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Parkinson’s disease (PD) is caused by dopaminergic neuronal death in the substantia nigra, resulting in a reduced level of dopamine
in the striatum. Oxidative stress and mitochondrial dysfunction are thought to be major causes of neurodegeneration in PD.
Although genetic and environmental factors are thought to a�ect the onset of PD, precise mechanisms at the molecular level have
not been elucidated. �e DJ-1 gene is a causative gene for familial PD (park7) and also an oncogene. DJ-1 has various functions,
including transcriptional regulation, antioxidative stress reaction, and chaperone, protease, and mitochondrial regulation, and its
activity is regulated by its oxidative status, especially that of cysteine 106 (C106) of DJ-1. Excess oxidation of DJ-1, which renders
DJ-1 inactive, has been observed in patients with sporadic PD and Alzheimer’s disease, suggesting that DJ-1 also participates in the
onset and pathogenesis of sporadic PD as well as familial PD. DJ-1 is also a stress sensor and its expression is increased upon various
stresses, including oxidative stress. In this review, we describe functions of DJ-1 against oxidative stress and possible roles of DJ-1
in the pathogenesis of PD.

1. Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative
disease that occurs in approximately 1% of the population
over the age of 65 years. �ere are two types of PD, familial
and sporadic forms of PD. Although familial PD cases
account for 10% of total cases of PD, investigations of the
functions of familial PD gene products have provided great
insights into the molecular mechanisms of the onset of PD,
and familial PD gene products are thought to also play roles
in the pathogenesis of sporadic PD (see recent reviews [1, 2]).

�e DJ-1 gene has been identied by us as a novel onco-
gene that transforms mouse NIH3T3 cells in cooperation
with activated ras in 1997 [3]. In 2003, Bonifati et al. found
a large deletion and missense mutation in the DJ-1 gene
in Italian and Dutch PD patients, leading to identication
of the DJ-1 gene as a causative gene for familial PD park7
with recessive inheritance [4]. Twenty-three pathogenic
deletion and point mutations were found in patients
with PD (see Parkinson’s disease mutation database and

references therein, http://www.molgen.ua.ac.be/PDmutDB/
default.cfm?MT=0-&ML=0&Page=Home). Compared to
parkin and Pink1, other causative genes of familial PD with
recessive inheritance, the number of mutations in the DJ-1
gene is small; numbers of mutations of the three genes are
the order of ������ > ����1 > DJ-1. �is might be due to
the position of DJ-1 during the course of onset of PD; DJ-1
may be placed upstream of Pink1 and parkin [1, 2].

In this review, we describe functions of DJ-1 against
oxidative stress and discuss how loss of function of DJ-1
a�ects the pathogenesis of PD.

2. Structure, Expression, and Function of DJ-1

DJ-1 is comprised of 189 amino acids with seven 	-strands
and nine 
-helices in total and is present as a dimer [5–9].
Amino acid sequences of DJ-1 are conserved from prokary-
otes to eukaryotes and they are now named DJ-1 superfamily
[10]. DJ-1 is structurallymost similar to themonomer subunit
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Figure 1: Functions of DJ-1 and its related diseases. DJ-1 is a
multifunctional protein. It is thought that excess activation and loss
of function of DJ-1 trigger the onset of various diseases, including
cancer and Parkinson’s disease.

of protease I, the intracellular cysteine protease from Pyro-
coccus horikoshii [5, 11]. DJ-1, however, contains an additional

-helix at the C-terminal region, which blocks the putative
catalytic site of DJ-1 [5–7].

DJ-1 is expressed in almost all cells and tissues, including
the brain [3]. DJ-1 is expressed in both neurons and glia cells
[4, 12, 13]. �e expression level of DJ-1 is increased in cells,
including reactive astrocytes, under an oxidative stress con-
dition [14], and overexpression of DJ-1 is observed in reactive
astrocytes in sporadic PD and other neurodegenerative dis-
eases [12, 15–17]. Knockdown or knockout of DJ-1 expression
in astrocytes impairs astrocyte-mediated neuroprotection
against oxidative stress through deregulation of mitochon-
drial complex I and in�ammatory responses [17–20].

DJ-1 is a multifunctional protein that participates in
transcriptional regulation [21–29], antioxidative stress reac-
tion [14, 30–36], and chaperone [37, 38], protease [39–41],
and mitochondrial regulation [33, 42–52] (Figure 1). DJ-1 is
located in the cytoplasm, nucleus, and mitochondria in cells,
and secreted DJ-1 has been observed in various cultured cells
and tissues, including cancer cells and tissues [14, 40, 53–60]
and astrocytes [14]. DJ-1 is translocated from the cytoplasm
to nucleus upon exposure to growth factors [3], and oxidation
of C106 described later is necessary for nuclear translocation
of DJ-1 [61]. DJ-1 contains three cysteine residues, C46, C56,
and C106. Of the three cysteine residues, C106 is highly
susceptible to oxidative stress and is oxidized as SOH, SO2H,
and then SO3H [30, 33, 34], and mutation of C106 results in
loss of all of DJ-1’s functions [32, 33, 35] (Figure 2). DJ-1 at
C106 with SO3H is thought to be an inactive form of DJ-1
[38], and excessive oxidized DJ-1 has been observed in brains
of patients with PD andAlzheimer’s disease [15, 62]. DJ-1 thus
possesses quenching activity against reactive oxygen species
(ROS) by self-oxidation of its cysteine residues [32, 63].
Phylogenetic analyses showed that, of the DJ-1 superfamily
from prokaryotic and eukaryotic representatives, C106 is
highly conserved and important for their functions, including
enzymatic activities such as thiamin biosynthetic enzymes,
protease and isocyanide hydratase, chaperone, and stress
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Figure 2: Cysteine oxidation and activation of DJ-1. DJ-1 contains
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Figure 3: Posttranslational modications on DJ-1. DJ-1 is oxidized
at amino acid numbers 46, 54, and 106 (C46, C54, and C106, resp.),
S-nitrosylated at C46 and C54 and sumoylated at K130.

response ([10, 64], references therein). DJ-1 is also modied
by sumoylation [65], S-nitrosylation [66], and phosphoryla-
tion [67] (Figure 3). Sumoylation of DJ-1 occurs under an
oxidative stress condition in concomitant with acidic shi�
of DJ-1. Sumoylation of DJ-1 at lysine 130 is necessary for
its activity, and excess sumoylation is observed in an L166P
pathogenic mutant of DJ-1 [65]. S-nitrosylation is observed
at cysteines 46 and 53 of DJ-1 under a nitrosative stress
condition and a�ects dimerization of DJ-1, which is necessary
for DJ-1 to exert its function [66]. DJ-1 is also phosphorylated
in a p53-dependent manner, but phosphorylated amino
acid(s) and the e�ect of phosphorylation on DJ-1 function
are not known [67]. From these points, it is thought that DJ-1
also participates in the pathogenesis of sporadic PD as well as
familial PD.

3. Transcriptional Regulation of
DJ-1 in Response to Oxidative Stress
and Dopamine Synthesis

Although DJ-1 does not directly bind to DJ-1 [68], it
regulates the activity of DNA-binding transcription factors
as a coactivator or corepressor through binding to DJ-1-
binding transcription factors. Transcription factors whose
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Figure 4: Schematic model of activation of the tyrosine hydroxylase gene by DJ-1. In the absence of DJ-1, PSF binds to the promoter region
spanning −2909 to −2707 of the tyrosine hydroxylase (TH) gene to repress its transcription. In the presence of DJ-1, DJ-1 binds to PSF to
sequester PSF from the TH gene, resulting in replacement of the corepressor complex with a coactivator complex, thereby activating TH gene
transcription.

activity is regulated by DJ-1 include the androgen receptor
[21, 22, 27], polypyrimidine tract-binding protein-associated
splicing factor (PSF) [25], p53 [23, 28, 69, 70], nuclear factor
erythroid-2-related factor 2 (Nrf2) [26], and sterol regulatory
element binding protein (SREBP) [68]. Considering oxidative
stress response and dopamine synthesis, regulation of Nrf2,
p53, and PSF by DJ-1 is important. Nrf2 is a master transcrip-
tion factor for oxidative stress and detoxication responses.
Without such stresses, Nrf2 is localized in the cytoplasm
in a complex with Keap1, resulting in degradation by the
ubiquitin-proteasome system. Upon oxidative stress, DJ-1
sequesters Keap1, leading to translocation of Nrf2 into the
nucleus to activate various antioxidative stress genes, thereby
decreasing the ROS level [26]. p53 is a tumor suppressor
and plays roles in induction of senescence and apoptosis in
cells and in regulation of mitochondrial homeostasis against
oxidative stress. DJ-1 directly binds to p53 and regulates p53
activity in various ways; p53 is activated by Topors-mediated
sumoylation and inactivated by DJ-1 through inhibition of
Topors activity [23], and DJ-1 binds to the DNA-binding
region of p53 to inhibit p53 transcriptional activity when
a�nity of p53 or its mutants to DNA is low, leading to cell
cycle progression [70]. It has also been reported that DJ-
1 inhibits the induction of apoptosis by p53-induced Bax
expression [69]. DJ-1 stimulates the expression of superoxide
dismutase (SOD 3) and glutathione ligase genes by an
unknown mechanism to reduce ROS level [71, 72].

Dopamine is synthesized from tyrosine by two enzymes:
tyrosine hydroxylase (TH) converts tyrosine to L-DOPA and
L-DOPA carboxylase (DDC) converts L-DOPA to dopamine.
Dopamine is then packed in synaptic vesicles by vesicular
monoamine transporter 2 (VMAT2). Although TH level
in PD patients is decreased, it is not changed in DJ-1-
knockout mice [73–75]. DJ-1 positively regulates human TH
gene expression by sequestering transcriptional repressor PSF
from the human TH gene promoter [25] (Figure 4). �is
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Figure 5: Proposed model of the role of DJ-1 in the onset of
Parkinson’s disease. In the case of familial Parkinson’s disease (PD),
the DJ-1 gene is heritably mutated, giving rise to inactive DJ-1 that
causes PD. In the case of sporadic PD, DJ-1 expression is induced in
cells upon oxidative stress to prevent cell death. During the course
of continuous oxidative stress, DJ-1 is highly oxidized, giving rise to
inactive DJ-1 that causes PD.

upregulation is only observed in the human TH gene due to
lack of the PSF-recognition sequence in the mouse TH gene,
and highly oxidized DJ-1 loses this activity [29]. �is nding
indicates one of the reasons for no change in TH level in
DJ-1-knockout mice. DJ-1 also regulates enzymatic activities
of TH and DDC [76]. When the sum of SH (reduced) and
SOH forms of C106 is more than 50% of total forms of C106,
DJ-1 upregulates TH and DDC activities, suggesting that the
activity ofDJ-1 towardTHandDDC is changed depending on
the level of oxidative stress and that it is decreased with aging,
which is one of the crucial factors for onset of PD (Figure 5).
DJ-1 positively regulates expression of the VMAT2 gene
and VMAT2 activity through transcriptional coactivator and
protein-protein interaction, respectively [77]. Since VMAT2
re-uptakes excess dopamine into synaptic vesicles to prevent
neurons from oxidized dopamine-induced damage, upregu-
lation of VMAT activity by DJ-1 contributes to this reaction.
Pathogenic mutations of DJ-1, including both homozygous
and heterozygous mutations, have reduced stimulating activ-
ity against TH, DDC, and VMAT2 [29, 76, 77].
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4. Chaperone and Protease Activity of DJ-1

Structures of DJ-1, Escherichia coli chaperone Hsp31 and
an Archaea protease are conserved [7]. DJ-1 inhibits the
aggregation of 
-synuclein under an oxidative condition
by its chaperone activity [37, 38]. As stated in Section 2,
the structure of DJ-1 is similar to that of cysteine protease
from Pyrococcus horikoshii, but C-terminal 
-helix 9 blocks
a catalytic domain of protease [5]. DJ-1 in dopaminergic
cells undergoes C-terminal cleavage in response to mild
oxidative stress, and a C-terminally cleaved form of DJ-1 with
activated protease activity enhances cytoprotective action
against oxidative stress-induced apoptosis [41]. Although
protease activity is still in debate, low protease activity of
DJ-1 has been reported [39–41]. Transthyretin, a causative
protein in familial amyloidotic polyneuropathy (FAP), is
degraded in cells transfected with full-sized DJ-1 and in
vitro by recombinant DJ-1 lacking 
-helix 9, and mutation
of C106 in DJ-1 results in loss of its protease activity [40].
Localizations of DJ-1 and amyloid plaque of transthyretin in
FAP patients are mirror images [40], and faint staining of DJ-
1 is observed in the outer halo of Lewy bodies in PD patients
[15]. �ese results suggest that 
-helix 9 of DJ-1 is opened
in cells under oxidative stress conditions in which oxidized
protein(s) begins to aggregate and that DJ-1 degrades an
aggregated protein(s) that causes neurodegenerative diseases.
Identication of the recognition sequence of DJ-1 protease
and of the protein(s) that opens 
-helix 9 of DJ-1 in cells will
lead to elucidation of the physiological role of DJ-1 protease.

5. DJ-1-Mediated Signaling Pathways against
Oxidative Stress

�ere are several pathways against oxidative stress and these
pathways prevent cell death, thereby leading to cell growth.
�e phosphoinositide 3-kinase (PI3 K)/Akt pathway is the
major growth signaling pathway. When cells receive growth
signals such as epidermal growth factor (EGF) stimulation,
PI3 K triggers phosphorylation of Akt/protein kinase B
(PKB), leading to activation of continuous phosphorylation
cascades, resulting in stimulation of cell growth (see reviews
[78, 79] and references therein). Phosphatase and Tensin
homolog deleted from chromosome 10 (PTEN) is a lipid
phosphatase that inhibits PI3 K and acts as a negative regu-
lator of the PI3 K/Akt pathway. DJ-1 directly binds to PTEN
to inhibit its enzymatic activity [80, 81]. A�er oxidative stress
such as that caused by injection of a neurotoxin into mice or
by addition of a neurotoxin to cultured cells, the Akt pathway
is activated concomitantly with inactivation of PTEN in
mouse brains and cultured cells, and the phosphorylation
level of Akt is reduced in DJ-1-knockout mice, leading to
neuronal cell death [80–82].

Apoptosis signal-regulating kinase 1 (ASK1) is mitogen-
activated protein kinase-kinase-kinase 5 (MAP3K5). It acti-
vates c-Jun N-terminal kinase (JNK) and p38 mitogen-
activated protein kinases in response to various stresses such
as oxidative stress, endoplasmic reticulum stress and calcium
in�ux. TNF-
, LPS, and ischemia also trigger the generation

of ROS, resulting in activation of ASK1 (see reviews [83, 84],
references therein). ASK1 has been found to be involved
in cancer [85, 86], diabetes [87, 88], and cardiovascular
diseases [88–90] and neurodegenerative diseases [91–93].
�ese phenomena are similar to those observed in DJ-1-
mediated diseases [3, 4, 40, 94–99]. �e generation of ROS is
also crucial for TNF-
-induced signaling pathway that leads
to apoptosis, and treatment of cells with antioxidants such as
N-acetyl-l-cysteine (NAC) inhibits apoptosis induction [83].
Daxx, a death domain-associated protein, associates with
ASK1 in the cytoplasm to induce apoptosis a�er cells are
treated with TNF-
 [83, 84]. DJ-1 binds to both Daxx and
ASK1 to sequester Daxx into the nucleus, preventing Daxx
from association with ASK1, thereby inhibiting oxidative
stress-induced apoptosis in H2O2-treated cultured cells and
MPTP-administered-PD model mice [100, 101]. Pathogenic
mutants of DJ-1 do not have this activity [102].

�e ERK pathway is the main cell-progression pathway
starting from Ras, followed by Raf, Mek, and ERK. DJ-1
protects against dopamine toxicity through the Erk kinase
pathway in which DJ-1 and Erk are mutually activated upon
administration of dopamine into mice or cultured cells [103].
It has been reported that an accelerated loss of substantia
nigra cell bodies containing dopamine neurons was observed
in aging mice lacking DJ-1 and the glial cell line-derived neu-
rotrophic factor receptor Ret and thatDJ-1 interacts with ERK
signaling [104]. Furthermore, DJ-1 protects dopaminergic
neurons against rotenone-induced apoptosis by enhancing
ERK-dependent mitophagy [105]. �us, DJ-1 prevents cells
from oxidative stress-induced death by regulating various
signaling pathways.

6. Role of DJ-1 in Mitochondrial Homeostasis

Mitochondrial dysfunction, including reduced mitochon-
drial complex I activity andmitochondrial membrane poten-
tial, is observed in PD patients [106–110] and in DJ-1-
knockout mice and �ies [47, 111]. Fragmented mitochondria
are observed in DJ-1-knockout mice and cells [46, 48, 51].
Although a portion of DJ-1 is present in mitochondria under
normal conditions [45, 112] and DJ-1 binds to subunits of
mitochondrial complex I to regulate its activity [45], the
translocation of DJ-1 into mitochondria is stimulated by
oxidative stress, and oxidation of C106 with SO2H and
N-terminal 12 amino acids is necessary for mitochondrial
translocation of DJ-1 [33, 113]. Pathogenic DJ-1 mutants such
as L166P and M26I DJ-1 are localized in mitochondria as
monomers [113]. DJ-1 ectopically targeted to mitochondria
by the addition of an N-terminal mitochondrial targeting
sequence has been shown to be more protective against
oxidative stress-induced cell death [44]. Considering these
ndings, it is thought that localization of DJ-1 as a dimer in
mitochondria is required for DJ-1 to play a role in antioxida-
tive stress reaction and that DJ-1 localized in mitochondria
as a monomer, such as M26I and L166P DJ-1, is, in contrast,
harmful to cells.

DJ-1 has no mitochondria-targeting sequence and
binds to several chaperones, including Hsp70, CHIP, and
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mitochondrial Hsp70/mortalin/Grp75, suggesting that
translocation of DJ-1 into mitochondria relies on or depends
on other proteins, including mortalin [43]. Mortalin plays
a central role in mitochondrial homeostasis through its
capacity to direct the import of nuclear-encoded proteins
carrying an internal mitochondrial targeting sequence into
mitochondria, and mutations of the mortalin gene were
found in patients with Parkinson’s disease [114].

�e role of DJ-1 in autophagy is still in debate, and
almost all of the reports focused on mitochondria-specic
autophagy, mitophagy. When mitochondrial membrane
potential is decreased, DJ-1 is translocated into mitochondria
to induce mitophagy, which is clearance of damaged mito-
chondria [48, 50, 52]. DJ-1 seems to act in parallel to the
Pink1/Parkin-mediated mitophagy pathway [50]. Although
mitochondrial functions of DJ-1 have been extensively stud-
ied, the precise mechanism of mitophagy induction by DJ-1
is still poorly understood.

7. Conclusion and Perspective

DJ-1 has multiple functions and plays a protective role
against oxidative stress-induced cell death by using all of its
functions. DJ-1 is also a stress sensor and its expression is
increased upon various stresses, including oxidative stress.
Loss of function and reduced function of DJ-1 trigger the
onset of oxidative stress-related diseases, including Parkin-
son’s disease [4, 94, 95], stroke [96, 97], familial amyloidotic
polyneuropathy [40], chronic obstructive pulmonary disease
(COPD) [98], and type II diabetes [99]. �e oxidative status
of C106 of DJ-1 determines all of the functions of DJ-1. Excess
oxidation of C106 renders DJ-1 inactive, and highly oxidized
DJ-1 has been observed in patients with Parkinson’s disease
and Alzheimer’s disease. �ese results suggest that block of
excessive oxidation of DJ-1 is a therapeutic target for the
oxidative stress-related diseases stated earlier. Indeed, DJ-1-
binding compounds that bind to the C106 region of DJ-1
showed neuroprotective activity against neurodegeneration
in Parkinson’s disease and stroke animal models through
inhibition of excessive oxidation of C106 of DJ-1 [115–117].

Abbreviations

PD: Parkinson’s disease
PSF: Polypyrimidine tract-binding

protein-associated splicing factor
ROS: Reactive oxygen species
Nrf2: Nuclear factor erythroid-2 related factor 2
TH: Tyrosine hydroxylase
DDC: L-DOPA carboxylase
VMAT2: Vesicular monoamine transporter 2
PTEN: Phosphatase and Tensin homolog deleted

from chromosome 10
ASK1: Apoptosis signal-regulating kinase 1.

Conflict of Interests

�e authors declare that they have no nancial con�ict of
interests.

Acknowledgments

�is work was supported by grants-in-aid from the Ministry
of Education, Science, Culture and Sports and by the Program
for Promotion of Fundamental Studies in Health Science of
the National Institute of Biomedical Innovation (NIBIO) in
Japan.

References

[1] D. N. Hauser and T. G. Hastings, “Mitochondrial dysfunction
and oxidative stress in Parkinson’s disease and monogenic
parkinsonism,”Neurobiology of Disease, vol. 51, pp. 35–42, 2013.

[2] Y. Sai, Z. Zou, K. Peng, and Z. Dong, “�e Parkinson’s disease-
related genes act in mitochondrial homeostasis,” Neuroscience
& Biobehavioral Reviews, vol. 36, no. 9, pp. 2034–2043, 2012.

[3] D. Nagakubo, T. Taira, H. Kitaura et al., “DJ-1, a novel oncogene
which transformsmouseNIH3T3 cells in cooperationwith ras,”
Biochemical and Biophysical Research Communications, vol. 231,
no. 2, pp. 509–513, 1997.

[4] V. Bonifati, P. Rizzu, M. J. van Baren et al., “Mutations in
the DJ-1 gene associated with autosomal recessive early-onset
parkinsonism,” Science, vol. 299, no. 5604, pp. 256–259, 2003.

[5] K. Honbou, N. N. Suzuki, M. Horiuchi et al., “�e crystal struc-
ture of DJ-1, a protein related to male fertility and Parkinson’s
disease,”
e Journal of Biological Chemistry, vol. 278, no. 33, pp.
31380–31384, 2003.

[6] X. Tao and L. Tong, “Crystal structure of human DJ-1, a protein
associated with early onset Parkinson’s disease,” 
e Journal of
Biological Chemistry, vol. 278, no. 33, pp. 31372–31379, 2003.

[7] S. J. Lee, S. J. Kim, I. K. Kim et al., “Crystal structures of human
DJ-1 and Escherichia coli Hsp31, which share an evolutionarily
conserved domain,” 
e Journal of Biological Chemistry, vol.
278, no. 45, pp. 44552–44559, 2003.

[8] M. A. Wilson, J. L. Collins, Y. Hod, D. Ringe, and G. A. Petsko,
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