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ABSTRACT: Lithium is a well-established therapeutic option for the
acute and long-term management of bipolar disorder and major
depression. More recently, based on findings from translational
research, lithium has also been regarded as a neuroprotective agent
and a candidate drug for disease-modification in certain neuro-
degenerative disorders, namely, Alzheimer’s disease (AD), amyotrophic
lateral sclerosis (ALS), and, more recently, Parkinson’s disease (PD).
The putative neuroprotective effects of lithium rely on the fact that it
modulates several homeostatic mechanisms involved in neurotrophic
response, autophagy, oxidative stress, inflammation, and mitochondrial
function. Such a wide range of intracellular responses may be secondary
to two key effects, that is, the inhibition of glycogen synthase kinase-3
beta (GSK-3β) and inositol monophosphatase (IMP) by lithium. In the
present review, we revisit the neurobiological properties of lithium in light of the available evidence of its neurotrophic and
neuroprotective properties, and discuss the rationale for its use in the treatment and prevention of neurodegenerative diseases.
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Lithium salts have long been used in psychiatry for the
treatment of severe mental disorders.1 Currently, the main

medical indications of lithium are for the acute and long-term
treatment of bipolar disorder (BD) and for the adjunctive
treatment of major depression, given its well-established mood
stabilizing properties.2 More recently, there has been a growing
body of evidence indicating that the neurobiological benefits of
lithium may go beyond mood stabilization. In experimental and
clinical models, lithium treatment has been associated with
neuroprotection, due to its effects on several mechanisms of
neuronal homeostasis involved in the activation of neurotrophic
responses, modulation of oxidative stress, inflammatory
cascades, up-regulation of mitochondrial function, and other
specific biological effects implicated in the pathogenesis of
neurodegenerative diseases such as Alzheimer’s disease (AD)
and amyotrophic lateral sclerosis (ALS).3 This article aims to
review the mechanisms by which lithium may exert its
neuroprotective effects, and how these mechanisms may help
delay the progression of neurobiological changes in mood and
neurocognitive disorders. Additionally, we address the potential
of lithium as a disease-modifying agent for certain neuro-
degenerative and dementing conditions.

■ NEUROBIOLOGICAL PROPERTIES OF LITHIUM

The pharmacological mechanisms of lithium are not completely
understood, but current evidence suggests the direct involve-

ment of classic pharmacological targets affecting neuro-
transmission and signal transduction. These include the
modulation of cell-surface receptors, the release of second-
messengers and downstream signaling molecules, and the
subsequent effect on the activity of important regulatory
systems, with an impact on the release of transcription factors
and gene expression.4 Monovalent lithium (Li+) competes with
bivalent magnesium (Mg2+) to the similar ionic radii of these
cations (0.60 and 0.65 Å respectively), rendering the ability of
lithium to bind to Mg2+substrate sites. Therefore, lithium can
inhibit a wide range of enzymes that depend on Mg2+ as a
cofactor.5,6 The competition between lithium and Mg2+ on
these substrate sites has a significant influence on the activity of
several enzymes and therefore the release of their metabolic
products; in particular, glycogen synthase kinase-3 beta (GSK-
3β), inositol monophosphatase (IMP), and Akt/β-arrestin2
(Akt) are important lithium targets. Therefore, the modification
of these intracellular pathways through enzymatic inhibition is
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relevant to the understanding of the pathogenesis of certain
neuropsychiatric and neurodegenerative disorders.
GSK-3 has two isoforms, alpha and beta, with distinct

patterns of distribution and homeostatic roles. GSK-3β is more
abundant in the brain, and is implicated in cytoskeletal
organization and remodeling.7 Conversely, cerebral GSK-3α is
involved in neurodevelopment8 and its inhibition by lithium has
also been associated with disease-modification in a transgenic
mouse model of AD.9 The inhibition of GSK-3β is one of the
most relevant mechanisms of action of lithium, and
substantiates its putative role as a candidate for a disease-
modifying drug in the treatment or prevention of AD.10,11

Lithium inhibits GSK-3β activity by two distinct and
interrelated mechanisms: directly by preventing the binding
of Mg2+ to the catalytic core of GSK-3β, and indirectly through
inducing the phosphorylation of the serine-9 residue of GSK-
3β, leading to conformational changes and inactivation, which is
required for enzymatic activity. Therefore, by the competitive
dislocation of Mg2+, lithium reversibly inhibits the enzyme.12,13

The indirect mechanism is followed by the activation of
intracellular kinases (e.g., Akt) or the inhibition of intracellular
phosphatases (e.g., PP2A) by lithium.14−16 Finally, lithium can
also reduce the availability of GSK-3β at the transcriptional
level, therefore reducing its protein expression as a con-
sequence of the inhibition of mRNA transcription.17

Another relevant mechanism of action of lithium is the
inhibition of inositol monophosphatase (IMP) and inositol
polyphosphate-1 (IPP). As with GSK-3β, lithium directly
inhibits IMP and IPP activity by the competitive displacement
of Mg2+ from the catalytic site of the enzyme.18 The inhibition
of IMP and IPP prevents the reuptake of inositol, leading to
depletion of intracellular levels and subsequent inhibition of the
phosphoinositol cycle. Another important consequence of IMP
inhibition is the suppression of the formation of its metabolic
product inositol triphosphate (IP3); IP3 is an intracellular
messenger implicated in the regulation of many intracellular
pathways relevant to neuropsychiatric disorders, including
autophagy, an important homeostatic mechanism based on
the degradation of cytoplasmic proteins and organelles.19 Sarkar
et al.20 found in mammalian cell cultures that lithium induced
autophagy as a downstream effect of the inhibition of IMP.
Lithium, in a dose-dependent manner, modulates autophagy

through both the GSK-3β and IMPase pathways, with opposite
effects. Lithium-induced IMPase inhibition at lower doses
(≈0.8 mM), up-regulating autophagy,20 while the inhibition of
GSK-3β by higher doses of lithium (≈2 mM) down-regulates
autophagy via activation of the inhibitory regulator mTOR.21,22

The overall ability of lithium to induce autophagy is due to the
prevailing inhibition of IMPase.20 Finally, lithium has been
shown to act on other homeostatic pathways as well, such as
extracellular signal-regulated kinase (ERK), PI3k/Akt, and
phospholipase C (PLC), which are proteins with further impact
on the regulation of autophagy.23,24

■ PRECLINICAL EVIDENCE OF THE
NEUROPROTECTIVE EFFECT OF LITHIUM

As stated above, lithium has specific properties that may
attenuate the effect of critical pathological changes that occur in
AD, namely, through the inhibition of the GSK-3β. In fact, this
is the cornerstone to support the “GSK hypothesis of AD”,25

according to which the inhibition of GSK-3β activity by lithium
is associated with the down-regulation of two central processes
in the pathogenesis of AD, namely, the reduction of the

hyperphosphorylation of microtubule-associated tau pro-
tein,26−28 and the induction of neuronal death via over-
production of the Aβ peptide.29−31 In transgenic mice
overexpressing GSK-3β and in other animal models of AD,
chronic lithium treatment significantly reduced tau phosphor-
ylation.32−34 Likewise, chronic lithium treatment reduced Aβ42
production by a direct modulation of APP processing and by
inhibition of GSK-3β activity.35,36 It is noteworthy that the
attenuation or reversal of AD-related neuropathology was
accompanied by a significant improvement in memory deficits
in these animal models.37−39

In addition to these disease-specific mechanisms, lithium may
also protect neurons against the neurotoxic effects of Aβ42 by
favoring other neurotrophic and/or neuroprotective re-
sponses.40,41 Chen and Chuang42 showed that lithium increases
the expression of p53 and Bcl-2, favoring neuronal survival.
Chen et al.43 showed the chronic administration of two
structurally dissimilar mood stabilizing agents, lithium and
valproate, increases Bcl-2 levels in the cortex, with beneficial
neuroprotective effects. Also, lithium significantly stimulates the
proliferation of progenitor cells in neuronal cell cultures,44,45

and increases the expression of antiapoptotic proteins (e.g., Bcl-
2).46−48 Recent evidence suggests that lithium treatment
enhances the mitochondrial respiratory rate, reduces oxidative
stress, protects DNA against damage from oxidative stress, and
modulates calcium influx in the mitochondria.49−54 Lithium
treatment also stimulates autophagic processes due to its
inhibition of IMP/IPP activity and reduction of IP3 formation,
in spite of GSK-3β inhibition.55,56

Another important neuroprotective effect of lithium is the
stimulation of synthesis and release of neurotrophic factors, in
particular brain-derived neurotrophic factor (BDNF) and
vascular endothelial growth factor (VEGF). Increased avail-
ability of these factors protects neurons against neurotoxic
insults, stimulates hippocampal neurogenesis, increases synaptic
plasticity and long-term potentiation (LTP), and positively
regulates cell survival.3 Finally, lithium can regulate inflamma-
tory processes by lessening the pro-inflammatory response.
Lithium has also been shown to reduce the production of
interleukin-1 beta (IL-1β) and tumor necrosis factor alpha
(TNF-α), inducers of lipopolysaccharide (LPS)-induced
inflammation in glial cells,57 and to reduce microglial activation
secondary to ischemic insult in mice.58 Chronic lithium
treatment can attenuate arachidonic acid production, an
essential feature of the innate inflammatory response.59

Therefore, the modulation of inflammatory processes by
lithium is relevant in light of the prominent role of
inflammation in neurodegenerative and mood disorders.60

Complex interactions between genetic and environmental
factors are believed to play a critical role in the pathophysiology
of neuropsychiatric disorders. The epigenetic status is affected
by environmental stimuli and insults, leading to DNA
methylation and histone modifications. Therefore, a better
understanding of the epigenetic mechanisms affecting neuronal
cells will provide important insights into the pathophysiology of
cognitive and mood disorders and clues to new treatment
approaches.61,62 Epigenetic studies conducted in the post-
mortem brains of patients with major depression found
evidence of hypermethylation of several genes involved in
neuronal response, such as BDNF, DBN1, SLC6A4, and
PRIMA1 in the prefrontal cortex.63−65 Studies further provided
evidence implicating of GSK-3β in the regulation of DNA
methylation in mouse embryonic stem cells (ESCs).66 The de
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novo DNA methyltransferase gene (Dnmt3a2) is down-
regulated in GSK-3β double knockout ESCs, decreasing DNA
methylation. The inhibition of GSK-3β activity by lithium
mimics the effects of reducing DNA methylation in both wild-
type ESCs and wild-type neural stem cells. In addition, the
inactivation of GSK-3β via components of the insulin signaling
pathway also results in reduced DNA methylation.67

■ CLINICAL AND IMAGING FINDINGS SUPPORTING
THE NEUROTROPHIC AND NEUROPROTECTIVE
PROPERTIES OF LITHIUM IN BIPOLAR DISORDER

In addition to the cumulative evidence derived from
experimental models, clinical and neuroimaging studies with
patients with bipolar and other mood disorders further
corroborate the neuroprotective properties of lithium. Most
of the current clinical evidence derives from studies using
subjects with BD. Large case registry studies found that BD
patients continuously treated with lithium had a significantly
lower risk of dementia, compared to those on other mood
stabilizers or without treatment.68,69 In a retrospective study,
Terao and colleagues70 found that patients on chronic lithium
treatment had lower rates of cognitive decline as measured by
the Mini-Mental State Examination (MMSE). In a cross-
sectional study from our group, we found that older bipolar
patients on chronic lithium treatment had a significantly lower
incidence of AD (3%) compared to those with no or minimal
lifetime lithium exposure (19%).71 In this study, the incidence
rates of AD in the group treated with lithium was comparable
to those observed in the general population,72 suggesting that
chronic lithium treatment can be protective against the
development of dementia (particularly AD) in the long term
outcome of BD.
Acute and chronic lithium treatment of BD patients has been

associated with the up-regulation of certain biological cascades
related to neuroprotection. Lithium treatment significantly
increased plasma concentrations of BDNF, with influence on
response to treatment.73,74 In a clinical trial with patients in
acute mania, a significant increase in plasma concentrations of
BDNF was observed after 4 weeks of treatment with lithium;
however, increased BDNF levels were not associated with
treatment response.75 In addition, maintenance treatment with
lithium was associated with persistently higher levels of BDNF
and reduced risk of relapse after a major affective episode.76

Lithium can also modulate other important biological
processes related to inflammation and oxidative stress. Lithium
treatment of acute mania episodes was associated with a
reduction of pro-oxidative stress markers, namely TBARS.77 In
addition, lithium treatment increased antioxidative, and reduced
pro-oxidative, markers in healthy subjects.78 The reduction in
pro-oxidative stress markers was associated with significant
clinical improvement in depressive symptoms after lithium
treatment.79 Finally, a recent study demonstrated that patients
with BD who had a good response to lithium also had a
significant reduction in plasma concentrations of TNF-α; in
contrast, patients who did not respond well to lithium showed a
significant increase in TNF-α levels.80 Lithium can restore the
balance between the production of IL-1β and IL-6 in
monocytes of bipolar patients in vitro; this effect is similar to
those observed in vivo.81

Neuroimaging studies have provided further support for the
neuroprotective effects of lithium. Structural neuroimaging
studies showed that short and long-term lithium treatment was
associated with a volumetric increase in the hippocampus and

amygdala, in addition to increased cortical thickness.82−85 In a
recent multicenter, observational study, BD patients on
continuous lithium treatment had significantly larger hippo-
campi compared to those with no or minimal lifetime exposure
to lithium.86 Finally, lithium treatment was associated with
increased N-acetyl aspartate (NAA) and myo-inositol levels as
shown by magnetic resonance spectroscopy.87,88 These imaging
and neurochemical findings suggest that long-term lithium
treatment may have a significant effect on synaptic density,
neuronal vitality, and mitochondrial function in BD patients.

■ CLINICAL EVIDENCE OF NEUROPROTECTIVE
EFFECTS OF LITHIUM IN NEURODEGENERATIVE
DISORDERS

Alzheimer’s Disease (AD). The rationale for the clinical
use of lithium as a neuroprotective therapy derives from
preclinical models of AD, indicating that lithium can preclude
or attenuate Aβ and tau pathology, and improve cognitive
function in transgenic mice. These results encouraged the
conduction of clinical studies in patients with AD; however, few
studies have been presented thus far. In a small open label trial
with 25 patients with mild to moderate AD conducted in the
United Kingdom, MacDonald et al.89 found no significant
effects of lithium on cognitive function after 1 year of
treatment. Nonetheless, the authors concluded that lithium
was a safe drug in older adults as most of the side effects and
dropouts from the trial were due to mild and reversible side
effects. In a single-blind, multicenter clinical trial with 71
patients with mild to moderate AD conducted in Europe,
Hampel et al.90 did not find any significant benefits of lithium
on cognitive performance associated with 10 weeks of
treatment at therapeutic levels (0.5−0.8 mmol/L). In this
study, the authors evaluated the effect of lithium on biomarkers
related to AD, and did not find any significant changes in
cerebrospinal fluid (CSF) concentrations of Aβ42 and
phosphorylated tau, nor in phosphorylated GSK-3β (i.e., the
inactive form of this enzyme) levels in leukocytes. The authors
hypothesize that their negative results, in light of the short
duration of treatment, were insufficient for lithium to exert its
neuroprotective effects, or at least for these effects to be
represented by changes in biomarker levels. Secondary analysis
of this trial showed that lithium treatment was associated with
increased plasma concentrations of BDNF. In this subset of AD
patients, lithium treatment restored low baseline BDNF to
levels similar to controls, and patients who displayed an
increase in BDNF also had significant cognitive improvement.91

The effect of lithium was specific to the BDNF response, as no
significant changes were observed in levels of glial cell-derived
neurotrophic factor (GDNF) both in the CSF and serum of AD
patients after 10 weeks of lithium treatment.92

More recently, we conducted a double-blind, placebo
controlled, clinical trial to evaluate whether long-term treat-
ment with lithium at subtherapeutic levels (serum levels of 0.2−
0.5 mmol/L) could delay the progression from amnestic mild
cognitive impairment (MCI) to dementia, and to evaluate the
disease-modifying properties as illustrated by the modification
of clinical and biological markers of AD in patients with MCI.11

This study recruited 45 older adults with amnestic MCI, and
the preliminary analysis after 1 year of follow-up showed that
amnestic MCI subjects receiving lithium presented stable
cognitive performance and lower conversion rates to AD
compared to subjects on placebo, although the latter difference
was not statistically significant. However, significant differences
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in favor of the lithium group were observed on multiple
cognitive parameters, namely memory, attention and global
cognitive function. In addition, lithium use was associated with
a significant reduction in CSF concentrations of phosphory-
lated tau as compared to subjects in the placebo group.
Additional analyses revealed that the effect size of lithium on
phosphorylated tau levels was even greater in MCI subjects
who did not progress to AD upon follow-up. Overall, these
results suggest that long-term lithium treatment may have
disease-modifying properties on the core pathophysiologic
features of AD and deliver a marginal clinical benefit, mostly if
started at the earlier stages of the disease process. In another
recent clinical trial conducted by a different Brazilian group,
Nunes et al.71 demonstrated a significant improvement in
global cognitive performance (as shown by the MMSE) using
continuous microdoses of lithium (300 μg daily) for 18
months. The authors state that these benefits started after 6
months of treatment and persisted until the end of the trial.
As stated earlier, autophagy is a key intracellular pathway

dedicated to the degradation of mutant proteins, some of which
are associated with neurodegeneration.93 Lithium ultimately
induces autophagy via its effect on the dominant regulatory
mechanism, which is dependent on the inhibition of IMP.20

Autophagy is also induced by active GSK-3β;93 therefore, the
inhibition of GSK-3β by lithium leads to the attenuation of
autophagy. This effect has been shown to occur via the
activation of mTOR.21 Therefore, there is a clear interplay
between distinct regulatory mechanisms that may be differ-
entially affected by lithium depending on the prevailing
pathological process of the neurodegenerative disease. The
overall effect of lithium on these mechanisms and their clinical
implications still need to be clarified by future controlled
studies.
Amyotrophic Lateral Sclerosis (ALS). The potential

neuroprotective effects of lithium were also evaluated in ALS,
a severe progressive neurodegenerative disorder that affects
motor neurons leading to premature disability and death.94

Dill et al.95 suggested the potential neuroprotective effect of
lithium in ALS by demonstrating the ability of lithium to induce
the sprouting of pyramidal neurons in the corticospinal tract
following mechanical injury. In primary neuronal cultures
obtained from the ventral spinal cord, Busceti et al.96 suggested
that the neurotrophic response and synaptogenesis induced by
lithium could be relevant for the treatment of ALS, with a
possible impact on disease progression. This effect was related
to the inhibition of GSK-3β (and subsequent decrease in tau
phosphorylation) and upregulation of autophagy, which may
further increase the clearance of hyperphosphorylated tau.
Therefore, it is likely that distinct pathways may contribute to
the neuroprotective effects of lithium on neurodegenerative
diseases associated with hyperphosphorylated tau, such as AD,
ALS, and some forms of frontotemporal dementia.97

Preclinical studies have shown a significant improvement in
motor function in animal models of ALS treated with lithium.
The main hypothesized mechanism for such improvement was
the stimulation of autophagy by lithium.98,99 In an early clinical
trial, lithium treatment for 15 months was shown to be safe and
significantly associated with a slower rate of disease progression
and death in these patients.98 However, more recent and larger
trials failed to show a significant benefit of lithium for this
condition.100,101

In animal models of ALS, the cotreatment of lithium with
valproate (another mood stabilizing drug) has been shown to

produce more beneficial effects than the treatment with either
drug alone.102 Similar findings were presented by other authors
addressing animal models of Huntington’s disease103 and
traumatic brain injury.104

Chio ̀ et al.105 recently conducted a phase 3 multicenter,
double-blind, placebo-controlled trial of lithium versus placebo
in ALS. Patients were randomly assigned into two groups to
receive either lithium (n = 107) or matched placebo tablets (n
= 107). Oral doses of lithium carbonate (mean serum levels
ranging from 0.4 to 0.8 mmol/L) or placebo were continuously
administered for 18 months. The primary end point was the
rate of survival after 18 months, which was ascertained by
intention to treat analysis. Unfortunately, the study results did
not support any evidence of increased survival associated with
lithium treatment.

Other Neurodegenerative Diseases. Lithium has been
also studied in preclinical models of other neurodegenerative
diseases, including Parkinson’s106,107 and Huntington’s dis-
ease.108−110 The pattern of cell death in Parkinson’s disease is
complex, having features of apoptosis and necrosis in addition
to accumulations of autophagosome-like structures.111 Using an
in vitro model of Parkinson’s disease, Chen et al.112

demonstrated that 6-OHDA activates GSK-3β in cultured
human neuroblostoma SH-SY5Y cells as well as in cultures of
rat cerebellar granule neurons. Lithium and other specific GSK-
3β inhibitors effectively protected against neuronal death after
exposure to 6-OHDA, indicating that GSK-3β is involved in 6-
OHDA-induced apoptosis of SH-SY5Y cells and cerebellar
granule neurons. However, other studies in dopaminergic
neurons have presented conflicting results: 6-OHDA treatment
was not associated with GSK-3β activation, and 6-OHDA-
induced degeneration was not inhibited by lithium.113 These
results suggest that GSK-3β activity may not be centrally
involved in 6-OHDA-induced dopaminergic neurodegeneration
in the substantia nigra (pars compacta) of rats. In a rat model of
Huntington’s disease, a protocol of chronic subcutaneous
injections of lithium showed that lithium treatment may protect
against brain damage caused by focal cerebral ischemia and
suppresses excitotoxicity-induced striatal lesions.114 Despite the
promising neuroprotective potential against disease mecha-
nisms described in these studies, no clinical trials have been
conducted so far in human patients to test these findings.

■ CONCLUSIONS

Converging lines of evidence derived from preclinical and
clinical models support the rationale for the study of the
protective effects of lithium in neuropsychiatric conditions
associated with chronic degeneration of the central nervous
system. This effect is probably due to the modulation of
multiple biological cascades that are involved in cell survival,
neuronal plasticity, transcriptional control, energetic metabo-
lism, and resilience against neurotoxic insults. Some of these
mechanisms may be represented as core pathological processes
of mood and neurodegenerative disorders. The knowledge on
the specific effects of lithium on distinct pathways critically
relevant to neuronal homeostasis, and the broad understanding
of their interactions, will guide the development of novel
therapeutic strategies against neurodegeneration, aiming at both
symptom reduction and attenuation of disease progression.
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Boeynaems, J. M., Bueé, L., De Decker, R., and Brion, J. P. (2010)
Lithium treatment arrests the development of neurofibrillary tangles in
mutant tau transgenic mice with advanced neurofibrillary pathology. J.
Alzheimer’s Dis 19 (2), 705−719.
(34) Noble, W., Planel, E., Zehr, C., Olm, V., Meyerson, J., Suleman,
F., Gaynor, K., Wang, L., LaFrancois, J., Feinstein, B., Burns, M.,
Krishnamurthy, P., Wen, Y., Bhat, R., Lewis, J., Dickson, D., and Duff,
K. (2005) Inhibition of glycogen synthase kinase-3 by lithium
correlates with reduced tauopathy and degeneration in vivo. Proc.
Natl. Acad. Sci. U.S.A. 102 (19), 6990−6995.
(35) Rockenstein, E., Torrance, M., Adame, A., Mante, M., Bar-on, P.,
Rose, J. B., Crews, L., and Masliah, E. (2007) Neuroprotective effects
of regulators of the glycogen synthase kinase-3β signaling pathway in a
transgenic model of Alzheimer’s disease are associated with reduced
amyloid precursor protein phosphorylation. J. Neurosci. 27 (8), 1981−
1991.
(36) Su, Y., Ryder, J., Li, B., Wu, X., Fox, N., Solenberg, P., Brune, K.,
Paul, S., Zhou, Y., Liu, F., and N.i, B. (2004) Lithium, a common drug
for bipolar disorder treatment, regulates amyloid-β precursor protein
processing. Biochemistry 43, 6899−6908.
(37) Yu, F., Zhang, Y., and Chuang, D. M. (2012) Lithium reduces
BACE1 overexpression, β amyloid accumulation, and spatial learning
deficits in mice with traumatic brain injury. J. Neurotrauma 29 (13),
2342−2351.
(38) Zhang, X., Heng, X., Li, T., Li, L., Yang, D., Zhang, X., Du, Y.,
Doody, R. S., and Le, W. (2011) Long-term treatment with lithium
alleviates memory deficits and reduces amyloid-β production in an
aged Alzheimer’s disease transgenic mouse model. J. Alzheimer’s Dis.
24 (4), 739−749.
(39) Fiorentini, A., Rosi, M. C., Grossi, C., Luccarini, I., and
Casamenti, F. (2010) Lithium improves hippocampal neurogenesis,
neuropathology and cognitive functions in APP mutant mice. PLoS
One 5 (12), e14382.
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M., Kaprio, J., Lönnqvist, J., Poutanen, V. P., Toga, A. W., and Cannon,
T. D. (2012) Hippocampal morphology in lithium and non-lithium-
treated bipolar I disorder patients, non-bipolar co-twins, and control
twins. Hum. Brain Mapp. 33 (3), 501−510.
(86) Hajek, T., Calkin, C., Blagdon, R., Slaney, C., and Alda, M.
(2013) Type 2 Diabetes Mellitus: A Potentially Modifiable Risk Factor
for Neurochemical Brain Changes in Bipolar Disorders. Biol.
Psychiatry, DOI: 10.1016/j.biopsych.2013.11.007.
(87) Forester, B. P., Finn, C. T., Berlow, Y. A., Wardrop, M.,
Renshaw, P. F., and Moore, C. M. (2008) Brain lithium, N-acetyl
aspartate and myo-inositol levels in older adults with bipolar disorder
treated with lithium: a lithium-7 and proton magnetic resonance
spectroscopy study. Bipolar Disord. 10 (6), 691−700.
(88) Silverstone, P. H., Wu, R. H., O’Donnell, T., Ulrich, M., Asghar,
S. J., and Hanstock, C. C. (2003) Chronic treatment with lithium, but
not sodium valproate, increases cortical N-acetyl-aspartate concen-
trations in euthymic bipolar patients. Int. Clin. Psychopharmacol. 18
(2), 73−79.
(89) Macdonald, A., Briggs, K., Poppe, M., Higgins, A., Velayudhan,
L., and Lovestone, S. (2008) A feasibility and tolerability study of
lithium in Alzheimer’s disease. Int. J. Geriatr. Psychiatry 23 (7), 704−
711.
(90) Hampel, H., Ewers, M., Bürger, K., Annas, P., Mörtberg, A.,
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