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Neurorobots are robots whose control has been modeled after some aspect of the

brain. Since the brain is so closely coupled to the body and situated in the environment,

Neurorobots can be a powerful tool for studying neural function in a holistic fashion. It

may also be a means to develop autonomous systems that have some level of biological

intelligence. The present article provides my perspective on this field, points out some of

the landmark events, and discusses its future potential.

Keywords: brain-based devices, evolutionary robotics, embodied cognition, cognitive robotics, Neural Darwinism,

neuromorphic engineering

INTRODUCTION

I have been involved in Neurorobotics for over 20 years now, long before the field had a name. I

thought I would take this time and space to reflect on how the field got started and where I think

it is heading. Many believe Neurorobotics got its start with Grey Walter’s Tortoises1, which were

built prior to the digital age and had rudimentary light sensors and collision detectors controlled

by a simple analog circuit (Figure 1). However, these simple brains produced seemingly complex

behavior that we might call intelligent.

Another seminal moment for the field was the Vehicles thought experiments by famed

neuroanatomist Valentino Braitenberg (Braitenberg, 1986). Each chapter of this short book

introduced a simple robot or vehicle that was a lesson in neuroscience. For example, by connecting

the left light sensor to the right motor of these imaginary robots, and vice versa, Braitenberg

described the difference between contralateral and ipsilateral connections and their effect on

behavior. Using Vehicles, he introduced concepts of sensorimotor loops, inhibition and valence

with these simple thought experiments.

I also would argue that the work of Rodney Brooks in the early 90s was important for the

establishment of Neurorobotics. At this time, Good Old Fashion AI (GOFAI) was dominating

the field of ‘‘intelligent’’ robots (Kuipers et al., 2017). Following GOFAI, these robots had a

representative real-world model, a reasoning engine, and rule-based systems to guide the robot’s

behavior. Brooks wrote two very influential articles that turned the field on its head: Intelligence

without reason (Brooks, 1991a) and Intelligence without representation (Brooks, 1991b). The idea

was similar to Grey Walter in that sensorimotor integration led to seemingly natural behavior.

Brooks introduced the subsumption architecture as a means to trigger primitive behaviors and

arbitrate between them. Their robots resembled insects as they scurried around avoiding obstacles,

finding objects, and responding to changes in the environment. Later on, the subsumption

architecture was used to create robots that moved like humans or interacted naturally with humans.

1For a truly delightful video of these tortoises in action, see: https://www.youtube.com/watch?v=lLULRlmXkKo
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FIGURE 1 | Grey Walter’s tortoises. Left. Picture taken from http://

cyberneticzoo.com. Right. Photo taken from http://www.extremenxt.com.

Unlike other robots at the time they were ‘‘Fast, Cheap and

Out of Control’’2. Just like biological organisms. Their work

made the point that the selection and interaction of low level

processes could lead to intelligent behavior. From a neuroscience

point of view, this has similarities to subcortical processing of

homeostatic behaviors, such as autonomic activities, hunger,

body weight regulation, neuroendocrine functions, reproductive

behavior, aggression and self-preservation (Parvizi and Damasio,

2001; Venkatraman et al., 2017).

This is the backdrop (circa 1997) of where my neurorobotics

story begins. I was a newly minted Ph.D. trying to figure out

where I wanted to go with my research. At the time, I was

working with Giorgio Ascoli on the importance of dendritic

morphology (Ascoli et al., 2001a,b). Giorgio is a brilliant

scientist and I was a fairly skilled computer programmer. So,

the combination of the two of us led to early work generating

and visualizing dendritic trees. Although my Ph.D. was in

Computational Neuroscience, I had a background in computer

science. More specifically, I worked on real-time and embedded

systems in industry before entering academia. As exciting as

the field of computational neuroanatomy and neuroinformatics

was, I was more interested in the behavior of organisms under

natural conditions. I thought that my industry experience might

be applicable to a new line of research.

Late in 1998, I saw an opening for a postdoctoral fellow

position for the Keck Machine Psychology Laboratory at The

Neurosciences Institute in La Jolla, California. I was intrigued by

this idea and reached out to the point of contact, Olaf Sporns.

After an encouraging conversation with Olaf, he suggested that I

should visit The Neurosciences Institute for an interview.

The Neurosciences Institute was a unique place. The director

was Nobel Laureate Gerald Edelman. In addition to his work

in immunology, which led to the Nobel Prize, he introduced

a theory of the nervous system called Neural Darwinism:

The Theory of Neuronal Group Selection (Edelman, 1987,

1993). The theory suggested that there was selection of neural

circuits during development through synaptic pruning, and

selection of groups of neurons during adulthood through

reentrant connections. Important for neurorobotics was the

notion of value systems to tie environmental signals to neuronal

2‘‘Fast, Cheap & Out of Control,’’ a film by Errol Morris. Distributed by Sony

Pictures Classics, 1997.

groups, which led to the selection of behaviors important

for survival. Because of this linkage, or as Edelman would

say, ‘‘The brain is embodied, and the body is embedded in

the environment,’’ their group developed the Darwin series

of Brain-Based Devices (Reeke et al., 1990; Edelman et al.,

1992). Another phrase that drove this work, was ‘‘the world

is an unlabeled place,’’ which meant that perceptual categories

must be selected through experience, rather than supervision.

These Brain-Based Devices were robots3 with large-scale neural

networks controlling their behavior (Figure 2). However, these

were not the feedforward input layer→hidden layers→output

layer neural networks that were popular then and became the

deep neural networks of today. The Brain-Based Device’s neural

networks had anatomical details that resembled biological neural

networks. There were sensory streams, top-down connections,

long-range connections between regions that were bi-directional,

as well as local lateral excitation and inhibition within brain

regions.

By the time I visited The Neurosciences Institute, they had

already developed Darwin V, a Brain-Based Device with an

artificial nervous system that could learn preferences and predict

the value of objects (Almassy et al., 1998). This was what I

dreamed of doing, but they had a 10-year head start over me, and

they were like no other group at the time.

My visit to The Neurosciences Institute was almost too

good to be true. I bought into the overall mission of the

institute that Edelman had created, and I enjoyed discussing

research with Sporns and his colleagues. It didn’t hurt that

La Jolla was beautiful, especially for someone visiting from

the East Coast of the United States during December. But,

one thing that helped seal the deal was meeting Jim Snook,

their engineer on staff. Jim was a self-taught engineer who was

both creative and talented. I can’t say enough how invaluable

a person like this is for running a neurorobotics lab. I knew

if I joined their team, I could concentrate on the science

knowing that there was someone who could keep the machines

running (see Figure 3). I have been extremely fortunate over

the years to work with some very talented engineers, including

Jim Snook, Donald Hutson, Doug Moore, Brian Cox and Liam

Bucci. Which is good because over the years I broke a lot of

machines!

Needless to say, I jumped at the opportunity, moved out to

San Diego, and began my career in the field of Brain-Based

Devices, cognitive robots and neurorobotics.

EARLY YEARS

My coming out party in this research area was the Simulation

of Adaptive Behavior (SAB) conference in 2000. We reported

on Darwin VII, our brain-based device that was capable of

perceptual categorization (Krichmar et al., 2000). At this time,

there were just a few like-minded research groups investigating

how embodied computational neuroscience models could be

3Because Brain-Based Devices were adaptive and stochastic, we were not

allowed to call them robots, which had more fixed behavior. At least that was

the idea. It sometimes caused confusion and even derision.
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FIGURE 2 | Darwin IV Brain-Based Device. Left. Neural network model to control Darwin IV’s behavior. Right. Darwin IV in a conditioning task. Adapted from

Edelman et al. (1992) with permission.

FIGURE 3 | The Neurosciences Institute Build-A-Brain team (circa 2007). The team was a mix of PhD research fellows (Jason Fleischer, Jeff Krichmar, Jeff McKinstry,

Anil Seth, Botond Szatmary), engineers (Brian Cox, Donald Hutson, Doug Moore), and student interns (Thomas Allen, Alisha Lawson).

used as a tool for understanding brain and behavior. For example,

Tony Prescott and his group at the University of Sheffield was

developing robotic models of action selection based on the basal

ganglia (Girard et al., 2003; Prescott et al., 2006). This group was

also studying whisking in the rodent, and developing a robotic

sensorimotor circuit with biomimetic whiskers (Pearson et al.,

2011). Figure 4 shows their Whiskerbot, which was completed

around 2005.

Also related to neurorobotics was the work by Dario

Floreano’s group on evolutionary robotics and Rolf Pfeifer’s

group on morphological computation.

Nolfi and Floreano (2000) established the field of

Evolutionary Robotics. They used evolutionary algorithms

to evolve neural networks that supported a range of behaviors

from navigating mazes to developing predator-prey strategies

(Floreano and Keller, 2010). Figure 5 shows the strategy: (1) A

genome defines the neural network controller, which has input

neurons receiving inputs from sensors, and output neurons

that control actuators. These genomes could directly define

the weights or indirectly define plasticity and topology rules.

(2) The fitness was based on the robot’s performance in a

task. (3) The best neural network controllers were selected
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FIGURE 4 | Whiskerbot from the University of Sheffield. Whiskerbot had two

active whiskers and a detailed neural network model to convert whisker

deflection signals into simulated spike trains. Adapted from Pearson et al.

(2011) with permission.

and (4) subject to mutation and/or crossover. (5) From this

selection, a new population of neural network controllers was

generated.

Pfeifer and Bongard (2006) had the insight that the ‘‘Body

Shapes the Way We Think’’. They suggested that biological

organisms perform morphological computation, that is, certain

processes are performed by the body that would otherwise be

performed by the brain. By ingenious use of body plans and

materials, they showed how the morphology of the robot could

lead to intelligent behavior with minimal neural control. For

example, their quadruped puppy had a small neural network to

control gaits, but the main control of the gaits came from the

springiness of its hips and knees, and the amount of friction

on its feet (Hoffmann et al., 2012). I remember visiting Pfeifer’s

AI lab in Zurich and talking with his students. Often their

most important design consideration was choosing the proper

materials. In the case of the puppy, they chose a material

used to cover skis that had just the right amount of friction.

The combination of springy legs and sticky feet allowed the

puppy to adapt its gait over a wide variety of terrains due to

the morphology’s dynamic interaction with the environment,

rather than a complex control policy. The movement of the

puppy moved far more naturally than other legged robots at this

time.

Despite these advancements in the field, the Darwin series

of automata was an outlier. However, it should be mentioned

that other groups had similar goals to produce brain inspired

robots and develop architectures that support this effort. For

instance, the Computational Embodied Neuroscience approach

(Caligiore et al., 2010), whose aim was to develop systems level

models that account for an increasing number of experiments,

while avoiding at the same time to build ad hoc models which

account for only specific single experiments. Another related

approach is Cognitive Developmental Robotics (Asada et al.,

2009), which is a synthetic approach that developmentally

constructs cognitive functions. In these approaches, and forgive

me if I neglect other related approaches, the simulations

are constrained by our knowledge about cognitive science,

neuroscience, and psychology, and experiments are carried

out on a physical embodied system situated in the real

world.

Our own group followed up to the SAB perceptual

categorization work by demonstrating that Darwin VII was

capable of first and second order conditioning with visual

and auditory stimuli (Krichmar and Edelman, 2002). The

neural network that controlled its behavior was approximately

20,000 neurons and nearly 5,00,000 synaptic connections, all of

which had to updated in real-time to keep up with the active

vision and sensors. Invariably, when I gave talks on Darwin

VII and other brain-based devices at this time, the question

FIGURE 5 | Evolutionary neural network controllers for robots. Adapted from Floreano and Keller (2010) with permission.
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would come up as to why we needed so many neurons. Such

behavior could be realized with a far smaller neural network. For

example, work by Floreano and Keller (2010) on evolutionary

robotics showed that small neural networks were sufficient

to support interesting behaviors. Moreover, the dynamics of

passive walkers showed that complex behavior, such as bipedal

locomotion could be observed with little or no control (Collins

et al., 2005).

Although the size of the neural network often depends on

the problem domain, there are practical and theoretical reasons

for constructing and analyzing large-scale neural networks when

studying the brain using embodied models. The practical reason

is that if you want to preserve neuroanatomical pathways, such

as in a neurorobotic vision experiment, you will need many

neurons. For example, our model of the visual cortex that

allowed us to test theories of feature binding and invariant

object recognition required a neuron at every camera pixel (or

receptive field) for each feature (color opponency and orientation

selectivity). This resulted in a large-scale neural network to

encode environmental features (Seth et al., 2004b). Compare

that to our neural network model that encoded tactile features

with whiskers (Seth et al., 2004a). This model required an order

of magnitude smaller neural network to encode environmental

features.

The theoretical reason is if you want to use neurorobots

to study the brain, you need to consider both the neural

dynamics and the functional neuroanatomy. When I was

at the Neurosciences Institute, Edelman would sometimes

ask our group ‘‘If I held a gun to your head and asked

you what is the most important feature of the brain, what

would be your answer?’’ Eugene Izhikevich, who was my

co-worker and colleague at the time answered the neuron

(Izhikevich, 2004). My answer was always anatomy. The brain

can operate over a wide-range of neural dynamics. But, if

a key brain area is lesioned through stroke for example,

it can render a person to a vegetative state. For neural

modeling, preserving anatomical projections leads to large scale

heterogeneous architectures. Having large groups of neurons

with biophysical properties leads to interesting neural dynamics,

as was observed in our large-scale model of the hippocampus

and surrounding regions (Krichmar et al., 2005a; Fleischer

et al., 2007). In this model, the complex interplay between

the entorhinal cortex and hippocampal subfields resulted in

the reliance of different functional pathways at different points

in the robot’s learning. Both the neuronal dynamics and

anatomical pathways were necessary for realistic brain responses.

Although this fidelity results in highly complex networks, it

does allow one to test theories of the brain and make better

predictions.

Interestingly, the question of network size does not come up

anymore. With the advent of neuromorphic hardware that can

support brain-scale neural networks at very low power (Indiveri

et al., 2011; Merolla et al., 2014), and the resurgence of deep

neural networks with many hidden layers (LeCun et al., 2015),

large-scale neural networks are now in vogue. It turns out that

size, in the form of many layers, is necessary to solve more

challenging problems. In the brain, many anatomical regions,

diverse topologies, and neuron types are necessary to handle real

world challenges.

START OF A COMMUNITY

Over the next several years a neurorobotics community emerged

in part due to workshops and special journal issues on the

topic. I was fortunate enough to participate in several of

these events. In 2004, Anil Seth, Olaf Sporns and I organized

a special session on ‘‘Neurorobotic Models in Neuroscience

and Neuroinformatics’’ at the International Conference on the

SAB (Seth et al., 2005). To introduce the session, we stated

that a neurorobotic device has the following properties: (1) It

engages in a behavioral task. (2) It is situated in a structured

environment. (3) Its behavior is controlled by a simulated

nervous system having a design that reflects, at some level,

the brain’s architecture and dynamics. The session included

Auke Ijspeert’s research on evolving neural networks for a

robotic salamander (Ijspeert et al., 2005, 2007). In this research,

different motor patterns (i.e., swimming or walking) emerged

due to the interaction between brain and body with the

specific environment (i.e., water or land). Olaf Sporns and Max

Lungarella showed how embodiment can alter and improve the

information processing of a neural system (Lungarella et al.,

2005). Brain-inspired navigation has made many contributions

to this neurorobotics by not only suggesting how head direction

cells, place cells, and grid cells contribute to rodent navigation,

but also by demonstrating how these systems can lead to robot

navigation. In that vein, there were several articles on the topic

(Arleo et al., 2004; Banquet et al., 2005; Chavarriaga et al.,

2005).

At this time, we introduced Darwin X, a highly detailed

model of the hippocampus and surrounding areas that supported

spatial and episodic memory in a Brain-Based Device4 (Krichmar

et al., 2005a,b). Like many of these embodied navigation models,

we used the robot to examine how neural activity gives rise

to goal-directed behavior5. The robot’s task was navigating

a dry variant of the Morris water maze (Figure 6). Similar

to a rat, the robot was able to create routes to the hidden

platform. During its experience, place cells emerged in the

simulated hippocampus. What made this work special was the

sheer size of the network (∼100,000 neurons and 1.5 million

synapses), which had to run in real-time. Because of this

size and complexity, we had to develop novel methods for

analyzing large-scale networks. In our case, we wanted to

know what neural activity led to the firing of a place cell.

In one article, we developed a method called backtracing to

recursively trace back from the onset of a hippocampal place

response to the sensory data that led to this response (Krichmar

et al., 2005a). The other article was one of the first studies

applying Granger causality to a neural network, where we

4OK. It’s a robot. Old habits die hard.
5As much as I think the hippocampus and spatial navigation is interesting,

I do believe it’s over studied and there are many interesting, untapped

brain regions and behaviors that need study. However, like the quote in

Godfather III, ‘‘Just when I thought I was out, they (my students, postdocs,

and collaborators), pull me back in.’’
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FIGURE 6 | Darwin X and a hippocampal model of episodic memory.

(A) Overall neural network architecture included neuronal groups for the visual

“what” and “where” streams (V1→V2/4→IT, V1→V2/4→Pr, respectively),

head direction system (HD), reward system (R+, R−, S), and hippocampus.

(B) Subfields within the hippocampus neural group. Arrows denote synaptic

projections between sub-groups. (C) Schematic of a dry variant of the Morris

water maze. Colors denote landmarks, numbers denote starting positions of

trials. (D) Darwin X Brain-Based Device. The hidden platform was a piece of

black construction paper, which Darwin X could not see with its camera, but

could detect with a downward facing IR sensor.

analyzed what simulated entorhinal cortex, dentate gyrus, and

CA3 activity led to a CA1 place cell response (Krichmar et al.,

2005b). One key finding from this work was showing that

the trisynaptic pathway (EC→DG→CA3→CA1) was relied on

more for learning new places and routes, and that the perforant

pathway (EC→CA1) was relied on more for recalling familiar

places and routes. Another key finding was that this experiment

demonstrated degeneracy at multiple levels. Degeneracy is the

ability of elements that are structurally different to perform

the same function or yield the same output, and has been

shown throughout biological systems (Edelman and Gally, 2001).

Darwin X showed degeneracy at the: (1) Behavioral level. No

two Darwin X’s solved the maze in the same way, but they

all solved the maze. We ran Darwin X through the maze

protocol nine different times, with only slight differences in

the connectivity of its neural network. Some Darwin X’s went

directly to the platform, some bounced of walls to get to

the platform. Some were perseverant, some were exploratory.

(2) Neural level. We examined place cell activity on different

trials where Darwin X was going through the same place on the

same heading. Even under these similar conditions, a different

set of neurons led to the firing of this place cell. This could only

be shown in a computational model where we had access to the

complete artificial brain and in a robotic system where unreliable

sensing and environmental noise changes context. (3) Systems

level. Darwin XI, which navigated a plus maze (Fleischer and

Krichmar, 2007; Fleischer et al., 2007), received sensory input

from its camera (vision), whiskers (somatosensory), compass

(head direction) and laser range finder (depth/distance). Darwin

XI’s spatial memory was multimodal and degenerate. Even

when one or more of its sensory modalities were lesioned,

Darwin XI’s behavior and place cell activity remained stable.

In addition, system level tools such as Granger Causality and

Dynamic Causal Modeling can reveal functional pathways in

complex models (Friston, 2009). In the case of Darwin X

and IX, Granger Causality showed the importance of the

trisynaptic pathway when learning a novel environment, and the

reliance on the perforant pathway when the environment was

familiar.

Another landmark event for me was meeting Hiroaki

Wagatsuma. This led to the organization of a series of workshops,

articles, and discussions. Hiro coerced me into co-editing a book

on the topic, which was a laborious yet rewarding experience,

that eventually led to a book called, ‘‘Neuromorphic and Brain-

Based Robotics’’ (Krichmar and Wagatsuma, 2011). This book

covered a wide range of topics from neuromorphic designs, to

brain architectures for robots, to philosophical considerations.

There were essays on the ethics of using these robots and

treating these robots as sentient entities as they become more

sophisticated, as well as a chapter on using neurorobots to study

consciousness.

By now, Neurorobotics was becoming more mainstream.

The IEEE Robotics and Automation Magazine devoted an issue

to the topic (Browne et al., 2009). There were occasionally

special sessions on the topic at major IEEE robotics conferences.

There were government backed consortiums devoted to studying

and developing cognitive robots, such as the European Union’s

iCub project (Metta et al., 2010), the Cognitive Developmental

Robots initiatives in Japan (Asada et al., 2009), and the

Computational Embodied Neuroscience approach (Caligiore

et al., 2010). The European Union’s Human Brain Project,

which is a large-scale research project for understanding the

nervous system, included a Neurorobotics division headed up

by Alois Knoll and Florian Rohrbein (Falotico et al., 2017). The

Australian RatSLAM team was reporting results with neuro-

inspired algorithms that were as good or better than state of the

art localization and mapping by conventional robots (Milford

et al., 2016).

Also, important around this time was the reemergence of

neuromorphic engineering (Krichmar et al., 2015). Similar to

the goal of neurorobotics, neuromorphic engineering was using

inspiration from the brain to build devices, in this case computer

architectures and sensors. Because these computers were

specifically designed for spiking neural networks, algorithms

that controlled neurorobots were ideal for these platforms. Our

group demonstrated that a large-scale spiking neural network

model of the dorsal visual stream could lead to effective obstacle

avoidance and tracking on a robot (Beyeler et al., 2015). Working

with IBM’s low-power TrueNorth (TN) neuromorphic chip

(Esser et al., 2016), we demonstrated that a convolutional neural

network could be trained to self-drive a robot on a mountain
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FIGURE 7 | A self-driving robot using deep convolutional neural networks on IBM’s TrueNorth (TN) neuromorphic hardware. (A) Photograph was taken in Telluride,

Colorado where the robot autonomously traversed mountain trails. From left to right are Rodrigo Alvarez-Icaza (IBM), Jacob Isbell (University of Maryland), Tiffany

Hwu (University of California, Irvine), Will Browne (Victoria University of Wellington), Andrew Cassidy (IBM), and Jeff Krichmar (University of California, Irvine). Missing

from the photograph is Nicolas Oros (BrainChip). (B) On the left, the connectivity on the IBM TN neuromorphic chip. On the right, an image of IBM TN NS1e board

used in the experiments. (C) Data pipeline for running the self-driving robot. Training was done separately with the Eedn MatConvNet package using Titan X GPUs.

During testing, a Wi-Fi connection between the Android Galaxy S5 and IBM NS1e transmitted spiking data back and forth, using the TN Runtime API. Figure

adapted from Hwu et al. (2017) with permission.

trail (Hwu et al., 2017). The robot and TN chip were all

powered by a single hobby level nickel metal hydride battery

(Figure 7)6. The circuit diagram and pipeline shown in

Figure 7 can generalize to other hardware and neurorobot

applications.

Because of their low-power, event-driven architectures,

recent developments in neuromorphic hold great promise for

neurorobot applications. In addition to our work on IBM’s

chip, SpiNNaker has been used in a robot obstacle avoid and

random exploration task (Stewart et al., 2016). New chips are

being developed, such as Intel’s Loihi that will support embedded

neuromorphic applications (Davies et al., 2018). In addition

to running neural networks on specialized hardware, very low

power neuromorphic vision and auditory sensors are being

developed (Liu and Delbruck, 2010; Stewart et al., 2016). Similar

to biology, these sensors only respond to change or salient events,

6So, it violated my rule of the importance of neuroanatomy. Call me a

hypocrite. Still, it was a first for TrueNorth and one of the few demonstrations

of a neuromorphic chip embedded in a closed loop system. Moreover,

it was pretty cool to see IBM’s multi-million dollar piece of hardware

cruising down a mountain trail, attached on the back of our robot

with Velcro and connected to the robot’s power source with a jumper

cable.

and when they do respond, it is with a train of spikes. This

allows seamless integration of these sensors with spiking neural

networks, and their event-driven nature leads to power efficiency

that’s ideal for embedded systems (i.e., robots!).

FRONTIERS IN NEUROROBOTICS

A landmark event for the community was the inaugural issue

of Frontiers in Neurorobotics in 2007, which was founded

by Alois Knoll and Florian Rohrbein. Finally, the field had a

dedicated platform to exchange ideas, and an official name. The

initial year not only had articles from many of the pioneers

in this field, but it also showed the breadth of the field.

Tani (2007) explored top-down and bottom-up influences on

sensorimotor couplings using recurrent neural networks in a

humanoid robot. Angelo Cangelosi and Stefano Nolfi, who are

experts in evolutionary algorithms, evolved a neural controller

for reaching and grasping (Massera et al., 2007). Goodman

et al. (2007) introduced their virtual neurorobotic environment,

which could support very large-scale neurobiologically inspired

networks. Philippe Gaussier’s group described their latest results

on hippocampal inspired navigation on robots (Cuperlier et al.,

2007). Finally, Steve Potter used real neurons in a multielectrode
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array to control a robotic arm that painted artwork (Bakkum

et al., 2007).

FUTURE OUTLOOK

Neurorobotics and cognitive robotics is now a vibrant, active

field. Looking at some of the most recent articles in Frontiers in

Neurorobotics, many of the same issues, such as motor control,

navigation, mapping and developing neural networks remain.

I personally would like us as a community to focus on more

general cognition. Too often, present company included, we

focus on a particular brain area or behavior. However, biological

organisms are the ultimate multi-taskers and can readily adapt

to new situations. Many of us, again present company included,

preach on coupling brain, body and environment, but focus too

much on the brain. The same could be said of neuroscience

where currently the focus is on detailed studies of brain

components and neurotechnology to gather more data. In

contrast, Krakauer et al. (2017) point out that the goal of

neuroscience is to understand behavior, thus we should be

studying the brain in the context of naturalistic behaviors.

Many roboticists focus too much on the body and simplify

the robot’s behavior. Overall, the field needs to take a more

holistic approach. Brains and bodies co-evolved to develop more

successful behaviors in a dynamic, challenging world. However,

the body often leads the brain, and its morphology is critical to

what we call intelligence (Pfeifer and Bongard, 2006; Krichmar,

2012). The notion of ‘‘morphological computation’’ in which

processes are performed by the body and its exploitation of the

environment, rather than by a central control system (Pfeifer

and Bongard, 2006), could greatly impact how we understand

the brain, body and environment (Clark, 1996), and how we

design future neurorobots. As discussed, the morphology of

passive walkers relieved the necessity of complex control policies

(Collins et al., 2005), and the materials used in the Whiskerbot

had appropriate dynamics for recognizing objects during active

whisking (Prescott et al., 2006). Although I have presented

many examples of how embodied neural models have resulted

in interesting behaviors in the real-world, in the future we

need to develop more realistic scenarios to test our models and

take into consideration how the body plan can offload brain

processing.

Another reason to be optimistic about the future of this

field is that now anyone can be a Neuroroboticist. Although

we occasionally need to make custom robots for a particular

task, most of today’s robots can be constructed from kits, off-

the-shelf parts and 3D printing for a fraction of the cost when

I first entered this field. For example, Nicolas Oros, who was

a postdoctoral scholar in our lab, constructed a low cost, yet

highly capable robot with hobby-grade platforms and Android

smartphones as the computing and sensing engine (Oros and

Krichmar, 2013). We have used this Android based robot idea

for a wide range of research and student projects. Similar to the

days of Radio Shack, there is now an online hobbyist community

that makes it easy to obtain all the components necessary to build

sophisticated robots. Also, open source software has made it

easy to get started on programming neural networks, controlling

physical robots (e.g., Robotic Operating System7), and creating

environments for virtual robots8 These advances make it easy

for any researcher, student, or hobbyist to get started on a

neurorobotics project.

In general, this is an exciting time in Artificial Intelligence

and Artificial Neural Networks. We are seeing artificial systems

show better than human performance in certain tasks (Mnih

et al., 2015; Silver et al., 2016). In addition, deep neural networks

have been used for robotic applications with promising results.

For example, an incremental deep model that extends Restricted

Boltzmann Machines was developed to recognize the context

of scenes (e.g., objects typically found in an office, kitchen,

restroom) so that the robot can respond appropriately (Dogan

et al., 2017). In another example, a Deep Belief Neural Network

was trained for object recognition and robot grasping (Hossain

and Capi, 2016). The DBNN was able to recognize objects in

different positions and orientations by extracting object features,

and then use this information to grasp objects in real time.

However, I believe there are limitations with this current,

popular approach. It works in a limited domain, often requires

lengthy, specific training, and may not be able to address many

of the behaviors that we take for granted, but attribute to

intelligence (Larson, 2017). To address these limitations Jeff

Hawkins recently argued in IEEE Spectrum that intelligent

systems must incorporate three key features of the brain

(Hawkins, 2017): (1) Learning by rewiring; we learn quickly,

incrementally, and over a lifetime. (2) Sparse representations;

biological systems are under extreme metabolic constraints

and need to represent information efficiently. (3) Embodiment;

sensorimotor integration is observed throughout an intelligent

system. I would add (4) Value systems; extracting saliency

from the environment and responding appropriately (Friston

et al., 1994; Krichmar, 2008), and (5) Prediction; using past

experience to be more successful in the future (Clark, 2013).

In the area of value systems, models of neuromodulation have

been used to simulate value prediction and drive action selection

(Sporns and Alexander, 2002; Cox and Krichmar, 2009; Vargas

et al., 2009; Krichmar, 2013; Navarro-Guerrero et al., 2017).

Predictive coding strategies using hierarchical Bayesian systems

and recurrent neural networks have been used for robots to

develop internal models that predict movement of object and of

other robots (Park et al., 2012; Murata et al., 2017). However,

future neurorobot applications will need to address all five of

the above features in a holistic manner and demonstrate that the

robot’s behavior can generalize across multiple task domains and

over longer timeframes. I am a firm believer that neurorobotics

is the ideal methodology to address these issues and limitations.

I argue that in order to get a truly cognitive system one must

study and be inspired by the brain and body of natural systems.

Sometimes these discussions get heated. There are those that

do not feel this is a necessary requirement. However, biological

intelligence is an existence proof and currently our only working

model. Following its path by using Neurorobots will ultimately

lead to intelligent cognitive robots and assistants.

7http://www.ros.org/
8https://neurorobotics.net/
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