogen increases the number of
synapses on multiple synaptic boutons between neurons
not connected previously (Yankova et al., 2001). Estrogen
induces both pre- and postsynaptic markers where new
spines are formed (Brake et al., 2001).

10.1 TREATMENTS FOR PLASTICITY
(see Sections 3.7, 4.12, 5, 9.2)

The public health impact of AD is predicted to rise
at least three-fold in the next 50 years (Sloane et al., 2002).
Clearly, all rational therapeutic avenues should be tested,
but therapeutic stimulation, stabilization, or recovery of
plasticity mechanisms could impact all neurodegenerative
diseases. Current AD therapy targets cholinergic dysfunc-
tion, which may be linked to effects on plasticity through
modulation of APP metabolism (and � phosphorylation)
by affecting the coupling of M1 muscarinic ACh receptors
to G proteins (Fisher et al., 2000) (see Section 5.3). Other
therapies under development focus specifically on AB, �,
inflammation, and oxidation (Galasko, 2001); if these
pathologic phenotypes contribute to AD indirectly

through interaction with an underlying process of plastic-
ity, the effectiveness of interventions targeting these hall-
marks may be enhanced if age-related plasticity failure is
also treated. New drug strategies that target mediators of
either neurodegenerative processes or neuroplastic pro-
cesses must be considered for their pleiotropic and poten-
tially confounding roles in both, as exemplified by apoE,
NF-�B, etc. Of critical importance for the efficacy of
plasticity-stimulating therapies is whether they create neu-
ral networks that are competent to replace lost function
(see Section 10.5).

There are several avenues for stimulating plasticity in
the damaged CNS, with targets at all levels of plasticity
failure (Horner and Gage, 2000). Enhancing regrowth has
been targeted as a therapeutic strategy. Putative neurotro-
phic agents such as Cerebrolysin have been reported to
have positive effects in clinical trials, with sustained im-
provement after short treatment of AD (Bae et al., 2000;
Ruther et al., 2000; Xiao et al., 2000); Cerebrolysin also
ameliorates behavioral deficits and neurodegeneration in
apoE-ko mice (Masliah et al., 1999). Propentofylline
shows neurotrophic effects on glia function (Wilkinson,
2001), and cholesterol inhibitors like statins may reduce
the incidence of AD (see Section 3.7). Memory rehabili-
tation, which targets mechanisms of cognitive reserve and
compensatory reorganization to activate alternative, intact
brain structures (facilitation of residual explicit memory,
or, the ‘use it or lose it’ phenomenon), can be clinically
effective (Grady, 1996), and alternative and innovative
techniques are still under refinement (De Vreese et al.,
2001).

10.2 Oxidation
As a lipid rich organ, the CNS is particularly suscep-

tible to effects of lipid peroxidation in modulating cellular
signaling pathways, cell dysfunction, and cell death in the
nervous system (Keller and Mattson, 1998). In AD,
emerging evidence provides strong support for a role for
oxidative stress in neurodegeneration, as multiple indices
of oxidative stress have been observed, including protein
oxidation, decreased polyunsaturated fatty acids, mito-
chondrial and nuclear DNA damage, as well lipid peroxi-
dation markers 4HNE (Sayre et al., 1997; Markesbery and
Carney, 1999), and F2 and F4 isoprostanes (Nourooz-
Zadeh et al., 1999), variously detected in brain and CSF.
Vitamin E slows cognitive decline in AD (Sano et al.,
1997a) and in rat models (Yamada et al., 1999) (see Sec-
tion 4.4). Although it is not clear what causal relation
oxidation has to AD etiology, e.g., whether it is a second-
ary effect of the stress caused by synaptic or neuronal loss,
antioxidant therapies have shown limited but promising
efficacy in treating AD (Pitchumoni and Doraiswamy,
1999).

Lipid peroxidation toxicity could inhibit sprouting
by the inability to efflux such toxins; an efflux defect is
shown by oxidized HDL (Therond et al., 1999). This
oxidation-induced lipoprotein aggregation is neurotoxic
to primary neurons and is accompanied by cytoskeletal
microtubule disruption and inhibition of neuritogenesis
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(Kivatinitz et al., 1997). Importantly, 4HNE disruption of
microtubule organization inhibits neuronal sprouting
(Neely et al., 1999). Effects of lipid peroxidation toxicity
on inhibiting neuritogenesis could also involve apoE (see
Sections 4.4, 8, 8.3).

10.3 Inflammation/NF-�B
NF-�B is directly required for synaptic plasticity, as

shown in in vitro hippocampal slices (Albensi and Matt-
son, 2000). NF-�B is activated in association with LTP
(Worley et al., 1993; Meberg et al., 1996). NF-�B is
located in synapses at considerable distance from its ca-
nonical nuclear site of action, suggesting that it modulates
synaptic function locally (O’Neill and Kaltschmidt, 1997).

NF-�B activation (reviewed in Mattson and Caman-
dola, 2001) is implicated in AD (Perez-Otano et al., 1996;
Lukiw and Bazan, 1998). NF-�B activity is increased in
AD brain, including cholinergic neurons in the basal fore-
brain (Boissiere et al., 1997; O’Neill and Kaltschmidt,
1997). This could represent a neuroprotective and a cy-
toprotective response to plaques, because AB and secreted
APP can activate NF-�B (Barger et al., 1995), and is
associated with neuroprotective response to metabolic/
excitotoxic events (Barger and Mattson, 1996) and mutant
PS-1 (Guo et al., 1998). NSAIDs that target NF-�B have
been shown to reduce the incidence of AD (Akiyama et
al., 2000), even at low NSAID doses (Broe et al., 2000).
Some NSAIDs reduce AB production, however, by mod-
ulating 
-secretase (Weggen et al., 2001) and could
thereby influence the mechanism of plasticity involving
the processing balance of APP (see Sections 4.1, 5.3, 8.3,
9, 10).

10.4 Growth Factors
NGF can induce sprouting and outgrowth, particu-

larly after injury (Ramer et al., 2000; reviewed in So-
froniew et al., 2001), consistent with retrograde transport
of trkA signaling complexes that alters gene expression in
NGF-responsive neurons, including cholinergic neurons
(Knipper et al., 1994; Holtzman et al., 1995a), which
account for most of the NGF-responsive neurons in the
adult CNS. The extent to which NGF is necessary for
cholinergic survival of adult cholinergic neurons is con-
troversial (reviewed in Rattray, 2001) (see Section 8).
Indeed, AD brain shows increased NGF in the cortex and
hippocampus (Jette et al., 1994; Scott et al., 1995; Fahne-
stock et al., 1996; Hock et al., 1998), which may reflect an
increased demand for cholinergic input with a decreased
ability of cholinergic neurons for retrograde transport of
NGF. Although NGF may not have a classical neurotro-
phic role in cholinergic survival, i.e., through actions that
are independent of retrograde signaling and gene expres-
sion, it is an important regulator of neuron morphology
and function that would be predicted to maintain or
improve cholinergic function in AD by promoting sur-
vival of degenerating neurons, promoting sprouting and
enhancing neurotransmitter synthesis, and enhancing neu-
ronal firing (reviewed in Rattray, 2001). Abnormal neu-
rite growth might be associated with elevated NGF re-

ceptors (Ernfors et al., 1990; Mufson and Kordower,
1992) that precedes neurofibrillary degeneration (Arendt,
1993) (see Sections 3.4, 8.3).

NGF has been considered as a therapeutic target;
however, problems with CNS delivery and side effects
(pain) limit its clinical application (Eriksdotter Jonhagen et
al., 1998). NGF application to the uninjured CNS causes
cholinergic neurons to grow, sprout, increase ChAT, and
increase choline uptake (Mobley et al., 1985; Higgins et
al., 1989; Lapchak et al., 1992; Heisenberg et al., 1994).
Experimental methods of delivery include gene transfer,
cell grafts, or direct administration of NGF by intracere-
broventricular infusion (reviewed in Rattray, 2001).
These approaches have been successful in enhancing cho-
linergic neuron function and restoring some behavioral
function in response to deafferenting lesions or impaired
cognitive function. Drugs that increase NGF synthesis in
astrocytes include propentofylline, a phosphodiesterase in-
hibitor (Rother et al., 1998), and various quinone deriv-
atives (Takeuchi et al., 1990; Yamaguchi et al., 1993;
Yamada et al., 1999). Nicotinic treatment that targets
NGF production is also a possibility (Rattray, 2001). NGF
mimetic drugs, like Neotrofin and AIT-082, are being
tested in clinical trials (Emilien et al., 2000).

Neurotrophins are pivotal regulators of neurite out-
growth (Crutcher, 1986; Kang and Schuman, 1995). For
example, BDNF acts at the synaptic level and is altered in
AD (Murer et al., 2001). Further, GDNF clinical trials are
underway (Maimone et al., 2001) and other neurotrophic
strategies are being considered (Siegel and Chauhan,
2000).

10.5 Neurogenesis
Adult hippocampal neurons retain their proliferative

capacity (Brewer, 1999, 2000; Seaberg and van der Kooy,
2002), where they provide a continuous replacement of
neurons in the dentate gyrus (Seaberg and van der Kooy,
2002), particularly in conditions of enhanced learning
(Kempermann et al., 1997, 1998a,b; Huang et al., 1998;
Gould et al., 1999). Neurogenesis in the hippocampus
declines with age (Cameron and McKay, 1999). An un-
answered question is whether neurogenic capacity declines
more in AD. Regardless, replacing lost neurons and re-
versing the age-related decrease in neurogenesis could be
a therapeutic target using neural stem cell technology or
other neuronal sources. This approach is attractive because
neurogenesis occurs naturally and replacement does not
suffer from caveats invoked for stimulation of aberrant
sprouting, although it is not clear whether neural networks
created by these new neurons are competent to replace
lost function (see Section 2). Of critical importance is the
orchestration of topographically accurate migration, tar-
geted differentiation, and synaptic functionality of trans-
planted cells (Gage et al., 1995; Flax et al., 1998; Zhou et
al., 1998; reviewed in Horner and Gage, 2000). Multipo-
tent cells from the blood lineage, injected peripherally,
migrate through the blood brain barrier; these may also
provide a source and therapeutic avenue for CNS neuron
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replacement (Bartlett, 1982; Bjornson et al., 1999; Brustle
et al., 1999; Ono et al., 1999) (see Sections 5.2, 9.1).
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