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Abstract

A core deficit in drug addiction is the inability to inhibit maladaptive drug-seeking behavior.
Consistent with this deficit, drug-addicted individuals show reliable cross-sectional differences
from healthy non-addicted controls during tasks of response inhibition accompanied by brain
activation abnormalities as revealed by functional neuroimaging. However, it is less clear whether
inhibition-related deficits predate the transition to problematic use, and, in turn, whether these
deficits predict the transition out of problematic substance use. Here, we review longitudinal
studies of response inhibition in children/adolescents with little substance experience and
longitudinal studies of already-addicted individuals attempting to sustain abstinence. Results show
that response inhibition, and its underlying neural correlates, predict both substance use outcomes
(onset and abstinence). Neurally, key roles were observed for multiple regions of the frontal cortex
(e.g., inferior frontal gyrus, dorsal anterior cingulate cortex, and dorsolateral prefrontal cortex). In
general, less activation of these regions during response inhibition predicted not only the onset of
substance use, but interestingly, also better abstinence-related outcomes among individuals already
addicted. The role of subcortical areas, although potentially important, is less clear because of
inconsistent results and because these regions are less classically reported in studies of healthy
response inhibition. Overall, this review indicates that response inhibition is not simply a
manifestation of current drug addiction, but rather a core neurocognitive dimension that predicts
key substance use outcomes. Early intervention in inhibitory deficits could have high clinical and
public health relevance.
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Introduction

Drug addiction is a chronically relapsing disorder marked by dysregulated inhibitory control,
which may contribute to or exacerbate the addicted individual’s ability to restrain drug-
taking (Goldstein & Volkow, 2011; Kalivas & Volkow, 2005). Neuroimaging studies
utilizing functional magnetic resonance imaging (fMRI) have consistently identified
abnormalities in brain function during response inhibition in currently-addicted individuals
across multiple drugs of abuse (Luijten et al., 2014; J. L. Smith, Mattick, Jamadar, & Iredale,
2014). Nevertheless, an enduring problem of such cross-sectional studies is the inability to
infer the direction of association. Longitudinal studies offer an exciting opportunity to test
whether core drug-relevant neurocognitive deficits (e.g., in response inhibition) predate the
transition into and out of problematic drug use. In this way, one can evaluate whether such
deficits in drug addiction represent an epiphenomenon or an actual predisposing factor.

Accordingly, the goal of the current review is to examine the extent to which performance-
and/or neural-related decrements during tasks of inhibitory control precede the transition to
drug use/addiction, and then whether such decrements predict clinical outcomes when
already-addicted individuals seek treatment or attempt to abstain. In particular, we seek to
evaluate the hypothesis that impaired response inhibition is not simply a concurrent
symptom of drug addiction, but instead a core neurocognitive dimension that predicts key
substance use outcomes. We concentrate on longitudinal studies, largely those reported
within the last 10 years, which have examined prospective associations between inhibitory
control and the dependent variable of interest (drug use initiation or escalation, dependence,
relapse, or abstinence). Most of the fMRI studies reviewed here report the results of task-
induced activations (e.g., activity that occurs during a condition of response inhibition
contrasted with activity during a condition of prepotent response). Other studies used task-
related functional connectivity (i.e., the covariation between the fMRI time courses of a
given voxel and other voxels in the brain), which offers a promising complement to task-
based activation studies. The main literature review itself is organized into two parts. Part 1
discusses adolescent longitudinal studies that use tasks of inhibitory control to predict future
drug use or transition into drug dependence. Part 2 discusses adult longitudinal studies that
use tasks of inhibitory control to predict clinical and treatment outcomes in already-addicted
individuals. We conclude with a summary of findings and a discussion of future research
directions.

We exclude from this review studies that involved passive exposure to drug-related stimuli,
studies that used tasks associated with the receipt of reward, or studies that reported
addiction-related abnormalities in brain structural integrity. Reviews that address these
important topics can be found elsewhere [e.g., (Garavan, Brennan, Hester, & Whelan, 2013;
Heitzeg, Cope, Martz, & Hardee, In Press; Jasinska, Stein, Kaiser, Naumer, & Yalachkov,
2014); note some overlap in currently included studies with those from (Heitzeg et al., In
Press)]. This review also excludes behavioral addictions (e.g., gambling, food, sex, or video
games) and studies that use event-related potentials (ERPs), as more longitudinal studies in
these fields are needed before firm conclusions about prospective relationships can be
drawn. Studies that focus on family history (or other risk factors) as the main grouping
variable are also excluded [e.g., (Hardee et al., 2014)]. Finally, for brevity and focus, we also
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exclude tasks of inhibition that measure related constructs [e.g., error awareness (Hester,
Nestor, & Garavan, 2009)], or studies that incorporate pharmacological (Moeller et al.,
2014; Schmaal et al., 2013) or genetic (Filbey, Claus, Morgan, Forester, & Hutchison, 2012)
modulation.

Commonly-Used Response Inhibition Tasks in Drug Addiction

Three of the most commonly used inhibitory control tasks, in order from simplest to most
cognitively complex, include go/no-go tasks (Chambers, Garavan, & Bellgrove, 2009), stop-
signal tasks (Aron, Robbins, & Poldrack, 2014; Verbruggen & Logan, 2008), and Stroop
tasks (MacLeod, 1991; D. G. Smith & Ersche, 2014). These tasks collectively measure a
person’s ability to modify or stop a behavior, particularly when the behavior may not be
optimal or advantageous, or is perceived as incorrect. In go/no-go tasks, participants respond
as quickly as possible to frequent go stimuli and inhibit responses to infrequent no-go
stimuli. Correct non-responses on no-go trials reflect the ability to exert inhibitory control
over behavior. In stop-signal tasks, the goal is to successfully inhibit (stop) an action that has
already begun. Participants respond to an ongoing sequence of stimuli; on some (stop) trials,
however, a signal is presented (e.g., a tone, a change in stimulus display) after the stimulus
onset that instructs participants to halt their response on that trial. The paradigm is typically
configured to find the inflection point in which 50% of stop trials are unsuccessful relative to
the mean reaction time; the longer this stop-signal reaction time (SSRT), the worse the
inhibitory control. In Stroop tasks, participants must override a more automatic response
tendency (reading a word) and instead respond with a task-specific demand (responding to
the ink color of the word). Stroop tasks can be purely cognitive: in the classical color-word
Stroop, participants respond to the ink color of color words (e.g., “blue”) presented in either
the congruent font (blue font) or an interfering incongruent font (e.g., red font). Stroop tasks
can also be emotional: interference can be introduced by attentional bias or current concerns
of the individual. In the case of drug addiction, individuals can be instructed to ignore the
semantic content of drug-related words (e.g., “pipe”) and instead respond to their font color;
typically, the reaction time to drug words is longer than for neutral words (e.g., “vase”),
indicating impaired response inhibition (Cox, Fadardi, & Pothos, 2006). An important caveat
is that these tasks, while tapping into inhibitory control, also depend on other executive,
attentional, or emotional processing functions. For example, some have argued that Stroop
tasks tap into different higher-order executive functions than go/no-go and stop signal tasks,
such as compulsivity and impulsivity, respectively (Fineberg et al., 2014).

All three of these tasks have reliably yielded activations in regions of interest (ROIs)/
networks known to be engaged during inhibitory control. These include the inferior frontal
gyrus (IFG), anterior cingulate cortex (ACC) (especially its dorsal/motor subregion), middle
frontal and superior frontal gyri (MFG/SFG) [which includes the dorsolateral prefrontal
cortex (DLPFC)], parietal lobe, and pre-supplementary motor area (pre-SMA) (Bari &
Robbins, 2013; Cieslik, Mueller, Eickhoff, Langner, & Eickhoff, 2015) (Figure 1).
Importantly, some of these same regions are consistently identified as being disrupted in
currently-addicted individuals performing the tasks [for recent, comprehensive reviews on
this topic, see (Luijten et al., 2014; J. L. Smith et al., 2014)]. These studies and reviews in
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current drug dependence suggest pertinent regions/networks to spotlight for longitudinal
prediction (Figure 1), which is the focus of the remainder of this review.

Part 1: Progression into Addiction/Problematic Substance Use (Table 1)

Go/No-Go Studies

A moderately large sample of adolescents performed a go/no-go task during fMRI at
baseline and then again 18 months later. More left angular/supramarginal gyrus activation
and less ventromedial prefrontal cortex (vmPFC) activation to the no-go versus go trials at
baseline predicted an increase in drug use occasions at follow-up (i.e., accounting for
baseline drug use) — particularly in those who were already heavier users (Mahmood et al.,
2013). Another longitudinal fMRI study tested for changes over the first year of college
during an emotionally salient go/no-go task that instructed participants to respond to alcohol
cues compared with non-alcohol cues; here, the dependent variable was task-related
functional connectivity. Young adults were scanned three times (summer, first semester,
second semester). At the second assessment (during which respondents reported an increase
relative to the first assessment in the negative consequences of alcohol use, such as losing
consciousness during drinking or performing poorly on an exam because of drinking),
functional connectivity was increased among a network of regions implicated in response
inhibition and cognitive control (e.g., bilateral DLPFC, rostral ACC, dorsal ACC) (Beltz et
al., 2013).

Even more illuminating, however, are studies that begin tracking youth before they have
begun experimenting with addictive substances. In one study, an fMRI go/no-go task was
used at two study sessions to compare adolescents who were initially non-drinkers but later
transitioned into heavy drinking against adolescents who remained non-drinkers during both
assessments. Adolescents who later transitioned into heavy drinking showed less fMRI
response to no-go versus go trials in the MFG, parietal cortex, putamen, and cerebellum.
Interestingly, these effects were reversed at the second scanning session, such that the
adolescent heavy drinkers showed increased fMRI activation in these regions (except in the
putamen, where no group differences were observed in the second session) (Wetherill,
Squeglia, Yang, & Tapert, 2013). Results were interpreted to indicate that the reduced fMRI
activation before drinking could reflect vulnerability, whereas the increased fMRI activation
after drinking could reflect compensation. Another fMRI study investigated adolescents
again with initially very limited substance use experience, classifying them at follow-up into
those who transitioned to heavy use of alcohol versus those who remained non-users.
Similar results were reported, whereby youth who later transitioned into heavy alcohol use
had less activation in multiple brain regions encompassing the IFG, DLPFC, putamen,
middle temporal gyri, and inferior parietal lobules (Norman et al., 2011). More recently,
preteens (9-12 years) performed an fMRI go/no-go task at baseline; four years later,
participants completed assessments of substance use, which were used to create matched
groups of substance users and non-substance users. In contrast to the other studies, there
were no significant fMRI differences between the groups during successful no-go inhibition
at baseline. Instead, non-users showed increased activation relative to users during
unsuccessful inhibition versus successful inhibition in the left MFG (DLPFC); DLPFC
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activation predicted outcome (group membership) over and above the effects of
externalizing behavior (Heitzeg et al., 2014). This different pattern of effects could be due to
the different fMRI contrast (error-related processing).

Stop-Signal Studies

Four hundred ninety-eight children from 275 families from a high-risk, prospectively-
followed cohort completed executive function measures in early and late adolescence, with
the goal of predicting lifetime drinking and drug-related ratings in late adolescence;
multilevel models controlling for various potential confounds showed that poorer response
inhibition (i.e., higher SSRT) predicted the onset of future drug and alcohol use (Nigg et al.,
2006). Moreover, in the same high-risk sample, poorer response inhibition in late
adolescence predicted alcohol-related problems in young adulthood (e.g., driving while
intoxicated or experiencing an alcohol-induced blackout) (Wong, Brower, Nigg, & Zucker,
2010).

A different research group similarly used a multi-wave longitudinal study (five assessments
over two years) to test associations between the behavioral stop-signal task and alcohol use
in adolescents (Fernie et al., 2013). Data were analyzed using sophisticated cross-lagged
analyses, which enable investigation of the relationships between response inhibition at time
1 and alcohol use at time 2 while controlling for cross-sectional associations between these
variables at both time points and for their stability over time. Results showed that stop-signal
performance prospectively predicted alcohol involvement, whereas the reverse association
(alcohol involvement predicting response inhibition) did not reach significance. These
analyses, which approximate causal relationships between variables in a non-experimental
design, suggest that response inhibition in adolescence confers vulnerability toward future
substance use.

In an elegant, recent fMRI study, machine learning techniques were used to integrate
multimodal self-report, structural and functional imaging, and genetics data in service of
predicting concurrent and future binge drinking in a large sample of adolescents. In the
longitudinal arm, fMRI activation in the precentral gyrus to response inhibition failures
predicted future binge drinking (Whelan et al., 2014).

Stroop Studies

Few studies have used Stroop tasks to predict emerging substance use problems. One
behavior-only study used a Stroop task to stratify adolescents into those with stronger or
weaker response inhibition (incongruent>neutral response reaction time). The task itself was
an approach-avoidance paradigm that used stimuli depicting alcohol or soda, and
participants were instructed to either pull (approach) or push (avoid) a lever in response to
the stimuli. Results showed that greater alcohol approach tendencies (i.e., faster reaction
time to pull the lever toward than push the lever away) predicted alcohol use at 6-months
follow-up only in the adolescents with weaker Stroop-assessed inhibition (Peeters et al.,
2013).
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Part 1 Summary

These studies suggest that performance on tasks of response inhibition in adolescence/young
adulthood predict future initiation into substance use. Despite some exceptions (and
although additional studies utilizing the Stroop task are needed), the general pattern of
results suggests underactivations during the response inhibition trials in key inhibition-
related regions in the individuals who would later become substance users; an opposite
(hyperactivation) pattern seemed to occur when examining response failure. The most
consistent neural correlate of response inhibition was the DLPFC, which is a core region in
response inhibition but also in the implementation of cognitive control more generally
(Egner, Etkin, Gale, & Hirsch, 2008; Kerns et al., 2004). Other regions identified in multiple
studies included the parietal cortex and the putamen. The precentral gyrus also deserves
mention, given this region’s emergence in a well-powered and well-controlled study
(Whelan et al., 2014). These neural underactivations during response inhibition in the
individuals who would later develop problematic drug use were typically observed in the
absence of behavioral differences between the groups (Table 1). Lack of group differences
on task performance suggests that these fMRI differences are potentially marking abnormal
neural activity (rather than, for example, an inability to perform the task). Taken together,
inhibition problems and associated aberrant brain response during the exertion of inhibitory
control appear to predate substance use.

Part 2: Prediction of Clinical Outcome in Already-Addicted Individuals
(Table 2)
Go/No-Go Studies

In an interesting study of smokers motivated to quit, fMRI during a go/no-go task
(successful no-go versus go events) was used to predict outcome via an experience sampling
method (a unique contribution to this literature); as part of these assessments, participants
responded eight times per day for three weeks about their craving and cigarettes smoked
(Berkman, Falk, & Lieberman, 2011). The IFG, pre-SMA, and basal ganglia were selected
as ROIs. Results revealed a positive correlation between craving at one time point and
smoking at the next time point. Interestingly, this relationship was moderated by all three
ROIs, such that individuals who had higher fMRI activations in these regions to the no-go
stimuli had a blunted correlation between craving and smoking. This finding could suggest
that enhanced neural response during response inhibition reflects a greater capacity to exert
top-down control over impulses (e.g., craving) [although it should be noted that other studies
have interpreted such enhanced activation as reflecting compensation (Wetherill et al.,
2013)]. In a secondary analysis of this study, the basal ganglia ROI (but not the other two
ROIs) predicted reduced smoking across 4 weeks (objectively measured by breath CO)
(Berkman et al., 2011).

In another fMRI study (this one using a more standard analysis methodology), increased
activation in a different region (the postcentral gyrus, to all no-go events versus all go
events) predicted treatment outcome one week later (positive cocaine urine screen)
(Prisciandaro, Myrick, Henderson, McRae-Clark, & Brady, 2013). Important caveats of this
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study are that these participants were also included in a treatment trial that administered d-
cycloserine, and they also completed a cue-reactivity task during the same scanning session.

Stop-Signal Studies

In an fMRI study, a moderately-sized cohort of treatment-seeking cocaine-dependent
individuals completed the stop-signal task and was followed over 3 months to predict
clinical outcome. Decreased activation in the dorsal ACC during error-related processing
(stop error versus stop success) predicted relapse in males and females (note that males and
females also exhibited some differential activations that predicted relapse: decreased
thalamus activation in females; decreased insula activation in males) (Luo et al., 2013). In
contrast, in a behavior-only study of treatment-seeking alcohol-dependent individuals, the
stop-signal task administered at baseline did not predict 12-month outcome; instead, 12-
month outcome was predicted by genetic variation (type 2A serotonin receptor
polymorphism) (Jakubczyk et al., 2013). Notable differences between these studies include
the use of fMRI and the length of the follow-up period (3- versus 12 months).

Stroop Studies

In a behavior-only study examining the variables that predict treatment retention in a
therapeutic community, participants completed a battery of neuropsychological measures
including the color-word Stroop task. Better Stroop task performance (both the standard
inhibition measure and a second measure assessing switching) significantly predicted better
3-month outcome, but these results did not survive the authors’ correction for multiple
comparisons (Verdejo-Garcia et al., 2012). Other behavioral studies used emotional (drug)
Stroop tasks. In an early study of alcohol abusers, participants completed an alcohol Stroop
task at baseline and then again four weeks later. Compared with control participants and
alcohol abusers who completed treatment, alcohol abusers who did not complete treatment
had alcohol-related interference scores that increased from baseline to follow-up (Cox,
Hogan, Kristian, & Race, 2002). A caveat of this study is the small sample sizes in each
group (n=5 participants who remained abstinent or had a small lapse; n=9 participants who
relapsed or failed to maintain contact with a counselor). In another earlier study, treatment-
seeking drug-addicted individuals performed a drug Stroop task, with the stimuli content
matched to the participants’ particular substance problem (e.g., cocaine stimuli for
individuals addicted to cocaine) (Carpenter, Schreiber, Church, & McDowell, 2006). Results
showed that cocaine Stroop interference scores predicted more cocaine positive urines and
shorter treatment duration in the cocaine participants, but similar substance-specific analyses
were not significant in individuals in treatment for marijuana or heroin (but note smaller
sample sizes in these latter two groups compared with the cocaine group). In contrast,
another study from the same lead author showed that drug Stroop interference scores were
positively correlated with a greater likelihood of continuing with treatment (entering a Phase
I1, which included providing negative cocaine urine screens) (Carpenter, Martinez, Vadhan,
Barnes-Holmes, & Nunes, 2012). This latter result could indicate that the interference scores
in this case were tapping into a hypervigilance toward the cocaine cues to sustain
commitment to the treatment process (Moeller & Goldstein, 2014). These conflicting
findings remain to be reconciled, but could include variability in the characteristics of the
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participants (e.g., abstinence lengths) and/or the therapeutic context (e.g., presence of a
voucher system) (Carpenter et al., 2012).

A growing number of fMRI studies have used Stroop tasks to predict clinical outcome in
already-addicted individuals. In one of the first studies of its kind, 20 treatment-seeking
cocaine-dependent individuals performed an fMRI color-word Stroop task prior to initiating
treatment. Interestingly, Aigherbehavioral Stroop interference predicted better clinical
outcomes (more weeks in treatment). Analysis of the fMRI data showed that during
interference trials (incongruent versus congruent), higher activation of the vmPFC, posterior
cingulate, and striatum predicted a longer duration of self-reported abstinence (the striatum
additionally predicted percent of negative urine screens); and reduced activation of the
DLPFC predicted treatment retention (Brewer, Worhunsky, Carroll, Rounsaville, & Potenza,
2008). In another study, a drug (cocaine) Stroop task was administered to cocaine-dependent
patients during their first week in detoxification treatment and was used to predict cocaine
use at 3-month follow-up. Dorsal ACC activation to cocaine versus neutral words positively
predicted future cocaine use (i.e., relapse) (Marhe, Luijten, van de Wetering, Smits, &
Franken, 2013). Interestingly, the direction of correlation was opposite to the previous study,
perhaps attributable to the task valence (emotionally neutral in the former versus
emotionally salient in the latter).

Other fMRI studies instead examined the predictive effects of task-related connectivity
during neutral Stroop tasks. In one study, 16 treatment-seeking cocaine-dependent
individuals and matched healthy controls completed an fMRI color-word Stroop task
(Mitchell et al., 2013). In addition to the behavioral Stroop predicting abstinence [i.e., more
interference at pretreatment correlated with better outcome, supporting the study above
(Brewer et al., 2008)], less functional connectivity among the ventral striatum, thalamus,
substantia nigra, right insula, and left hippocampus predicted better clinical outcome (longer
abstinence) (Mitchell et al., 2013). This finding is somewhat difficult to interpret considering
that the addicted individuals had less connectivity among these regions overall than healthy
controls. Nevertheless, this prospective finding within the addicted group is consistent with
other work showing that subcortical pathways in drug addiction are hyperconnected during
resting-state in association with a greater severity of dependence (Konova, Moeller, Tomasi,
Volkow, & Goldstein, 2013); less hyperconnectivity of these subcortical structures, then,
could be driving the better treatment outcomes observed in this study. In contrast, however,
in a second connectivity study of treatment-seeking cocaine-addicted individuals,
independent component analysis (ICA) was applied to fMRI data during color-word Stroop
interference (Worhunsky et al., 2013). Here, better clinical outcome (higher numbers of
negative cocaine urine screens) was predicted by greater engagement of a subcortical
network (encompassing the thalamus, striatum, amygdala, and hippocampus) and a ‘ventral
fronto-striatal’ network (encompassing vmPFC, ventral striatum, and subgenual/rostral
components of the ACC). In contrast, more weeks in treatment were associated with reduced
engagement of a ‘fronto-cingular’ network (encompassing ACC, medial PFC, and insula).
Thus, additional research is needed to reconcile inconsistencies among the studies,
especially with respect to the contribution of subcortical structures.
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Other studies have used bookend (pre-post) fMRI sessions to examine neural changes as a
function of treatment and/or abstinence. In one study, substance-dependent individuals
underwent fMRI during a color-word Stroop task at baseline and follow-up, with 8 weeks of
computer-assisted cognitive behavioral therapy (CBT) for substance abuse in between the
two scanning sessions; non-substance-using control participants also completed the Stroop
task following a similar time interval. At follow-up, the treatment-seekers showed decreased
interference-related fMRI signal in multiple brain regions including the DLPFC, ACC, IFG,
and a subcortical cluster that encompassed the midbrain and subthalamic nucleus (Devito et
al., 2012). In another study, treatment-seeking cocaine-addicted individuals completed a
drug Stroop task at baseline and then again at a 6-month follow-up. Results showed that
midbrain fMRI signal increased during the entire task (to drug and neutral words) from
baseline to follow-up, and this enhanced midbrain response correlated with reduced cocaine-
related choice on a simulated drug-choice paradigm (Moeller, Tomasi, Woicik, et al., 2012).

Part 2 Summary

Here, many of the behavior-only studies used drug Stroop tasks, which yielded somewhat
mixed/contradictory results in predicting clinical outcome in treatment-seeking drug-
addicted individuals. When inhibition tasks were combined with neuroimaging, prediction
was generally improved. Similarly to the initiation literature, these neuroimaging effects
generally emerged in the absence of behavioral task effects (particularly for go/no-go and
stop signal tasks) (Table 2). In contrast, the Stroop tasks were often associated with
behavioral differences (between groups, assessment time points, etc.) (Table 2), and
therefore one cannot rule out the possibility that differential fMRI activations are attributable
to differential ability of individuals to perform the task. Despite this potential uncertainty,
however, these imaging studies were fairly consistent in showing that clinical outcome was
prospectively predicted by the DLPFC, dorsal ACC, IFG, and regions of the basal ganglia
such as the striatum and midbrain. In general, although with multiple exceptions, better
clinical outcome was predicted by decreased PFC activation but enhanced subcortical
activation. The predictive effect of subcortical activation could be attributable to recovery of
dopaminergic integrity with abstinence (Volkow et al., 2001). Nevertheless, it is important to
replicate this subcortical effect in future work, both because of the inconsistent direction of
activation in these studies and because subcortical activations are not as reliably reported
during inhibitory control tasks in healthy individuals.

Overall, better response inhibition and less activation during the exertion of inhibitory
control predicted a better clinical outcome. As there is no a priori reason to suspect that
individuals with better response inhibition had a less severe addiction, these studies suggest
that better response inhibition helps individuals to refrain from drug-taking when they are
motivated to do so. An interesting variable to examine in this regard, which was not
routinely reported in these studies, is the number of quit attempts during the course of the
addiction. One could anticipate that individuals with better response inhibition would have
fewer quit attempts.
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Conclusion and Future Directions

Paradigm Considerations

An important future direction is to test whether there are unique neural mechanisms
underlying the ability to exert inhibitory control in a drug-related context versus a neutral
context. Insofar as inhibitory control in drug-addicted individuals is anticipated to be lowest
upon being confronted with drugs or drug-associated stimuli (Goldstein & Volkow, 2011),
such task designs could potentially explain unique variance in drug use outcomes —
particularly since neuropsychological impairments in drug addiction, while pervasive, are
generally mild in magnitude and may require more sensitive neuropsychological probes for
their detection (Goldstein et al., 2004; Goldstein, Woicik, Lukasik, Maloney, & Volkow,
2007; Moeller et al., 2009; Woicik et al., 2009). Although drug Stroop tasks have been
deployed to predict clinical outcome in addicted individuals as reviewed above, these studies
generally have not concurrently administered a standard color-word Stroop task for direct
comparisons (e.g., drug task minus matched neutral task).

Response inhibition paradigms could also benefit from designs that enable the parametric
correlation of trial-by-trial behavioral responses with the associated neural signals for each
individual. This type of design could help reduce concerns about interpretation of the fMRI
effects when there are also behavioral differences between groups or longitudinal
assessments. More broadly, another interesting direction would be to directly contrast an
inhibitory control task with another demanding cognitive task (e.g., working memory) that
engages similar neural circuitry (e.g., the DLPFC). In this way, one could test whether any
cognitively demanding task predicts future drug use, or whether there are uniquely
predictive aspects of response inhibition.

Expand Study into More Addictions

Another important direction is to expand the present literature into different drug classes.
Alcohol is overrepresented in studies examining the prediction of drug use initiation, and
cocaine is overrepresented in studies examining prediction of clinical outcome. For the
former (prediction of initiation), the decision to focus on alcohol use is justified, given the
focus of these studies on adolescents and young adults. Nevertheless, it will be important to
expand this young adult longitudinal literature into the misuse of opioid prescription
medication, which has become a paramount public health concern in recent years (Schrager
et al., 2014). Moreover, the recent legalization of marijuana in several states (e.g., Colorado
and Washington) has increased concerns about underage use and misuse (Monte, Zane, &
Heard, 2015). For the latter (prediction of outcome), it will be important to increase the
number of studies examining how response inhibition impacts clinical outcomes in other
addictions that have high public health implications (e.g., nicotine, alcohol, heroin,
methamphetamine). Beyond drug addiction, there is scant inhibitory control longitudinal
research on behavioral addictions, such as gambling or internet/video game addiction.

Individual Differences

It is imperative to study addicted individuals with psychiatric comorbidities. Individuals with
comorbidities represent a majority of addicted individuals and are more likely to have unmet
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treatment needs (Melchior, Prokofyeva, Younes, Surkan, & Martins, 2014). Another
potential modulatory variable is the presence of comorbid attention deficit/hyperactivity
disorder (ADHD), which is associated with both the initiation of substance abuse and
impaired response inhibition (Lee, Humphreys, Flory, Liu, & Glass, 2011); other
externalizing symptomatology, such as anger, could also be important to examine
(Aharonovich, Nguyen, & Nunes, 2001). Finally, sex differences may modulate response
inhibition in drug addiction, as indicated by one of the studies reviewed above (Luo et al.,
2013). In further support, in a study examining sex by substance dependence interactions on
self-reported impulsivity, female drug-addicted individuals exhibited the highest impulsivity
of all participant groupings (Perry et al., 2013). Women may also have greater difficulty
inhibiting drug use (e.g., smoking) following cue exposure (Doran, 2014).

Underlying Neurochemistry

The neurochemistry of these effects also remains to be uncovered, especially if these results
are to aid the development of innovative pharmacotherapies to treat drug addiction.
Dopamine is likely to play an important role, given its reported contribution to higher-order
cognitive functions that bear on self-regulation/response inhibition inclusive of cognitive
flexibility (Kehagia, Murray, & Robbins, 2010), exertion/sustaining effort (Niv, Daw, Joel, &
Dayan, 2007; Satoh, Nakai, Sato, & Kimura, 2003), and motivation (Moeller, Tomasi,
Honorio, Volkow, & Goldstein, 2012). For example, in a preliminary sample of cocaine-
addicted individuals and healthy controls, we showed that dopamine D2 receptor availability,
measured by positron emission tomography (PET) with [*1C]raclopride, correlated with
fMRI midbrain response to errors during the color-word Stroop task when cognitive
resources were presumably most depleted (during the final versus the first task repetition)
(Moeller, Tomasi, Honorio, et al., 2012). In addition, studies administering the stop-signal
tasks during PET with [18F]fallypride in healthy individuals revealed correlations between
SSRT and D2/D3 receptor availability in the left OFC, right MFG, and right precentral gyrus
(Albrecht, Kareken, Christian, Dzemidzic, & Yoder, 2014) and the striatum (Ghahremani et
al., 2012). Accordingly, therapeutic agents that act on this system, such as the indirect
dopamine agonist methylphenidate, could be used to modulate the neural correlates of
response inhibition in drug addiction as indeed previously demonstrated (Goldstein et al.,
2010; Li et al., 2010; Moeller et al., 2014; Sofuoglu, Devito, Waters, & Carroll, 2013).

Summary, Limitations, and Clinical Implications

We reviewed behavioral and neuroimaging studies of response inhibition aiming to predict
longitudinal outcomes in substance abuse. We identified a larger number of studies relevant
to the prediction of clinical outcome than to the prediction of transition into substance abuse,
underscoring a need for more studies that can detect at-risk individuals before they transition
to addiction. In particular, needed are large-scale, comprehensive studies that can integrate
and/or disentangle the influences of multiple and multimodal predictors related to response
inhibition; the creation of several collaborative imaging consortiums has begun to address
this crucial gap (Paus, 2010) [see results in the current review reported by (Whelan et al.,
2014)]. These big data initiatives can also help resolve some of the inconsistencies between
studies, as small sample sizes are likely to represent a source of increased variation; this
concern is accentuated for the relapse prediction studies, which as a whole had smaller

Prog Brain Res. Author manuscript; available in PMC 2017 February 21.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Moeller et al.

Page 12

sample sizes than the drug use initiation studies. Another concern for these relapse
prediction studies is the abstinence length at the time of scanning: abstinence length was
variable between the studies (ranging from hours to weeks), and in many studies this
information was not reported (Table 2). This variable could have crucial bearing on the
capacity to exert inhibitory control (e.g., if one is studying participants who are experiencing
acute withdrawal symptoms and/or intense craving), or alternatively could be evidence of
individuals having already exerted inhibitory control (e.g., if one is studying participants
who have sustained abstinence for several weeks). Moreover, one needs also to exercise a
degree of caution when interpreting the results of studies that retrospectively test for
neuroimaging predictors (e.g., using the outcome, such as relapse versus abstinence, as the
basis of creating groups for a baseline neuroimaging analysis). This type of analysis can lead
to overfitting that can inflate the magnitude of the observed differences, a problem that has
been well-articulated elsewhere (Garavan et al., 2013).

Despite these concerns, results generally support the hypothesis that these tasks, and their
underlying neural correlates, predict important prospective outcomes. Behaviorally, better
response inhibition generally predicted better outcomes. Neurally, the general pattern of
results was that frontal regions were less activated during the exertion of inhibitory control
in the individuals who would later become problematic substance users. This finding of
blunted frontal activation during response inhibition is also consistent with other
externalizing psychopathologies, including ADHD (Rubia et al., 2011) and intermittent
explosive disorder (Coccaro, McCloskey, Fitzgerald, & Phan, 2007). Interestingly, however,
less activation of similar frontal regions generally predicted better clinical outcomes when
the context was sustaining abstinence.

These results have important clinical implications. Although results cannot illuminate causal
relationships between variables, longitudinal prediction constitutes an improvement over
cross-sectional studies and can support the important conclusion that response inhibition
deficits could be targeted for intervention to improve future outcomes. These could include
targeted cognitive-behavioral exercises, possibly in combination with pharmacotherapy
and/or individualized neurofeedback. These types of interventions can help address the vital
public health goals of identifying the young individuals most likely to progress from
recreational to problematic substance use, and identifying the addicted individuals most
likely to relapse after beginning treatment or abstinence. Individuals with reduced inhibitory
control could be selected for additional therapeutic/interventional resources to produce better
drug-related outcomes.
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Figure 1.
Schematic of the current review. Response inhibition is associated with performance- and

neural correlates of response inhibition [regions/networks include IFG, dACC/pre-SMA,
DLPFC, and parietal lobe], which together prospectively predict substance use initiation and
clinical/treatment outcomes. Blue arrows reflect concurrent associations; red arrows reflect
longitudinal predictions; skinny black arrows are descriptive. Rectangles reflect measured
variables; circles reflect latent variables (i.e., variables defined by other measured variables,
whether explicitly included in the schematic or not). The broken text and arrows of the
addiction circle signify implied relationships (i.e., not the focus of the current review). IFG =
inferior frontal gyrus, dACC = dorsal anterior cingulate cortex, pre-SMA = pre-
supplementary motor area, DLPFC = dorsolateral prefrontal cortex. Brain activation maps
are adapted from a previous meta-analysis of response inhibition in health (Cieslik et al.,
2015) (with permission from Elsevier).
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