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Triptolide (TP), one of the major active components of the traditional Chinese herb

Tripterygium wilfordii Hook F, and 2, 4-diamino-6-hydroxypyrimidine (DAHP), an inhibitor

of tetrahydrobiopterin (BH4) synthesis, have been reported to have potent anti-

inflammatory and immunosuppressive properties. However, the protective effects of

TP and DAHP on cerebral ischemia have not been reported yet. In this study, we

investigated the neuroprotective effects of TP and DAHP in a middle cerebral artery

occlusion (MCAO) rat model. Furthermore, we examined whether the neuroprotective

effects of TP and DAHP were associated with the inhibition of apoptosis through

suppressing BH4 and inducible NOS (iNOS) synthesis or the activation of the

phosphoinositide-3-kinase/serine-threonine kinase Akt/mammalian target of rapamycin

(PI3K/Akt/mTOR) pathway. Our results showed that pretreatments with TP (0.2 mg/kg)

and DAHP (0.5 g/kg) significantly reduced ischemic lesion volume, water content, and

neuronal cell death compared with the vehicle MCAO rats. In addition, compared

with the MCAO group, TP, and DAHP pretreatment groups significantly reduced

astrocyte numbers, caspase-3, cleaved caspase-3, and NF-κB up-regulation, while

increased Bcl-2 expression. Moreover, protein expressions of PI3K, Akt, and mTOR

increased, while extracellular signal-regulated protein kinases 1 and 2 (ERK1 and ERK2)

phosphorylation decreased in both the TP-treated rats and DAHP-treated rats. These

results demonstrate that TP and DAHP can decrease cell apoptosis in focal cerebral

ischemia rat brains and that the mechanism may be related to the activation of the

PI3K/Akt/mTOR pathway and inactivation of the ERK1/2 pathway. Thus our hypothesis

was reached PI3K/Akt/mTOR and ERK1/2 pathways may provide distinct cellular

targets for a new generation of therapeutic agents for the treatment of stroke, and TP

and DAHP may be potential neuroprotective agents for cerebral ischemia/reperfusion

injury.

Keywords: cerebral ischemia, DAHP, Triptolide, PI3K/Akt/mTOR, anti-apoptosis, neuroprotection

Abbreviations: DAHP, 2, 4-diamino-6-hydroxy-pyrimidine; DMSO, dimethyl sulfoxide; ERK, extracellular signal-regulated
kinase;MCAO,middle cerebral artery occlusion; MRI,magnetic resonance imaging; mTOR,mammalian target of rapamycin;
PI3K, Class III phosphatidylinositol kinase; PVDF, polyvinylidine difluoride; TTC, 2, 3, 7-triphenyltetrazolium chloride;
TUNEL, terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling.
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Introduction

Stroke is a disease of serious consequence to human health with

high prevalence worldwide. The increasing number of patients
who suffer from stroke is estimated to reach more than 200 mil-

lion a year with almost 150 million deaths annually (Tang et al.,
2012). Cerebral ischemia accounts for 87% of all stroke patients

and is one of the major causes of death and the third cause of dis-
ability (Suethanapornkul et al., 2008; Urban et al., 2010; Writing
Group et al., 2010). Thus, it is essential to study the mechanisms

underlying cerebral ischemia, and finding effective therapeutic
strategies has become an urgent task to prevent neural damage

in ischemic brain injury.
Apoptosis after cerebral ischemia is one of the major path-

ways that lead to the process of cell death (Mattson et al., 2001).
In response to oxidative stress in mitochondria, the outer mem-

brane of mitochondria becomes permeable. This phenomenon
is directly controlled by Bcl-2 family, resulting in the translo-

cation of Bax from the cytosol to the mitochondria and the
release of cytochrome c (Kuwana et al., 2002). Cytochrome c is

then released from the mitochondrial inter-membrane space to
the inner cytosol, leading to the formation of the apoptosome

together with Apaf-1 and caspase-9. The apoptosome permits the
auto-activation of procaspase-9, which is followed by the activa-

tion of procaspase-3. Active caspase-3 which is cleaved caspase-3
leads to cell apoptosis by proteolysis such as DNA fragmentation.

Previous studies have demonstrated that DNA fragmentation
contributes to the development of ischemic infarction (Yao et al.,
2012). Thus, the ideal preventive or therapeutic approach would

indeed target apoptosis after cerebral ischemia.
Previous studies have shown that activation of the phosphoi-

nositide-3-kinase/serine-threonine kinase Akt/mammalian
target of rapamycin (PI3K/Akt/mTOR) pathway may play an

important role in the effects of cell proliferation and apoptosis in
the brain (Annovazzi et al., 2009). The neuroprotective role of the

PI3K/Akt pathway in cerebral ischemia has been widely studied
(Shibata et al., 2002; Xu et al., 2008). Activation of the PI3K/Akt

pathway has been proved to negatively modulate genes that pro-
mote inflammation, thrombogenicity, and vascular permeability,

and thereby protect vascular function (Schabbauer et al., 2004).
Activated Akt can rapidly modulate some molecular functions

including mTOR. As a multifunctional collection point, mTOR
regulates cytotrophy, energy supply, and signal transduction, and

also promotes protein synthesis, angiogenesis and the process
of the cell cycle. Given the neuroprotective role of the PI3K/Akt

pathway, we hypothesized that the PI3K/Akt/mTOR pathway
may be inactivated after cerebral ischemia injury. In this study

we prove that this is indeed the case in the MCAO model
rats.

It is widely known that protein kinase-mediated signaling cas-

cades play a vital role in perceiving extracellular signals and
evoking downstream cellular response in neural cells (Irving

et al., 2000). The ERK pathway is one of such important sig-
nal systems (Li et al., 2003; Huang et al., 2010). Extracellular

signal-regulated protein kinases 1 and 2 (ERK1/2), which are
members of the mitogen-activated protein kinase family, have

been well characterized and are known to be involved in cell

survival. However, some evidences have suggested that the acti-

vation of ERK1/2 also contributes to cell death in some cell
types and organs under certain conditions (Dong et al., 2004;

Kim et al., 2005; Zhuang and Schnellmann, 2006). Several studies
have proved that cooperative activation of ERK and Akt promote

cell survival through, respectively, suppressing distinct apoptotic
mechanisms, whereas other evidences have suggested that ERK

also contribute to cell death through suppressing Akt, one of
the anti-apoptotic signaling molecules (Xue et al., 2000; Sodhi

et al., 2001; Sinha et al., 2004). Therefore, the functional relation-
ship between ERK and Akt after ischemic insults and whether

mTOR is the downstream target of Akt that regulates neuron
survival in ischemic brain injury require further investigation.

In this present study, we investigated spatiotemporal expressions
of ERK1/2 and PI3K/Akt/mTOR signals in the rat brain after

MCAO.
Tetrahydrobiopterin (BH4) is an essential cofactor for NOS

activity which is derived from peroxynitrite (ONOO) during

ischemia/reperfusion and contributes to ischemic brain injury.
DAHP an inhibitor of BH4 synthesis, significantly decreased gas-

tric nitric oxid (NO) release and nitrergic relaxation. Reduced
infarct volume in a MCAO rat model treated with DAHP

has been reported (Kidd et al., 2005; Gangula et al., 2010).
Although previous studies established a deleterious role of iNOS

in ischemic stroke, the regulatory mechanisms for iNOS and the
biological mechanism of DAHP in MCAO remain unknown.

As a component of traditional Chinese medicine, Triptolide
(TP) has been widely used in a variety of inflammatory and

autoimmune disease treatments such as rheumatoid arthritis
treatment for its functions in antitumor, anti-inflammatory,

and immune suppression. Furthermore, the neuroprotective
effect of TP on dopaminergic neurons in MPP+-induced hemi-

parkinsonian rats has also been reported (Gao et al., 2008).
Also, TP restrains NF-κB signal transduction pathway in astro-

cyte through inhibiting the activation of microglia (Jiang
et al., 2001; Zhao et al., 2005). However, the specific antag-
onist effects of TP on cerebral ischemia injury need further

exploration.
The aim of this study was to investigate whether brief

administrations of DAHP (0.2 mg/kg) and TP (0.5 g/kg) 12 h
before MCAO salvage neurons from inevitable injury dur-

ing reperfusion (90 min). We further tested the hypothesis
that these beneficial actions are mediated activation of the

PI3K/Akt/mTOR signaling pathway through inhibiting apoptotic
mechanism.

Materials and Methods

Animals
Adult male Sprague–Dawley rats (the Animal Center of Zhejiang

University, China), weighing 230–250 g, were used in the exper-
iments. Animals were maintained under special pathogen-free

conditions and have free access to sterilized water and pellet
food. These rats were kept under standardized conditions with

a 12 h light–dark cycle. Temperature (24 ± 1◦C) and humid-
ity (55%) remained constant. All experiments were conducted in
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compliance with the National Institute of Health’s Guidelines for

the Care and Use of Laboratory Animals.

Middle Cerebral Artery Occlusion
According to previous research, male Sprague–Dawley rats were
subjected to perform MCAO and reperfusion operations (Longa

et al., 1989). Briefly, rats were anesthetized with 4% chloral
hydrate intraperitoneally. Then MCAO was carried out using

an intraluminal thread introduced via common carotid artery
(CCA). A surgical midline incision was made to expose the

right CCA, external carotid artery (ECA), and internal carotid
artery (ICA). A 4-0-monofilament nylon suture with approxi-

mately 0.26 mm round in diameter was inserted into the right
CCA lumen and gently advanced into the ICA up to a point

approximately 18 mm. After 90 min, the nylon sutures were
slowly removed from the artery, and the animals were allowed
reperfusion. Then we closed the incision on the neck. Using

an automatic homeothermic blanket control unit, the animal’s
body temperature was continually monitored and maintained at

37◦C throughout the surgical procedure and during post-surgery
recovery.

Drug Administration and Experimental
Groups
A total of 60 adult male Sprague–Dawley rats were randomly
seperated into 5 groups: (1) control group (n = 12), (2) DMSO

group (n = 12), (3) MCAO group (n = 12), (4) DAHP-treated
group (n = 12), and (5) TP-treated group (n = 12). The control

group (sham operated animals) underwent the MCAO surgical
procedure, except the thread was not inserted into the CCA.

The animals in the DMSO group were almost same with the
control group except giving intraperitoneal injection of 0.5 ml

DMSO. In TP-treated and DAHP-treated groups, animals went
through the MCAO surgical procedure, and TP and DAHP

were administrated by intraperitoneal injection (i.p.) 12 h before
the beginning of MCAO at a dose of 0.2 mg/kg and 0.5 g/kg,

respectively, (Kidd et al., 2005; Klawitter et al., 2012; Lee et al.,
2012; Yang et al., 2015). TP and DAHP were obtained from

Merck and dissolved in DMSO. All the tissue samples were
collected at the same time point, 24 h after MCAO surgical

procedure.

Evaluation of Cerebral Edema and Infarction
TTC
The rats were injected intraperitoneally with sodium pentobarbi-

tal (40 mg/kg). After being anesthetized, the brains were removed
rapidly and frozen in −20◦C for 30 min. Brains were dissected,

and coronal slices (2 mm in thickness) were acquired from frozen
forebrains using a rodent brain matrix slicer. Brain slices were

then stained with TTC (2%) at 37◦C for 20 min in dark. The
sections were soaked in 4% paraformaldehyde phosphate buffer

for 1 h and scanned. The percent of infarct area of the entire
brain represented the degree of cerebral infarction. Normal brain

tissues were stained red, while the unstained (white)area was con-
sidered to be the infract area. Areas of red and white staining

were measured using a computer color multimedia image anal-
ysis system (Image J 1.46R, NIH, USA). The percent of infarction

is revealed by the equation: % infarct area= infarct area/total area

of slice × 100 (Cheng et al., 2012).

MRI Examination
The rats in each group were examined by MRI to investigate

whether the rats displayed signs of hemispheric swelling and
oedema formation. Rat brains were then tested in a 3.0-Tesla

(T) MRI animal scanner (Magnetom Trio with TIM system,
Siemens, Erlangen, Germany). In order to obtain the signal

excitation and detection, the rat’s head was placed in a custom-
made “birdcage coil,” which has a 30 mm inner diameter. MRI

parameters were set as follows: TE = 92 ms, TR = 3620 ms,
FOV = 8 cm × 8 cm, M = 256 × 256, NA = 2, thick-

ness = 2 mm, and gap = 0 mm. The rat was held in a flat skull
position, and the brain was performed to center the image slice

5 mm posterior to the rhinal fissure. Image-Pro Plus 5.0 software
(Media Cybernetic, Bethesda,MD, USA) was used to examine the
hemisphere intensity by “mean density value” after the optimal

adjustment of contrast. MRI measurements were obtained 24 h
after MCAO.

Immunofluorescence
Brains were perfusion fixed with 4% paraformaldehyde and 30%
sucrose solution before processing for histology. After being

frozen, brains were sectioned coronally. Primary antibodies were
applied in the following concentrations: GFAP and iNOS (1:100;

Santa Cruz Biotechnology, Inc., USA). Immunohistochemistry
followed the method with HRP-conjugated goat anti-rabbit IgG

(1:200; Santa Cruz Biotechnology, Santa Cruz, CA, USA), and
then were visualized with 3, 30-diaminobenzidine (DAB, Sigma,

St. Louis, MO, USA). Sections were then hydrated, cleared and
mounted in DXP for microscopic analysis. Immunofluorescence

followed with appropriate secondary antibodies (Alexa Fluor,
Molecular Probes Inc.) in 1% BSA and 0.3% Triton X-100 in PBS

after primary antibodies. Mounting medium was added on the
slides prior to be covered with coverslips for observation by a
laser scanning confocal microscope.

Western Blot
Total proteins of the ischemic penumbra brain tissue were
extracted from tissues of each group with 2 mM phenylmethane-

sulfonyl fluoride in 1 mL ice-cold RIPA buffer added protease
inhibitor cocktail EDTA-free and phosphates inhibitors. BCA kit

(KeyGEN, Nanjing, China) was used to determine protein con-
centration. A total of 30 µg of total protein from each sample was

subjected to electrophoresis on 12% SDSPAGE gel using a con-
stant voltage. After performing electrophoresis 70 V for 30 min

and 100 V for 120 min, the proteins were electrophoretically
transferred to PVDFmembrane using a Bio-Rad TransBlot appa-

ratus for 120 min. The PVDF membranes were blocked with
TBST containing 5% non-fat milk for 2 h at room temperature,

and then incubated with rabbit anti-ERK1/2 and Bcl-2 (1:1000;
Santa Cruz Biotechnology, Santa Cruz, CA, USA), caspase-3,

cleaved caspase-3, NF-κB, pERK1/2, Phospho-Akt (Ser473), and
Akt (1:1000; Cell Signaling Technology, Inc., USA), mTOR and

PI3K (1:1000; Epitomics, USA) primary antibody overnight at
4◦C. The membrane was washed with TBS containing 0.05%
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FIGURE 1 | T2-weighted MRI images of rats’ brain.

FIGURE 2 | 2, 4-diamino-6-hydroxypyrimidine and Triptolide (TP)

reduced focal cerebral ischemia-induced injury. (A) Representative

photographs of coronal brain sections stained with 2,3,5-triphenyltetrazolium

chloride. (B) Summary of cerebral infarct size in brains. The infarct volume

was expressed as the percentage of the contra lateral hemispheric area.

Infarction size was then analyzed using Meta-Morph program. Data were

expressed as mean ± SD, ∗∗P < 0.01 vs. control group; ##P < 0.01 vs.

MCAO group.

Tween 20 (TBST) for 15 min and three times, then incubated
with horseradish peroxidase-conjugated goat anti-rabbit (1:3000;
Jackson Immuno Research Laboratories, USA) antibody for 2 h,

and then washed with TBST for 15 min and three times. Finally,

membranes were processed for detection using the ECL system.
The band density was analyzed by Quantity One, and all exper-
iments performed in triplicate to represent the mean plus or

minus SD of all data.
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FIGURE 3 | Detection of neuronal apoptosis. (A) TUNEL staining was used to identify apoptotic cells. (B) TUNEL positive cells were counted using Meta-Morph

program. TUNEL positive cells show the quantitative analysis data. Data are expressed as mean ± SD, ∗∗P < 0.01 vs. control group; ##P < 0.01 vs. MCAO group.

TUNEL Staining
Terminal deoxynucleotidyl transferase-mediated dUTP-biotin

nick end labeling staining was assessed by the In Situ Cell
Death Detection Kit, POD (Roche Applied Science, Mannheim,
Germany). After 24 h reperfusion, the sections were prepared

and the staining was performed according to the protocol pro-
vided by the manufacturer. Confocal laser scanning micro-

scope was employed to analyze the results. The number of
TUNEL positive neurons and total neurons was counted in

three different fields for each section and calculated in 10
selected sections by an examiner blinded to the group assign-

ment. The extent of apoptosis was calculated and expressed
as a ratio of TUNEL-positive neurons versus total neurons

(Wang et al., 2012).

Statistical Analysis
The data were analyzed using Graph Pad Prism version 4.0.
Values are presented as means ± SD for the indicated anal-

yses. A probability value of P < 0.05 was considered to be
statistically significant for all statistical tests. To compare mean

values in two separate groups for infarct volume, we used
an unpaired t-test. Values of P < 0.05 were considered sig-

nificant. Western-blot had been evaluated by Quantity one
analysis. Differences at P < 0.05 were considered statistically

significant.

Results

DAHP and Triptolide Improve Edema
Magnetic resonance imaging is considered to be the most promis-
ing and non-invasive approach for examining brain edema.

Assessment of hemispheric volumes on MRI allows a direct
quantification of the space-occupying effect in experimental

stroke. T2-weighted MRI is frequently used to determine the
edema induced by I/R. The representative images were shown in

Figure 1. Brain edema was hardly observed in the animals of the
control group. In contrast, edemawas detected at 24 h after reper-

fusion in MCAO group. The brain edema was less in both the
DAHP-treated and TP-treated groups.
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Triptolide and DAHP Reduce Infarction
Volume and Brain Water Content
2, 3, 7-triphenyltetrazolium chloride staining reflected the neu-

rological deficit in the rat brain. The representative images are
presented in Figure 2A. There were significant differences in

lesion areas between rats in the control group andMCAO groups
(P < 0.01). The lesion area in the TP and DAHP pre-treatment

groups were reduced noticeably compared with the model group
(P < 0.01). The area of the lesion in the DMSO group showed no

significant difference from the model group. In the TP andDAHP
treated groups, the area of the lesion was reduced, but no signifi-

cant difference was found when compared with the DMSO group
in Figure 2B.

Triptolide and DAHP Reduces Apoptotic Cell
Death in the Brain
At the 24 h time point after reperfusion, the number of apop-
totic cells in penumbral area was observed. Apoptotic cells

were recognized by TUNEL which is the identification of DNA

fragmentation. As can be seen from Figure 3, in the MCAO

and DMSO group, the numbers of TUNEL positive cells were
significantly increased, as compared to sham rats. In the TP-

treated and DAHP treated group, the numbers of TUNEL posi-
tive cells were significantly decreased, as compared to the MCAO

group. These results suggested that the TP-treated and DAHP-
treatment effectively prevented expansion of apoptotic cell death

in MCAOmodel. Data is expressed as mean ± SD, ∗∗P < 0.01 vs.
control group; ##P < 0.01 vs. MCAO group.

Triptolide and DAHP Reduce Glial Activation
To specifically investigate the effect of MCAO on astrocyte func-

tion and TP and DAHP on the neuroinflammatory system,
we measured the expression of GFAP following ischemic insult

by immunofluorescence staining analysis at 24 h after reper-
fusion. The number of GFAP-positive astrocytes was observed.

In the MCAO group, the GFAP-positive astrocytes were mainly
gathered in the penumbral area. In TP-treated and DAHP-

treated rats, the number of GFAP-positive astrocyte accumulation

FIGURE 4 | 2, 4-diamino-6-hydroxypyrimidine and TP treatments

attenuated ‘reactive gliosis’ in the ischemic area. (A) Immuno-

fluorescence staining showed immunoreactivities of GFAP after MCAO.

The profound expression of GFAP was observed in MCAO group

compared to control group (B). The expression of GFAP in DAHP-

treated and TP-treated group was significantly decreased compared with

MCAO group. ∗∗P < 0.01 vs. MCAO group; #P < 0.05 vs. MCAO

group.
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significantly decreased compared to the MCAO rats (Figure 4).

The result showed that the inhibitory effects of TP and DAHP
on GFAP-positive astrocyte might contribute to its neuroprotec-

tive effect in MCAO. ∗∗P < 0.01 vs. MCAO group; #P < 0.05 vs.
MCAO group.

Triptolide and DAHP Attenuate the
Increasing of iNOS
As shown in Figure 5A, immunochemistry results revealed

that stroke increased the iNOS activity when compared with
non-ischemic rats. Ischemic reperfusion induced a substan-

tial increase in iNOS activity, which was significantly atten-
uated by TP and DAHP. In comparison with DAHP, the

extent of reduction of increased iNOS activity induced by
ischemic reperfusion was higher by TP treatment (Figure 5B).

Immunoreactive stainings of iNOS was detected in the cerebral
cortex. The staining for iNOS was moderately expressed in the

ischemic penumbral cortex (Figure 5A). ∗∗P < 0.01 vs. con-
trol group; ##P < 0.01 vs. MCAO group; #P < 0.05 vs. MCAO

group.

Triptolide and DAHP Activated the PI3K/Akt/
mTOR Pathway and Increased the
Expression of Bcl-2
Western blot analysis revealed that stroke decreased the activ-

ity of PI3K/Akt/mTOR pathways compared with non-ischemic
rats. Treatments with TP and DAHP significantly increased

PI3K, Akt and mTOR expression compared to the MCAO
group (Figures 6A,C–E). Compared with the sham-operated

rats, the protein expression of Bcl-2 significantly decreased

in the MCAO rats (Figure 6B). Pretreatments of TP and
DAHP significantly increased the protein expression of Bcl-

2 TP and DAHP vs. MCAO group. ∗∗P < 0.01 vs. MCAO
group; ##P < 0.01 vs. MCAO group; #P < 0.05 vs. MCAO

group.

Triptolide and DAHP Decreased the
Expression of Caspase-3, NF-κB, and
Cleaved Caspase-3
Figure 7A shows the results of western blot with caspase-3, NF-
κB and cleaved caspase-3 antibodies in cortex of rats 24 h after

MCAO. Increased protein level of NF-κB was observed 24 h
after MCAO. TP and DAHP decreased the protein expressions

of NF-κB. Also, the expressions of caspase-3 and cleaved caspase-
3 were analyzed by western blot. The data showed that TP and
DAHP significantly decreased the protein expressions of caspase-

3 and cleaved caspase-3 (Figures 7A–D). ∗∗P < 0.01 vs. control
group; ∗P < 0.05 vs. control group; #P < 0.05 vs. MCAO group;

##P < 0.01 vs. MCAO group.

Triptolide and DAHP Decreased
pERK1/ERK1 and pERK2/ERK2 Expressions
ERK1, ERK2, phospho-ERK1 (pERK1), and phospho-ERK2
(pERK2) expressions were examined after MCAO using west-

ern blot and immunofluorescence staining. The results showed
that ERK1, ERK2, pERK1, and pERK2 were detected after 90 min

of MCAO in both the ischemic core and the perifocal regions.
Western blot analysis showed that levels of pERK1/ERK1 and

FIGURE 5 | 2, 4-diamino-6-hydroxypyrimidine and TP treatments

attenuated iNOS expression in ischemic area. (A) Immunohisto-

chemistry showed immunoreactivities of iNOS after MCAO. The profound

expression of iNOS was observed in MCAO group compared to control

group (B). The expression of iNOS in DAHP-treated and TP-treated group

was significantly decreased compared with MCAO group. ∗∗P < 0.01 vs.

control group; ##P < 0.01 vs. MCAO group; #P < 0.05 vs. MCAO

group.
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FIGURE 6 | 2, 4-diamino-6-hydroxypyrimidine and TP treatments

rescued the decreased levels of PI3K, phosphorylated Akt

Ser-473, and mTOR induced by ischemia in the cortex and

hippocampus, also restored the decreased level of Bcl-2 induced

by ischemia. (A) Compared with the control group, the PI3K, Akt,

and mTOR protein levels decreased in the MCAO group. And it

restored the decreased level of Bcl-2 (B) induced by ischemia DAHP

and TP up-regulated the protein levels of PI3K (C), Akt (D), and

mTOR (E). ∗∗P < 0.01 vs. MCAO group; ##P < 0.01 vs. MCAO

group; #P < 0.05 vs. MCAO group.

pERK2/ERK2 were obviously increased after 90 min of MCAO

in comparison with sham-operated group. Treatments with TP
and DAHP decreased the expressions of pERK1/ERK1 and

pERK2/ERK2 (Figures 8A–C). ∗∗P < 0.01 vs. control group;
∗P < 0.05 vs. control group; #P < 0.05 vs. MCAO group;

##P < 0.01 vs. MCAO group.

Discussion

The research for neuroprotective agents in MCAO is primarily

based on the abilities of specific drugs to reduce neuronal loss
and contribute to cell survival. Agents that can provide such

neuroprotective effects have the potential to become novel thera-

peutics for MCAO. Existing animal models of MCAO provide us
with useful tools to test the two new neuroprotective agents and

strategies. In this in vivo ischemia study the spatiotemporal pro-
file of PI3K/Akt/mTOR pathway was examined in a rat transient

MCAOmodel to investigate the mutual role of signal pathways.
Cerebral ischemia significantly promoted the neurological

damage and increased total infarct size. The results showed that

rats undergoing ischemic stress exhibited a high percentage of
TUNEL-positive cells; however, these weremarkedly decreased in

the peri-infarct area in TP-treated and DAHP-treated rats. These
observations suggest that apoptosis is one of the major mech-

anisms that leads to cell death in the ischemic cortex. Several
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FIGURE 7 | 2, 4-diamino-6-hydroxypyrimidine and TP treatment

inhibited the expressions of caspase-3 (A), NF- κB and cleaved

caspase-3. The expression of caspase-3 (B), NF-κB (C) and cleaved

caspase-3 (D) was increased in MCAO group compared to control

group. DAHP and TP treatment significantly reduced the expression of

caspase-3, NF-κB and cleaved caspase-3. ∗∗P < 0.01 vs. control

group; ∗P < 0.05 vs. control group; #P < 0.05 vs. MCAO group;

##P < 0.01 vs. MCAO group.

studies have suggested that inhibiting glial activation attenuates

ischemic injury and neuronal death (Suk, 2004; Wang et al.,
2005). Like many other neurodegenerative disorders, the reactive

gliosis associated with ischemic stroke involves astrocytes (Kriz,
2006). Reactive gliosis can produce excess amounts of cytokines

as well as inflammatory products that exacerbate ischemic dam-
age (Walker and Rosenberg, 2009). In the present study, TP and
DAHP suppressed the increasing number of GFAP-positive cells

in the peripheral area and central ischemic core of the ischemic

infarct. There are papers reported that NO derived from iNOS

contributes to neuronal injury after cerebral ischemia reperfu-
sion, during which NO interacts with superoxide anion (O2) to

form ONOO and causes neuronal death (Oliver et al., 1990). An
increase in iNOS protein expression has been proved after cere-

bral ischemia in this paper, which is consistent with that in vivo
DAHP can reduce cerebral infarction via inhibiting iNOS activity
and ONOO level in transient focal ischemia, and iNOS inhibitor

can protect against neuronal injury in ischemic stroke (Kolinsky
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FIGURE 8 | 2, 4-diamino-6-hydroxypyrimidine and TP treatment

attenuated the increasing expressions of pERK1/ERK1 and

pERK2/ERK2. (A) The expressions of pERK1/ERK1 and pERK2/ERK2

were increased in MCAO group compared to control group. DAHP and

TP treatment significantly attenuated the increasing expressions of

pERK1/ERK1 (B) and pERK2/ERK2 (C). ∗∗P < 0.01 vs. control group;
∗P < 0.05 vs. control group; #P < 0.05 vs. MCAO group;

##P < 0.01 vs. MCAO group.

and Gross, 2004; Kidd et al., 2005). In contrast to DAHP, TP
plays a more positive role in decreasing iNOS activity. These

results indicate that the neuroprotective effects of TP and DAHP
may be mediated by effectively preventing against infarct expan-

sion through secondary injury caused by activated astrocytes and
iNOS-induced oxidative stress in focal cerebral ischemia.

Neural cell death resulting from cerebral ischemia involves
both the necrotic and apoptotic mechanisms. Extracellular sig-

nals often result in simultaneous activation of Akt pathway,
and many reports suggest a survival role of Akt signal pathway

through suppression of apoptosis (Xue et al., 2000; Li et al., 2003).
There have been evidenced that Akt indirectly activates NF-κB

transactivation by dissociation of phosphorylated Iκ-B kinase,
resulting in transcription of pro-survival genes like B-cell lym-

phomaextra large (Bcl-xL) and trophic factors (Jeon et al., 2012).
The expression of pro-survival factors such as Bcl-2 and Akt
decreased after ischemic injury but increased in TP-treated and

DAHP-treated groups. This shows that apoptosis plays a vital role
in stroke and also the anti-apoptosis effects of TP and DAHP.

Activation of apoptotic pathways is always concomitant with
the survival signaling pathways. PERK1/ERK1, pERK2/ERK2,

pAkt/Akt, and mTOR expressions suggest that ERK1/2 and
PI3K/Akt/mTOR signal pathways play essentially an independent

role, especially after ischemic insults. The PI3K/Akt signaling
pathway plays a key role in many cellular processes, including cell

survival, coagulation, and inflammation responses. Furthermore,
activation of the PI3K/Akt pathway in cerebellar granule neurons

has been proposed to prevent neuronal cell death by suppressing

JNK activation (Shimoke et al., 1999). In the present study, we
demonstrated that pAkt andmTOR significantly decreased in rats

after ischemic injury, but increase markedly in TP-treated and
DAHP-treated groups. MTOR promotes angiogenesis, neuronal

regeneration, and synaptic plasticity. It can further reduce neu-
ronal apoptosis, and remove neurotoxic substances, which are

all closely associated with the repair and survival mechanisms of
ischemic brain injury (Chen et al., 2012a). And there has been

demonstrated that mTOR inhibition by rapamycin increased
neuronal apoptosis in the early phase of neonatal HI brain injury,

leading to an increase in cleaved caspase-3 (Chen et al., 2012b).
These results thus indicate that PI3K/Akt/mTOR pathways may

play an important role in the extrinsic apoptosis pathway reg-
ulating neurotoxic substances and inflammation responses in

ischemic brain injury, consequently resulting in increased neu-
ronal survival. Recently, it was reported that ERK1/2 activation
that was accompanied by a gradual decrease in Akt activity and

apoptosis and inhibition of ERK1/2 prevented the decline in Akt
activity and resulted in cell survival (Sinha et al., 2004). These

results may suggest that ERK1/2 activation in response to sur-
vival factor deprivation contributed to cell death via suppressing

the PI3K/Akt/mTOR pathway. Several studies have revealed that
the intrinsic pathway is characterized by mitochondrial outer

membrane permeabilization, cytochrome c release, caspase-3
activation, DNA fragmentation, and death-inducible signaling

complex formation, and these events have been shown to be
associated with ERK activation (Wang et al., 2000; Jo et al.,

2005; Kim et al., 2005). In the present study, caspase-3, cleaved
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caspase-3, ERK1, and ERK2 expression increasedmarkedly under

chemic stress, while decreased in groups treated with TP and
DAHP. Pre-treatments of animals with TP and DAHP prior to

ischemic injury contributed to the decreased ERK1/2 staining,
which may prevent primary neuronal damage. Further investi-

gations are required to clarify more details of these molecular
balances with other signaling systems that lead cells to survival or

death.
In summary, many signal transduction systems are reg-

ulated following the onset of focal cerebral ischemia, some
of which may be protective and some may stimulate subse-

quent cellular degeneration. Activation of the PI3K/Akt/mTOR
pathway plays an essential mechanism for maintaining cellu-

lar homeostasis when responding to focal cerebral ischemia.
Activation of the ERK1/2 pathway has been implicated in

the mechanisms underlying cerebral ischemia, i.e., decreased
lesion volumes have been demonstrated following the admin-
istration of specific inhibitors (Irving et al., 2000; Irving

and Bamford, 2002). However, data presented here clearly
indicates that the ERK1/2 pathway is activated in a dif-

ferent spatial location within the ischemic brain. Both
pre-treatments of TP and DAHP clearly demonstrated their

protective effects in focal cerebral ischemia through activa-
tion of PI3K/Akt/mTOR pathway and inactivation of ERK1/2

pathway. DAHP may provide neuroprotection through inhibit-
ing iNOS-induced oxidative stress within neurons and glia,

thus directly protecting these cells. In contrast, TP may exert

protection of all cellular elements via the inhibition of the
brains inflammatory response to injury and immune sup-

pression. These findings provide a mechanistic basis for new
therapeutic strategies aiming to regulate PI3K/Akt/mTOR

and ERK1/2 pathways in order to prevent against injuries
induced by focal cerebral ischemia. And TP and DAHP may

be considered to be potential therapies for focal cerebral
ischemia.
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