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INTRODUCTION

Posttranslational (epigenetic) modifications of his-
tones have profound effects on gene expression by 
modifying the accessibility of genes to the transcrip-
tional machinery. One type of modification is a coor-
dinated process carried out by two classes of enzyme 
– histone acetyltransferases (HATs) and histone 
deacetylases (HDACs). HDACs regulate gene expres-
sion by removing the acetyl groups of select lysine 
residues in the conserved tails of core histone proteins, 
to shift them to a positive charge, and enhancing the 
interaction with the negatively charged DNA. This is a 
reversible reaction, in balance with HATs adding 
acetyl groups.  In general, increased histone acetyla-
tion provides a more open chromatin structure corre-
lating with gene transcriptional activity, whereas 
deacetylation (decreased acetylation) is associated 
with repression of gene transcription (Strahl and Allis 
2000, Saha and Pahan 2006, Hildman et al. 2007). 
Therefore, the balance of these two enzymes is a key 
element in the regulation of the expression of specific 

sets of genes. Disruption of the balance between HAT 
and HDAC activities leads to disequilibrium in acety-
lation which may have critical impact on cellular func-
tioning (Struhl 1998). 

A significant amount of data highlights the cell-
specific aspect of HDAC inhibition, which seems to 
impair DNA repair in cancerous cells (Minucci and 
Pelicci 2006,  Duvic and Vu 2007,  Lawless et al. 2009, 
Kristensen et al. 2009), and displays strong protective 
properties in a broad range of neuropathologies. In 
agreement with this, treatment with various HDAC 
inhibitors has emerged as attractive therapeutic 
approach in in vitro and in vivo models of neurotoxicity 
and neurodegeneration as well as in acute brain isch-
emia (Ferrante et al. 2003, Kazantsev and Thompson 
2008, Chuang et al. 2009, Langley et al. 2009, Du and 
Jiao 2011, Gräff et al. 2012).  HDACi could possibly 
correct aberrant acetylation patterns and ameliorate 
disease state. In this review we discuss some recent 
data supporting the role for histone deacetylase inhibi-
tors as treatment options for brain ischemia. 

HISTONE DEACETYLASES

Histone deacetylases (HDACs) are evolutionary con-
servative enzymes involved in the epigenetic regula-
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tions of gene expression and protein functions.  To date, 
11 potential HDACs have been identified in mammali-
an cells and all of them are expressed in adult rodent 
brain. They are organized into four different subclasses 
(I-IV) based on function and DNA sequence similarity 
(Thiagalingam et al. 2003).  Generally speaking, class 
I HDACs display an extensive presence in nuclei. In 
addition to well-established nuclear localization, the 
expression of class I HDAC isoforms has also been 
observed in cytoplasmic domains (Baltan et al. 2011a). 
The class I HDACs (HDAC 1, 2, 3 and 8) are constitu-
tively nuclear proteins, whereas class II enzymes, fur-
ther divided into class IIa and IIb, comprised of  
HDACs 4, 5, 6, 7, 9, and 10,  can shuttle between the 
nucleus and cytoplasm  (Khochbin et al. 2001, Wang 
and Yang 2001, Xu et al. 2007).  Class IV, currently 
consist of one member, HDAC11, with little known of 
its function. The enzymes belonging to class I, II and 
III are categorized as “zinc-dependent”. The sirtuins, 
referred to as class III HDACs (Baur et al. 2012) are 
structurally and enzymatically distinct NAD-dependent 
enzymes. Sirtuins have been discussed in recent 
reviews (Baur et al. 2012, Houtkooper et al. 2012).

Although deacetylation of histones and compaction 
of chromatin is a common mechanism of Class I and II 
HDACs, some individual isoforms can also target 
many other non-histone protein, including transcrip-
tion factors, nuclear hormone receptors, molecular 
chaperons, inflammation mediators, signal transduc-
tion mediators and cytoskeletal elements (Glozak et al. 
2005, Spange et al. 2009, Ocker 2010). 

Biological functions of individual HDACs have 
been difficult to define due to the lack of isoform-
specific inhibitors. This obstacle is related to the high 
sequence homology within the catalytically active sites 
of HDACs (Bieliauskas and Pflum 2008).  Nevertheless, 
the use of non-specific pharmacological inhibitors 
indicate the implication of histone deacetylases in the 
whole array of biological processes including, among 
others, regulation of developmental program, neuro-
genesis,  apoptosis, synaptogenesis, neurite outgrowth 
(Bolger and Yao 2005,  Minucci and Pelicci 2006, 
Akhtar et al. 2009,  Brunmeir et al. 2009, Chuang et al. 
2009, Liu et al. 2012a).

HISTONE DEACETYLASE INHIBITORS

Histone deacetylase inhibitors (HDACi) are a het-
erogeneous group of agents that inhibit HDACs and 

promote posttranslational acetylation of lysine resi-
dues within nuclear and cytoplasmic proteins, which 
may alter their activity and function. In particular, 
HDACs inhibition can have a profound effect on the 
acetylation status of histone proteins within chroma-
tin, resulting in the augmented expression of genes 
relevant to protection from an ischemic insult. However, 
inhibiting deacetylation not only affects chromatin 
structure. HDACis equally promote the acetylation of 
non-histone proteins which can determine the interac-
tions, localization and stability of these proteins 
(Glozak et al. 2005).

All HDAC inhibitors function by chelating the zinc 
ion at the deacetylase active site.  Structurally, HDAC 
inhibitors can be grouped into diverse classes: 
hydroxamic acid dervatives, aliphatic acids, benz-
amides, electrophilic ketanes, cyclic peptides, and a 
few substances not assignable to these groups (Miller 
et al. 2003, Langley et al. 2005, Marks and Breslow 
2007, Xu et al. 2007, Murphy et al. 2014). These inhib-
itors exhibit some HDAC isoform selectivity. For 
example, selective inhibitors have been developed for 
HDAC6, however, in many cases these compounds 
exhibit a high degree of lipophilicity and are difficult 
to synthesize, rendering them more useful as tools for 
research (Dallavalle et al. 2012). 

Classical, non-selective HDACis, such as the 
hydroxamic acid-based suberoylanilide hydroxamic 
acid (SAHA, vorinostat) and trichostatin A (TSA), a 
fungal antibiotic, inhibit most of class I, II and IV 
HDACs (Yoshida and Horinouchi 1999). The benz-
amide MS-275 and also a small chain fatty acid – val-
proic acid (VPA), have a narrower range of target. VPA 
inhibits selectively class I HDACs (Göttlicher et al. 
2001, Phiel et al. 2001) and to a lesser extent class II, 
but not HDAC6 or 10 (Gurvich et al. 2004), while 
MS-275 are selective towards only a subset of class I 
HDACs (Khan et al. 2008, Murphy et al. 2014). 

Other fatty acid derivatives, sodium butyrate (SB) 
and 4-phenyl butyrate (4PB) inhibit class I and II his-
tone deacetalases. However, isoform-specific inhibi-
tion of HDACs still remains a challenging task (Khan 
et al. 2008, Thomas 2009).

 It is very likely that the non-specificity of deacety-
lase inhibitors is responsible for the opposing effect 
noted in distinct type of cells. As is becoming appar-
ent, HDACs inhibition appears to be mainly protective 
for neurons, and yet, deadly to cancerous cells. 
Similarly, the different effect of HDACi is also observed 
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in cells that contribute to inflammatory pathways, 
where treatment results in pro- or anti-inflammatory 
stimulation (Halili et al. 2009). One of the explanations 
of such discrepancy involves the particular function of 
individual HDAC isoforms in activation of different 
transcription factors and then expression of different 
sets of genes. For instance, NFκB which is a target of 
HDACs, can trigger transcription survival as well as 
apoptotic gene products (Graham and Gibson 2005). It 
these circumstances only the synthesis of isoform spe-
cific inhibitors  will make possible to decipher the 
effects of HDAC inhibition on gene transcription not 
only via increased histone acetylation  but also on 
acetylation of non-histone proteins (Bieliauskas and 
Pflum 2008, Thomas 2009). 

HDACi-INDUCED NEUROPROTECTION  

Treatment with various HDAC inhibitors (HDACi) 
has emerged as an attractive therapeutic approach for 
acute injury and neurodegeneration in the last decade 
(Langley et al. 2008, 2009, Haberland et al. 2009, Uo 
et al. 2009, Selvi et al. 2010). The attractiveness of 
these agents increased by the finding that HDAC 
inhibitors can also enhance neuronal plasticity and 
memory and thereby may contribute to improved func-
tional recovery (Hockly et al. 2003, Fischer et al. 2007, 
Vecsey et al. 2007). These properties bring about 
increased interest to use them as emerging tools for 
therapeutic interventions in the context of post-acute 
stroke.  Since then, many HDACi have been tested in 
experimental stroke models. One of the first tested 
molecule was valproic acid (VPA) (Ren et al. 2004). It 
is worthy to note that VPA for the last 40 years has 
been commonly employed as both an antiepileptic and 
mood stabilizer (Emrich et al. 1980, Gurvich and 
Klein 2002). The efficacy of VPA in diverse form of 
epilepsy and bipolar disorders, as well as neuropathic 
pain (Covington 1998) suggests that VPA acts through 
multiple central nervous system targets. It occurred 
that in addition to the mention above functions, VPA 
administered after induction of focal ischemia resulted 
in a significant reduction of infarct volume and neuro-
logical deficit scores caused by middle cerebral artery 
occlusion (MCAO). The mechanism of neuroprotec-
tion implicated thus far include the elevation of histone 
3 (H3) acetylation, increased expression of the pro-
survival heat-shock protein HSP-70 and diminished 
activation of pro-death caspase 3 in injured brain 

hemisphere. Of note, earlier study in vitro also clearly 
demonstrated that VPA can promote neuronal survival 
in culture subjected to glutamate-induced neurotoxic-
ity (Hashimoto et al. 2002) or to oxygen-glucose depri-
vation injury (Reckling 2003).

During the last 10 years the considerable research 
activity has been focused on potential roles for a num-
ber of zinc-dependent HDAC inhibitors (such as VPA, 
TSA, SAHA, SB) used in different models of brain 
ischemia. The majority of studies employing focal 
ischemia, including transient (Ren et al. 2004, Yildrim 
et al. 2008, Wang et al. 2012) or permanent (Faraco et 
al. 2006, Kim et al. 2007, 2009, Langley et al. 2008, 
Liu et al. 2012b, Wang et al. 2012, Liesz et al. 2013) 
middle cerebral artery occlusion  (MCAO).  

Although permanent MCAO produces a more severe 
and rapid brain infarction, the basic effects of HDACi 
treatment presented by reduced brain infarction, sup-
pression neuroinflammation in the ischemic region, 
and amelioration of neurological deficits do not depends 
on the severity of brain pathology. HDACi also attenu-
ate MCAO-induced disruption of brain-blood barrier 
and decrease edema, at least partly by inhibiting NfκB 
activation as well MMP9 expression and activity 
(Wang et al. 2011). In addition, administration of 
HDAC inhibitors occurred to be effective whether 
given pre- or post-injury. Nevertheless, the highest 
beneficial effects were most evident when VPA or SB 
was administered at least 3 h after the ischemic onset. 
This time window, together with the long-lasting neu-
rological improvement suggest that HDAC inhibition 
might have utility in treating acute stroke. 

We have found only one published report describing 
the effect of HDAC inhibitor (VPA) in the experimen-
tal intracerebral haemorrhage (Sinn et al. 2007). The 
obtained results show suppression of hematoma expan-
sion during the acute phase, probably by decreased 
levels of endogenous proteolytic enzymes – tPA and 
MMP9. The notable reduction of the hematoma which 
is an important factor of neurological deterioration 
(Brott et al. 1997) leads probably to the observed 
behavioral improvement. 

All these findings show that targeting global HDAC 
activity is sufficient to protect neurons from ischemia-
induced death (Drummond et al. 2005, Wang et al. 
2012). In addition, relevant studies show that HDACi 
may induce sprouting of dendrites, an increase number 
of synapses and reinstate access to long term memo-
ries (Fischer et al. 2007).
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It is clear that in addition to the damaging effect of 
ischemia in grey matter, an important component of 
stroke pathology is white matter injury. Compared to 
our understanding of the mechanism of ischemia-in-
duced neuronal death and protection in grey matter, 
white matter pathophysiology remains relatively elu-
sive, as does the development of potential protective 
agents for oligodendrocyte damage. Injury to white 
matter and simultaneous loss of oligodendrocytes is a 
key to the impaired brain function associated with a 
variety of pathological conditions, including stroke. 
Thus, it is logical to state that the efficient therapeutic 
compound should preserve both, grey and white mat-
ter.  Recent in vitro and in vivo studies show that 
administration of HDACi (such as VPA, SB, TSA, 
SAHA and MS-375) after ischemic insult promotes 
functional recovery of axons, reduces loss of oligoden-
drocytes and preserves white matter architecture 
(Baltan et al. 2011b, 2013, Liu et al. 2012b, Kim and 
Chuang 2014, Murphy et al. 2014).  This protective 
effects correlate with reduced excitotoxicity, mainte-
nance of ATP, preservation of axonal mitochondria 
and oligodendrocytes during OGD deprivation in a 
pure white matter tract of optic nerve (Baltan et al. 
2011b, 2013). 

POTENTIAL MECHANISM OF 
PROTECTION

Potential explanation for the beneficial effects of 
HDACs inhibition following brain ischemia are multi-
fold and due to the published results influence diverse 
array of targets to maintain neuronal function and sur-
vival and preserve white matter in response to injury. 
One of the well-described modes of protective action 
of HDACi after ischemia is associated with the reduc-
tion of neuroinflammation. It is increasingly recog-
nized that cerebral inflammation mediated by activat-
ed microglia and infiltrating leukocytes, including 
monocytes/macrophages, plays a key role in focal 
ischemia-induced neurodegeneration by releasing 
proinflammatory factors (Zheng and Yenari 2004). In 
support of the crucial role of neuroinflammation in the 
white matter injury is that macrophages/microglia are 
located in the damaged axonal bundles after ischemic 
injury (Moxon-Emre and Schlichter 2010). It is postu-
lated that HDACs inhibitor-mediated suppression of 
astrocytic and microglial activation, cytokine produc-
tion and down regulating pro-inflammatory factors, is 

likely to be important mechanism in decrease inflam-
mation and secondary damage after stroke (Kim et al. 
2007, Xu et al. 2007).  An important mechanism of 
cerebroprotective effect induced by  HDACi is the 
increase in interleukin-10 production, which restricted 
postischemic cerebral inflammatory gene up-regula-
tion (Liesz et al. 2013). In addition, a promising thera-
peutic action of HDAC inhibitors may be also mediated 
by modifying the activity of other transcription factors 
such as erythroid 2-related factor. Nrf2 may represent 
one critical example of survival-promoting transcrip-
tion factor (Martin-Montalvo et al. 2011). Activation of 
Nrf2 pathway has been shown to increase the resis-
tance to oxidative stress and metabolic insult in cul-
ture, and to ischemic stroke in vivo (Son et al. 2010). 

In general, acetylation of histone proteins with gene 
promoters and regulatory region, as well as transcrip-
tion factors, can increase the expression of multiple 
genes which protein products contribute to neuropro-
tection, plasticity and memory (Fig. 1). 

A significant amount of data show that the adminis-
tration  of HDACi  after stroke was correlated with up-
regulation of heat-shock protein, HSP70, a probable 
viable target for neuroprotection (Ren et al. 2004, Faraco 
et al. 2006, Kim et al. 2007), in addition to being a 
molecular chaperone assisting in proper protein folding 
(Rajdev et al. 2000, Hoehn et al. 2001). Importantly, 
VPA-mediated neuroprotection against glutamate-in-
duced cell death was lost if HSP70 induction was 
blocked.  Anti-apoptotic effect of HSP70 may involve 
multiple mechanism, such as inhibition of cytochrom c 
dependent activation of death-promoting caspase 3 and 
its downstream effectors, suppression the activity of 
apoptosis inducing factor (AIF) (Pandey et al. 2000, 
Ravagnan et al. 2001), enhanced expression  of anti-
apoptotic Bcl2 protein and suppression microglia/mono-
cyte activation following experimental stroke (Yenari et 
al. 2005). Furthermore, inhibitors of HDACs may com-
pensate MCAO-induced deficiency of pro-survival 
phospho-Akt and phospho-ERK in the ischemic hemi-
sphere and raise significantly the level of brain-derived 
neurotrophic factor (BDNF) and glial-derived neu-
rotrophic factor (GDNF) expression.  Of  note, increased 
expression of neurotrophins by HDACi treatment were 
found to be involved  in the postischemic neuroprotec-
tion and neuronal restorative effects (Fukumoto et al. 
2001, Chen et al. 2006, Hasan et al. 2013). Another target 
regulated positively by HDACi after ischemia is gelso-
lin, a protein involved in actin filament organization and 
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by this route contributed to neuroprotection from isch-
emic injury (Yidrim et al. 2008).  

Inhibition of HDACs enhances resistance to death of 
neurons not only by positive regulation of pro-survival 
agents but also by blocking the action of transcription 
factors that regulate apoptosis. The tumor suppressor, 
p53, has been implicated as a key regulator of apoptosis 
in acute and chronic neurologic insults (Morrison et al. 
2003). In line with this, several studies reported down-
regulation of p53 in injured ischemic hemisphere. In 
addition, inhibitors of class I/II HDACs protected cul-
tured cortical neurons from p53-dependent cell death by 
suppression of p53-dependent expression of PUMA, a 
critical signaling intermediate linking p53 to Bax activa-
tion. Thereby, HDAC inhibitors block Bax-dependent 
cell death (Uo et al. 2009, Brochier et al. 2013). However, 
MS 275, in contrast to other HDAC inhibitors, does not 
directly affect p53 acetylation, or its stability and activity. 
If the target for MS-275 is not p53, the drug could modu-

late neuronal survival by modifying the activity of other 
transcription factors (Murphy et al. 2014). 

In addition to transcription events, non-transcriptional 
events may also play a role in protective action of HDACi. 
For example, the selective inhibition of HDAC6 increases 
alfa-tubulin acetylation which may underlie neurite out-
growth without altering H4 acetylation and increase the 
vesicular transport. It is suggested that this effect might 
be independent on transcription (Riveccio et al. 2009). 

Taken altogether the above findings allow us to state 
that irrespective of the precise mechanisms involved, 
HDACi have potential in preventing the consequences 
of acute ischemic injury.

HDACI-INDUCED REGENERATION

It is clear that successful stroke treatment also need 
to promote plasticity and repair mechanism(s) in the 
post-acute phase. The reduced infarct volume and 

Fig.1. The cellular effects of HDACs inhibitors after stroke.  Inhibition of HDAC activity has transcriptional and non-tran-
scriptional effects.  Acetylation of histone proteins within gene promoters as well as transcriptional factors can increase the 
expression of multiple genes which contribute to neuroprotection, plasticity and learning /memory.  Acetylation of transcrip-
tion factors may also decrease DNA binding and gene expression of some pro-death genes (e.g. p-53) and reduce apoptotic 
processes.  Non-transcriptional effects of HDAC inhibitors also play critical role in neuroprotection and repair after stroke; 
hyperacetylation and stabilization of microtubule proteins increases vesicular transport and release of BDNF.



388  M. Ziemka-Nalecz and T. Zalewska

improved neurological performance may suggest the 
replacement of new neurons which contributes to the 
self-repair system of cerebral ischemic injury. A nota-
ble previous finding is that experimental stroke 
increased cell proliferation and neurogenesis in neuro-
genic areas – subventricular zone  (SVZ) and dentate 
gyrus (DG) as well as in non-neurogenic regions 
(striatum and cerebral cortex)  (Jin et al. 2001, 
Arvidsson et al. 2002, Parent et al. 2002, Zhang et al. 
2004, Yamashita et al. 2006, Ziemka-Nałęcz and 
Zalewska 2012). Subsequently, a number of study 
reported that VPA and TSA induced neurite outgrowth 
and neurogenesis in vitro without an ischemic insult 
(Hao et al. 2004, Di Daniel et al. 2005, Yamauchi et al. 
2007). Additionally, it was found that neural progeni-
tor cells cultured in the presence of histone deacetylase 
inhibitors – VPA, TSA or SB, differentiated into neu-
rons (Liu et al. 2012a), presumably by inducing the 
neurogenic transcription factor Neuro D (Hsieh et al. 
2004). Interesting recent data indicate that VPA pro-
motes neural differentiation via the increased expres-
sion of pro-neural genes Ngn1, Math1, and P15 associ-
ated with the increased acetylation of H4 (Yu et al. 
2009).   

Although there have been many in vivo and in vitro 
studies on the role of HDAC inhibitors as neuroprotec-
tive agents, very little work has been done to define 
their involvement in postischemic neuronal regenera-
tion.  First evidence showing stimulation of neurogen-
esis in the ischemic brain after administration of his-
tone deacetylase inhibitors has been provided by Kim 
and coworkers (2009). Consistently, Liu and others 
(2012b) found that treatment with VPA enhances the 
number of neuroblasts in the SVZ as well as in isch-
emic boundary zone. It was also discovered that 
administration of SB or TSA, expanded the population 
of proliferating cells in the injured brain areas and 
restored the loss of neurons. The authors indicate that 
generation of new cells depends on the activation of 
BDNF-TrkB signaling and then activation of cAMP-
response element binding protein (CREB). CREB was 
identified by Chiaramello and colleagues (2007) as a 
part of molecular mechanism underlying BDNF-TrkB 
induced migration, differentiation and survival of SVZ 
neuroblasts. Moreover, its phosphorylated form 
appeared to be a prominent transcription factor involved 
in the expression of numerous neuroprotective, neu-
rotrophic, and anti-inflammatory protein molecules 
(Chiu et al. 2013). The presented data are consistent 

with findings demonstrating that HDACs inhibition by 
VPA and TSA leads to neuronal regeneration in cul-
tures subjected to oxygen and glucose deprivation 
(OGD) and reoxygenation. 

HDACi (TSA and SB) not only counteract isch-
emia-induced loss of oligodendrocytes in the injured 
hemisphere but also promote differentiation of oligo-
dendroglial progenitors into mature cells. This pro-
cess was associated with elevation of myelinated 
axonal density in the peri-infarct region (Liu et al. 
2012b, Kim and Chuang 2014). The HDAC isoforms 
involved in the protective effects on oligodendro-
cytes after ischemic stroke remain unidentified. 
Paradoxically, it was reported that HDAC1 and 
HDAC2 activity are required to regulate oligoden-
drocyte differentiation (Ye et al. 2009), and that 
HDAC1 and HDA2 functions are critical for myelina-
tion and survival of Schwann cells in peripheral ner-
vous system (Jacob et al. 2011). These results do not 
necessarily negate the importance of HDAC1 and 
HDAC2 inhibition in mediating the effects reported 
above, because of the different experimental condi-
tions employed ischemic stroke versus normal, non-
pathological conditions of the cited study. Future 
investigations exploring the role of specific isoforms 
involved in the pathophysiology of white matter 
injury and the beneficial effect of HDAC inhibitors 
will provide crucial information for therapeutic 
interventions. Although it is not at all clear if the 
notable amplifications of neurogenesis post-stroke 
contributes to subsequent restoration of function, the 
ability of HDACi to promote migration and neuronal 
differentiation could be exploited therapeutically 
(Kahle and Bix 2013).

Concurrently, VPA treatment enhanced postisch-
emic angiogenesis by increasing microvessel density, 
facilitating endothelial cell proliferation, and up-regu-
lating rate of cerebral blood flow (rCBF) in the ipsilat-
eral cortex. This may contribute to the long-term 
functional outcome. These events may be associated 
with up-regulation of hypoxia inducible factor 1 alfa 
(HIF1alfa) and its downstream proangiogenic vascular 
endothelial growth factor (VEGF) as well as extracel-
lular matrix metalloproteinases MMP2/9 (Sun et al. 
2003, Shimotake et al. 2010, Wang et al. 2012). In addi-
tion, newly-generated vessels provide additional neu-
rotrophic support to concurrent neurogenesis and 
synaptogenesis, and this ultimately may lead to func-
tional recovery. 
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EFFECT OF HDACI IN NEONATAL 
HYPOXIA-ISCHEMIA

Despite ever growing information highlighting the 
beneficial role of HDACi after stroke in adult brains 
only a few available reports were addressed upon their 
effect in injured immature brains (Kabakus et al. 2005, 
Fleiss et al. 2012, George et al. 2013). These experi-
ments were performed with the use of different exper-
imental models, thus it is not possible to make the 
explicit conclusion related to the effect of HDACi. The 
data reported by Kabakus and coauthors (2005) showed 
only the tendency  towards  regression of  cerebral 
infarct after VPA administration to 7 day-old  pups 
subjected to hypoxia-ischemia (H-I). Nevertheless, the 
preliminary study performed by our group on the same 
model demonstrate beneficial effects SB expressed by 
reduced volume of brain lesion. Furthermore, SB treat-
ment enhanced significantly the number of neuroblasts 
and progenitors of oligodendrocytes (Ziemka-Nalecz 
et al., unpublished data presented on 9th FENS Forum 
of Neuroscience). 

Fleiss and colleagues (2012) examined the neuro-
pathological and functional effects of the TSA in a 
model of neonatal lipopolysacharide-sensitized hypox-
ic-ischemic brain injury (LPS/HI) in mice. One strik-
ing feature of their results is that TSA diminished grey 
and white matter damage only in females. The neuro-
protection was associated with increased acetylation of 
histone H4 and correlates with improved long-term 
learning.  Interestingly, the beneficial effect of TSA 
was not connected neither with caspase-3 activation 
nor up-regulation of heat shock protein HSP70 and 
gelsolin, implicated in the neuroprotection observed in 
adult animals. Moreover, none of the inflammatory 
mechanisms assessed that are known to mediate neu-
roprotection by HDACi in adults correlated with 
improved outcome in TSA-treated neonatal females. 
TSA did not result in decrease the total number of 
microglia cells or NFkB-mediated reductions in 
cytokine expressions. TSA either did not impair oligo-
dendrocyte maturation, which increases the possible 
clinical relevance of this strategy. Therefore it appears 
that TSA exerts neuroprotection via mechanism unique 
to neonates, yet unknown. This is consistent with the 
fact that many aspects of the evolving post-ischemic 
brain injury differ in the immature brain and thereby 
the efficacy of neuroprotectants can differ between 
adults and neonates (Cheng et al. 1997, Zhu et al. 

2005). It is also possible that LPS sensitization may 
antagonize TSA efficacy in this model.

George and coworkers (2013) investigated long-term 
treatment of VPA and TSA upon stroke-injured imma-
ture mice (12 days old), using permanent ligation of the 
carotid artery.  Presented data demonstrate that chron-
ic, two weeks HDACi treatment did not modify the 
severity of brain atrophy assessed two months after the 
insult.  In contrast to data reported by Fleiss and others 
(2012) the sex-related differences were not observed. 
Significant increase of neurogenesis in dentate gyrus 
with both TSA and VPA treatment were noted in the 
injured as well as uninjured animals but only at spe-
cific time point after administration of BrdU – marker 
of proliferation. It may mean that the high level of 
plasticity and neurogenesis cannot be up-regulated any 
further by manipulations with HDACi. In agreement 
with this statement, Foti and coauthors (2013) using 
neurosphere assays to determine neural stem cells 
(NSC) regulation by HDACi found that clinically used 
HDACi like VPA and TSA can perturb postnatal neu-
rogenesis. It supports generally accepted view that 
HDAC activity is essential for oligodendrocyte differ-
entiation in the developing rodent brain (Shen et al. 
2005, Lyssiotis et al. 2007, Ye et al. 2009). Therefore, 
blockage of HDAC activity by inhibitors or ablation of 
HDAC1 and HDAC2 genes during the early postnatal 
stage, when myelination forms, prevents oligodendro-
cyte differentiation and leads to hypomyelination 
(Romm et al. 2005, Lyssiotis et al. 2007, Shen and 
Casacia-Bonnefil 2008, Ye et al. 2009). However, the 
effect of HDACi on suppression of oligodendrocytes 
differentiation is transient and only takes place during 
the first postnatal week (Shen et al. 2005). In addition, 
a temporary defined treatment regimen avoids this 
toxic effect (Langley et al. 2008). 

The results obtained with HDAC inhibitors indicate 
that the functions of these agents in the nervous system 
injury are diverse and depend greatly on the develop-
mental stage. For example, there is evidence that 
HDAC2 is critical for adult neurogenesis, but not 
required for embryonic neurogenesis (Jawerka et al. 
2010). Which of HDAC among 11 members are targets 
for neuroprotection is unknown at present. Equally 
unknown is whether therapeutic efficacy can be 
obtained by targeting a single HDAC. In vitro studies 
showing that HDAC6-selective inhibition can protect 
against oxidative stress-induced neuronal death 
(Kozikowski et al. 2007) may provide some sugges-
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tions that targeting a single HDAC isoform may indeed 
be neuroprotective in stroke. However, it should be 
also noted that SB, inhibitor of the class I HDAC, 
which does not inhibit HDAC6, occurred to be protec-
tive in the same in vitro oxidative stress model 
(Langley et al. 2008). Most current HDACs inhibitors 
are broad-spectrum inhibitors, and their use does not 
take into account the possible stage-and context-spe-
cific expression of different HDACs.  Although con-
siderable progress has been made in elucidating the 
effects of HDACi in brain ischemia, this area are still 
in early stage of discovery.

CONCLUSIONS

Based on the combined findings it may be hypoth-
esized that HDACi provide a suitable option for brain 
in the clinical manifestations of stroke to facilitate suc-
cessful translation of experimental ischemia research 
to clinical trials.  However, considering the beneficial 
effects of HDACi in experimental stroke studies com-
monly use in rodents, it is worthy to underline that 
efficacy of drug in young, healthy, in majority male 
animals appears to be very poor predictor of clinical 
outcome. No studies assessed the neuroprotective 
effectiveness of HDAC inhibitors in “aged” animals, 
while the aged persons usually suffer from stroke. 

In addition, not all currently available HDAC inhib-
itors are well tolerated when administered chronically. 
For instance, TSA have basal toxicity and prolonged 
treatment at high doses induces neuronal death in vitro 
and in vivo, so compromising their neuroprotective 
effect (Boutillier et al. 2002, Jeong et al. 2003). Also 
the other HDAC inhibitor, valproic acid, despite that is 
well tolerated in children and adolescents may have 
detrimental effects on postnatal neural development, 
which have not been fully explored. This agent is a 
potent teratogen in both humans and mouse models 
(Gurvich and Klein 2002). The teratogenic activity is 
associated with neural tube closure defects (Nau et al. 
1991). It became clear that nontoxic analogues of these 
HDACi, targeting specific isoforms will help treat the 
injury of the nervous system. 

Conclusion: The neuroprotective and regenerative 
actions of histone deacetylase inhibitors indicate 
that they may be considered as therapeutic agents 
after brain ischemia. However, new, nontoxic ana-
logues targeting individual HDAC isoforms are still 
needed. 
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