
METHODS
published: 23 December 2020

doi: 10.3389/fninf.2020.563669

Frontiers in Neuroinformatics | www.frontiersin.org 1 December 2020 | Volume 14 | Article 563669

Edited by:

Mike Hawrylycz,

Allen Institute for Brain Science,

United States

Reviewed by:

Dan Zhang,

Tsinghua University, China

Michael Denker,

Jülich Research Centre, Germany

Cristiano Köhler,

Jülich Research Centre, Germany

*Correspondence:

Yixuan Ku

kuyixuan@mail.sysu.edu.cn

Researcher ID: D-4063-2018

orcid.org/0000-0003-2804-5123

Received: 19 May 2020

Accepted: 03 December 2020

Published: 23 December 2020

Citation:

Lu Z and Ku Y (2020) NeuroRA: A

Python Toolbox of Representational

Analysis From Multi-Modal Neural

Data. Front. Neuroinform. 14:563669.

doi: 10.3389/fninf.2020.563669

NeuroRA: A Python Toolbox of
Representational Analysis From
Multi-Modal Neural Data
Zitong Lu 1,2,3 and Yixuan Ku 1,2*

1Guangdong Provincial Key Laboratory of Social Cognitive Neuroscience and Mental Health, Department of Psychology, Sun

Yat-sen University, Guangzhou, China, 2 Peng Cheng Laboratory, Shenzhen, China, 3 Shanghai Key Laboratory of Brain

Functional Genomics, Shanghai Changning-East China Normal University (ECNU) Mental Health Center, School of

Psychology and Cognitive Science, East China Normal University, Shanghai, China

In studies of cognitive neuroscience, multivariate pattern analysis (MVPA) is widely

used as it offers richer information than traditional univariate analysis. Representational

similarity analysis (RSA), as one method of MVPA, has become an effective

decoding method based on neural data by calculating the similarity between different

representations in the brain under different conditions. Moreover, RSA is suitable for

researchers to compare data from different modalities and even bridge data from different

species. However, previous toolboxes have been made to fit specific datasets. Here,

we develop NeuroRA, a novel and easy-to-use toolbox for representational analysis.

Our toolbox aims at conducting cross-modal data analysis from multi-modal neural

data (e.g., EEG, MEG, fNIRS, fMRI, and other sources of neruroelectrophysiological

data), behavioral data, and computer-simulated data. Compared with previous software

packages, our toolbox is more comprehensive and powerful. Using NeuroRA, users

can not only calculate the representational dissimilarity matrix (RDM), which reflects the

representational similarity among different task conditions and conduct a representational

analysis among different RDMs to achieve a cross-modal comparison. Besides, users

can calculate neural pattern similarity (NPS), spatiotemporal pattern similarity (STPS),

and inter-subject correlation (ISC) with this toolbox. NeuroRA also provides users

with functions performing statistical analysis, storage, and visualization of results. We

introduce the structure, modules, features, and algorithms of NeuroRA in this paper, as

well as examples applying the toolbox in published datasets.

Keywords: representational similarity analysis (RSA), multivariate pattern analysis, multi-modal, Python,

correlation analysis

SIGNIFICANCE STATEMENT

For the last two decades, neuroscience research envisions the prevalence of multivariate pattern
analysis, in which representation similarity analysis (RSA) is one of the core methods. As
representation bridges computation and implementation in David Marr’s model, RSA bridges data
from different modalities, including behavior, EEG, MEG, fMRI, et al. and even different species.
Our toolbox NeuroRA is developed based on Python and can be applied for multi-modal neural
data, as well as behavioral and simulated data. By calculating the representational dissimilarity

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2020.563669
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2020.563669&domain=pdf&date_stamp=2020-12-23
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kuyixuan@mail.sysu.edu.cn
https://orcid.org/0000-0003-2804-5123
https://doi.org/10.3389/fninf.2020.563669
https://www.frontiersin.org/articles/10.3389/fninf.2020.563669/full

Lu and Ku NeuroRA: RSA Toolbox in Python

matrix, neural pattern similarity, spatiotemporal pattern
similarity, and inter-subject correlation with NeuroRA, we can
assess representation similarities across datasets, subjects, space,
and time. Statistical results can also be assessed by user-defined
threshold and output to a data format that could be opened in
other toolboxes.

INTRODUCTION

In recent years, research on brain science based on neural data
has shifted from univariate analysis toward multivariate pattern
analysis (MVPA) (Norman et al., 2006). In contrast to the former,
the latter accounts for the population coding for neurons. The
decoding of neural activity can help scientists better understand
the encoding process of neurons. As in David Marr’s model,
representation bridges the gap between a computation goal
and implementation machinery (Marr, 1982). Representational
similarity analysis (RSA) (Kriegeskorte et al., 2008) is an effective
MVPA method that can successfully describe the relationship
between representations of different data modalities, bridging
gaps between humans, and animals. Therefore, RSA has been
rapidly applied in investigating various cognitive functions,
including perception (Evans and Davis, 2015; Henriksson et al.,
2019), memory (Xue et al., 2010), language (Chen et al., 2016),
and decision-making (Yan et al., 2016).

With technological development in brain science,
various neural recording methods have emerged rapidly.
Noninvasive methods that investigate brain activity such as
electroencephalography (EEG), magnetoencephalography
(MEG), functional magnetic resonance imaging (fMRI), and
functional near-infrared spectroscopy (fNIRS) have been widely
used for basic research. Meanwhile, invasive techniques such as
electrocorticography (ECoG), stereo-electro-encephalography
(sEEG), and some other neuroelectrophysiological methods
have been applied to humans, non-human primates, and other
animal species. The interpretation of results across different
recording modalities becomes difficult. The RSA method,
however, uses a representation dissimilarity matrix (RDM) to
bridge data from different modalities. For example, studies have
attempted to combine fMRI results with electrophysiological
results (Kriegeskorte et al., 2008; Muukkonen et al., 2020),
MEG results with electrophysiological results (Cichy et al.,
2014), or behavioral results and fMRI results (Wang et al., 2018).
Furthermore, with the rapid development of artificial intelligence
(AI) (Jordan and Mitchell, 2015; Kriegeskorte and Golan, 2019),
RSA can be used to compare representations in artificial neural
networks (ANN) with brain activities (Khaligh-Razavi and
Kriegeskorte, 2014; Yamins et al., 2014; Güçl and van Gerven,
2015; Eickenberg et al., 2017; Bonner and Epstein, 2018; Greene
and Hansen, 2018; Kuzovkin et al., 2018; Urgen et al., 2019). In
summary, RSA is a useful tool to combine the results of behavior
and multi-modal neural data, leading to a better understanding
of the brain. Even further, it can help us establish a clearer link
between the brain and artificial intelligence.

Other existing tools for RSA include a module in PyMVPA
(Hanke et al., 2009), a toolbox for RSA by Kriegeskorte

(Nili et al., 2014), and an example in MNE-Python (Gramfort
et al., 2013). However, they all have some shortcomings. MNE
can only perform RSA for MEG and EEG data in one example.
PyMVPA supports only basic functions, such as calculating
the correlation coefficient and data conversion. Kriegeskorte’s
toolbox attached to their paper is designed mainly based on
fMRI data, and users need to be proficient in MATLAB (Nili
et al., 2014), which makes it difficult for users to apply to
other datasets for EEG, MEG, or other types of data sources.
We set to develop a comprehensive and universal toolbox
for RSA, and Python was chosen as a suitable programming
language. Python is a rapidly rising programming language
having significant advantages for scientific computing (Sanner,
1999; Koepke, 2011). Because of its strong expansibility, it is
more convenient to use Python for implementing a toolbox
for representational analysis. NumPy (van der Walt et al.,
2011), Scikit-learn (Pedregosa et al., 2011), and other extensions
can execute and simplify various basic computing functions.
Thus, some researchers select Python to develop toolkits in
psychology and neuroscience, such as PsychoPy (Peirce, 2007)
for designing psychological experiment programs, MNE-Python
for EEG/MEG data analysis, and PyMVPA for utilizing MVPA in
data from different modalities.

We have developed a novel and easy-to-use Python toolbox,
NeuroRA (neural representational analysis), for comprehensive
representation analysis. NeuroRA aims to use powerful
computational resources with Python and conduct cross-modal
data analyses for various types of neural data (e.g., EEG, MEG,
fNIRS, fMRI, and other sources of neuroelectrophysiological
data), as well as behavioral data and computer simulation data.
In addition to the traditional functions of RSA, NeuroRA also
includes specialized parts of representational analysis described
in papers published on different research groups. These include
neural pattern similarity (NPS) (Haxby, 2001; Cavanagh et al.,
2018), spatiotemporal pattern similarity (STPS) (Xue et al., 2010;
Lu et al., 2015), and inter-subject correlation (ISC) (Hasson
et al., 2004). In the following sections, we detail the structure
and function of NeuroRA and further apply it to several open
datasets to guide users to use NeuroRA.

OVERVIEW OF NEURORA

NeuroRA is an easy-to-use Python toolbox of representational
analysis frommulti-modal neural data. Users can apply NeuroRA
to track the representation and compare representational
similarity among different task conditions and modalities.

The structure and features of NeuroRA are illustrated in
Figure 1. It can analyze all types of neural (including EEG, MEG,
fNIRS, fMRI, and other sources of neuroelectrophysiological
data) and behavioral data. By utilizing the powerful
computational toolbox in Python, NeuroRA gives users the
ability to mine neural data thoroughly and efficiently.

NeuroRA provides abundant functions. First, NPS module
reflects the correlation of brain activities induced under
two different conditions. Second, STPS module reflects the
representational similarity across different space and time points.

Frontiers in Neuroinformatics | www.frontiersin.org 2 December 2020 | Volume 14 | Article 563669

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lu and Ku NeuroRA: RSA Toolbox in Python

FIGURE 1 | Overview of NeuroRA. NeuroRA is a Python-based toolbox and requires some extension packages, including NumPy, SciPy, Matplotlib, Nilearn, and

MNE-Python. It contains several main parts: calculating neural pattern similarity (NPS), spatiotemporal pattern similarity (STPS), inter-subject correlation (ISC), and

representation dissimilarity matrix (RDM), comparing representations among different modalities using RDMs, statistical analysis, saving results as a NIfTI file for fMRI

data, and plotting the results. Each calculation part corresponds to one to two modules. The blue arrows indicate the feasible data flow.

Frontiers in Neuroinformatics | www.frontiersin.org 3 December 2020 | Volume 14 | Article 563669

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lu and Ku NeuroRA: RSA Toolbox in Python

Third, ISC module reflects the similarity of brain activities
amongmultiple subjects under the same condition. Fourth, RDM
module reflects the representation similarity between different
conditions or stimuli with neural data from a given modality.
Fifth, NeuroRA performs a correlation analysis between RDMs
from different modalities to compare representations across
modalities. This procedure can be applied according to different
parameters; for example, the calculation can be applied for each
subject, for each channel, for each time-point, or a combination
of all of them.

In addition to calculating the above values, NeuroRA provides
a statistical module to perform statistical analysis based on
those values and a visualization module to plot the results,
such as RDMs, representational similarities over time, and RSA-
results for fMRI. Also, NeuroRA provides a unique approach to
save the result of representational analysis back to the widely-
used fMRI format NIfTI, generating a file obtained with user-
defined output-threshold.

The required packages for NeuroRA include NumPy, SciPy
(Virtanen et al., 2020), Matplotlib (Hunter, 2007), Nibabel (Brett
et al., 2016), Nilearn, and MNE-Python, which are checked and
automatically downloaded by installing NeuroRA. NumPy assists
with matrix-based computation. SciPy helps with fundamental
statistical analysis. Matplotlib and Nilearn are employed for
the plotting functions. NiBabel is used to read and generate
NIfTI files. MNE-Python is applied to load example MEG
data in the demo. Users can download NeuroRA through
only one line of command: pip install neurora. The website
for our toolbox is https://neurora.github.io/NeuroRA/, and the
website for online API documentation is https://neurora.github.
io/documentation/. Additionally, GitHub URL for its source
code is https://github.com/neurora/NeuroRA.

DATA STRUCTURES IN NEURORA

The calculations in NeuroRA are all based on multidimensional
matrices, including deformation, transposition, decomposition,
standardization, addition, and subtraction. The data type in
NeuroRA is ndarray, an N-dimensional array class of NumPy.
Therefore, users first convert their neural data into a matrix
(ndarray type) as the input of NeuroRA, with information on
the different dimensions of the matrix, such as the number of
subjects, number of conditions, number of channels, and size
of the image (see instructions in the software for details). Here,
we give users some feasible methods for data conversion for
different kinds of neural data in Supplemental Instructions for

Data Conversion. The outputs of the functions in NeuroRA
are square matrices with the same dimensions as the input
matrix. The input and output data structures of key functions
for calculation and statistical analysis in NeuroRA are shown in
Supplementary Tables 1, 2.

NEURORA’S MODULES AND FEATURES

NeuroRA provides various functions to perform the
representational analysis. Usually, data must be processed

in multi-step ways, and this toolkit highly integrates these
intermediate processes, making it easy to implement. In
NeuroRA, only a simple function is required to complete the
analysis. Users can obtain the required results after a necessary
conversion of the data format.

Meanwhile, we attempt to add some adjustable parameters
to meet the calculation requirements for different experiments
and different modalities of data. Users can flexibly change the
input parameters in the function to match their data format and
computing goals.

NeuroRA includes the following core modules, and more
modules could be added in the future or as requested.

nps_cal: A module to calculate the neural pattern similarity
based on neural data.

stps_cal: A module to calculate the spatiotemporal pattern
similarity based on neural data.

isc_cal: A module to calculate the inter-subject correlation
based on neural data.

rdm_cal: A module to calculate RDMs based on multi-modal
neural data.

rdm_corr: A module to calculate the correlation coefficient
between two RDMs, based on different algorithms, including
Pearson correlation, Spearman correlation, Kendall’s tau
correlation, cosine similarity, and Euclidean distance.

corr_cal_by_rdm: A module to calculate the representational
similarities among the RDMs under different modes.

corr_cal: A module to conduct a one-step RSA between two
different modes of data.

nii_save: Amodule to save the representational analysis results
in a .nii file for fMRI.

stats_cal: A module to calculate the statistical results.
rsa_plot: A module to plot the results from the

representational analysis. It contains the functions of plotting
the RDM, plotting the graphs or hotmaps with results from
the representational analysis by time sequence based on EEG
or EEG-like (such as MEG) data, plotting the results of fMRI
representational analysis (montage images and surface images).

REPRESENTATIONAL SIMILARITY
ANALYSIS USING NEURORA

RSA has gradually become a popular method to explore
information coding in the brain and computational models.
Comparing whole dissimilarities among all task conditions
in RDM, RSA becomes an effective approach to track the
multidimensional representation among task conditions. On the
one hand, researchers can construct hypothesis-based RDM for
different conditions, then compare these theoretical models with
RDMs from real neural activities to calculate how similar they
are (Alfred et al., 2018; Feng et al., 2018; Hall-McMaster et al.,
2019; Yokoi and Diedrichsen, 2019; Etzel et al., 2020). As a
result, they can infer the information is coded in the brain.
On the other hand, researchers can compare differences and
similarities among multi-modal data by comparing the distance
or correlation among RDMs computed using different data
sources (Kriegeskorte et al., 2008; Cichy et al., 2014; Stolier

Frontiers in Neuroinformatics | www.frontiersin.org 4 December 2020 | Volume 14 | Article 563669

https://neurora.github.io/NeuroRA/
https://neurora.github.io/documentation/
https://neurora.github.io/documentation/
https://github.com/neurora/NeuroRA
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lu and Ku NeuroRA: RSA Toolbox in Python

and Freeman, 2016; Muukkonen et al., 2020). This cross-modal
calculation has been increasingly used in comparing brain
activities and deep neural networks during object processing
(Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014;
Güçl and van Gerven, 2015; Eickenberg et al., 2017; Bonner and
Epstein, 2018; Greene and Hansen, 2018; Kuzovkin et al., 2018;
Urgen et al., 2019).

Calculate One RDM or Multiple RDMs
Constructing an RDM is a typical approach for comparing
representations in neural data. By extracting data from
two different conditions and calculating the correlations
between them, we will obtain the similarity between the
two representations under the two conditions. Subtract the
obtained similarity index from 1 and get the values of the
dissimilarity index in RDM (Figure 2). In Figure 2, different
grating stimuli were observed to produce different neural
responses, and the value in RDM presented the dissimilarity of
neural activities between two different stimuli. As shown in the
figure, the closer the two grating orientations were, the lower the
dissimilarity. In a typical object recognition experiment, humans
and monkeys were allowed to watch the same sets of visual
stimuli (Kriegeskorte, 2008). Researchers calculated the humans’
RDM based on fMRI data and the monkeys’ RDM based on
electrophysiological data. The results indicated that the neural
patterns in RDMs were similar when humans and monkeys
observed stimuli that belonged to the same category (animate
or inanimate).

Assuming that the measured data from a certain condition
under a total of n experimental conditions are denoted as
d1, d2, . . . , dn, then the following RDMof n×n can be calculated
by the corresponding function under the rdm_cal module from
our toolkit:

RDM =

D11
...

Dn1

D12
...

Dn2

· · ·

. . .
· · ·

D1n
...

Dnn

where Dij denotes the dissimilarity between the data under
condition i and that under condition j. The dissimilarity (Dij) is
calculated as follows:

Dij = 1− similarity(di, dj)

When computing the RDM, multiple measures are provided
in NeuroRA, including correlation distance (based on Pearson
correlation), Euclidean distance, and Mahalanobis distance. All
functions in neurora.rdm_cal module has a parameter named
method, which can be set to change the measure you want
(default is for computing based on correlation distance). The
application of calculating RDMs is not restricted. NeuroRA can
perform computations based onmultiple modal neural data from
behavioral data to brain imaging data (Figure 3).

In certain cases, researchers must calculate RDM separately
for each participant, or they may calculate RDM independently
for each channel or each time point (Hall-McMaster et al.,
2019; Henriksson et al., 2019). We resolve these issues in

NeuroRA by providing several input parameters in the functions
that allow users to make the corresponding changes to
get one RDM or multiple RDMs by different subjects or
channels or time-windows or searchlight (for fMRI) or specific
ROI (for fMRI) (Figure 3). Users can change the calculation
parameters according to their requirements, and consequently,
the corresponding output formats change. Detailed instruction
of the shape of the input, the parameter settings with calculation
implementation, the corresponding shape of the output, and
recommended next steps can be seen in Supplementary Table 1.

Representational Analysis Among Different
RDMs
Analysis Between Two RDMs
NeuroRA provides a convenient way to calculate cross-modal
similarity by computing the similarities between two RDMs
from different modalities. We offer several solutions to calculate
the similarity (or correlation coefficient), including Pearson
correlation, Spearman correlation, Kendall’s tau correlation,
cosine similarity, and Euclidean distance. Users can freely change
parameters to select different computing methods.

For the calculations, we first reshape the square matrices
into vectors and then calculate similarities (Figure 4). Previous
studies calculated the correlation coefficient between two RDMs
using the diagonal values, making the result deceptively high
(Ritchie et al., 2017). We avoid this by removing the diagonal
values and include only half of the matrix to reduce the
duplication, as the upper and lower halves of the RDM are
identical (Figure 4).

Furthermore, NeuroRA provides a permutation test to
determine whether the two RDMs are related. The permutation
test is based on the random shuffling of data and is suitable
for data with a small sample size (Efron and Tibshirani, 1994).
We first shuffle the values in the two RDMs and re-calculate
the similarity matrix between the two RDMs. By repeating
this procedure 5000 times (the number of iterations here can
be defined by users), we get the final p-values from this
permutation distribution.

Analysis Among Multiple RDMs
NeuroRA can also perform calculations based on multiple
RDMs, rather than only two RDMs corresponding to two
modalities. Consequently, we can expand it to conditions with
multiple RDMs from different modalities. For instance, when
you obtain a behavioral RDM from behavioral data and wish
to compare it with other modal data, a problem may arise as
more than one RDM can be obtained based on other modal
data, such as EEG or fMRI. Our toolbox provides “searchlight”
computation to perform correlation analysis between RDM from
one mode (behavior, or any of neural data) and RDM from other
modes (each brain region, time interval, or others) one by one
(Figure 3). For example, calculations based on EEG data can
obtain one RDM per channel or time interval or both (Figure 5).
Table 1 is a script example for using NeuroRA to calculate
the similarities between behavioral RDM and EEG RDMs per
channel by time sequence. Another simple example is when
users want to see which brain regions are highly correlated with

Frontiers in Neuroinformatics | www.frontiersin.org 5 December 2020 | Volume 14 | Article 563669

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lu and Ku NeuroRA: RSA Toolbox in Python

FIGURE 2 | Schematic diagram for calculating the RDM. Different data can be obtained under different conditions. The value of the point [i, j] in RDM is obtained by

calculating the dissimilarity (1-correlation coefficient r) between the data under condition i and that under condition j.

FIGURE 3 | RDM calculations implemented in NeuroRA. NeuroRA is capable of calculating an RDM using data from different modes, including behavior, fMRI, EEG,

MEG, fNIRS, and other sources of neuroelectrophysiological data. The red bold lines denote the ability to perform calculations between two modes. The pink arrow

denotes the alternative calculation methods of the corresponding mode.

the behavioral performance or a specific coding model, they
can get one behavioral or model RDM based on behavioral
response time or accuracy, and they may also get many fMRI
RDMs from different regions. Users can put these two kinds
of RDMs (behavioral or model RDM and fMRI RDMs) into
our function, and they will get results showing the regions that
are highly correlated with behavioral or model patterns based
on thresholds of significance (p-value) or correlation values
set by users (Table 3, more details on fMRI calculation are
described in the next section). These convenient functions of
ergodic computation cover the vast majority of cross-modal
research needs.

To simplify users’ experience, our toolbox offers a one-step
option between different modes (Table 1 Scheme 2 is a one-
step example for calculating a similarity index between behavior
and EEG). Users can input data from two modalities, and the
toolbox will directly return the final results of representation
analysis. It is very convenient and efficient when users do not

need to obtain the RDMs in the intermediate stages. Thus,
users can use two modules, corr_cal and corr_cal_by_rdm, to
calculate the representational similarity between two different
modalities. The former module provides the calculation based
on data from two different modalities. The later module provides
the calculation based on RDMs after previous computing from
two modalities’ data. In both modules for calculating cross-
modal similarity, users can set different parameters to meet
the requirements under different conditions (calculate for each
channel, etc.). More detailed instructions of the shape of the
input, the parameter settings with calculation implementation,
the corresponding shape of the output, and recommended next
steps about these modules are shown in Supplementary Table 1.

Representational Analysis for fMRI
fMRI is a largely used method in cognitive neuroscience. In the
RSA of fMRI data (Johnson et al., 2005; Poldrack, 2012; Rosen
and Savoy, 2012; Lawrence et al., 2019), researchers typically wish

Frontiers in Neuroinformatics | www.frontiersin.org 6 December 2020 | Volume 14 | Article 563669

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lu and Ku NeuroRA: RSA Toolbox in Python

FIGURE 4 | Schematic diagram for calculation between two RDMs. Step 1: Obtain two RDMs from different modal data. Step 2: Extract the points of the upper

diagonal (within the gray line). Step 3: Spread them as vectors. Step 4: Calculate the correlation coefficient or conduct a permutation test between two vectors. The

former returns the correlation coefficient and the p-value, and the latter returns only the p-value.

FIGURE 5 | Schematic diagram for calculating similarities between RDM from different modes across time and channel for EEG and EEG-like (such as MEG or sEEG)

data. NeuroRA calculates the similarities between RDMs for mode A (EEG and EEG-like data) and one RDM for mode B (such as behavior). Such calculation can be

performed across each time-window and each channel. Each value in time-channel result-image (bottom right) corresponds to a similarity index (for example, the

Pearson correlation) between RDMs from two Modes.

to calculate RDMs for different brain regions. In NeuroRA, users
can conduct representational analysis using ROIs or searchlight
across the whole brain (Figure 6).

ROI-Based Computation
For ROI-based computation, users are required to input both
fMRI data and a 3-D mask matrix whose size should be

consistent with the size of the fMRI image corresponding to
fMRI data. The valid voxels which belong to ROI are extracted,
and different activities under different conditions of these voxels
are spread out as vectors. Then the ROI-based RDM can be
calculated by computing the dissimilarities among these vectors.
Finally, we can calculate the similarity between this ROI-based
RDM and the RDM for another modality. Steps for ROI-based

Frontiers in Neuroinformatics | www.frontiersin.org 7 December 2020 | Volume 14 | Article 563669

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lu and Ku NeuroRA: RSA Toolbox in Python

TABLE 1 | Scripts of representational analysis between behavioral data and EEG

data for each channel in NeuroRA.

Scheme 1 1 from neurora.rdm_cal import bhvRDM, eegRDM

2 from neurora.corr_cal_by_rdm import rdms_corr

3

4 # calculate the behavioral RDM for each subject

5 # the shape of bhv_data should be [n_conditions, n_subjects,

n_trials]

6 # the shape of bhv_rdms will be [n_subjects, n_conditions,

n_conditions]

7 bhv_rdms = bhvRDM(bhv_data, sub_opt=1)

8

9 # calculate the eeg RDMs for each channel & each subject

10 # the shape of eeg_data should be [n_conditions, n_subjects,

n_trials, n_channels, n_times]

11 # the shape of eeg_rdms will be [n_subjects, n_channels,

n_conditions, n_conditions]

12 eeg_rdms = eegRDM(eeg_data, sub_opt=1, chl_opt=1)

13

14 # initialize the correlation coefficients

15 corrs = np.zeros([n_subjects, n_channels, 2], dtype=np.float)

16

17 # calculate the correlation coefficients between behavioral RDM

and eeg RDMs

18 # the shape of corrs is [n_subjects, n_channels, 2], 2

represents a r-value & a p-value

19 for sub in range(n_subjects):

20 corrs[sub] = rdm_corr(bhv_rdms[sub], eeg_rdms[sub])

Scheme 2 21 from neurora.corr_cal import bhvANDeeg_corr

22

23 # calculate the correlation coefficients between behavioral RDM

and eeg RDMs

24 corrs = bhvANDeeg_corr(bhv_data, eeg_data, sub_opt=1,

chl_opt=1)

Users can input data from different modes and obtain the correlation between the results

of the two modes. If users want to conduct the calculation for each time-windows,

they can set the parameters: time_opt, time_win & time_step in function eegRDM

and bhvANDeeg_corr.

computation with corresponding functions in NeuroRA are
shown in Figure 6A.

Searchlight-Based Computation
Searchlight related functions in NeuroRA provide rich
parameters for user customization. For each searchlight
step, users can customize the size of the basic calculation unit
[kx, ky, kz]. Each k indicates the number of voxels along the
corresponding axis. The strides between different calculation
unit must be decided as [sx, sy, sz]. The strides refer to how
far the calculation unit is moved before another computation
is made. Each s indicates how many voxels exist between two
adjacent calculation units along the corresponding axis. For the
fMRI data of size [X, Y, Z], the kernel size is usually set to be
more than one voxel so that each voxel can exist in multiple
kernels (calculation units). Therefore, N computations are

required here:

N = (

⌊

(

X − kx
)

sx

⌋

+ 1)× (

⌊

(

Y − ky
)

sy

⌋

+ 1)

×(

⌊

(

Z − kz
)

sz

⌋

+ 1)

This implies that N RDMs must be calculated, which are each
related to the corresponding calculation unit. After obtaining
searchlight RDMs, users can calculate the similarities between
fMRI and other modes. In NeuroRA, the final correlation
coefficient of one voxel is the mean value of the correlation
coefficients calculated by all kernels that contain this voxel.

Figure 6B shows the steps for searchlight-based computation
with corresponding functions in NeuroRA. Table 2 is a script
demo to understand how to conduct a searchlight-based analysis
for fMRI data. We could first calculate the fMRI RDMs within
each searchlight blob and then obtain similarities between fMRI
RDMs and a behavioral RDM or a coding model RDM, which
is constructed based on the hypothesis all over the whole brain.
In a hypothesis-based RDM, values corresponding to the same
condition have the highest similarity, and values corresponding
to different conditions have a low similarity.

Save Results as a NIfTI File
NeuroRA provides two functions in nii_save module,
corr_save_nii() and stats_save_nii(), to save the similarity
result or the statistical result as a NIfTI file with thresholding
parameters as well. These two functions are used similarly. The
former function is used for saving the results of r-values after
calculating the similarities between fMRI mode and another
mode. The latter function is used for saving the results of
t-values after statistical analysis. Table 3 is a script to help users
understand how to use corr_save_nii() to save the similarity
results as a NIfTI file. Users can set certain thresholds for
p-values, r-values (only in corr_save_nii() function) or t-values
(only in stats_save_nii() function). Also, users can select Family-
Wise-Error (FWE) or False-Discovery-Rate (FDR) correction
methods to control for multiple comparisons across the whole
brain. Furthermore, users can choose whether to smooth the
results, whether to plot automatically, etc. For example, if the
threshold for p-value is set as 0.05, the final NIfTI file returned
will be filtered with p < 0.05, and all voxels with p>=0.05 will be
set as 0.

Other Representational Analysis
In addition to RSA, users can conduct the analysis of NPS,
STPS, and ISC with NeuroRA. Detailed implementation of these
analysis methods can be seen in Supplementary Information

for the Implementation of Analysis Methods. Our toolkits have
separatemodules to conduct these calculations (Table 4). Just like
RSA from multiple modalities, the calculations for these other
representational analysis methods support EEG-like data as well
as fMRI data. Users can calculate the results for each channel
or region, each time-window from a time series, each ROI or
searchlight blobs (for fMRI) as they wish by selecting different

Frontiers in Neuroinformatics | www.frontiersin.org 8 December 2020 | Volume 14 | Article 563669

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lu and Ku NeuroRA: RSA Toolbox in Python

FIGURE 6 | Schematic diagram for representational analysis for fMRI data using NeuroRA. (A) The calculating process for ROI-based analysis. For each ROI, users

can calculate the RDM based on the voxels in ROI and get the similarity between ROI RDM and the RDM for other modes. (B) The calculating process for

searchlight-based analysis. For each searchlight step, users define the size and strides of the calculation unit. After computations between the RDMs within the

searchlight blob for fMRI and the RDM for other modes (e.g., behavioral data, computer-simulated data), a NIfTI file can be obtained. At the bottom right is a demo of

the resulting NIfTI file drawn with NeuroELF (http://neuroelf.net), and color-coded regions indicate the strength of representation similarity between two modes. The

green text on the green indicates which function to use for the corresponding step.

functions and setting specific parameters. These calculations are
used in a similar way to calculate RDM or RSA, as described
in the above sections. In detail, Supplementary Table 1 shows

the shape of the input, the parameter settings with calculation
implementation, the corresponding shape of the output, and
recommended next steps in the analysis. Additionally, users can

Frontiers in Neuroinformatics | www.frontiersin.org 9 December 2020 | Volume 14 | Article 563669

http://neuroelf.net
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lu and Ku NeuroRA: RSA Toolbox in Python

TABLE 2 | Script of searchlight representational analysis between fMRI data and a

coding model in NeuroRA.

1 from neurora.rdm_cal import fmriRDM

2 from neurora.corr_cal_by_rdm import fmrirdms_corr

3 import numpy as np

4

5 # calculate the searchlight fMRI RDMs for each subject

6 # the shape of fmri_data should be [n_conditions, n_subjects, nx, ny, nz]

7 # nx, ny, nz represent the size of fMRI-img

8 # here, the size of calculation unit is [3, 3, 3] and the strides for calculating is

[1, 1, 1]

9 # the shape of fmri_rdms will be [n_subjects, n_x, n_y, n_z]

10 # n_x, n_y, n_z represent the number of calculation units for searchlight

along the x, y, z axis.

11 fmri_rdms = fmriRDM(fmri_data, ksize=[3, 3, 3], strides=[1, 1, 1],

sub_opt=1)

12

13 # initialize the correlation coefficients

14 corrs = np.zeros([n_subjects, n_x, n_y, n_z, 2], dtype=np.float)

15

16 # calculate the correlation coefficients between searchlight fMRI RDMs and

a model RDM

17 # the shape of model_rdm should be [n_conditions, n_conditions]

18 # the shape of corrs will be [n_subjetcs, n_x, n_y, n_z, 2], 2 represents a

r-value & a p-value

19 for sub in range(n_subjects):

20 corrs[sub] = fmrirdms_corr(model_rdm, fmri_rdms[sub])

The calculation parameters of fMRI data are ksize=[3, 3, 3] and strides=[1, 1, 1]. Users

can just input different data and obtain the correlation results between two modes.

TABLE 3 | Script of saving the calculation results as a NIfTI file for fMRI data.

1 from neurora.nii_save import corr_save_nii

2

3 # corrs represents the similarities (correlation coefficients) between fMRI

and other mode

4 # the shape of corrs should be [n_x, n_y, n_z, 2]

5 # filename represents the filename of the result.nii file

6 # affine represents the information of the fMRI-image array data in a

reference space

7 # here, the size of fMRI-image is [60, 60, 60], the size of calculation unit is

[3, 3, 3] and the

8 # strides for calculating is [1, 1, 1]

9 filename = “demo_result.nii”

10 corr_save_nii(corrs, filename, affine, size=[60, 60, 60], size=[60, 60, 60],

ksize=[3, 3, 3],

11 strides=[1, 1, 1], p=0.05, correct_method=’FDR’)

12

13 # The output is an [60, 60, 60] NumPy-array

14 # And a.nii file named ’demo-results.nii’ has been generated

Users can get the correlation results based on the script in Table 2. The NIfTI file can be

obtained by entering some necessary parameters.

use help() (a built-in function in Python) to see and understand
the detailed description of the purpose of the specific function
or module.

TABLE 4 | Modules and functions for NPS, STPS, ISC in NeuroRA.

Analysis

Method

Module for Computing Functions for Statistical Analysis

NPS neurora.nps_cal module For EEG-like:

neurora.stats_cal.stats()

For fMRI:

neurora.stats_cal.stats_fmri()

STPS neurora.stps_cal module For EEG-like:

neurora.stats_cal.stats_stps()

For fMRI:

neurora.stats_cal.stats_stpsfmri()

ISC neurora.isc_cal module For EEG-like:

bneurora.stats_cal.stats()

For fMRI like:

neurora.stats_iscfmri()

TABLE 5 | Example of statistical analysis for channel-time based EEG RSA

calculation and searchlight fMRI RSA calculation.

Type of Calculation Example Script

channel-time based

EEG-like calculation

from neurora.corr_cal import bhvANDeeg_corr

from neurora.stats_cal import stats

calculate the correlation coefficients between

behavioral data and EEG data

corrs=bhvANDeeg_corr(bhv_data, eeg_data,

sub_opt=1, chl_opt=1, time_opt=1)

the shape of corrs should be [n_subs, n_chls, n_ts, 2]

stats(corrs, permutation=True, iter=1000)

The output is an [n_chls, n_ts, 2] NumPy-array

2 represents a t-value and a p-value

searchlight fMRI

calculation

from neurora.corr_cal import bhvANDfmri_corr from

neurora.stats_cal import stats_fmri

calculate the correlation coefficients between

behavioral data and fMRI data

corrs=bhvANDfmri_corr(bhv_data, eeg_data,

sub_opt=1, chl_opt=1, time_opt=1)

the shape of corrs should be [n_subs, n_x, n_y, n_z, 2]

stats_fmri(corrs, permutation=True, iter=10000)

The output is an [n_x, n_y, n_z, 2] NumPy-array

Statistical Analysis
NeuroRA provides functions for statistical analysis based on the
representational analysis results. The inputs are the similarity
maps for each subject, which can be obtained by functions
in calculation modules (corr_cal, corr_cal_by_rdm, nps_cal,
stps_cal, and isc_cal modules), and the output will be the
statistical results (a t-value & p-value map) (Table 5). The output
from the functions of calculation modules always includes an
r-value map and a p-value map. Although only the r-value map is
used for subject-level statistical analysis, users can directly input
the output of functions in calculation modules as the input of
functions in stats_calmodule for convenience.

In this part, the correlation coefficients calculated by
calculation modules are tested against zero for significance.
Besides, we add a permutation test to all processes of statistical
analysis. This means the statistical significance could be
assessed through a permutation test by randomly shuffling

Frontiers in Neuroinformatics | www.frontiersin.org 10 December 2020 | Volume 14 | Article 563669

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lu and Ku NeuroRA: RSA Toolbox in Python

FIGURE 7 | Examples of visualizations implemented in NeuroRA. Left-top: Plot the RDM by function plot_rdm() and plot_rdm_withvalue(). Right-top: Plot the results

by time sequence by function plot_corrs_by_time() and plot_corrs_by_hotmap(). Left-down: Plot fMRI results as 2-D slices by function plot_brainrsa_montage().

Right-down: Plot fMRI results as surface in the 3-D space by function plot_brainrsa_surface().

the data and calculated the results for many iterations (for
example, 5000) to draw a distribution. Real data exceeding
95% of the distribution are regarded as significant. Table 5

is a script to show how to use stats_cal module to conduct
statistical analysis for RSA results from different modes. Users
can independently choose to use the permutation test or
not and change the iteration number by set parameters in
related functions.

Visualization of Results
NeuroRA provides several functions to visualize the results in
rsa_plot module. Some typical features are shown in Figure 7.

The basic option is to visualize RDMs by function plot_rdm()
or plot_rdm_withvalue(). The more advanced option for
EEG-like data is to visualize the results across different time
points. On the one hand, users can use specific functions,
plot_corrs_by_time() and plot_tbytsim_withstats(), to plot the
curve. On the other hand, users can use specific functions,
plot_corrs_hotmap(), plot_corrs_hotmap_stats() (for r-values),
plot_stats_hotmap() (for t-values) and plot_nps_hotmap()
(for NPS), to plot the hotmap. Also, NeuroRA has options
for plotting fMRI results on a brain. Users can use functions
such as plot_brainrsa_glass(), plot_brainrsa_montage() and
plot_brainrsa_regions() to plot fMRI results as 2-D slices,
and use plot_brainrsa_surface() to plot results as surfaces
in the 3-D space. Feature and applicability of functions in

rsa_plot module are shown in Table 6. The implementation of
visualization requires the Pyplot module in the Matplotlib and
nilearn package.

We also provide several code demos in NeuroRA on the
publicly available datasets. The first demo is based on visual-
92-categories-task MEG datasets (Cichy et al., 2014). We
extracted the first three subjects’ data. Figure 8A shows the
correlation-based RDMs of three different time-points using
NeuroRA [SVM-based RDMs in Cichy et al. (2014) for the first
three subjects can be seen in Supplementary Figure 1A] and
the temporal similarity results by comparing with the neural
representations of 200 and 800ms. There were more similar
neural patterns when participants were viewing human faces (the
small blue squares in RDMs), and representations of nearby times
were more similar. The second demo is based on the subject2’s
data in Haxby fMRI datasets (Haxby, 2001). Figure 8 shows the
searchlight-based RSA results between an “animate-inanimate”
coding model RDM and searchlight RDMs from fMRI data.
The results indicated that the temporal cortex was primarily
involved in coding information of animate or inanimate. The
third demo is based on EEG datasets from a working memory
task using NeuroRA (Bae and Luck, 2019). We extracted the
first five subjects’ event-related potentials (ERP) data. Figure 8C
shows the RSA-based decoding results by comparing a coding
model RDM and temporal RDMs from EEG data (The temporal
SVM-based decoding results of these five subjects can be

Frontiers in Neuroinformatics | www.frontiersin.org 11 December 2020 | Volume 14 | Article 563669

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lu and Ku NeuroRA: RSA Toolbox in Python

TABLE 6 | Feature and applicability of functions for plotting results in NeuroRA.

Function Feature and Applicability

for RDM plot_rdm() Plot the RDM

- The input should be an RDM (N_conditions×N_conditions).

plot_rdm_withvallue() Plot the RDM with values

- The input should be an RDM (N_conditions×N_conditions).

for EEG-like plot_corrs_by_time() Plot the correlation coefficients for different conditions by time sequence

- The input should be a matrix (N_conditions×N_time-points) of correlation coefficients.

plot_tbytsim_withstats() Plot the similarity averaging all subjects by time sequence with statistical results

- The input should be a matrix (N_subs×N_time-points) of similarities.

plot_corrs_hotmap() Plot the hotmap of correlation coefficients for channels/regions by time sequence

- The input should be a matrix (N_channels×N_time-points) of correlation coefficients.

plot_corrs_hotmap_stats() Plot the hotmap of correlation coefficients for channels/regions by time sequence with the significant outline

- The input should be a matrix (N_channels×N_time-points) of correlation coefficients and a matrix

(N_channels×N_time-points×2) of t-values and p-values.

plot_stats_hotmap() Plot the hotmap of statistical results for channels/regions by time sequence

- The input should be a matrix (N_channels×N_time-points×2) of t-values and p-values.

plot_nps_hotmap() Plot the hotmap of NPS for channels/regions by time sequence

- The input should be a matrix (N_channels×N_time-points) of similarities.

for fMRI plot_brainrsa_glass() Plot the 2-D projection of the RSA-results

- The input should be the.nii file generated by functions in neurora.nii_save module

plot_brainrsa_montage() Plot the RSA-results by different cuts

- The input should be the.nii file generated by functions in neurora.nii_save module

plot_brainrsa_regions() Plot the high-correlation regions of RSA-results by three cuts (frontal, axial, and lateral)

- The input should be the.nii file generated by functions in neurora.nii_save module

plot_brainrsa_surface() Plot the RSA-results into a brain surface

- The input should be the.nii file generated by functions in neurora.nii_save module

seen in Supplementary Figure 1). Both orientation and position
could be successfully decoding based on ERP data in a visual
working memory task. In these demos, user can learn how
to use NeuroRA to perform representational analysis and plot
the main results, including calculating RDMs from different
time points (Figure 8A), correlations over the time series
(Figure 8A), searchlight calculation between the brain activities
and an “animate-inanimate” codingmodel (Figure 8B), using the
hypothesis-based RDM to fit RDMs based on neural activities
by time sequence (Figure 8C) and so on (see more: https://
github.com/neurora/NeuroRA/tree/master/demo). These demos
contain several critical sections: loading data & preprocessing,
calculating RDMs, calculating the neural similarities or similarity
matrix, and plotting. Users can download the tutorial on
NeuroRA website and find further details.

User Support
To report any bugs in the code or submit any queries or
suggestions about our toolbox, users can use the issue tracker on
GitHub: https://github.com/neurora/NeuroRA/issues. We will
reply and act accordingly as soon as possible.

DISCUSSION

RSA provides a novel way of observing big data, which is
powerful in the field of cognitive neuroscience. An increasing
number of studies have used such multivariate analysis to
obtain novel information that could not be observed through
univariate analysis (Mahmoudi et al., 2012; Sui et al., 2012; Haxby
et al., 2014). More importantly, experimental data obtained from

different modalities must be assessed simultaneously, and RSA
is a suitable method way to quantitatively compare results from
different modalities with distinctive dimensions, resolutions and
even obtained from different species (Salmela et al., 2016; Cichy
and Pantazis, 2017).

In the present study, we have developed a Python-based
toolbox that can perform representation analysis for neural
data from many different modalities. Compared with other
toolkits or modules that can also implement RSA, our toolbox
has a much wider application and more convenient and rich
functionalities that users can use tiny codes to conduct not
only RSA but also NPS, STPS, ISC, statistical analysis, and
visualization, especially for the analysis of multi-modal data and
cross-modal comparisons. Moreover, it is open-source, free to
use, and cross-platform.

For detailed information on each module and function in
our toolbox, including the format of input data, the choice
of parameters, and the format of output data, users can refer
to our toolbox tutorial. To further understand the specific
implementation of each function in the toolbox, people can read
the source code directly. If users encounter any problems or
difficulties during use, they can consult NeuroRA’s tutorials and
email our developers.

Although we already implemented the essential functions for
representational analysis, there are still several limitations to be
addressed in the future. First, NeuroRA is not yet designed to
process the raw data. However, users can utilize other toolboxes
such as EEGLAB (Delorme and Makeig, 2004), MNE (Gramfort
et al., 2013), and Nibabel (Brett et al., 2016) to import data
and transfer them into a format fit for NeuroRA. We plan to

Frontiers in Neuroinformatics | www.frontiersin.org 12 December 2020 | Volume 14 | Article 563669

https://github.com/neurora/NeuroRA/tree/master/demo
https://github.com/neurora/NeuroRA/tree/master/demo
https://github.com/neurora/NeuroRA/issues
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lu and Ku NeuroRA: RSA Toolbox in Python

FIGURE 8 | Demo results. (A) Left: The RDMs of 0, 100, 200, 300ms based on all 302 channels’ MEG data for the first three subjects [data from Cichy et al. (2014)].

Right: Use the neural representations of 200ms and 800ms to calculate the similarities with all time-points’ neural representations. (B) The searchlight results between

an ’animate-inanimate’ coding model RDM and searchlight RDMs based on subject2’s data [data from Haxby (2001)]. In this coding model RDM, we assume that

there are consistent representations among animate objects and inanimate objects. (C) The RSA-based decoding results for orientation and position by calculating

the correlation coefficients between a coding model RDM and EEG RDMs by time sequence based on the first five subjects’ data in experiment 2 [data from Bae and

Luck (2019)]. In this coding model RDM, we assume that a large difference between the corresponding two angles corresponds to high dissimilarity, and vice versa. In

the two rightmost plots, the small orange rectangles inside the plotting area and orange shadow indicate p < 0.05; line width reflects ± SEM.

develop an integrated format conversion function in the next
version. Second, there is still significant room for improving
the computational performance of NeuroRA, especially in the
iterative calculation of fMRI data, which is often slow. This
is due to nested loops in the code structure when we need
to traverse the data from the entire brain and iterate the
random shuffle many times. In the future, we will reduce
the time by optimizing functions with GPUs and using some
multithreaded methods to accelerate some computing processes.
Third, there is no graphical user interface (GUI) right now,
which we plan to design and implement based on PyQt in
a future version. Users could then obtain the final results
by dragging the data file to a specific location in the GUI
with the mouse and filling in the relevant parameters. Fourth,

object-oriented programming methods can also be applied to
our toolkit development. We can build some classes with some
public methods requiring the visualization or statistical analysis
parameters and some private methods for data management
of the multidimensional matrices hidden from the user. Fifth,
we need to add some features for the plotting part, such as
returning the matplotlib object, assembling subplots and saving
them instead of displaying plots on screen only. Sixth, we
hope to provide a more straightforward version by streamlining
the full analysis workflow building on existing functions. After
simplifying the intermediate process, users don’t need to call
other functions to do extra operations for data transformation.
Finally, although we added unit tests in our toolbox, the tests
available assess only the shapes of the output corresponding

Frontiers in Neuroinformatics | www.frontiersin.org 13 December 2020 | Volume 14 | Article 563669

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lu and Ku NeuroRA: RSA Toolbox in Python

to different inputs rather than check the correctness of the
computations. The work to add them will be an important part
of NeuroRA’s future development.

Through NeuroRA, for the first time, we provide a method
for researchers to perform representation analysis with neural
data from many different modalities. However, this is only a
starting point. With the development of the algorithm and
applications for representational analysis, we will include new
functionalities, such as using the classification-based decoding
accuracy between neural activities under two conditions as the
value in an RDM (Cichy et al., 2014; Cichy and Pantazis,
2017; Xie et al., 2020) and automatically generating RDMs
for each layer in a deep convolutional neural network, as
well as new visualization tools which can plot the space
representation of neural activities with t-SNE and show the
dynamic representational analysis results. We hope that many
exciting findings can be observed through our toolbox, and we
would like to collaborate with researchers interested in this tool
to improve the toolbox further.

INFORMATION SHARING STATEMENT

NeuroRA is available at https://pypi.org/project/neurora/. The
website for NeuroRA is https://neurora.github.io/NeuroRA/,
and the tutorial of the toolbox can be download here.
Also, users can read online API documentation on https://
neurora.github.io/documentation/. The code for our toolbox
NeuroRA can be accessed on GitHub: https://github.com/
neurora/NeuroRA.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are
included in the NeuroRA repository (https://github.com/
neurora/NeuroRA), further inquiries can be directed to the
corresponding author/s.

AUTHOR CONTRIBUTIONS

ZL and YK conceived the research, analyze the data, and wrote
the paper. ZL coded the toolbox. YK supervised the research.

FUNDING

This work was supported by the National Social Science
Foundation of China (17ZDA323), the Shanghai Committee of
Science and Technology (19ZR1416700), and the Hundred Top
Talents Program from Sun Yat-sen University.

ACKNOWLEDGMENTS

This manuscript has been released as a pre-print at bioRxiv
(ZL & YK).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2020.563669/full#supplementary-material

REFERENCES

Alfred, K. L., Connolly, A. C., and Kraemer, D. J. M. (2018). Putting the
pieces together: generating a novel representational space through deductive
reasoning. NeuroImage 183, 99–111. doi: 10.1016/j.neuroimage.2018.07.062

Bae, G. Y., and Luck, S. J. (2019). Dissociable decoding of spatial attention and
working memory from EEG oscillations and sustained potentials. J. Neurosci.
38, 409–422. doi: 10.1523/JNEUROSCI.2860-17.2017

Bonner, M. F., and Epstein, R. A. (2018). Computational mechanisms underlying
cortical responses to the affordance properties of visual scenes. PLoS Computat

Biol. 14:e1006111. doi: 10.1371/journal.pcbi.1006111
Brett, M., Hanke, M., Cipollini, B., Côté, M.-A., Markiewicz, C., Gerhard, S., et al.

(2016).Nibabel: Access a Cacophony of Neuro-Imaging File Formats, Version 2.1.

0. Zenodo.
Cavanagh, S. E., Towers, J. P.,Wallis, J. D., Hunt, L. T., andKennerley, S.W. (2018).

Reconciling persistent and dynamic hypotheses of working memory coding in
prefrontal cortex. Nat. Commun. 9:3498. doi: 10.1038/s41467-018-05873-3

Chen, Y., Shimotake, A., Matsumoto, R., Kunieda, T., Kikuchi, T., Miyamoto, S.,
et al. (2016). The ’when’ and ’where’ of semantic coding in the anterior temporal
lobe: Temporal representational similarity analysis of electrocorticogram data.
Cortex 79, 1–13. doi: 10.1016/j.cortex.2016.02.015

Cichy, R. M., and Pantazis, D. (2017). Multivariate pattern analysis of MEG and
EEG: a comparison of representational structure in time and space.NeuroImage

158, 441–454. doi: 10.1016/j.neuroimage.2017.07.023
Cichy, R. M., Pantazis, D., and Oliva, A. (2014). Resolving human object

recognition in space and time.Nat. Neurosci. 17, 455–462. doi: 10.1038/nn.3635
Delorme, A., and Makeig, S. (2004). EEGLAB: An open source toolbox for

analysis of single-trial EEG dynamics including independent component
analysis. J. Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.
10.009

Efron, B., and Tibshirani, R. J. (1994).An Introduction to the Bootstrap. Boca Raton:
CRC press.

Eickenberg, M., Gramfort, A., Varoquaux, G., and Thirion, B. (2017). Seeing it all:
convolutional network layers map the function of the human visual system.
NeuroImage 152, 184–194. doi: 10.1016/j.neuroimage.2016.10.001

Etzel, J. A., Courtney, Y., Carey, C. E., Gehred, M. Z., Agrawal, A., and
Braver, T. S. (2020). Pattern similarity analyses of frontoparietal task coding:
individual variation and genetic influences. Cereb. Cortex 30, 3167–3183.
doi: 10.1093/cercor/bhz301

Evans, S., and Davis, M. H. (2015). Hierarchical organization of auditory
and motor representations in speech perception: evidence from searchlight
similarity analysis. Cerebral Cortex 25, 4772–4788. doi: 10.1093/cercor/
bhv136

Feng, C., Yan, X., Huang, W., Han, S., and Ma, Y. (2018). Neural representations
of the multidimensional self in the cortical midline structures.NeuroImage 183,
291–299. doi: 10.1016/j.neuroimage.2018.08.018

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck,
C., et al. (2013). MEG and EEG data analysis with MNE-Python. Front.
Neurosci. 7:267. doi: 10.3389/fnins.2013.00267

Greene, M. R., and Hansen, B. C. (2018). Shared spatiotemporal category
representations in biological and artificial deep neural networks. PLoS

Computat. Biol. 14:e1006327. doi: 10.1371/journal.pcbi.1006327
Güçl,ü, U., and van Gerven, M. A. (2015). Deep neural networks reveal a gradient

in the complexity of neural representations across the ventral stream. J.

Neurosci. 35, 10005–10014. doi: 10.1523/JNEUROSCI.5023-14.2015
Hall-McMaster, S., Muhle-Karbe, P. S., Myers, N. E., and Stokes, M. G. (2019).

Reward boosts neural coding of task rules to optimize cognitive flexibility. J.
Neurosci. 39, 8549–8561. doi: 10.1523/JNEUROSCI.0631-19.2019

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby,
J. V., and Pollmann, S. (2009). PyMVPA: a python toolbox for

Frontiers in Neuroinformatics | www.frontiersin.org 14 December 2020 | Volume 14 | Article 563669

https://pypi.org/project/neurora/
https://neurora.github.io/NeuroRA/
https://neurora.github.io/documentation/
https://neurora.github.io/documentation/
https://github.com/neurora/NeuroRA
https://github.com/neurora/NeuroRA
https://github.com/neurora/NeuroRA
https://github.com/neurora/NeuroRA
https://www.frontiersin.org/articles/10.3389/fninf.2020.563669/full#supplementary-material
https://doi.org/10.1016/j.neuroimage.2018.07.062
https://doi.org/10.1523/JNEUROSCI.2860-17.2017
https://doi.org/10.1371/journal.pcbi.1006111
https://doi.org/10.1038/s41467-018-05873-3
https://doi.org/10.1016/j.cortex.2016.02.015
https://doi.org/10.1016/j.neuroimage.2017.07.023
https://doi.org/10.1038/nn.3635
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.neuroimage.2016.10.001
https://doi.org/10.1093/cercor/bhz301
https://doi.org/10.1093/cercor/bhv136
https://doi.org/10.1016/j.neuroimage.2018.08.018
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1371/journal.pcbi.1006327
https://doi.org/10.1523/JNEUROSCI.5023-14.2015
https://doi.org/10.1523/JNEUROSCI.0631-19.2019
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lu and Ku NeuroRA: RSA Toolbox in Python

multivariate pattern analysis of fMRI data. Neuroinformatics 7, 37–53.
doi: 10.1007/s12021-008-9041-y

Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., and Malach, R. (2004). Intersubject
synchronization of cortical activity during natural vision. Science 303,
1634–1640. doi: 10.1126/science.1089506

Haxby, J. V. (2001). Distributed and overlapping representations of
faces and objects in ventral temporal cortex. Science 293, 2425–2430.
doi: 10.1126/science.1063736

Haxby, J. V., Connolly, A. C., and Guntupalli, J. S. (2014). Decoding neural
representational spaces using multivariate pattern analysis. Annual Rev.

Neurosci. 37, 435–456. doi: 10.1146/annurev-neuro-062012-170325
Henriksson, L., Mur, M., and Kriegeskorte, N. (2019). Rapid invariant

encoding of scene layout in human OPA. Neuron 103, 161–171.e3.
doi: 10.1016/j.neuron.2019.04.014

Hunter, J. D. (2007). Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9,
90–95. doi: 10.1109/MCSE.2007.55

Johnson, M. K., Raye, C. L., Mitchell, K. J., Greene, E. J., Cunningham, W. A., and
Sanislow, C. A. (2005). Using fMRI to investigate. Cogn. Affect. Behav. Neurosci.
5, 339–361. doi: 10.3758/CABN.5.3.339

Jordan, M. I., and Mitchell, T. M. (2015). Machine learning: trends, perspectives,
and prospects. Science, 349, 255–260. doi: 10.1126/science.aaa8415

Khaligh-Razavi, S.-M., and Kriegeskorte, N. (2014). Deep supervised, but not
unsupervised, models may explain IT cortical representation. PLoS Comput.

Biol. 10:e1003915. doi: 10.1371/journal.pcbi.1003915
Koepke, H. (2011).Why Python Rocks for RESEARCh.Hacker Monthly 8.
Kriegeskorte, N. (2008). Representational similarity analysis - connecting

the branches of systems neuroscience. Front. Syst. Neurosci. 2:4.
doi: 10.3389/neuro.06.004.2008

Kriegeskorte, N., and Golan, T. (2019). Neural network models and deep learning.
Curr. Biol. 29, R231–R236. doi: 10.1016/j.cub.2019.02.034

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., et al.
(2008). Matching categorical object representations in inferior temporal cortex
of man and monkey. Neuron 60, 1126–1141. doi: 10.1016/j.neuron.2008.10.043

Kuzovkin, I., Vicente, R., Petton, M., Lachaux, J.-P., Baciu, M., Kahane, P.,
et al. (2018). Activations of deep convolutional neural networks are aligned
with gamma band activity of human visual cortex. Commun. Biol. 1:107.
doi: 10.1038/s42003-018-0110-y

Lawrence, S. J. D., Formisano, E., Muckli, L., and de Lange, F. P. (2019). Laminar
fMRI: applications for cognitive neuroscience. NeuroImage 197, 785–791.
doi: 10.1016/j.neuroimage.2017.07.004

Lu, Y., Wang, C., Chen, C., and Xue, G. (2015). Spatiotemporal neural
pattern similarity supports episodic memory. Curr. Biol. 25, 780–785.
doi: 10.1016/j.cub.2015.01.055

Mahmoudi, A., Takerkart, S., Regragui, F., Boussaoud, D., and Brovelli, A. (2012).
Multivoxel pattern analysis for fMRI data: a review. Computat. Mathemat.

Methods Med. 2012, 1–14. doi: 10.1155/2012/961257
Marr, D. (1982). Vision: A Computational Investigation into the Human

Representation and Processing of Visual Information. San Francisco, CA: W.
H. Freeman.

Muukkonen, I., Ölander, K., Numminen, J., and Salmela, V.R. (2020).
Spatio-temporal dynamics of face perception. NeuroImage 209:116531.
doi: 10.1016/j.neuroimage.2020.116531

Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., and Kriegeskorte,
N. (2014). A toolbox for representational similarity analysis. PLoS Computat.

Biol. 10:e1003553. doi: 10.1371/journal.pcbi.1003553
Norman, K. A., Polyn, S. M., Detre, G. J., and Haxby, J. V. (2006). Beyond

mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10,
424–430. doi: 10.1016/j.tics.2006.07.005

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al. (2011). Scikit-learn: machine learning in Python. J. Machine Learn. Res.

12, 2825–2830.

Peirce, J. W. (2007). PsychoPy-psychophysics software in python. J. Neurosci.
Methods 162, 8–13. doi: 10.1016/j.jneumeth.2006.11.017

Poldrack, R. A. (2012). The future of fMRI in cognitive neuroscience. NeuroImage

62, 1216–1220. doi: 10.1016/j.neuroimage.2011.08.007
Ritchie, J. B., Bracci, S., and Op de Beeck, H. (2017). Avoiding illusory effects

in representational similarity analysis: what (not) to do with the diagonal.
NeuroImage 148, 197–200. doi: 10.1016/j.neuroimage.2016.12.079

Rosen, B. R., and Savoy, R. L. (2012). fMRI at 20: has it changed the world?
NeuroImage 62, 1316–1324. doi: 10.1016/j.neuroimage.2012.03.004

Salmela, V., Salo, E., Salmi, J., and Alho, K. (2016). Spatiotemporal dynamics of
attention networks revealed by representational similarity analysis of EEG and
fMRI. Cereb. Cortex 28, 549–560. doi: 10.1093/cercor/bhw389

Sanner, M. F. (1999). Python: a programming language for software integration
and development. J. Mol. Graph. Modell. 17, 57–61.

Stolier, R. M., and Freeman, J. B. (2016). Neural pattern similarity reveals
the inherent intersection of social categories. Nat. Neurosci. 19, 795–797.
doi: 10.1038/nn.4296

Sui, J., Adali, T., Yu, Q., Chen, J., and Calhoun, V. D. (2012). A review of
multivariate methods for multi-modal fusion of brain imaging data. J. Neurosci.
Methods 204, 68–81. doi: 10.1016/j.jneumeth.2011.10.031

Urgen, B. A., Pehlivan, S., and Saygin, A. P. (2019). Distinct representations
in occipito-temporal, parietal, and premotor cortex during action perception
revealed by fMRI and computational modeling. Neuropsychologia 127, 35–47.
doi: 10.1016/j.neuropsychologia.2019.02.006

van der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). The NumPy array:
a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30.
doi: 10.1109/MCSE.2011.37

Virtanen, P., Gommers, R., Oliphant, T. E., et al. (2020). SciPy 1.0: fundamental
algorithms for scientific computing in Python. Nat. Methods 17, 261–272.
doi: 10.1038/s41592-019-0686-2

Wang, X., Xu, Y., Wang, Y., Zeng, Y., Zhang, J., Ling, Z., et al. (2018).
Representational similarity analysis reveals task-dependent semantic influence
of the visual word form area. Sci. Rep. 8:3047. doi: 10.1038/s41598-018-21062-0

Xie, S., Kaiser, D., and Cichy, R. M. (2020). Visual imagery and perception share
representations in the alpha frequency band. Curr. Biol. 30, 2621–2627.e5.
doi: 10.1016/j.cub.2020.04.074

Xue, G., Dong, Q., Chen, C., Lu, Z., Mumford, J. A., and Poldrack, R. A. (2010).
Greater neural pattern similarity across repetitions is associated with better
memory. Science 330, 97–101. doi: 10.1126/science.1193125

Yamins, D. L. K., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., and
DiCarlo, J. J. (2014). Performance-optimized hierarchical models predict neural
responses in higher visual cortex. Proc. Natl. Acad. Sci. U.S.A. 111, 8619–8624.
doi: 10.1073/pnas.1403112111

Yan, C., Su, L., Wang, Y., Xu, T., Yin, D., Fan, M., et al. (2016). Multivariate
neural representations of value during reward anticipation and consummation
in the human orbitofrontal cortex. Sci. Rep. 6:29079. doi: 10.1038/
srep29079

Yokoi, A., and Diedrichsen, J. (2019). Neural organization of hierarchical motor
sequence representations in the human neocortex. Neuron 103, 1178–1190.
doi: 10.1016/j.neuron.2019.06.017

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Lu and Ku. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 15 December 2020 | Volume 14 | Article 563669

https://doi.org/10.1007/s12021-008-9041-y
https://doi.org/10.1126/science.1089506
https://doi.org/10.1126/science.1063736
https://doi.org/10.1146/annurev-neuro-062012-170325
https://doi.org/10.1016/j.neuron.2019.04.014
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.3758/CABN.5.3.339
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1371/journal.pcbi.1003915
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.1016/j.cub.2019.02.034
https://doi.org/10.1016/j.neuron.2008.10.043
https://doi.org/10.1038/s42003-018-0110-y
https://doi.org/10.1016/j.neuroimage.2017.07.004
https://doi.org/10.1016/j.cub.2015.01.055
https://doi.org/10.1155/2012/961257
https://doi.org/10.1016/j.neuroimage.2020.116531
https://doi.org/10.1371/journal.pcbi.1003553
https://doi.org/10.1016/j.tics.2006.07.005
https://doi.org/10.1016/j.jneumeth.2006.11.017
https://doi.org/10.1016/j.neuroimage.2011.08.007
https://doi.org/10.1016/j.neuroimage.2016.12.079
https://doi.org/10.1016/j.neuroimage.2012.03.004
https://doi.org/10.1093/cercor/bhw389
https://doi.org/10.1038/nn.4296
https://doi.org/10.1016/j.jneumeth.2011.10.031
https://doi.org/10.1016/j.neuropsychologia.2019.02.006
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41598-018-21062-0
https://doi.org/10.1016/j.cub.2020.04.074
https://doi.org/10.1126/science.1193125
https://doi.org/10.1073/pnas.1403112111
https://doi.org/10.1038/srep29079
https://doi.org/10.1016/j.neuron.2019.06.017
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	NeuroRA: A Python Toolbox of Representational Analysis From Multi-Modal Neural Data
	Significance Statement
	Introduction
	Overview of Neurora
	Data Structures in Neurora
	Neurora's Modules and Features
	Representational Similarity Analysis Using Neurora
	Calculate One RDM or Multiple RDMs
	Representational Analysis Among Different RDMs
	Analysis Between Two RDMs
	Analysis Among Multiple RDMs

	Representational Analysis for fMRI
	ROI-Based Computation
	Searchlight-Based Computation
	Save Results as a NIfTI File

	Other Representational Analysis
	Statistical Analysis
	Visualization of Results
	User Support

	Discussion
	Information Sharing Statement
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

