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Recently, scalp electroencephalography (EEG) and functional magnetic resonance

imaging (fMRI) multimodal fusion has been pursued in an effort to study human brain

function and dysfunction to obtain more comprehensive information on brain activity in

which the spatial and temporal resolutions are both satisfactory. However, a more flexible

and easy-to-use toolbox for EEG–fMRI multimodal fusion is still lacking. In this study,

we therefore developed a freely available and open-source MATLAB graphical user

interface toolbox, known as the Neuroscience Information Toolbox (NIT), for EEG–fMRI

multimodal fusion analysis. The NIT consists of three modules: (1) the fMRI module,

which has batch fMRI preprocessing, nuisance signal removal, bandpass filtering, and

calculation of resting-state measures; (2) the EEG module, which includes artifact

removal, extracting EEG features (event onset, power, and amplitude), and marking

interesting events; and (3) the fusion module, in which fMRI-informed EEG analysis

and EEG-informed fMRI analysis are included. The NIT was designed to provide a

convenient and easy-to-use toolbox for researchers, especially for novice users. The NIT

can be downloaded for free at http://www.neuro.uestc.edu.cn/NIT.html, and detailed

information, including the introduction of NIT, user’s manual and example data sets,

can also be observed on this website. We hope that the NIT is a promising toolbox for

exploring brain information in various EEG and fMRI studies.

Keywords: EEG–fMRI, multimodal fusion, brain information, MATLAB toolbox, open source

INTRODUCTION

Since being first reported by Berger in 1929 (Berger, 1929), scalp electroencephalography (EEG) has
been widely used to study brain function and dysfunction for approximately nine decades. Scalp
EEG is a cost-effective and non-invasive technique that directly quantifies the electric fields of the
brain at scalp sites with millisecond temporal resolution. However, due to the volume conduction
effect (Yao et al., 2004) and potential closed electric fields of neural activity that are invisible to
scalp recording (Nunez and Silberstein, 2000), EEGs have the limitations of poor spatial resolution
(approximately one centimeter) and signal-to-noise ratio (SNR). In contrast, since it was developed
in the 1990s, functional magnetic resonance imaging (fMRI) (Ogawa et al., 1990) has also been
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a famous non-invasive technique in basic cognitive neuroscience
research (Logothetis, 2008). It measures changes in the blood
oxygenation level-dependent (BOLD) signal, and voxel volumes
with millimeter resolution are well suited to the anatomic scale
of the hemodynamic changes in fMRI studies (Logothetis, 2008).
Therefore, fMRI achieves millimeter spatial resolution, which
results in superior functional localization power. However, fMRI
BOLD signals do not reflect the neuronal activity directly; instead,
they are a surrogate signal that contains a complex and slower
transformation from neuronal activity to the BOLD signal,
which is known as the hemodynamic response function (HRF)
(Logothetis, 2008). Thus, fMRI is an indirect measure technique
that has a relatively higher spatial resolution than EEG, but with
low temporal resolution.

In view of the remarkable complementarity between them,
EEG–fMRI multimodal fusion has become a highly desirable
multimodal approach, which includes both high spatial and
temporal resolutions in various human brain function (Laufs,
2012; Jorge et al., 2014; Ahmad et al., 2016) and dysfunction
(Gotman and Pittau, 2011; Murta et al., 2015; Vitali et al.,
2015) studies. Currently, there are three popular approaches to
EEG–fMRI fusion (Biessmann et al., 2011; Huster et al., 2012;
Laufs, 2012; Lei et al., 2012): (1) fMRI-informed EEG analysis,
where EEG electromagnetic source reconstruction benefits from
the spatial information of fMRI signals; in this approach, the
ill-posed problem of EEG source imaging can be moderated with
fMRI spatial constraints (Babiloni et al., 2005; Lei et al., 2011,
2015); (2) EEG-informed fMRI analysis, where EEG features in
a specific frequency or time domain, such as epileptic discharge
event onsets (Gotman and Pittau, 2011; Murta et al., 2014),
event-related potential (ERP) amplitudes (Debener et al., 2006)
and the power within specific EEG frequency bands (Moosmann
et al., 2003; Mantini et al., 2007) are used to predict changes of
fMRI BOLD signals; the basic assumption is that there is a linear
and/or non-linear neurovascular coupling between simultaneous
EEG and fMRI; (3) symmetric EEG–fMRI fusion, where EEG
and fMRI data are analyzed jointly through a common generative
model (Valdes-Sosa et al., 2009; Rosa et al., 2010) or in a common
data space (Moosmann et al., 2008; Dong et al., 2015c) without
possible bias.

However, the processing of EEG–fMRI multimodal fusion is a
complicated task: it involves preprocessing of fMRI raw images,
removing nuisance signals from fMRI data, re-referencing
and marking interesting events (e.g., epileptic discharges) in
simultaneous EEG data, extracting suitable EEG features in the
time or frequency domain and convolving with different shapes
of HRFs to generate predictive vectors, and analyzing EEG and
fMRI data using a fusion method. This complexity not only
constitutes a challenge to EEG–fMRI inexperienced researchers
but also offers a large amount of flexibility in multimodal
data analysis for experienced researchers. To successfully
process EEG–fMRI multimodal data, a comprehensive and
well-documented analysis toolbox is therefore required.

In this study, an open-source graphical user interface (GUI)
toolbox, called Neuroscience Information Toolbox (NIT), is
therefore developed for EEG–fMRI multimodal fusion. The
NIT is based on some functions (e.g., functions to load EEG

and fMRI data) in EEGLAB (Delorme and Makeig, 2004) and
SPM (Ashburner, 2012) and runs on major computer operating
systems (Windows 7/8/10 or Linux Ubuntu). It is designed to
meet the needs of a wide variety of inexperienced and experienced
researchers. To our knowledge, since the first version of NIT was
released in 2015, at least 26 countries/areas and 795 visitors had
already visited the NIT website1. The NIT can be downloaded
for free at this website, and details of the NIT, including demos,
example data and results, are also provided. The purpose of this
technology report is to overview the general design, key features,
illustrations and discussion of NIT.

MATERIALS AND METHODS

Neuroscience Information Toolbox
NIT Programming Environment

Current NIT is developed in the MATLAB (version 2013a/2015a
for 64 bit Win7/10 system) programming environment.
MATLAB2 (The Mathworks, Inc., Natick, MA, United States)
is a famous programming language that expresses matrix
and array mathematics directly. It has many advantages,
including compatibility with major operating systems (e.g.,
Windows/Linux), thousands of professional and reliable
functions, a number of toolboxes for data analytics and statistics
and the ability to scale analyses to run on clusters and GPUs.
These make it easy-to-use for novice researchers to write small
scripts/functions and use add-on toolboxes and for experienced
researchers to develop new algorithms/toolboxes. Currently,
MATLAB has become one of the most common programming
environments for scientific research and toolbox development.
Additionally, a number of neuroimaging toolboxes/packages,
such as EEGLAB (Delorme and Makeig, 2004), FieldTrip
(Oostenveld et al., 2011), SPM (Ashburner, 2012), GIFT3, EEG
REST (Dong et al., 2017), and emiCCA toolbox (Dong et al.,
2015c), have been developed based on MATLAB.

EEGLAB toolbox4 is a popular MATLAB toolbox for
processing the EEG/MEG data, and it incorporates artifact
removal, independent component analysis (ICA), time-frequency
analysis, and event-related statistics (Delorme and Makeig,
2004). Moreover, EEGLAB extensions allow users to import
various types of EEG data, which range from major EEG data
formats (e.g., NeuroScan ∗.cnt data file) to specific/new data
formats (e.g., NeuroScan Curry 6/7/8 data file). SPM5 is another
popular MATLAB package that is designed for the analysis of
EEG/fMRI/MEG/PET/SPECT data sequences, and it has become
one of the most commonMRI software packages in neuroscience
(Ashburner, 2012). In our work, NIT relies heavily on extracted
functions of EEGLAB (version eeglab14_1_0b) for (1) loading
EEG data from all major EEG data formats; (2) processing EEG
data, which includes filtering, re-referencing, time-frequency,

1http://www.neuro.uestc.edu.cn/NIT.html
2https://www.mathworks.com/
3http://mialab.mrn.org/software/gift/index.html
4https://sccn.ucsd.edu/eeglab/index.php
5http://www.fil.ion.ucl.ac.uk/spm/
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and ICA analyses; (3) saving EEG data as EEGLAB data structures
and conventions. Additionally, it relies on SPM12 (v6906)
functions for (1) importing/saving MRI images and (2) fMRI
preprocessing.

The installation of NIT is quite easy: (1) download the
current release from http://www.neuro.uestc.edu.cn/NIT.html,
unzip and add the path into MATLAB; (2) enter ‘nit’ as a
command into the MATLAB command window, and the main
interface of NIT will be shown (Figure 1).

General Design of NIT

NIT is designed as a convenient GUI, which is an important
aspect of an EEG–fMRI fusion analysis package. This approach
can reduce the time required for both novice and experienced
researchers to use NIT. As shown in Figures 1, 2, NIT contains
three modules: (1) fMRI module, in which fMRI preprocessing,
nuisance signal removing, bandpass filtering and calculation of
resting-state measures are contained; (2) EEG module, in which
artifact removal, the extraction of EEG features, re-referencing
and marking interesting events, etc., are contained; and (3)
fusion module, in which fMRI-informed EEG analysis and
EEG-informed fMRI analysis are included. EEG and fMRI
modules are used to generate temporal and/or spatial information
for EEG–fMRI multimodal fusion analysis in the fusion module.
Here, we will introduce the functions of NIT modules in detail.

In the EEG module, EEG data and the associated information
from a single subject are stored in a structure array ‘EEG’ in the
MATLAB workspace (the same as in EEGLAB data structures),
while in most commercial systems it would correspond to an
EEG file. The EEG data can be saved as an EEGLAB ∗.set file
in the EEG module. These make it more convenient and easy
to use for researchers who use NIT, especially for EEGLAB
experienced users. In the fMRI module, NIfTI files are suggested,

FIGURE 1 | Main interface of NIT.

FIGURE 2 | Design of NIT. NIT is designed as a convenient GUI, and it

consists of fMRI, EEG and fusion modules. Conceptually, the EEG–fMRI

multimodal fusion can be represented as information theoretic quantities,

which are displayed as areas in a Venn diagram. X is corresponding to fMRI

BOLD recordings, Y is corresponding to EEG electrophysiological signals, and

Z is common information between EEG and fMRI revealed by fusion methods.

which contain affine coordinate definitions, repetition time and
information on the left/right hemisphere. In fMRI preprocessing,
if the converting option of the DICOM files is checked, NIT
will convert the files to NIfTI images by calling dcm2nii in
MRIcroN software6 on a Win7/10 system. Major EEG and fMRI
data formats that are supported by NIT are shown in Table 1.

Key Features of NIT
Features of fMRI Module

fMRI preprocessing

The preprocessing procedure comprises slice time correction,
realignment, spatial normalization and smoothing in a

6http://people.cas.sc.edu/rorden/mricron/index.html

TABLE 1 | File formats supported by NIT now.

Class of data Manufacturer/file format

MRI formats DICOM

3D/4D Analyze images (∗.img)

3D/4D NIfTI images (∗.nii or ∗.img)

EEG file formats ASCII/Float file (∗.txt)

MATLAB (∗.mat)

EEGLAB (∗.set)

Curry 6/7 (∗.dat/∗.dap/∗.rs3)

BrainProducts/Brain Vision (∗.vhdr/.∗vmrk/∗.dat)

NeuroScan (∗.cnt/∗.eeg)

Biosemi/European Data Format (∗.bdf/∗.edf)

BIOSIG (∗.edf/∗.edf+/∗.gdf/∗.bdf)

BCI2000 (∗.bci2000)
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conventional manner to process resting-state/task fMRI
data. In SPM, the users must set SPM batches by hand for
preprocessing the fMRI data of subjects, one by one. This
approach could be inconvenient and cause a potential risk
while processing hundreds of subjects. In NIT, preprocessing
of batch files with default parameters will be automatically
performed to preprocess the fMRI data based on SPM12
functions (Figure 3). At the same time, images generated from
each preprocessing step will be organized and saved in separate
folders (Figure 4). Currently, there are six fMRI preprocessing
procedures in NIT: (1) preprocessing 1 (SPM12) comprised
slice time correction, realignment, spatial normalization [using
tissue probability map (TPM) template to normalize] and
spatial smoothing; (2) preprocessing 2 (SPM12) comprised
slice time correction, realignment, spatial normalization (using
deformation parameters from individual T1 segmentation) and
spatial smoothing; (3) preprocessing 3 (SPM12) comprised
realignment, spatial normalization (using TPM template
to normalize) and spatial smoothing; (4) preprocessing 4
(SPM8) comprised slice time correction, realignment, spatial
normalization [using echo-planar imaging (EPI) template to
normalize] and spatial smoothing; and (5) preprocessing 5
(SPM8) comprised realignment, spatial normalization (using EPI
template to normalize) and spatial smoothing; and (6) smoothing
based on SPM12.

Regressing out nuisance signals and filtering

In resting-state fMRI studies (e.g., functional connectivity
analysis), there are two conventional procedures to remove

possible nuisance signals (Biswal et al., 1995; Fox et al., 2005;
Biswal et al., 2010; Dong et al., 2016c): (1) signals, including
head motion parameters, linear trend, global signal (Fox et al.,
2009; Weissenbacher et al., 2009), individual mean white and
cerebrospinal fluid (CSF) signals, are always removed from fMRI
data; and (2) temporal passband filtering (0.01–0.08 Hz) is
conducted on fMRI data to reduce the effect of very low frequency
and high frequency physiological noise. In the NIT, a linear
regression model is utilized to remove these nuisance signals, and
ideal bandpass filtering is realized. In addition, four sets of head
motion regressors are provided, including 6-motion-parameter
(R = [X, Y, Z, pitch, yaw, roll]), 12-motion-parameter (R and
its derivative) (Power et al., 2014), and 24-motion-parameter (R,
square of R, delay of R and its square, [R, R2, Rt−1, R2

t−1], where t
and t−1 are the current and preceding time point) (Friston et al.,
1996) and 36-motion-related parameters ([R, R2, Rt−1, R2

t−1,
Rt−2, R2

t−2]) (Power et al., 2014).

Functional connectivity density

The high cognitive performance of humans can be supported by
brain networks with energy-efficient hubs. Two novel measures,
called local/global functional connectivity density (lFCD/gFCD),
have been proposed to characterize the distributions of hubs
in the brain (Tomasi and Volkow, 2010, 2011). The FCD
measures have been used in various studies such as aging
(Tomasi and Volkow, 2012), functional plasticity (Luo et al.,
2014) and schizophrenia (Chen et al., 2017b). The lFCD of a given
voxel is defined as the total number of functional connections
between the voxel and its local cluster (correlation coefficient > a

FIGURE 3 | Interfaces of the fMRI module functions.
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FIGURE 4 | An example of fMRI preprocessing outputs using the NIT. All of the outputs in the NIT will be well organized and saved into separate folders. (A) Figure

of head motion parameters; (B) TPM template and normalized image (first volume); (C) output folders; and (D) preprocessing log.

threshold and spatial adjacent voxels). The gFCD of a given
voxel is the sum number of functional connections (correlation
coefficient > a threshold) between the voxel and all brain voxels.
At the same time, a long-range FCD (lrFCD), which is defined
as gFCD minus lFCD, will be calculated in the NIT. To reduce
the variability across subjects, the lFCD/gFCD/lrFCD will be
divided by the global mean lFCD/gFCD/lrFCD value within the
whole-brain mask. At the same time, dynamic FCD measures
can be computed based on the sliding-window in the NIT. In
addition, a vector of correlation thresholds (e.g., [0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8]) can be filled to calculate a range of FCD measures
simultaneously, and the FCD calculation can be accelerated using
parallel computing.

Spatiotemporal consistency of local neural activities

Recently, a new fMRI measure, called Four-dimensional
(spatio-temporal) Consistency of local neural Activities (FOCA)
(Dong et al., 2015a), has been proposed to characterize the
local functional consistency of the brain by integrating temporal
and spatial information in a local region. The FOCA measure
has several advantages. (1) The FOCA measure can be a
time-frequency domain method (Azeez and Biswal, 2017), and
it is flexible in characterizing the local spontaneous activity. It
emphasizes both the temporal homogeneity of local adjacent

voxels and the regional stability of brain activity states (it can
reflect local functional states) between neighboring time points.
(2) It is a data-driven method without prior knowledge and
practical parameter settings. (3) It has good reproducibility and
reliability. The larger the FOCA value (value from 0 to 1) is,
the higher the spatio-temporal consistency. The FOCA measure
has been utilized to study schizophrenia (Chen et al., 2017a) and
epilepsy (Dong et al., 2016a; Ma et al., 2017). It must be noted
that temporal filtering and spatial smoothing have an impact
on the spatial and temporal correlations in a FOCA calculation,
respectively. One strategy is to remove these two steps from the
preprocessing procedure. The FOCAmeasures will be divided by
the global mean FOCA value within the whole-brain mask. The
FOCA calculation can be accelerated using parallel computing in
the NIT. More details of FOCA can be seen in the appendix in the
NIT manual and the related paper (Dong et al., 2015a).

Dynamic series analysis

There is an increasing number of studies (Hutchison et al.,
2013; Tomasi et al., 2016) on the temporal variability of the
functional connectivity metrics to reveal the dynamic properties
of the brain’s topology (Allen et al., 2014). In NIT, a range of
basic indices is provided to assess the temporal variability of
a series of functional measures/images, including the mean of
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a series, standard deviation of a series, coefficient of variation
(standard deviation divided by the mean of a series), mean of
point-by-point changes (1 −

vt
vt−1

, where vt and vt−1 are the

values of the current and preceding time point) and mean of the
relative ratio ( vt

vt−1
).

Features of the EEG Module

The NIT EEG toolbox, as an EEG module in the NIT, is mainly
used to extract various features/measures (i.e., EEG information
with a high temporal resolution) from simultaneous EEG data
(Figures 5,6A). Additionally, fMRI regressors can be directly
generated for EEG-informed fMRI analysis. Major EEG data
formats supported by the NIT EEG toolbox can be seen in
Table 1. The main functions available in the EEG module are as
follows:

Re-reference

A number of references, comprised the neck ring (Katznelson,
1981), the tip of the nose (Andrew and Pfurtscheller, 1996), the
vertex (Lehmann et al., 1998), unimastoid or ear (Bas̨ar et al.,
1998), linked mastoids or ears (Gevins and Smith, 2000), average
reference (Offner, 1950), and zero reference (named reference
electrode standardization technique, REST) (Yao, 2001; Yao et al.,
2005), have been proposed and used by different EEG researchers
around the world. It is frequently useful to change the EEG
reference offline. The NIT can convert an EEG dataset to an
average, REST or to a new reference channel (or mean of several
channels) offline by integrating the EEGLAB functions (Delorme
and Makeig, 2004) and REST toolbox (Dong et al., 2017).

Filtering

Filtering continuous EEG data (e.g., bandpass or notch filtering)
is a conventional frequency-domain procedure in EEG data
analysis to remove artifacts (e.g., linear trends, power frequency
and artificial peaks). Linear finite impulse response (FIR) filtering

FIGURE 5 | Main interface of the EEG module. The popup interface will

display the primary information of the loaded EEG data, including the file

name, set name, number of channels, time points, epochs and events,

sampling rate, epoch start time, epoch end time, reference and data size.

is utilized in the NIT by means of the MATLAB signal processing
toolbox (routine ‘filtfilt’). If the signal processing toolbox is not
present in MATLAB, then a fast Fourier transform (FFT) linear
filter with the inverse Fourier transform will be used. Users can
apply a low-pass, high-pass, or bandpass filter in NIT.

Independent component analysis

Independent component analysis was first used in EEG analysis
in 1996 (Makeig et al., 1996a,b), and now, it is a commonmethod
that is used to decompose EEG epochs to remove potential
artifacts or extract meaningful event-related components. NIT
can perform ICA decomposition of input EEG data (epochs
of an event) using the logistic infomax ICA algorithm (Bell
and Sejnowski, 1995) with principal component analysis (PCA)
dimension reduction. Noting that, in general, the number of
ICs, N, can be set as the number of channels, while satisfying
more than kN2 (k is a multiplier that increases as the number
of channels increases) data sample points. An alternative good
option to finding fewer stable components is using the PCA
dimension reduction (set the number of PCs to retain) for
insufficient data.

Load channel locations

While the EEGLAB functions of loading the channel locations in
an EEG dataset are integrated into NIT, users can load or edit
channel location information to plot EEG scalp topography or
estimate EEG sources.

Mark events

Marking interesting events or bad blocks in continuous EEG data
by hand is desired in EEG analysis, especially in finding and
labeling epileptic discharges (Gotman and Pittau, 2011; Dong
et al., 2015b, 2016b). Users can re-reference the EEG data in NIT
and then show EEG figures by selecting a type of display model
and marking interesting events (Figures 6B,C). There are five
types of display models, including showing all channels, 16/32
channels based on the NeuroScan Curry7 system, 16 bipolar
channels based on the NeuroScan Curry system and user-defined
channels. In addition, the users can use the ‘Delete Event’ button
to delete events one by one and press the ‘Save Event’ button to
save events in a structure array ‘EEG’ in the MATLAB workspace.

Extract EEG features

In EEG-informed fMRI analysis, several specific EEG features
over the time course of the EEG data are suitable, such as
epileptic discharge event onsets (Gotman and Pittau, 2011; Murta
et al., 2014), ERP amplitudes (Debener et al., 2006) and the
power within specific EEG frequency bands (Moosmann et al.,
2003; Mantini et al., 2007). Here, NIT can extract the EEG
features, excluding the features in bad blocks and including
event onsets, power values (time-frequency analysis) and ERP
amplitudes, automatically match EEG feature variables to the
fMRI time scale, and generate fMRI regressors that can be used
for EEG-informed fMRI analysis. Note that the power value is

calculated by Ypower = 2∗ ||Y||2

length of epoch signal , where Y is a complex

number calculated by the Fast-Fourier Transform (FFT), ||·||
represents complex modulus operations (using the ‘abs’ function
of MATLAB), and extracting ERP amplitudes requires running
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FIGURE 6 | Main functions of the EEG module. (A) Interfaces for extracting EEG features, including onsets, power values and ERP amplitudes; (B) interface for

selecting the channels to show; (C) plotting the EEG figure and marking interesting events (e.g., added label ‘1001’).

ICA first to obtain stable components. More details can be seen
in the NIT manual.

Artifact removal

Removals of the gradient and ballistocardiogram artifacts from
raw EEG data are very important for EEG and fMRI fusion.
The NIT can remove the fMRI-related artifacts by integrating
an artifact removal plugin, which is a set of MATLAB tools
developed by the University of Oxford Centre for FunctionalMRI
of the Brain (FMRIB7).

Plotting EEG figures

In NIT, users can plot EEG figures with different display
settings (e.g., number of channels to display, time range,

7https://fsl.fmrib.ox.ac.uk/eeglab/fmribplugin/

channel labels and event on/off) and save an EEG image as
a.JPEG/.TIFF/.BMP/.EPS/.PNG file (24 bit). The vertical axis is
in the negative y-direction (↑Neg).

Features of the Fusion Module

Network-based source imaging

Due to the high spatial resolution of fMRI, the functional
networks during resting-state (Biswal et al., 1995, 2010) or a
cognitive task (Mantini et al., 2009) could represent inter-regional
correlations in neuronal variability, and such networks could
facilitate EEG source estimation by moderating the ill-posedness
of the original inverse problem (Huster et al., 2012; Lei et al.,
2015). A new method, termed NEtwork based SOurce Imaging
(NESOI), has been proposed to estimate the EEG sources (Lei
et al., 2011). The novelty of NESOI is the utilization of multiple
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functional networks (obtained by fMRI with ICA) as spatial
priors of EEG source estimation using parametric empirical
Bayesian (PEB). NESOI is a useful approach to obtaining realistic
EEG sources by combining the high temporal resolution EEG
and high spatial resolution networks derived from fMRI. In NIT
(Figure 7), NESOI is integrated with the default sources (6,144
dipoles), which are defined over a geometrically triangular grid
based on the standard brain. More details about NESOI can be
seen in a relevant paper (Lei et al., 2011) in the information
provided in the NIT manual.

General linear model

Temporal integration of EEG–fMRI typically utilizes EEG
features in the time or frequency domain (e.g., onsets, powers or
ERP amplitudes) to inform the statistical mapping of fMRI, i.e.,
EEG-informed fMRI analysis (Gotman and Pittau, 2011; Huster
et al., 2012; Murta et al., 2015). These EEG features are typically
convolved with a canonical HRF or a set of HRFs with different
shapes, and then, they are used to predict fMRI BOLD changes
at the voxel-level using a general linear model (GLM) to obtain
the statistical fMRI activation/deactivation maps related to the
electromagnetic temporal signatures. In NIT, there are two types
of GLM to estimate the BOLD changes: (1) GLM1, which is a
conventional way that all regressors are estimated in a linear
model voxel by voxel. It is suitable for event or block design
fMRI analysis; and (2) GLM2, which is designed to investigate
the EEG discharge related BOLD changes in epilepsy (Bagshaw
et al., 2004). For each fMRI voxel, the fMRI data are analyzed
several times (e.g., once for each of the different HRF peaks,
at 3, 5, 7, and 9 s), and the maximal T-value is chosen to
account for the activation of this voxel. In addition, NIT provides
different HRF shapes, including single gamma, standard SPM
(Friston et al., 1998) and Glover (Glover, 1999) HRFs. Nuisance
signals, such as head motion, linear trend, white and CSF signals,
can also be added into the GLM. Note that before the GLM

FIGURE 7 | Main functions of the fusion module. There are three fusion

methods in NIT, including NESOI, GLM, and LMSA.

calculation, a high-pass filter is used to remove the low frequency
fMRI noise (the cut-off period in seconds is 128 s), and global
mean normalization is also conducted (i.e., data = 100·data/global
mean).More details of the GLM in theNIT can be seen in theNIT
manual.

Local multimodal serial analysis

In EEG-informed fMRI analysis in epilepsy, there are also some
problems using simple GLM: one is the variation in the HRFs in
patients; in other words, a canonical HRF might not be the best
model for the BOLD changes related to spikes (Masterton et al.,
2010). Another is the low SNR in the EEG (e.g., gradient and
ballistocardiogram artifacts) and fMRI (due to the high spatial
resolution) (Tabelow et al., 2009) data. Simple GLM might be
difficult to uncover the weak fMRI BOLD changes that are related
to the EEG features in epilepsy. Therefore, a new method, called
local multimodal serial analysis (LMSA), has been proposed
to compensate for these deficiencies in multimodal integration
(Dong et al., 2015b). The novelty of LMSA is serially fusing EEG
and fMRI in the local region to efficiently capture the potential
brain functional activities. There are two key steps in LMSA:
(1) for a given voxel i, canonical correlation analysis (CCA) is
used to obtain the significant canonical variate (i.e., vi), which
corresponds to the maximal correlation between the EEG feature
set (i.e., the lagged function matrix of the EEG features) and
the fMRI set of the local time series (27 adjacent voxels); and
then, (2) a multiple linear regression model is used to estimate
the activity of the voxel i that corresponds to vi. Finally, the
abovementioned procedure is performed for all voxels, and the
T-map of the estimated regression coefficients can be obtained.
The NIT realizes the functions of LMSA with global mean
normalization. The users can also use the LMSA module to show
the estimated HRF of a voxel calculated by LMSA. More details
about LMSA can be seen in the appendix of the NIT manual.

Illustrations
To validate and illustrate the usage of the NIT toolbox, as an
example, we performed fMRI preprocessing, FOCA, FCD and
EEG-informed fMRI analyses (GLM2) using the simultaneous
EEG–fMRI data of a previous paper (Dong et al., 2016b).
Note that four more example datasets with results (including
a resting-state fMRI example, NESOI example, EEG-informed
fMRI analysis in epilepsy and EEG-informed fMRI analysis for
EEG–fMRI data during a P300 visual task) are also provided at
the NIT website (see footnote 1) to illustrate the usage of NIT.
Users can use these datasets to walk through NIT while referring
to the NIT manual (Chinese and English versions are available).

Participants

A total of 18 juvenile myoclonic epilepsy (JME) patients were
gathered in this work (6 males/12 females, age range = 15–34
years, mean age = 21 years, standard deviation = 7 years). All
patients were diagnosed by two neurologists according to clinical
information consistent with the International League Against
Epilepsy (ILAE) guidelines. Written consent forms in accordance
with the Declaration of Helsinki were received from all patients.
More details on the participants, such as the demographic
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FIGURE 8 | Results of mean normalized local FCD, global FCD and FOCA maps in JME patients.

information and clinical characteristics, can be found in the
related article (Dong et al., 2016b). The experiment was approved
by the local ethics committee of University of Electronic Science
and Technology of China (UESTC).

Simultaneous EEG–fMRI Data Acquisition

The EEG data were recorded using a 64-channel (62 EEG
electrodes according to 10-20 cap system, 1 electrooculogram
and 1 electrocardiogram electrodes) MR compatible EEG system
(NeuroScan, Charlotte, NC, United States). The sampling rate
was set at 5 kHz.

The fMRI data were gathered using the 3-Tesla MRI scanner
(Discovery MR750, GE, United States). A 3-dimensional fast
spoiled gradient echo sequence was used to obtain T1 structural
images (152 axial slices, TR = 5.936 ms, TE = 1.956 ms, flip
angle = 9◦, voxel size = 1 mm × 1 mm × 1 mm, field
of view = 25.6 cm × 25.6 cm, thickness = 1 mm), and a
gradient-echo echo-planar imaging sequence was used to obtain
functional images (35 slices per volume, TR = 2 s, TE = 30 ms, flip
angle = 90◦, matrix size = 64 × 64, field of view = 24 cm × 24 cm,
thickness = 4 mm). All of the patients were instructed to close
their eyes and relax without falling asleep during the scanning.
There are five repeated runs (510 s × 5 = 40.25 min) for each
patient. Here, for each JME patient, one run with small head
motion (rotation < 1◦and translation < 1 mm) and high-quality
of both the EEG and fMRI data (e.g., no eye blinks and no falling
asleep) was used.

Data Analysis

For the EEGs, removing the gradient and ballistocardiogram
artifacts in the raw EEG data, bandpass filtering (1–30 Hz)
and down-sampling to 250 Hz were conducted preliminarily.
Then, using NIT, all of the EEG data were re-referenced to
the Cz reference and marked with the onsets of generalized
spike-wave discharges (GSWDs) by two experienced neurologists
(independently, both in agreement).

For fMRI, the functional images were analyzed in a
conventional fashion using NIT. The fMRI data preprocessing

comprised deleting the first five images, slice time correction,
realignment, spatial normalization using the EPI template
(3 mm × 3 mm × 3 mm, bounding box with the Data Processing
Assistant for Resting-State fMRI (DPARSF) default [−90, −126,
−72; 90, 90, 108]) and spatial smoothing (8-mm full-width at
half maximum). The preprocessing analysis was conducted using
‘preprocess 4 (SPM8)’ in NIT. Then, normalized images were
used to calculate the FOCA and FCD measures using NIT.
Default settings of the FOCA calculation are regressing out six
head motion parameters, white matter, CSF and linear trend
signals, selecting point connection criterion (local 27 voxels)
and setting TR = 2 s (Dong et al., 2015a). Default settings
of the FCD calculation are regressing out six head motion
parameters, white matter, CSF and linear trend signals, bandpass
filtering (0.01–0.08 Hz), selecting static connectivity with the line
connection criterion and setting the correlation threshold = 0.6
(Tomasi and Volkow, 2010, 2011).

For EEG-informed fMRI analysis, traditional GLM in epilepsy
was conducted on smoothed fMRI images using NIT. Onsets
of GSWDs generated from EEG were used to obtain fMRI
regressors, which convolved with four SPM HRFs and peaked

FIGURE 9 | Results of discharge-related hemodynamic changes in JME

patients revealed by traditional EEG-informed fMRI analysis (GLM2,

P < 0.005, uncorrected). F, F-value; Left is left.
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at 3, 5, 7, and 9 s (Bagshaw et al., 2004). Linear trend signal
and six head motion parameters were added as covariates in
GLM. The type of GLM2 was selected in NIT, and an F-test was
used to assess the significant BOLD changes related to the EEG
discharges in the JME patients.

RESULTS AND DISCUSSION

In this work, the simultaneous EEG–fMRI data of JME patients
were used to illustrate the usage of NIT. Figure 8 showed
that the brain regions in which the FOCA values were greater
than the mean FOCA values of the whole brain mainly
included the bilateral cerebellum (BrodmannArea BA19), middle
temporal lobes (BA21), precuneus (BA7), angular gyrus (BA39),
frontal lobes (BA46/10/9) and visual cortex (BA17/18). The
brain regions with higher local FCD values mainly contained
the bilateral lingual gyrus (BA17/18), precuneus (BA7) and
postcentral gyrus (BA4), while the regions with greater global
FCD values included the bilateral lingual and calcarine gyrus
(BA17/18), middle temporal lobes (BA21), superior temporal
lobes (BA48), precuneus (BA7) and supplementary motor area
(BA6). The current results of the resting-state fMRI measures
are consistent with the previous FOCA (Dong et al., 2015a;
Chen et al., 2017a; Ma et al., 2017) and FCD (Tomasi and
Volkow, 2010, 2011, 2012; Luo et al., 2014; Chen et al.,
2017b) studies. Figure 9 demonstrated that changes in the
BOLD signals related to GSWDs were mainly found in the
right anterior cingulate (BA32), right precentral gyrus (BA44),
bilateral thalamus, pallidum and putamen using traditional
EEG-informed fMRI analysis. These results provided further
evidence that a thalamofrontal network might be associated
with the modulation and propagation of epileptic activity in
JME, which were in line with a number of studies in idiopathic
generalized epilepsy (Norden and Blumenfeld, 2002; Gotman
et al., 2005; Li et al., 2009; Luo et al., 2012) and JME (Pulsipher
et al., 2009; Koepp et al., 2014; Dong et al., 2016b; Jiang et al.,
2018). The above-mentioned illustrations of multimodal analyses
by using NIT validated its correctness and demonstrated its
effectiveness.

The NIT should still be greatly improved in the future. For
example, a potential development of NIT is connect it to the
cloud, i.e., integrating it into neuroscience cloud computing
platforms such as the Canadian brain imaging research platform
(CBRAIN) (Sherif et al., 2014) and WeBrain8. Furthermore,
more functions, such as basic statistical analysis and other
EEG–fMRI fusion methods, will be integrated into NIT in the
future. In addition, although there is a detailed NIT user’s

8http://webrain.uestc.edu.cn/

manual contained in the NIT package, extensive files and
information related to NIT is available at http://www.neuro.uestc.
edu.cn/NIT.html. This website includes the latest version release
of NIT, a brief introduction of EEG–fMRI fusion, example data
sets and corresponding results for demos and a list of references.
These make it more efficient and convenient for customers to
enjoy NIT, even those who have little programming experience.
Bugs are an inevitable part of any software development
project. It is appreciated when users report bugs, constructive
suggestions and/or problems about NIT via email to the authors
(Lidong@uestc.edu.cn) or leave a message in the NIT community
(see footnote 1).

CONCLUSION

Based on MATLAB, NIT provides an easy-to-use, flexible
and transparent package for EEG–fMRI multimodal fusion.
NIT’s GUI, as well as support documents and detailed demos,
dramatically reduce the time required for users to learn the usage
of NIT. At the time of this writing, the website and system has
been publicly available and improved for approximately 3 years,
and it has become more stable and mature. We hope that this
user-friendly NIT could make the relatively novel technique of
multimodal fusion easier to study, especially for applications in
various EEG and fMRI studies.
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