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Abstract

Multiple sclerosis is a complex and heterogeneous immune-mediated disease that results
in  the  progressive  accumulation of  mental  and physical  symptoms.  Currently  ap‐
proved disease-modifying drugs (DMDs) are immunomodulatory or immunosuppres‐
sive, but these drugs have little effect on disease progression. In addition to studies that
have directly targeted inflammation and immune responses, a large number of studies,
most of them experimental, have investigated neuroprotective therapies and remyelina‐
tion strategies. However, to date, attempts to provide neuroprotection have failed not just
in multiple sclerosis but in neurological disorders in general; this situation has empha‐
sized the need to revise the old paradigm of a “magic bullet” with a single mechanism of
action. Remyelination strategies involve either promoting endogenous remyelination or
replacing lost myelinating cells through exogenous sources. However, several puzzle
pieces regarding the physiology of remyelination remain unknown, including feasible
treatment monitoring methods, the selection of patients, and the optimal time of treatment
initiation. This chapter will describe the direct and indirect neuroprotective effects of
DMDs, as suggested by basic research studies and confirmed by clinical studies in some
cases. Current knowledge of potential neuroprotective therapies and remyelination
strategies is also reviewed.

Keywords: multiple sclerosis, neuroprotection, ion channel modulation, remyelina‐
tion, systems biology

1. Introduction

Multiple sclerosis (MS) is characterized by complex interactions between pathological path‐
ways  and heterogeneity  regarding lesions,  progression,  clinical  symptoms,  and immune
responses.
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Recently, significant advances in MS therapy have been made, but these advances have been
limited to the prevention of relapse, and long-term results are conflicting.

Understanding of endogenous defense activity (Figure 1), including neurotrophicity, neuro‐
protection, neuroplasticity, neurogenesis, and remyelination, is essential for pharmacological
neuroprotection and enhanced neurorecovery. Neurotrophicity includes the processes
necessary for the maintenance of a normal phenotype. Neuroprotection is the sum of all
processes aimed at counterbalancing the pathophysiological mechanisms that are induced by
the alteration of neuro-immune responses. Neuroplasticity represents the sum of the structural
and functional changes that must occur for adaptation to new internal or environmental
stimuli. Neurogenesis, in a broad sense, refers to the capacity of brain tissue to generate new
neurons, astrocytes, and oligodendrocytes [1]. Remyelination is a physiological regenerative
process that requires the activation of oligodendrocyte precursor cells (OPCs), their migration,
recruitment, and differentiation into remyelinating oligodendrocytes and their interaction
with denuded axons. Changes in these steps, which are characteristic of MS, promote neuro‐
degeneration.

Figure 1. Endogenous defense activity and damage mechanism.

Classical neuroprotection approaches include the use of the already Food and Drug Admin‐
istration (FDA)-approved disease modifying drugs (DMDs) and a wide spectrum of pharma‐
cological compounds that interact with one or more pathological processes (inflammation,
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oxidative damage, mitochondrial damage, and intracellular Ca2+ overload), as an attempt to
prevent axonal degeneration. Pro-myelination therapies appear to be a promising approach,
but several puzzle pieces regarding the physiology of remyelination, feasible treatment
monitoring methods, the selection of patients, and the optimal time of treatment initiation
remain unknown. However, neurodegeneration is not always related to demyelination,
leading to the development of combination therapies that include agents that prevent neuro‐
degeneration, modulate neuroinflammation, and immune responses and promote remyelina‐
tion [2].

2. Neuroprotective effects of disease modifying drugs (DMDs)

Several DMDs are currently approved by the FDA for MS: interferons (interferon beta 1b or
IFNB-1b, interferon beta-1a or IFNB-1a), glatiramer acetate (GA), traditional immunosuppres‐
sants (mitoxantrone), fingolimod, and monoclonal antibodies (natalizumab, alemtuzumab,
and daclizumab) as well as the recently approved drugs teriflunomide and dimethyl fumarate
(DMF). The main target of these molecules is the modulation of immune mechanisms and
inflammation, along with a debatable effect on disease progression. Table 1 summarizes the
available information about FDA-approved DMDs, including their mechanisms of action and
severe adverse effects [Table 1]. The neuroprotective effects of these agents against neurode‐
generation and their ability to promote reparative processes are still under investigation.

FDA-
approved
DMDs

Indication Primary
mechanisms
of action

Neuroprotective
effects—results
from basic
research studies

Neuroprotective
effects—results
from clinical
research studies

Severe adverse
effects

Interferon
beta-1b
(Betaseron,
Extavia)

First line
therapy
for RR-MS,
SP-MS,
and CIS

Suppresses the
proliferation of
MBP-
specific T cells.
Inhibits the
secretion of pro-
inflammatory
cytokines

Stabilizes BBB
barrier. Protect
endothelial cells
from apoptosis
Decrease
the expression of
matrix
metalloproteinases.
Anti-inflammatory
effects. Antioxid-
ative and anti-
excitotoxic effect.
Increase
BDNF and NGF
levels [3–5]

Higher serum
levels of BDNF in
patients treated
with IFNβ [6–8]
Reduces the
likelihood of the
development of
black holes and
reduces the size
of pre-existing ones
[9]

Hepatotoxicity,
congestive heart
failure, seizures,
depression or
suicidal thoughts
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FDA-
approved
DMDs

Indication Primary
mechanisms
of action

Neuroprotective
effects—results
from basic
research studies

Neuroprotective
effects—results
from clinical
research studies

Severe adverse
effects

//5Interferon
beta-1a
(Avonex;
Rebif)

First line
therapy
for
RR-MS,
SP-MS,
and CIS
(only
Avonex)

Suppresses the
proliferation of
MBP-specific T
cells.
Inhibits the
secretion of
pro-inflammatory
cytokines

– – Hepatotoxicity,
congestive heart
failure, seizures,
depression or
suicidal thoughts

Peg
interferon
beta-1a
(Plegridy)

First-line
therapy
for
RR-MS

Suppresses the
proliferation of
MBP-specific
T cells.
Inhibits the
secretion of pro-
inflamma-tory
cytokines

– – Hepatotoxicity,
congestive heart
failure, seizures,
depression or
suicidal thoughts

Glatiramer
acetate
(Copaxone)

First-line
therapy
for RR-MS
and CIS

Suppresses the
proliferation of
MBP-specific T
cells.
Shifts the
population of T
cells from
proinflammatory
Th1 cells to
regulatory Th2
cells

Anti-inflammatory,
antioxidative, and
anti-apoptotic
effects [10, 11].
Increased BDNF
and IGF-2 Pro-
remyelination
and pro-
regenerative
proprieties
[12, 13]

Conflicting results:
there found both
increased and no
effect upon serum
BDNF levels
[14–16]. Imaging
data supports the
neuroprotective
and pro-myelinating
properties of GA
by showing that
patients treated
with GA are less
likely
to develop “black
holes” than non-
treated patients
and have
demonstrated
a significant increase
in the NAA–Cr
ratio compared to
pre-treatment values

Injection site
lipoatrophy and
necrosis, panic
disorder, bowel
disorder
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FDA-
approved
DMDs

Indication Primary
mechanisms
of action

Neuroprotective
effects—results
from basic
research studies

Neuroprotective
effects—results
from clinical
research studies

Severe adverse
effects

[17]

Mitoxantrone
(Novantrone)

Third-line
therapy
for SP-MS,
and
worsening
RR-MS

Suppresses the
proliferation of
T cells, B cells, and
macrophages.
Enhances T-cell
suppressor
function and
inhibits B-cell
function and
antibody production.
Inhibits macrophage-
mediated myelin
degradation

– – Secondary acute
myelogenous
leukemia,
cardiotoxicity

Fingolimod
(Gilenya)

First- or
second-
line therapy
for RR-MS
and SP-MS

Sequesters
lymphocytes
in lymph nodes

Promotes
oligodentrocyte
extension
Increases BDNF
and GDNF production
[18]

– Macular edema,
bradyarrhythmia,
PML, hypotension,
herpes infection,
hepatotoxicity

Natalizumab
(Tysabri)

Second- or
third line
therapy
for RR-MS

Inhibits
leukocytes
migration

– PML, allergic
reactions including
anaphylactic shock,
infections,
hepatotoxicity

Daclizumab
(Zinbryta;
Zenepax)

Second line
therapy
for RR-MS

Inhibits the
activation of T
cells and inhibits
survival of already
activated T cells;
inhibits
secretion of
pro-inflammatory
cytokines.
Normalizes the
number of
circulating LTi cells

– Infections,
cutaneous events,
malignancies, auto-
immunity
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FDA-
approved
DMDs

Indication Primary
mechanisms
of action

Neuroprotective
effects—results
from basic
research studies

Neuroprotective
effects—results
from clinical
research studies

Severe adverse
effects

Teriflunomide
(Aubagio)

First-line
therapy
for RR-MS

Inhibits the
activation and
proliferation
of stimulated
lymphocytes

– – Hepatotoxicity,
peripheral
neuropathy,
hyperkalemia,
transient acute renal
failure, severe skin
reactions

Dimethyl
fumarate
(Tecfidera)

First line
therapy
for RR-MS

Reduce
transendothelial
migration
of activated
leukocytes

Antioxidative
effects by activation of
Nrf2 [19, 20]

– Lymphopenia

Alemtuzumab
(Lemtrada)

Second line
therapy
for RR-MS

Lymphocyte B and
T depletion; decrease
of pro-inflammatory
cytokines

Anti-inflammatory
effects
Induction of
neurotrophin
producing
lymphocytes
Preservation of
axonal
conductance
Stabilizes
blood–brain
barrier [21]

It significantly
decreases the T2-
weighted lesion
burden compared
to IFNβ [22]

Infusion-associated
reactions, infections,
auto-immunity

Abbreviations: LTi―lymphoid tissue inducer; IGF-2—insulin growth factor; MPB—myelin-basic protein;
BDNF―brain-derived neurotrophic factor; GDNF—glial cell-derived nerve factor; Nrf2—nuclear factor erythroid 2-
related factor; BBB—blood–brain barrier, RR-MS―relapse remitting MS; SP-MM—secondary progressive MS, CIS—
clinical-isolated syndrome; PML—progressive multifocal leukoencephalopathy; LTi—lymphoid tissue inducer.

Table 1. The neuroprotective effects of FDA-approved DMD.

In addition to the currently FDA-approved DMDs, some promising new agents are already in
ongoing late-phase clinical trials, such as laquinomid, ozanimod, ponesimod, siponimod,
ocrelizumab, ofatumumab, masitinib, and cladribine. Few data related to the mechanisms of
action of these drugs are currently available. Of these compounds, laquinimod is the only one
that appears to have neuroprotective properties, and laquinimod is currently being tested in
patients with RR-MS in a third phase III trial, CONCERTO [23]. Basic research studies suggest
that in addition to its neuromodulatory and anti-inflammatory effects, laquinimod also
displays neuroprotective effects through several mechanisms, including reducing excitotox‐
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icity, increasing serum levels of BDNF, downregulating the astrocytic pro-inflammatory
response, reducing astrocytic nuclear factor κB (NFκB) activity, and preserving cannabinoid
receptor type 1 expression [24]. However, to date, the results of phase II and III clinical trials
have failed to show a clear effect of laquinimod in RR-MS patients [25, 26].

3. Other neuroprotective strategies

In addition to DMDs, there are many additional potential neuroprotective agents, including
ion channel modulators, glutamate antagonists, growth factors, sex hormones, statins, and
immunophilin ligands. Most of these were tested only in experimental studies as a means to
target molecular pathways involved in neurodegeneration or, in contrast, to stimulate
endogenous defense mechanisms. There is increasing interest in pleiotropic molecules such as
5-HTR3 antagonists [27], polymerized nano-curcumin [28], and tyrphostin AG 126 [29]; in
molecules that can modulate the kynurenine pathway [30]; in cannabinoid compounds [31–
33]; and in combination therapies of DMDs with pleiotropic molecules.

One of the factors that contributes to the persistence of inflammation in MS is sustained
activation of the transcription of nuclear factor kappa B (NFκB), which is an important hub for
several molecular mechanisms involved in apoptosis and in immune and inflammatory
responses. Glucocorticoid-induced leucine zipper (GILZ) is a glucocorticoid-responsive
protein that binds the p65 unit of NFκB and thus can reduce the immuno-inflammatory
response. In cell cultures, a synthetic peptide (GILZ-P) derived from the proline-rich region of
GILZ suppressed NFκB activation and prevented glutamate neurotoxicity [34]. Additionally,
in an in vitro study, intraperitoneal administration of GILZ-P modulated the Th1/Th2 balance
and ameliorated the symptomatology of experimental autoimmune encephalomyelitis (EAE)
[35]. The paracaspase mucosa-associated lymphoid tissue lymphoma translocation protein 1
(MALT1) is another signaling molecule that triggers lymphocyte activation through NFκB
signaling and also acts as a cysteine protease. To test the hypothesis that MALT1 inhibitors
could be used to treat lymphocyte-mediated pathologies, the therapeutic potential of mepazine
(a recently identified MALT1 inhibitor) was studied in mice with EAE. When mepazine was
prophylactically administered, it significantly reduced clinical disease symptoms and histo‐
pathological parameters. Moreover, its therapeutic administration clearly promotes disease
remission [36].

The nuclear receptor-related 1 protein (Nurr1) is a member of the class of steroid nuclear
hormone receptors, and its activity is significantly downregulated in neurodegenerative
disorders such as MS; its levels are also negatively correlated with EDSS progression. In mice
with EAE, the administration of isoxazolo-pyridinone, an activator of the Nurr1 signaling
pathway, delays EAE onset and reduces its severity. Therapeutic administration of isoxazolo-
pyridinone also reduced neuro-inflammatory and histopathological alterations in the spinal
cord but not the course of EAE [37].

KV1.3, the third member of the shaker-related subfamily of voltage-gated potassium channels,
is known to modulate calcium signaling to induce T cell proliferation (effector memory T cells
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—TEM), immune system activation and cytokine production. Toxins derived from animal
venoms can target ion channels, including KV1.3, and offer a means to diminish the activation
and proliferation of TEM cells and to improve of the pathology underlying autoimmune
diseases. For example, in a rat acute EAE model, ADWX-1, an analog of scorpion toxin, reduced
the number of T cells and the secretion of inflammatory factors. These toxic peptides could be
used to obtain better clinical results without neurological impairment [38]. There is increasing
interest in bee venom therapy, which experimental studies have shown can ameliorate the
symptomatology of EAE by decreasing inflammation and demyelination [39]. However,
additional clinical evidence is needed.

The mitochondrial permeability transition pore (PT pore) is a drug target for neurodegenera‐
tive conditions and for ischemia-reperfusion injury. Cyclophilin D (CypD) is a positive
regulator of the pore, and its downregulation improves outcomes in animal models of stroke.
However, this isomerase is not selective and may have toxic effects. A new synthesized
mitochondria-targeting CypD inhibitor, JW47, displayed selective cellular inhibition and
reduced cellular toxicity. In an EAE model, JW47 significantly protected axons and improved
motor assessments with minimal immunosuppression. These findings suggest that selective
CypD inhibition could become a viable therapeutic strategy for MS [40].

Granzyme B (GrB) is a serine protease released from the granules of cytotoxic T cells, which
can induce cell death by disrupting a variety of intra/extracellular protein substrates. GrB-
expressing T cells were identified in close proximity to oligodendrocytes and demyelinating
axons in acute MS lesions and were thus associated with neuronal loss. The GrB inhibitor
serpina3n, which was isolated from mouse Sertoli cells, can inhibit the enzymatic activity of
this protease. The administration of serpina3n attenuated disease severity in an animal model
of MS by reducing T cell-mediated neuronal death and axonal injury. These observations
suggest that serpina3n could be used to decrease inflammation-mediated neurodegeneration
[41].

Experimental studies have shown that fasudil—an inhibitor of Rho kinase (ROCK)—can
suppress experimental EAE when administered via multiple, short-term injections. Later, a
novel ROCK inhibitor that can be delivered intranasally was developed. This inhibitor, FSD-
C10, reaches the CNS faster and in a much lower dose. FSD-C10 reduced EAE severity and
CNS inflammatory infiltration and promoted neuroprotection by inducing CNS production
of IL-10, NGF, and BDNF and by inhibiting the production of multiple pro-inflammatory
cytokines [42].

Eriocalyxin B (EriB) is a diterpenoid extracted from Isodon eriocalyx, a perennial herb from
southwest China that is used as an anti-inflammatory remedy in traditional Chinese medicine.
EriB has been reported to induce apoptosis in leukemia and lymphoma by elevating the
intracellular levels of reactive oxygen species and by suppressing the NFκB pathway. In an
EAE model, EriB alleviated symptoms, delayed disease onset, decreased T cell populations,
inhibited the NFκB pathway and reduced CNS inflammation and demyelination, improving
the course of the disease [43]. Adenanthin, which is also a diterpenoid isolated from the leaves
of Isodon adenanthus, displays preventive and therapeutic effects in EAE, as demonstrated
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by improved clinical scores as well as by reduced infiltration of inflammatory cells and
demyelination in the CNS [44, 45].

Regarding sex hormones, 2-methoxyestradiol (2ME2)—the endogenous metabolite of estra‐
diol and an antimitotic and antiangiogenic cancer drug—was found to suppress the develop‐
ment of mouse EAE, as it inhibited lymphocyte activation, cytokine production, and
proliferation in a dose-dependent manner [46]. Other studies have shown that estrogen and
estrogen receptor agonists reduce the severity of EAE in animals when they are administered
after disease onset; these agents inhibit several inflammatory cytokines, induce apoptosis in T
cells, and also regulate the expression of adhesion and accessory molecules by endothelial cells,
altering leukocyte migration [47]. In addition, the β estrogen receptor has been demonstrated
to modulate microglial activity. The β estrogen receptor agonist LY3201 can suppress activated
microglia and NFκB activation in both microglia and T cells. All of these outcomes can be
achieved without negative effects on the pituitary gland, mammary glands, or uterus [48].

Nevertheless, in animal models of demyelination, progesterone and synthetic progestins have
been observed to attenuate myelin loss and to reduce clinical symptom severity. One study
showed that progesterone and Nosterone (a synthetic 19-nor-progesterone derivative)
promoted remyelination and attenuated inflammatory responses in female mice with severe
chronic demyelinating lesions. The remyelinating effect of progesterone was receptor-
dependent and began in the corpus callosum. Moreover, it enhanced the number of mature
oligodendrocytes and their progenitors as well, indicating that these hormones could represent
promising therapeutic agents for demyelinating diseases [49].

Statins are widely used to treat vascular diseases, but they also have immunomodulatory and
neuroprotective properties that could make them possible treatment candidates for neurode‐
generative disorders. Lovastatin has been found to improve clinical symptoms associated with
EAE as well as to reduce neuroinflammatory mediators such as iNOS, TNF-α and interferon
gamma (IFNγ). Similarly, atorvastatin has also been shown to ameliorate EAE symptomatol‐
ogy by modulating T cell immunity [50]. One double-blind, controlled trial used simvastatin
in patients with secondary progressive MS. High-dose simvastatin reduced the rate of whole-
brain atrophy by 43% compared with placebo and was safe and well tolerated. Furthermore,
differences between the simvastatin-treated and control groups were consistently observed
over 12 and 25 months. A small but significant improvement in disability outcomes and a non-
significant reduction in T2 lesion accumulation were also observed [51].

SWABIMS was a multi-center, randomized, parallel-group, rater-blinded study conducted in
8 Swiss hospitals that evaluated the efficacy, safety, and tolerability of daily administration of
40 mg atorvastatin and subcutaneous IFNB-1b compared to monotherapy with IFNB-1b. At
the end of the study, both groups had an equivalent number of patients with new lesions on
T2-weighted MRI images. Additionally, none of the secondary endpoints, including the
number of new lesions and total lesion volume on T2-weighted images, the total number of
new Gd-enhancing lesions on T1-weighted images, total brain volume, grey matter volume,
white matter volume, EDSS, relapse rate and number of relapse-free patients, did showed any
significant differences, suggesting that atorvastatin did not have a beneficial effect on
relapsing-remitting MS [52].
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Recent data from an established rat model of MS suggest that inhibiting excitatory glutama‐
tergic neurotransmission may have neuroprotective effects. One of these studies investigated
whether drugs such as amantadine and memantine (antagonists of NMDA glutamate recep‐
tors), LY 367385 (a selective mGluR1 antagonist) or MPEP (an mGluR5 antagonist) could
improve the condition of rats with EAE. On the one hand, amantadine and memantine reduced
the development and duration of neurological deficits and modified all of the assessed
parameters. On the other hand, LY 367385 and MPEP did not influence the condition of treated
animals when they were administered alone or in conjunction with NMDA antagonists [53].
Another study evaluated if selective antagonism of the NR2B subtype of NMDA receptors
(which are considered to play a more pivotal role in neurodegeneration) could be more
effective than memantine in EAE mice. Therapeutic administration of RO25-6981 (a selective
inhibitor of NR2B) caused a more significant decrease in neurological deficits, inflammation,
myelin degradation, and degeneration of axons from the spinal cord, suggesting that this drug
may be an effective treatment strategy to slow down the clinical deterioration that causes
disability in MS [54].

The metabotropic glutamate receptor 4 (mGluR4) has immunomodulatory properties, such
that a positive allosteric modulator of the receptor, ADX88178, protects mice with relapsing-
remitting EAE. ADX88178 is a newly developed drug with high selectivity and potency,
optimal pharmacokinetics, good brain penetrance, and almost no toxicity. Its administration
in EAE converted the disease into a form of mild chronic neuroinflammation that remained
stable for two months after the drug treatment was discontinued [55].

Recent studies have demonstrated that atypical antipsychotic agents (antagonists of dopamine
D2 and serotonin 5-HT2a receptors) have immunomodulatory properties, both peripherally
and within the CNS. In an EAE animal model, chronic oral administration of risperidone
improved disease severity, decreased both the size and the number of spinal cord lesions and
substantially reduced antigen-specific interleukins such as IL-17a, IL-2, and IL-4 and the
activation of microglia and macrophages in the CNS. In addition, another antipsychotic agent,
clozapine, showed a similar ability to modify macrophages and to reduce disease severity.
Together, these studies indicate that atypical agents could treat immune-mediated diseases
such as MS [56].

Polyphenolic flavonoids and non-flavonoids have potent antioxidant abilities, but they can
also target different molecules and affect multiple signaling pathways. Resveratrol, a phenol
found in grapes and red wines, is considered to have neuroprotective effects. In EAE, it induces
the apoptosis of activated T cells in the periphery and suppresses pro-inflammatory responses.
Another plant-derived substance, oleanolic acid (a triterpenoid), is known to have potent anti-
inflammatory properties. Treatment with oleanolic acid has been reported to prevent EAE by
suppressing peripheral inflammation and preventing CNS infiltration of inflammatory cells
(due to blockade of the NF-κB pathway [45]. Other studies have shown that flavonoids are
naturally immunomodulatory compounds that can limit demyelination, reduce neuroinflam‐
mation, and downregulate immune functions. For example, luteolin provides neuroprotection
by reducing axonal damage and, together with quercetin and fisetin, is able to decrease the
amount of myelin phagocytosed by macrophages; thus, luteolin may help prevent MS [57].
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Polyphenolic curcuminoids are the mixtures of curcumin, desmethoxycurcumin, and bisde‐
methoxycurcumin, which are derived from turmeric (Curcuma longa). Both the mixtures and
the individual components have been suggested to influence inflammatory and apoptotic
genes and the regulation of signal transduction pathways that lead to the activation of
transcription factors. In EAE, treatment with curcumin modulates pro- and anti-inflammatory
responses, prevents the differentiation of neural antigen-specific T cells, decreases oxidative
stress, improves remyelination and promotes neurogenesis [28]. However, despite the
promising therapeutic potential of curcumin, its poor water solubility, fast degradation profile
and poor bioavailability are significant hurdles for its clinical use.

The kynurenine pathway is known to have a regulatory function in the immune system.
Alterations of this pathway have been described in preclinical and clinical investigations of
MS. These data led to the identification of potential therapeutic targets, such as synthetic
tryptophan analogs, endogenous tryptophan metabolites, structural analogs, indoleamine-2,
3-dioxygenase inhibitors, and kynurenine-3-monooxygenase inhibitors [30]. Additionally,
high levels of a by-product of the kynurenine pathway, quinolinic acid, were found in EAE
mice and MS patients. Sundaram et al. demonstrated two possible strategies to limit quinolinic
acid gliotoxicity: by neutralizing quinolinic acid’s effects with monoclonal antibodies or by
inhibiting quinolinic acid production using specific KP enzyme inhibitors. These observations
could represent a novel therapeutic approach in MS [58].

Cannabidiol (CBD) is a non-psychotropic cannabinoid constituent of Cannabis sativa that is
known to possess anti-inflammatory and immunosuppressive properties. In a viral model of
MS, CBD decreased the transmigration of blood leukocytes by downregulating the expression
of VCAM-1, chemokines and the cytokine IL-1β and by attenuating the activation of microglia.
Its administration had long-lasting effects and ameliorated motor deficits during the chronic
phase of the disease, demonstrating the significant therapeutic potential of this compound [59].
Another study of CBD as a topical 1% cream also had surprisingly good results too. The daily
treatment, initiated at the time of symptomatic disease onset, displayed neuroprotective effects
against EAE, diminishing clinical disease scores (EDSS) by recovering hind limb paralysis and
by ameliorating lymphocytic infiltration and demyelination in spinal cord tissues [60].
However, when the CUPID trial investigated if oral dronabinol (Δ9-tetrahydrocannabinol)
might slow the course of progressive MS, it had no overall effect on disease progression,
although there were no serious safety concerns [61].

Epigallocatechin-3-gallate (EGCG), one of the major polyphenolic extracts of green tea, has
been shown to exhibit neuroprotective effects against toxic insults and neuronal injury. In an
EAE animal model, the administration of EGCG attenuated clinical symptoms and leukocyte
infiltration and demyelination in the CNS. Moreover, EGCG inhibited the NF-κB-mediated
transactivation of inflammatory mediators, reducing the production of interferons, IL-17, IL-6,
IL-1, and tumor necrosis factors [62]. These results were corroborated by other studies, which
demonstrated that EGCG, due to its antioxidative properties, could reduce the clinical severity
of EAE by limiting brain inflammation and reducing neuronal damage [63]. In addition, GA
and EGCG combination therapy had synergistic protective effects in vitro and in vivo, with
good results and no unexpected adverse events [64].
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Ginseng has been used in traditional medicine for over 2000 years due to its antianxiety,
antidepressant, and cognition-enhancing properties. Moreover, its effects on the brain are
related to glutamatergic and monoaminergic transmission, estrogen signaling, nitric oxide
production, neuronal survival, apoptosis, neural stem cells, and neuroregeneration. The
efficacy of ginsenoside Rd has been studied in mice with EAE. The results were promising
because the ginsenoside reduced the permeability of the blood–brain barrier, regulated the
secretion of INF-gamma and IL-4 and decreased disease severity [65].

Based on the observational studies that showed that low levels of vitamin D represent a risk
factor for the development of MS [66, 67], treatment with vitamin D has become increasingly
attractive and has been tested in both experimental and clinical trials. Vitamin D appeared to
modulate upon immune responses and inflammation, but clinical studies have not yet shown
a clear benefit [68, 69].

In addition to pharmaceutical compounds, clinical and basic research studies have also
highlighted that voluntary exercise can promote both neuroprotection and neuroregeneration
[70, 71]. An experiment conducted in mice with EAE showed that the exercising mice (on a
running wheel) presented a less severe neurological disease score, later disease onset and a
significant reduction of inflammatory cell infiltration and demyelination in the ventral white
matter tracts of the lumbar spinal cord [71]. Studies of patients with MS also support these
observations, physical excesses determining not only improvement of muscle function and
walking endurance, but also of cognitive abilities [72–75].

4. Ion channel modulation

Among the molecules that make up neurons, ion channels are especially important, because
they provide them their signaling abilities. In multiple sclerosis, there were described several
types of ion channels dysfunctioning:

• Ectopic distribution of calcium channels, up-regulated within the axon membrane, during
the demyelinating process. Increased intracellular calcium levels activate calcium-depend‐
ent proteases (calpains) that can degrade axonal proteins, contributing to the axonal injury.
Blocking the calcium channels can protect myelinated axons from axotomy-induced and
anoxia-induced degeneration (see Figure 2) [76].

• Transcriptional channelopathy that described in cerebellar Purkinje neurons. Studies
showed that Nav1.8 gene (normally inactivated in the cerebellum) is aberrantly activated
in Purkinje neurons, producing the Nav1.8 protein, possibly responsible for cerebellar
deficits [77].

• Ion channel dysfunctioning during remyelination—redistribution and clustering of ion
channels [78–81].

In MS, excessive accumulation of Ca2+ ions is known to contribute to axonal degeneration in
the central nervous system (CNS) through the activation of acid-sensing ion channel type 1a
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(ASIC1). ASIC1 is considered a mediator of neuronal injury in stroke and CNS inflammation
due to its ability to modulate Na+ and Ca2+ flux. So, it could be possible to attenuate axonal loss
by disrupting the ASIC1a gene or by using a nonspecific blocker of these channels, such as
amiloride (a diuretic with a proven safety record) [82]. Recently, a single-arm, longitudinal
trial of amiloride showed an important reduction of brain atrophy in the primary progressive
form of MS. The aim of Amiloride Clinical Trial in Optic Neuritis (ACTION), an ongoing phase
II clinical trial, is to demonstrate the neuroprotective effect of amiloride in acute optic neuritis
(a common manifestation of MS) using a multimodal approach that combines structural and
functional outcomes with clinical measures [83].

Figure 2. Mechanisms of demyelination-related neurodegeneration. Demyelination can result progressively in ionic
disequilibria, energy crisis, conduction block, and eventually neurodegeneration. (A) a normal node of Ranvier with
juxtaparanodal, paranodal, and nodal regions intact, depicting Na+, K+, and Ca2+ ions flowing through their respective
channels with mitochondria supplying the ATP for energy-dependent Na+K+ ATPases that re-establish the ion gradi‐
ents depleted by ion flux through channels. Numerous different ion channels are present in the axon but only a small
subset is depicted here; (B) partial demyelination results in dispersal of nodal ion channels, energy insufficiency, and
disequilibria of ion gradients; (C) complete demyelination can result in conduction block and axonal degeneration due
to the accumulation of intracellular Ca2+ that results from energy crisis and disruption of ionic balances. Abbreviations:
Kv1—potassium channel type 1; Nav1.6 and Nav1.2—sodium channel types 1.6 and 1.2; Na+ Ca+ Exchanger—Na-Ca
exchange pump; Na+K+ ATPase—ATP (energy)-dependent Na-K exchange pump; CASPR1—contactin-associated pro‐
tein 1 (interaction molecule between myelinating cell with axon); NF155—neurofascin 155 (predominant interaction
molecule between myelin and axon at paranodal axo-glial junction) http://www.mdpi.com/1422-0067/16/9/21215.

4-Aminopyridine (Fampridine) is a potassium channel blocker that improves axonal conduc‐
tivity in demyelinated lesions by targeting the potassium channel subtypes Kv1.1, Kv1.2, and
Kv1.4 and thus correcting the leakage of potassium ions. Even if it has no impact upon disease
incidence and severity, it has been already approved for improvement of fatigue, walking
speed, and strength in MS patients [84].
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Other potential agents that can target ion channels are lamotrigine, phenytoin, flecainide,
topiramate, carbamazepine, and glibenclamide, but even if some of them have some positive
results in animal studies, there is lack of clinical data regarding their efficacy in MS [85].

5. Remyelinating strategies in MS

For successful remyelination to take place, OPCs must undergo several necessary and
sequential steps. This very intricate process can fail if not regulated effectively. In the first step
—the activation phase—OPCs must proliferate, which involves the expression of several genes
and transcription factors by either activated microglia or astrocytes within the lesion [86, 87].
Mediators such as the proteins Cdk2 and p27Kip-1, platelet-derived growth factor (PDGF),
fibroblast growth factor (FGF), and other factors have been demonstrated to have a prolifera‐
tive effect in tissue cultures. In the second step—the migration or recruitment phase—OPCs
are guided to migrate to the site of demyelination by chemotactic factors such as semaphorin
receptors, neuropilins, and plexins. Semaphorin 3A impairs OPC migration to the lesion site,
whereas semaphorin 3F promotes OPC migration and remyelination [88]. PDGFα is the
archetypal chemotactic factor for OPCs, although it is difficult to separate its chemotactic
effects from its effect on OPC proliferation. In the third step, OPCs must differentiate into
remyelinating oligodendrocytes in a process driven by transcription factors such as Nkx2.2
and Olig2 [89].

Many changes in both the cytoarchitecture and microenvironment of the MS brain could
prevent remyelination by endogenous OPCs. Extracellular matrix components, including
fibronectin, hyaluronic acid (HA), and chondroitin sulfate proteoglycans (CSPGs), can block
the differentiation of OPCs and premyelinating oligodendrocytes [90]. Components of
damaged myelin, such as myelin-associated glycoprotein (MAG), oligodendrocyte myelin
glycoprotein (OMgp), and NOGO-A, which signal through the Nogo 1 receptor and its co-
receptors p75, TROY and LINGO-1 (leucine-rich repeat- and Ig domain-containing Nogo
receptor-interacting protein 1) inhibit both axonal regeneration and oligodendrocyte differ‐
entiation and remyelination [91, 92]. The differentiation phase can also be influenced by
intrinsic signaling pathways (Notch signaling, Wnt signaling, and Retinoid X receptor (RXR)
signaling) and extrinsic competitors (LINGO-1, semaphorin 3A, sonic hedgehog (Shh),
fibroblast growth factor, insulin-like growth factor 1 (IGF-1), BDNF, chemokine CXCL 12, and
bone morphogenic proteins (BMPs). The Notch signaling pathway is an important regulator
of the balance between OPC proliferation and differentiation in the developing CNS as well
as PNS. Notch 1 is a surface receptor expressed by both developing and mature oligodendro‐
cytes. The ligand engaged with the Notch receptor determines whether the canonical or non-
canonical signaling pathway is activated. The canonical Notch 1 signaling pathway, which is
mediated through Jagged 1, prevents OPC differentiation, whereas the non-canonical signal‐
ing pathway mediated through contactin promotes differentiation [93]. The canonical Wnt-β-
catenin signaling pathways negatively regulate the production and differentiation of
oligodendrocytes during both developmental myelination and remyelination. Some data
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suggest that the inhibition of Wnt via Axin2 promotes oligodendrocyte differentiation and
remyelination [94].

Remyelination is not regulated by a single molecule or mediator but through a combination
of signaling pathways that act on OPCs and oligodendrocytes as well as on other cellular
players such as microglia, astrocytes, and even blood vessels. The discovery of new molecular
players and of pharmacological strategies to act on them is currently a priority of the field so
that new therapeutic agents that can change the natural history of MS can be developed.

Currently, from all potential remyelinating strategies for MS that stimulate OPC differentiation
and enhance remyelination that include all the pathways and the signaling molecules descri‐
bed above [95–100], only anti-LINGO-1 antibodies have been tested in clinical trials. A phase
II trial is ongoing and will provide additional information about safety, tolerability, and
efficacy (NCT01864148).

The transplantation of exogenous OPCs into the CNS appears to be an attractive solution for
MS, but unanswered questions render this procedure unfeasible in MS; these open questions
include how to overcome the limited migration potential of transplanted OPCs, how to control
the proliferation and differentiation process, and how to avoid immunosuppression treatment
[101].

6. Concluding remarks from a systems biology perspective

The dynamic interactions between environmental factors and epigenetic mechanisms that
involve multiple pathways and processes suggest the need for a system-based approach to
understand MS physiopathology and to implement new pharmacological therapies.

Targeting neuroprotection is always ambitious, not only in MS, but in neurology in general,
mostly because of a poor understanding of the complexity of interconnections between
different cellular and molecular processes. In complex diseases such as MS there is a milieu of
dynamical interplay between networks of genes and signaling proteins, lipids, carbohydrate
molecules that can have concomitant roles in inflammation, immune systems reactivity,
demyelination, neurodegeneration, neuroprotection, remyelination. For example, the network
of p38 mitogen-activated protein kinase (MAPK) signaling pathway can trigger both inflam‐
mation and neuroprotection. MAPK is activated by cell stress, playing a key role in immune
responses and has been intensively investigated in relation with EAE pathogenesis [102].
Taking in account this multitude of interactions, the currently trend is to inhibit/potentiate
selectively a single molecular pathway, for example, acting only on p38α MAPK and not also
on p38β MAPK [103].

However, over-selective interventions have an important disadvantage. Imbalances in
complex systems always affect concomitant different subsystems between which there is a
significant cross-talk. This leads to several pathological outcomes, for example, to inflamma‐
tion, demyelination, and neurodegeneration which potentiate each other, so targeting a single
pathway seems senseless. Additionally, some of these processes occur as compensatory
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mechanisms and become maladaptive and trigger the emergence and expansion of vicious
circles due to the alteration of modulatory mechanisms. For example, in a demyelinated axon,
homeostatic plasticity that involves the redistribution of ion channels occurs, and this redis‐
tribution contributes to the failure of AP conduction and finally generates a metabolic crisis.
Intercorrelation between the molecular mechanisms that underlie inflammation, apoptosis,
oxidative stress, increased Ca2+ load, mitochondrial dysfunction, microglial activation, and
blood–brain barrier dysfunction is responsible for the expansion of vicious circles that generate
a nonlinear pattern of clinical evolution. From this perspective, the traditional idea of a “magic
bullet” seems too simplistic to achieve sufficient neuroprotection.

An interesting explanation of these mechanisms derives from the theory of complex biological
systems, which are characterized by criticality and degeneracy. Degeneracy describes the
ability of structurally and functionally distinct pathways to produce the same output. This
characteristic supports the existence of multifunctional components that can perform similar
functions under certain conditions. A direct consequence of degeneracy is the assurance of
quick compensation if one of these mechanisms fails. However, in pathological conditions,
degeneracy can lead to a chronic, robust state in which a unimodal therapeutic approach that
targets a single pathway will fail to ensure the sustainable irreversibility of the pathological
process. According to this idea, the combination of therapies that utilize pharmacological
compounds with synergic effects but different mechanisms of action or individual multimodal,
pleiotropic therapies, with modulatory properties that can target as many pathways as possible
offer a feasible therapeutic approach.

Last, but not least, it is very important to take in account that everyone has a different genetic
polymorphism that leads to different phenotypes which can have an important influence upon
the reactivity of molecular networks. This patient inter-variability may be responsible for both
heterogeneity in disease progression and treatment response, leading to an open door to
metabolomics [104].
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