
 

©  2020 by the author. This is an open access article distributed under the 
conditions of the Creative Commons by Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium or format, 
provided the original work is correctly cited. 

 

Open Access 

OBM Neurobiology 

 

Review 

Neuroprotective Strategies in Glaucoma - Translation to Clinical Trials 

Clarissa E. H. Fang 1, Li Guo 1, Daniel Hill 1, Timothy E. Yap 2, M. Francesca Cordeiro 1, 2, * 

1. Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University 

College London, London, EC1V 9EL, United Kingdom; E-mails: fangclarissa@gmail.com; 

l.guo@ucl.ac.uk; d.hill.13@ucl.ac.uk; m.cordeiro@ucl.ac.uk 

2. Western Eye Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom; E-mail: 

timothyedward.yap@nhs.net 

* Correspondence: M. Francesca Cordeiro; E-Mail: m.cordeiro@ucl.ac.uk 

Academic Editor: Ping K. Yip 

Special Issue: Neuroprotection, Neuroregeneration and Neuroplasticity 

OBM Neurobiology 

2020, volume 4, issue 2  

doi:10.21926/obm.neurobiol.2002062 

Received: April 16, 2020 

Accepted: June 10, 2020 

Published: June 15, 2020 

Abstract 

Neuroprotection in glaucoma is any medical treatment by which decline in visual function can 

be slowed or prevented by supporting the health and survival of neural cells, independent of 

lowering of intraocular pressure (IOP). This is achieved by targeting mechanisms to inhibit or 

delay retinal ganglion cell death and promote cell survival pathways. Despite demonstrating 

promising results in preclinical trials, many neuroprotective strategies have failed to show 

success in subsequent clinical trials. Of the clinical trials performed, many have been 

hampered by slow disease progression and questions surrounding biomarker sensitivity. 

Adaptive clinical trial design, enriched populations and the use of state-of-the-art clinical 

endpoints are required to improve assessment of therapeutic efficacy. We review the 

neuroprotective strategies in glaucoma that have been investigated in clinical trials, and 

appraise experimental designs, the strength of the original hypotheses and preceding work to 

examine why so few candidates have successfully translated into clinical research.  
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1. Introduction 

Currently, the only clinically-approved treatments for glaucoma involve the reduction of 

intraocular pressure (IOP) despite much research into the development of neuroprotective 

strategies. Neuroprotection in glaucoma is understood as methods aimed at reducing or preventing 

loss of visual function, via an IOP-independent mechanism [1]. Despite numerous demonstrations 

of successful neuroprotective agents in experimental glaucoma, very few of these treatments have 

reached clinical trials. Of the treatments that have reached clinical trials, the results have often not 

reflected the preclinical research. Whether this is simply another example of the ‘reproducibility 

crisis’ [2] or in fact a failure of longitudinal study design or clinical endpoints that are unfit for 

purpose, is still to be decided.  

Recent advances have suggested a broad range of potential molecular mechanisms of RGC death 

in glaucoma [3-5]. These include glutamate excitotoxicity [6, 7], mitochondrial dysfunction and 

oxidative stress [6-9], and the dysregulation and obstruction of neurotrophins such as nerve growth 

factor (NGF) and brain derived neurotrophic factor (BDNF)[6, 7, 10, 11]. As understanding of 

glaucomatous pathology remains incomplete, learning from unsuccessful clinical trials is challenging 

[12]. This review article details the latest neuroprotective strategies in glaucoma that have reached 

clinical trials (Table 1, Figure 1), as well as discussing the strengths and limitations of the trials 

investigating their efficacy.  

Figure 1 Neuroprotective strategies in glaucoma translated to clinical trials. 
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Table 1 Neuroprotective agents for glaucoma treatment into clinical trials. 

Agent Class Mechanism Administration Level of Evidence* References 

BDNF, NGF and CNTF Neurotropic factors Neurotrophin replacement Topical IIIB [4, 6, 11, 13-20] 

Ginkgo biloba 
extract 

Antioxidant Oxidative stress suppression 
Inhibiting mitochondrial 
dysfunction 

Oral IB [21-28] 

Coenzyme Q10 and 
Vitamin E 

Antioxidant Inhibiting mitochondrial 
dysfunction 

Topical IB [29-31] 

Omega 3 Antioxidant Oxidative stress suppression Oral IB [32-37] 

Memantine NMDA receptor 
antagonist 

Decreasing glutamate‐induced 
excitotoxicity 

Oral IB [38-44] 

Brimonidine Alpha 2 agonists Decreasing glutamate‐induced 
excitotoxicity Promoting non-
amyloidogenic beta pathway 

Topical IA [44-55] 

Citicoline 
 

Stimulating non-glutamatergic 
neurotransmitter synthesis 

Topical IB [56-66] 

Valproic acid Antiepileptic drug Stimulating cell survival pathway Oral IIB [67-71] 

Phenytoin Antiepileptic drug Sodium channel blockade Oral IIB [72-75] 

Umbilical cord 
serum 

 
Neurotrophin replacement Topical, implant IV [76-79] 

Mesenchymal stem 
cells 

 
Neurotrophin replacement Retrobulbar, subtenon, 

intravenous, 
intravitreal and 
intraocular injections 

IV [80-83] 

Abbreviations: N-methyl-D-aspartate (NMDA), brain derived neurotrophic factor (BDNF), nerve growth factor (NGF), ciliary neurotrophic factor (CNTF) 

*OCEBM Levels of Evidence Working Group. “The Oxford Levels of Evidence 2”. 

Oxford Centre for Evidence-Based Medicine. https://www.cebm.net/index.aspx?o=5653

https://www.cebm.net/index.aspx?o=5653
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2. Neurotropic Factors – BDNF, NGF, and CNTF 

Neurotrophic factors have been shown to play a vital role in experimental models of glaucoma 

by supporting the growth [6], survival and repair of neurons, and inhibiting RGC apoptosis [13]. In 

comparison to NGF, more evidence supports the efficacy of BDNF for RGC survival [13]. In preclinical 

studies, upregulation of brain-derived neurotrophic factor (BDNF) using gene therapy was shown to 

be neuroprotective of RGCs in rat ocular hypertension models [11, 14, 15]. A similar effect was also 

seen using topical nerve growth factor (NGF) [16-18]. Over-expression of CNTF in an experimental 

rat model showed a significant protective effect on RGCs [19]. 

In human studies, Oddone et al. reported a case-control study showing reduced levels of BDNF 

and NGF in early and moderate, but not advanced, glaucoma patients [20], with potential for BDNF 

and NGF to be early biomarkers of glaucoma [20]. In a trial of 3 patients with advanced glaucoma, 

topical NGF has been shown to improve visual function on pattern electroretinography (PERG) and 

visual evoked potentials [18]. In addition, Neurotech Pharmaceuticals (Cumberland, Rhode Island, 

USA) have developed an implant (NT-501) which consists of encapsulated human cells genetically 

modified to secrete ciliary neurotrophic factor (CNTF). Phase I clinical trials for NT-501 in glaucoma 

patients demonstrated no serious adverse events (NCT01408472) and phase II clinical trials are 

currently in progress (NCT02862938)[4].  

3. Antioxidants- Gingko Biloba Extract, Coenzyme Q10 and Vitamin E, and Omega 3 

3.1 Gingko Biloba Extract 

Gingko biloba extract (GBE) is known to have antioxidant properties via stabilisation of 

mitochondria that have entered the apoptotic pathway [21], with neuroprotective actions shown 

in rat models of glaucoma [22]. A double-masked, randomized, placebo-controlled clinical trial (RCT) 

of 30 participants with normal tension glaucoma demonstrated that GBE can increase ocular blood 

flow as measured by Heidelberg retina flowmeter [23]. Lee et al. published a retrospective study 

reporting the reduction of visual field loss with 80 mg of GBE administered orally twice daily over 4 

years [24]. In support, another retrospective study by Shim et al. showed improvement in visual 

fields in those taking 80mg GBE twice daily for at least 12 months [25]. A randomized controlled 

trial by Quaranta et al. also showed improvement of visual field parameters in those with visual field 

defects after 1 month of GBE treatment [26]. Whether these are truly regenerative effects, 

increases in retinal sensitivity, or a learning effect is unclear. However, GBE showed no effect on 

visual field or contrast sensitivity in patients with newly diagnosed normal tension glaucoma in 

another randomized clinical trial [27]. The effect of antioxidants on glaucoma progression has been 

studied in a phase III randomised trial (NCT01544192) comparing GBE, α−tocopherol and placebo, 

with results still to be reported [28]. 

3.2 Coenzyme Q10 With Vitamin E 

Topical coenzyme Q10 with Vitamin E has mitochondrial-targeted antioxidant properties. Topical 

coenzyme Q10 has been shown to reduce RGC loss and apoptosis compared to controls in a rat 

model of ocular hypertension [29]. A randomised clinical trial of 43 patients with primary open angle 

glaucoma demonstrated improvements in electrophysiological measurements of inner retinal 
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function after 12 months of coenzyme Q10 with Vitamin E treatment (as is commercially available) 

[30]. A randomised double masked placebo-controlled clinical trial with topical coenzyme Q10 and 

vitamin E administered to participants with primary open angle glaucoma is currently in progress 

(NCT03611530)[31].  

3.3 Omega 3 

Dietary omega 3 is an antioxidant supplement, with pre-clinical studies having demonstrated 

neuroprotective properties [32] and increases in aqueous outflow leading to a lowering of IOP [33]. 

The majority of studies regarding dietary omega 3 are observational and suggest that a higher 

glaucoma risk is associated with a lack of dietary omega 3 [34, 35]. A pooled analysis from two 

double-masked, placebo-controlled randomized trials has shown a reduction of IOP in 

normotensive adults taking oral omega 3 for three months [36]. In a randomised placebo controlled 

study in patients with controlled IOP (less than 21mmHg) by Garcia-Medina et al., oral omega 3 was 

not shown to be beneficial in glaucoma progression [37], with no significant difference in visual field 

or structural measurements after a follow-up period of two years [37].  

4. Glutamate-Induced Excitotoxicity 

4.1 Memantine 

Memantine is a non-competitive glutamatergic NMDA (N-methyl-D-aspartate) receptor 

antagonist thought to improve cognitive function in moderate to severe Alzheimer’s disease in 

combination with either acetylcholinesterase inhibitors or vitamin D [38]. When applied in animal 

models of glaucoma, memantine produced promising results in the reduction of RGC apoptosis 

rates [39-43]. In order to provide a topically applied sustained-release preparation that is able to 

deliver therapeutic concentrations to the retina, a nanoparticle delivery system has been 

investigated in vitro and in vivo, thus avoiding systemic side effects [41]. The results of this 

demonstrated RGC protection in a rat ocular hypertension model.  

Orally administered memantine was tested in two large-scale, phase III, multicentre, 

randomised, placebo-controlled trials over 4 years, conducted 1 year apart [44]. Glaucoma 

progression was measured with standard automated perimetry (SAP), frequency doubling 

technology (FDT), and stereoscopic optic disc photographs. There was no significant benefit of 

memantine over placebo in the progression of open angle glaucoma. Barriers to reliably detecting 

significant results in this trial have been proposed including: IOP lowering therapies were left to the 

discretion of investigators rather than by a strict protocol, the inclusion of a wide range of disease 

severity including significantly advanced disease, variable criteria for the definition of low tension 

glaucoma patients, exclusion of subjects as soon as they showed visual field progression.  

4.2 Brimonidine 

Brimonidine is an alpha-2 adrenergic agonist, used topically in patients with glaucoma to lower 

IOP by reducing aqueous production and increasing uveoscleral outflow [45]. Brimonidine is 

thought to have a dual mechanism of action in glaucoma, as suggested by IOP-independent 

neuroprotective effects in experimental models of glaucoma [46]. It is proposed that this is 

accomplished via modulation of glutamate transporters and NMDA receptors [47, 48], and 
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promoting the non-amyloidogenic beta pathway [46]. In a small clinical study involving patients with 

POAG, those that were treated with brimonidine over the course of 1 year demonstrated reduced 

loss of retinal nerve fibre layer thickness (independent of IOP reduction) compared to patients 

treated with timolol [49]. In another study comparing brimonidine with timolol, brimonidine 

appeared to improve contrast sensitivity after 3 months of treatment, a finding which was also 

independent of IOP reduction [50]. In a RCT comparing topical brimonidine to argon laser 

trabeculoplasty (ALT) in patients with POAG, brimonidine significantly reduced visual field 

deterioration over 18 months despite the IOP reduction having been less than that of ALT [51].  

The Low-Pressure Glaucoma Treatment Study (LoGTS), showed that topical brimonidine twice 

daily preserved visual field to a greater extent than topical timolol in low tension glaucoma patients, 

despite similar IOP-lowering effects after a follow-up period of 4 years [52, 53]. Although this would 

support the neuroprotective actions of brimonidine, the high dropout in the brimonidine group 

(28.3%) compared to the timolol group (11.4%) must be considered. An attrition bias causing 

progressing patients in the brimonidine group to leave the study may otherwise explain the results. 

Alternatively, the neuroprotective effects of brimonidine may in some way have been related to 

those who did not have ocular allergy. Furthermore, the IOP target in this study was a reduction of 

≥20% which was achieved by only 44% of brimonidine group and 39% of timolol group. This could 

suggest that the subjects were undertreated or had poor compliance with drops. Other factors in 

the interpretation of the results of this study include the possible adverse systemic hypotensive 

effects of timolol on optic nerve perfusion, and the differences in diurnal variation [54]. Clinical 

evidence still exists to refute these findings, albeit with similar issues surrounding the withdrawal 

rates and also low prevalence of visual field progression [55]. 

5. Citicoline 

Citicoline is an endogenous compound that is thought to be protective of damaged neurons by 

altering non-glutamatergic neurotransmitter synthesis. It is thought to accomplish this via 

influencing the synthesis of phosphatidylcholine, a cell membrane phospholipid [56]. 

Intraperitoneal administration of citicoline was shown to increase retinal dopamine concentrations 

in rabbits [57]. Citicoline was also demonstrated to decrease neuron damage in a rat optic nerve 

crush model [58] and model of kainic acid-induced retinal damage [56]. In the same model, a 

reduction in concentration of apoptotic proteins such as mitogen-activated protein kinase was 

found [59]. Citicoline was shown to support regeneration of RGCs in a tissue culture of mouse retina 

[60]. In patients, intramuscular citicoline appeared to be beneficial for glaucoma, and visual field 

progression was shown to slow in 9 out of 11 patients following 6-monthly intramuscular citicoline 

administration over 10 years, compared to the control group. [61, 62] Oral administration of 

citicoline was also reported to improve visual evoked potentials in 13 out of 21 patients with 

glaucoma [63]. In a study of 41 patients with POAG, 2 years of oral citicoline was reported to 

decrease the rate of visual field loss [64]. Using pattern electroretinography (PERG), 16 patients with 

progressive open angle glaucoma showed RGC function improvement after treatment with topical 

citicoline three times daily for two months, but regressed after one month of stopping treatment 

[65]. Similarly, a randomized clinical trial showed topical citicoline could improve PERG and visual 

evoked potentials after being administered three times daily for 4 months but the effect stopped 
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two months later [66], suggesting a lack of permanent regenerative effects, or the need for 

continued citicoline treatment to prevent retinal functional deterioration. 

6. Antiepileptics Drugs – Valproic Acid and Phenytoin 

6.1 Valproic Acid 

Valproic acid, a commonly used antiepileptic and mood stabiliser, has been shown to improve 

RGC survival in cell culture and in rats with optic nerve crush injury, by stimulating BDNF-

trkB(tropomyosin-related kinase B) signalling pathway and inhibiting histone deacetylase [67-69]. 

Preliminary clinical results for use in retinitis pigmentosa demonstrate some short-term benefits in 

terms of visual acuity and visual field preservation, however follow-up in the study was only 6 

months in duration.[70]. Oral valproate has been reported to significantly improve visual acuity 

when taken for 3 months, and the effect lasted for 9 months after cessation in advanced glaucoma 

patients. However, in this unmasked randomized clinical trial, there was no improvement in visual 

field or electroretinography (ERG) [71]. Given this trial was unmasked to the patients, an interesting 

confounder in mood improvement may have otherwise explained the beneficial effects of valproic 

acid [71]. 

6.2 Phenytoin 

The anti-epileptic drug, phenytoin, has been shown to exhibit neuroprotective effects on RGC 

density and decrease axon loss in the optic nerve in a rat model of glaucoma. This neuroprotection 

is thought to be the result of sodium channel blockade [72]. In a study conducted in the 1970s, 

phenytoin showed neuroprotective effects on retinal degeneration in patients with glaucoma [73]. 

In that cohort of 17 patients, 11 showed improvement of visual fields after two months of 

treatment. Phenytoin has now been used in the treatment of optic neuritis in a phase II RCT, in 

which it demonstrated a reduction in the loss of retinal nerve fibre layer thickness [74]. In glaucoma, 

however, there have been fewer advancements using phenytoin. Notably, a cohort study of orally 

administered phenytoin in glaucoma patients in Israel has yet to publish their results 

(NCT00739154) [75].  

7. Umbilical Cord Serum 

Umbilical cord serum is known for its high content of neurotrophic growth factors [76]. Topical 

application of cord serum has been used for the treatment of severe ocular surface disease [77, 78]. 

A case report by Campos et al. described improvement in visual fields in two patients with primary 

open angle glaucoma after topical administration of cord serum over two months, however the 

improvement of their co-existing ocular surface disease may well have improved their visual field 

test performance. The same research group are currently carrying out a non-randomised clinical 

study with 4 month follow-up using topical cord serum in glaucoma patients (NCT03609125) [79]. 

8. Mesenchymal Stem Cells 

Mesenchymal stem cells can proliferate and differentiate into glial cells and neurons, as well as 

secrete BDNF [80]. Intravitreal administration of mesenchymal stem cells has demonstrated an 
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increase in RGC survival in a rat model of glaucoma [81]. The use of mesenchymal stem cells for 

optic nerve and retinal conditions has been assessed by the Stem Cell Ophthalmology Treatment 

Study (SCOTS), an open-label non-randomized efficacy study (NCT01920867) [82]. Routes of 

administration include retrobulbar, subtenon, intravenous, intravitreal and intraocular injection 

with vitrectomy. Early reports have shown positive results for Leber’s hereditary optic neuropathy 

and optic neuritis. The SCOTS study is currently enrolling participants with glaucoma. Presently, 

there are two phase I clinical trials using mesenchymal stem cells in glaucoma patients; one is being 

conducted in Brazil, in patients with advanced glaucoma (NCT02330978), and the other in Russia 

(NCT02144103)[83]. The outcomes are awaited. 

9. Future of Neuroprotection 

There are many barriers to successful translation of glaucoma treatment into clinical practice 

(Figure 2). The main factors amongst these are inherent in the delivery of the drug to the target 

tissue, and the biomarkers available to monitor therapeutic response. 

Figure 2 Factors preventing the translation to clinical use. 

Besides having a therapeutic effect, successful novel treatments require sufficient bioavailability 

with suitable dosing supporting compliance from the patient. This is being tackled by using novel 

formulations and routes of delivery, whilst also exploring new classes of treatment such as 

neurotrophic factors and stem cells. In terms of detecting therapeutic effect, other conditions such 

as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis and ageing itself also demonstrate 

retinal neurodegeneration and can confuse the clinical picture [84, 85]. Other confounders in 

glaucoma can also include lifestyle factors, ethnicity and systemic medications.  

In line with ethical regulations, trials are carried out with patients already receiving IOP-lowering 

treatment, with the purpose of diminishing the remaining glaucoma progression below that 

achieved by IOP lowering treatment alone [86]. Of the clinical trials mentioned in the manuscript, 
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there is paucity of information on potential interactions of current or previous medications with the 

novel agents. It may be unlikely that novel agents will interact with traditional IOP lowering agents. 

It is thought that the traditional IOP lowering medications may also have non IOP lowering 

neuroprotective effects, such as in the case of the alpha agonists brimonidine which have 

neuroprotective features in addition to lowering IOP [52]. There are purported alternative 

neuroprotective mechanisms such as the anti-apoptotic effects of prostaglandin analogues and 

blood flow regulation of carbonic anhydrase inhibitors [87]. This may infer that novel agents 

targeting similar pathways would not bring additional benefit. 

Since glaucoma is typically a slowly progressing disease, a long period of observation is often 

required to assess therapeutic efficacy in a clinical trial [88, 89]. Furthermore, damage to the optic 

nerve occurs before clinically measurable changes in visual fields, with up to 20-40% of RGCs are 

lost before visual field defects are detected [90]. However, strategies for assessing rates of 

progression of visual fields and OCT imaging are increasingly advocated to reduce the length of 

clinical trials [91-93]. Novel techniques such as DARC (Detection of Apoptosing Retinal Cells) have 

been developed as biomarkers [94] in the hope of more accurately quantifying drug efficacy by 

disease activity, especially in the early stages, and indeed has been utilised for this purpose 

experimentally, testing neuroprotective drugs including topical curcumin, topical Coenzyme Q10, 

glutamate modulation, and stem cell transplantation [27, 29, 43, 95-97]. With clinical trials showing 

promising results, [98, 99] it is hoped that DARC can be used as a surrogate endpoint in clinical trials 

for novel neuroprotective strategies.  

10. Conclusions  

Currently, there are a number of different neuroprotective strategies that have reached clinical 

trials but there are many and common limitations to evidence in this field of research. The difficulty 

in clinical translation is that many drugs, despite having positive results from preclinical data, failed 

to pass phase II clinical trials [6]. This may be attributed to the complex and as yet incompletely 

understood pathogenesis of disease, in addition to its slow progression requiring long term follow-

up for clinically detectable changes to occur with current methodologies. Alternative trial designs 

for clinical trials may be beneficial to close the translation gap. An adaptive trial design increases 

flexibility and efficacy, providing the opportunity to modify the trial with prespecified criteria [99]. 

Another potential design is a futility trial design which tests the non-superiority of the intervention 

and removes unfavourable treatment with fewer subjects and in a shorter study period. It is 

important to adopt emerging highly sensitive biomarkers, have better visual field testing protocols, 

and have tight control for confounding factors. There may be an argument for treating at a much 

earlier disease stage when RGCs are believed to be less vulnerable and perhaps more amenable to 

neuroprotection [100]. Future clinical trials need to focus on the preservation of vision in patients. 

The detection of early glaucoma with novel biomarkers is the first stage in the future of diagnosis 

and treatment of glaucoma. Additionally, the development of tools enabling the objective 

measurement of neuroprotection outcomes is required. Hopefully, future researchers will take on 

board lessons learnt from previous trials’ experiences to maximise the chances of providing new 

sight-saving therapies for our patients.  
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