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Abstract—This paper presents the first comprehensive tutorial
on a promising research field located at the frontier of two well-
established domains, neurosciences and wireless communications,
motivated by the ongoing efforts to define the Sixth Generation
of Mobile Networks (6G). In particular, this tutorial first pro-
vides a novel integrative approach that bridges the gap between
these two seemingly disparate fields. Then, we present the state-
of-the-art and key challenges of these two topics. In particular,
we propose a novel systematization that divides the contribu-
tions into two groups, one focused on what neurosciences will
offer to future wireless technologies in terms of new applications
and systems architecture (Neurosciences for Wireless Networks),
and the other on how wireless communication theory and next-
generation wireless systems can provide new ways to study the
brain (Wireless Networks for Neurosciences). For the first group,
we explain concretely how current scientific understanding of the
brain would enable new applications within the context of a new
type of service that we dub brain-type communications and that
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has more stringent requirements than human- and machine-type
communication. In this regard, we expose the key requirements
of brain-type communication services and discuss how future
wireless networks can be equipped to deal with such services.
Meanwhile, for the second group, we thoroughly explore modern
communication systems paradigms, including Internet of Bio-
Nano Things and wireless-integrated brain–machine interfaces,
in addition to highlighting how complex systems tools can help
bridging the upcoming advances of wireless technologies and
applications of neurosciences. Brain-controlled vehicles are then
presented as our case study to demonstrate for both groups the
potential created by the convergence of neurosciences and wire-
less communications, probably in 6G. In summary, this tutorial
is expected to provide a largely missing articulation between
neurosciences and wireless communications while delineating
concrete ways to move forward in such an interdisciplinary
endeavor.

Index Terms—Wireless communications, neurosciences, brain-
type communications, brain-controlled vehicles, brain–machine
interfaces, brain implants.
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QoPE Quality-of-Physical-Experience

QoS Quality-of-Service

SNR Signal-to-Noise Ratio

URLLC Ultra Reliable Low Latency Communication

VoI Value of Information

XR Extended Reality.

I. INTRODUCTION

T
HE LAST two decades have witnessed tremendous new

developments in information and communication tech-

nologies, most remarkably in wireless communications and

Artificial Intelligence (AI). At the same time, the scientific

understanding of the nervous system and the brain has also

grown substantially. In fact, brain research is seen as arguably

the most anticipated field of research for the coming decade.

This is not a historical coincidence: the evolution of both

domains is strongly interlinked. For example, on the one

hand, the steep growth rates of technological advances in

sensors, digital processing, and computational models have

always supported the research in neurosciences while, on the

other hand, the knowledge of how neurons and the neu-

rological system work have supported the development of

computational methods based on the Artificial Neural Network

(ANN) [1]. A comprehensive review of the topic can be

found in [2].

Neurosciences and wireless communications are converging

in the context of several recent wireless and AI developments,

where both are going to the edge: wireless communications

is quickly heading toward nano communication while AI is

moving toward edge intelligence at the sensor itself based

on neuromorphic computing and various edge AI techniques,

such as federated learning [3]–[7]. Futuristic technological

solutions like Neuralink’s novel brain implant [8] or the

Internet of Brains [9] are perfect illustrations of potential

opportunities ahead. While the former focuses on develop-

ing high-density, invasive wireless brain implants for humans,

including a neurosurgical robotic system to insert the device,

the latter provides the first experimental demonstration of a

network of interconnected rat brains, configured as an organic

computer, that outperforms single brain in behavioral tasks.

Both approaches point at a future where human brains are

part of the communications grid, interacting directly and seam-

lessly with other man-made devices but also with other brains.

In fact, the ideas behind these technologies are strongly aligned

with the vision of 6G [10], which is expected within ten years

from now. We are aware that 6G is far from being standard-

ized, and thus, current works may be highly speculative; in

any case, the key cases for 6G are actually being defined now

as illustrated by the eleven white papers recently published by

the 6Genesis Flagship [11].

In this sense, this paper argues that one of the key drivers of

future wireless technologies, such as 6G, would probably be

wireless brain–machine interactions based on Brain–Machine

Interface (BMI), enabled by a mobile network designed

to support a new type of service that we call Brain-Type

Communications (BTC), which can have many contrasts and

synergies with the human- and machine-type communications

of previous and current network technology generations (4G

and 5G, respectively).

BTC would allow for more direct interactions between users

and networks as compared with current systems, which are

dominantly mediated by smartphones. Furthermore, BMIs are

severely limited by wired communications, given that sophis-

ticated applications should consider groups of individuals,

each with implants made of thousands of recording chan-

nels, all part of a naturalistic scenario. New services supported

by wireless BMI, such as interacting with the environment

with gestures, motor intentions, or emotion-driven devices,

impose remarkably different performance requirements from

the current 5G in terms of Quality-of-Physical-Experience

(QoPE). The list of applications is extensive, to cite but a cou-

ple of examples: wireless-BMI-connected intelligent vehicles,

neural-based wireless networks with sensors and actuators

working as an “artificial brain”, as well as the future evolution

of virtual reality services [7], [12], [13].

The main contribution of this paper is a novel, holis-

tic tutorial that focuses on this new, promising research

field located at the frontier of the two established domains:

Neurosciences and Wireless Communications. Our goal

here is to provide a tutorial of the state-of-the-art of

those fields, mapping the most relevant activities and how

they have a great potential to converge with the defi-

nition of the homocentric 6G [14] through the develop-

ment of BTC. To this end, we expect to contribute to

the ongoing discussion about the key wireless communica-

tions applications, in particular 6G, which will then affect

the standardization process. In particular, we delineate the

foreseen future applications and their challenges in two

threads: Neurosciences for Wireless Networks and Wireless

Networks for Neurosciences.

The first one refers to how current and new scien-

tific/technological developments arisen from neurosciences

can be employed as part of wireless systems as, for instance,

direct wireless brain implants. The second topic refers to

how wireless communications theory and technologies (mainly

6G) can support research and technological development

in neurosciences. Topics in this thread include considera-

tions of how communications/information theory can provide

the fundamental limits of neuronal communications, which

have a chaotic nature. We also present a case study—Brain-

Controlled Vehicles (BCV)—that we have identified as an

illustrative application that would benefit from the proposed

merger between wireless communications and neurosciences.

Finally, we discuss the security, privacy, and ethical issues

underlying both topics.

Fig. 1 presents the key ideas and topics covered by this

paper, mapping the future relations between wireless com-

munications and neurosciences. We envision an interplay

between the two topics supporting the development of BTC

and widespread BMIs integrated with nanotechnology, among

others. Based on the current trends and the scientific devel-

opment to be presented in this tutorial, we argue that the

encounter between these two fields has a great potential to

already take place in 6G.
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Fig. 1. Illustration of the proposed contribution along two threads: Neurosciences for Wireless Networks and Wireless Networks for Neurosciences around
the concept of BTC.

In summary, we expect that this contribution can pave the

way to a fruitful collaboration between researchers active in

brain research, complexity sciences, and wireless communica-

tions to support in a timely manner the necessary activities to

include applications related to neurosciences in the 6G stan-

dardization discussions that are expected to take place during

the upcoming years. In addition, the paper will provide a sin-

gle reference that symbiotically integrates the rather disparate

state-of-the-art contributions in these two fields.

The rest of this paper is organized as follows. Section II

provides the required background of neurosciences and brain

research, specially discussing how brain signals are expected

to be part of future wireless systems. Section III describes

how neurosciences are contributing to the development of the

next generation of communication systems through BTC, also

providing details and challenges of wireless brain implants.

Section IV presents the potential advantages that wireless com-

munications may provide to neurosciences, considering the

potential new generation of BMIs based on wireless connec-

tivity for BTC and even the Internet of Bio-Nano Things

(IoBNT), as well as theoretical and practical approaches

related to the chaotic nature of neuronal communications.

Section V introduces BCV as an existing application that

would greatly benefit from synergistic research of 6G (or other

future wireless communication technology) and neurosciences

as proposed here. Section VI discusses the security, privacy,

and ethical issues that are fundamental to guide both wire-

less communications and neurosciences in the near future.

Section VII summarizes the paper pointing out our perspective

for future research and technological development.

II. BACKGROUND

Evolution has shaped the animal brain to provide individ-

uals with rapid, robust responses to multisensory, possibly

conflicting stimuli, thus ensuring survival. We begin this sec-

tion by highlighting brain design principles, with the focus on

properties with direct relevance to wireless systems. Then, we

describe three types of neural signals found in most of electro-

physiological works, with an emphasis on spikes. We proceed

by describing current implant technology for interfacing with

the brain and then conclude with a review of the key concepts

and current stage of BMIs.

A. Brain Design Principles

The brain is a complex organ, notably composed of

nerve cells (neurons) but also of supportive cells, such

as glia. Ultimately, one may attribute the diverse compo-

nents, structures, and dynamics found in brains from different

species [15], [16] to singular evolutionary pressures.

Brain regions that are mainly made up of electrically insu-

lated neuron axons (myelinated) are referred to as white

matter, whereas neuronal cell bodies are found in the gray mat-

ter. From a communication systems perspective, white matter

may be seen as insulated wires connecting widespread neu-

ral populations in the gray matter. The probability of two

cortical neurons being connected is 1 in 100 within a ver-

tical column of 1 mm in diameter, and 1 in 1000000 for

distant neurons; further, forty to sixty percent of the brain

mass volume is due to wiring (for comparison, the volume

fraction of wiring in a computer microchip may reach up

to 90%), and only one quarter of all energy is spent by

white matter [17]. The brain presents local, densely con-

nected neural populations that are sparsely connected often

with small-world properties. A direct consequence of such

a connectivity pattern is a disproportionate increase in the

white matter (wiring) volume as cortical gray matter increases.

This poses great challenges for wireless neural recording

technologies.
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Evolutionary optimization of neural connectivity is cer-

tainly constrained by energy consumption. Nearly half of the

brain energy consumption is due to spiking activity, arguably

the essential method by which neural populations communi-

cate [17]. Single neurons have a physiological upper limit

on firing rate in the range of hundreds of Hz [18], leading

to a potential bandwidth of a few Terabits/s for the whole

brain. This limit, however, is never reached because of the

energy limitation. Considering the human brain metabolism,

the average spike rate can be no higher than 1 spike per sec-

ond per neuron [19]. Thus, communication systems operating

with BTC protocols should be aware of these natural brain

bandwidth limits.

The locally dense, globally sparse connectivity scheme

constrained by the brain energy budget may reduce the signal-

to-noise ratio [20]. Considering that more reliable neurons

would require a superlinear increase in energy cost (caused

by neuron physiology), one alternative is to average out large

numbers of (noisy) neurons. But that, in turn, would possibly

lead to redundant neuronal activity, which is not energy-

efficient, unless the network is able to reconfigure on the fly,

suppressing connections that contribute little to good choices

and reinforcing (making more efficient) those that do not. This

overly simplified description is known as neural plasticity,

the capacity of neural networks to modify their connectiv-

ity patterns based on correlated neural activity and behavioral

feedback [21]. In summary, learning from experiencing the

world to optimize behavior is a central mechanism that sup-

ports brain design principles under a limited energy budget.

The immediate impact on the development of new wireless

networks is that technologies underlying BTC must be adap-

tive to accompany brain plasticity and preserve brain learning

mechanisms.

B. Neural Signals

In this section, we describe three types of neural signals

that compose most of electrophysiological works [22] and that

are central to BTC systems. Considering invasive recording

methods, spikes relate to the rise and fall of the membrane

potential of a single neuron over time [23]. Neurons are

essentially formed by the soma (the cell body), dendrites,

and an axon. Typically, electrical and chemical signals are

received in the dendrites and soma of the neuron, whereas the

neuron axon transmits an electrical signal to other neurons.

Neuronal communication is mediated by synapses, in which

we observe the propagation of neurotransmitters through the

space between neurons (synaptic cleft). Along the neuronal

axon there are voltage-gated ion channels, which regulate the

ionic current flow as a response to input signals to the neu-

ron. The rapid difference in ionic concentration inside and

outside the cell originate the action potential (spike), which

flows over the axon and targets other neurons. This signal

has a strong nonlinear dynamics (Fig. 2) owing to neuron

physiology.

Spikes are normally sampled at 40 kHz by multielectrode

arrays, each electrode capturing the resultant membrane poten-

tial of the surrounding neurons. This multidimensional signal

Fig. 2. Representation of the most common brain signals used in BMI:
noninvasive EEG (top right panel), invasive LFP, and spike (middle and bottom
panels). Electrocorticography (ECoG) signal properties are similar to those of
EEG; however, because it is an invasive method, it is far less used in human
studies. Figure adapted from [49].

is then fed into a spike-sorting algorithm, responsible for iden-

tifying the membrane potential time series of each individual

neuron [24]. Next, spike times are identified and saved either

as a time stamp vector (millisecond resolution) or as a binary

vector (1 if a spike has occurred, 0 otherwise). The sequence of

spikes over time from a single neuron is known as a spike train,

which is the data structure used as the input to the spike-based

BMIs [25].

The same time series used to construct spike trains can

be used to extract another signal, the Local Field Potentials

(LFP). For that, a low-pass filter (<300 Hz) is applied to the

raw electrode signal and then downsampled, usually to 1 kHz.

LFP relate to the superimposing electrical potential of thou-

sands of neurons surrounding the recording electrode [22]. The

spectral power density of this field is inversely proportional

to frequency and is transmitted through brain tissue, a phe-

nomenon known as volume conduction. The most common

input in LFP-based BMIs is features extracted from the LFP

frequency power spectrum [26].

The typical signal used in noninvasive approaches is the

electroencephalography (EEG). EEG and LFP oscillations

share similarities [22], [27], but, because the recording elec-

trodes are further away from neuronal sources, noise, muscle

contraction artifacts, and other tissue-related interference make

EEG a less effective signal than invasive recordings. EEG

is commonly recorded from 16 to 128 channels, studied at

frequencies up to 100 Hz, and thus, the sampling rates rarely

exceed 1 kHz.

C. Neural Interface Technology

For the purposes of wireless communications and BTC

systems, we will focus on invasive signals. The main advan-

tage of being invasive is the closer interface with brain cells,

which leads to less noisy, more reliable readings with a

more granular information content, a fundamental feature for

complex applications [28], [29]. Novel signal processing algo-

rithms have a substantially increased noninvasive (EEG) BMI

performance [30], whereas standard brain implants present

physical and longevity issues [31]. Nonetheless, there is a

general agreement that, once technological and ethical issues

have been addressed, invasive BMIs should prevail in the vast

majority of applications [32], [33].
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Brain implants and recording technologies have been

developed for decades now. They are generally composed of

six different parts: a probe, epoxy fill, an acquisition Integrated

Circuit (IC), a circuit board, connectors, and an external

cable [34]. The interface with the brain tissue is actually solely

the probe, from which the signal travels from or to the acquisi-

tion IC that sits on the circuit board through the epoxy fill and

the connector. The cable connects the whole structure, fixed

on the skull, to the external supporting hardware.

One of the state-of-the-art devices regarding invasive

implants are the neuropixel probes [35]. For instance, the

advanced CMOS microelectronics and small, lightweight

shanks allow for eight probes simultaneously implanted in a

mouse brain, and more than 3000 recording sites. For each

probe (384 recording channels), data acquisition is estimated

at 1 GB/min at a sampling rate of 30 kHz. Considering that the

mouse brain is orders of magnitude smaller than the human

brain, these recording facts clearly highlight the substantial

requirements in data processing and recording in the context

of BMI and modern wireless communications.

The main challenges regarding invasive devices are related

to their implantation procedure (sometimes through open skull

surgery), biocompatibility, and longevity [36]. Implant func-

tionality is impaired by tissue scarring as well as foreign

body reactions that promote the degradation or breakage of

the probes [37]. Furthermore, fully immersed implantables that

rely on tethers to connect the device to an external interrogator

inhibit long-term usage and reliability as this connection can

be broken easily through movement or patient activity [38].

Tethers have additional challenges including the lack of scal-

ability and a greater body reaction. The number of neuron

interface channels is also limited to the number of tethers,

and even though the relationship is not direct as one tether can

have many probes, they are not a good choice when multiple

areas of the brain are planned to be interfaced with a single

system. On top of that, as the targeted area of study is deep

in the brain, this will result in larger tethers that are harder

to manage. Thus, the option of a wireless-based system has

raised the interests of many researchers in the area (see [39]

for a review).

Many technological breakthroughs will be required before

functioning wireless BMIs will be widely available [34]. To

begin with, wireless-based implants have to account for the

many barriers imposed by the brain in order to be func-

tional [28] (these barriers will be explained in more detail

later in Section III-B). Wireless devices also need to interface

with neurons whilst having the capability of converting wire-

less energy into circuit current (batteryless). This added

complexity is nowadays feasible with energy-converting mech-

anisms based on microelectronics and nanotechnology [39].

Additionally, wireless implants require consideration of the

human body as a communication channel. Because the brain

is comprised of multiple different tissue types, and each

type poses different interactions with the propagated waves,

the wireless communication system between implantable and

external devices, or derivations thereof, must precisely choose

the frequency range and operating mode [40]. For exam-

ple, while brain-stimulating devices for epilepsy require

stimulation in random short-term periods, for Parkinson’s dis-

ease the stimulation is constant at a particular rate at different

times. The same goes for sensing applications.

Despite the challenges, the development of wireless-

based neural interface technology will support the study of

freely moving animals away from highly controlled laborato-

ries [41]–[44], which will transform research in neurosciences

considering that cognitive processes emerge from brain–body–

environment interactions [45]. In parallel, BTC systems may

underlie the next wireless communications revolution. As we

argue throughout the paper, there is an intricate but feasible

technological, medical, and ethical path ahead.

D. Brain–Machine Interfaces

The rapid progress in neural recording technology has paved

the way for the development of BMIs [25], [46]. A BMI is a

closed-loop framework, in which neural signals are sampled,

preprocessed, and fed into a decoding algorithm (regression

or classification) that can map behavioral intents from the

brain to artificial devices, whose action outcomes are perceived

by the subject sensory systems, thereby closing the loop.

Applications are diverse, from shedding light into basic neu-

rosciences research [47] to contributing to motor rehabilitation

in spinal-cord-injured patients [48].

From a technological perspective, BMIs rely on the continu-

ous progress in electrode design [50], data recording [51], and

signal processing [52]. However, there is a central gap in the

BMI research that is shared by other fields of neuroscience:

what is the essence of the neural code? In other words, what

are the features of neural activity that carry information about

sensory stimuli and cognitive behavior? For instance, there is

solid evidence favoring rate and temporal codes [53]–[55], but

it remains unclear what the anatomo-neurophysiological pat-

terns and information processing mechanisms of such codes

exactly are.

For spike-based BMIs, most decoding algorithms map the

spike rate or inter-spike time interval changes into behav-

ioral choices. The rationale is that motor and cognitive acts

(or intentions) modulate single neuron responses in diverse

brain regions, and thus, spikes carry sensory and task-related

information. As single neuron responses vary considerably

within and between task trials [56], the use of recordings from

populations of neurons results in more robust interfaces [57].

The common target for brain implants is the cortex region,

the outer layer of the brain, from which sensory and motor

information have been successfully extracted [25]; neverthe-

less, deeper brain regions, such as the basal ganglia and

the cerebellum, have a fundamental role in action selec-

tion and spatial localization, among other important aspects

of animal behavior [23], but are harder to be reached

safely.

If, instead, LFP signals are to be used, the common

approach is to extract frequency power spectrum features from

data blocks over time as the behavioral task unfolds [26], given

that specific frequency bands have been shown to correlate

with behavior [58], a fact that also holds for EEG studies.
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Finally, neural plasticity is fundamental for BMIs to operate

properly [47], [59], [60]. BMI design has to carefully con-

sider processing time and sensory feedback delays, and thus,

modern communication systems have plenty to contribute.

E. Wireless Communications and the Brain

As discussed above, neural signals and their application in

BMI pose new challenges for wireless networks, mainly for

the established communication systems that are designed to

support transmissions related to humans and/or machines, not

brains.

From 2G and 3G to the iPhone generation, applications

have focused on connecting people in a variety of ways;

hence Human-Type Communication (HTC). However, the past

decade ushered in a whole new type of wireless communica-

tion dedicated to connecting machines within the Internet of

Things (IoT) system. Indeed, the emergence of Machine-Type

Communication (MTC) links has revolutionized the wireless

industry and is the driving force behind the ongoing deploy-

ment of 5G wireless systems. At this juncture, it is natural

to pose the following question: What types of mobile devices

will disrupt the wireless industry and drive beyond 5G wire-

less systems in the same manner that the iPhone and the IoT

have done?

Although a conclusive answer to this question is not possible

at this time, it is very natural to posit that next-generation wire-

less devices will no longer be handheld smartphones or IoT

sensors in the field, but they will rather be wearable devices

along a human body, including human brain implants. This

observation is not a mere speculation, but it is instead moti-

vated by the tremendous advances that we are witnessing in the

area of wearable and human-embedded devices. Neuralink’s

recent achievements are a prime example: a public demon-

stration in late August 2020 showed a successful wireless

BMI in pigs using a miniature, bluetooth-based device with

1024 channels that serve both for recording and stimulating

the brain. In addition, the shift toward implants is further moti-

vated by several emerging wireless services, such as immersive

Extended Reality (XR) and BMI, in which the human body

and brain become an integral part of the wireless service [10].

In these services, it will soon become necessary to provide

communication links among not only machines (MTC) and

human users (HTC) but also among the brains of different

users. Hence, we foresee that BTC will be the next frontier in

wireless connectivity, as indicated in Fig. 3.

The main lesson learned in this section is related to

the very specific type of signaling that constitutes brain-

communication-based neuronal activity, which poses enor-

mous challenges for communication engineers. In specific

terms, BTC links must be designed in a way to seamlessly

connect a human brain to a wireless network and poten-

tially provide two-way communication among the users’ brain

implants and the various networks and IoT devices. A unique

feature of BTC links is that they will require the network

to match the operating functional complexity of the human

brain with a given application of choice. In the next sec-

tion, we highlight how the brain’s inherent features can soon

Fig. 3. Illustration of different types of BTC services in wireless
networks. The figure highlights the communication between brain implants
via Uplink/Downlink BTC services and a base station, or directly, via
brain-to-brain BTC links between wireless implants.

become an integral component of wireless networks that can-

not be ignored when modeling, analyzing, and optimizing the

wireless networks of the future.

III. NEUROSCIENCES FOR WIRELESS NETWORKS

In this section, we will discuss how the technological devel-

opments based on the state-of-the-art in neurosciences will

open many new opportunities with related challenges in wire-

less communications beyond 5G systems. This will include

the support of BTC and intelligent (neuromorphic) sensor

networks based on spikes.

A. Direct Brain Implants That Communicate Wirelessly

Communications with brain implants will be a hallmark of

next-generation wireless networks, and hence, we must have

a deeper understanding of how to deliver wireless services to

networks with brain-in-the-loop. To do so, we will first discuss

some use cases that highlight different ways in which BTC

will be integrated in wireless networks. Then, we delve into

the various challenges associated with the identified use cases

and conclude with discussions of open research problems and

some preliminary results.

1) Use Cases: The first step toward understanding the

unique wireless challenges of BTC links consists of delin-

eating possible BTC use cases in an actual network. In this

context, we envision three key use cases (as illustrated in

Fig. 3).

• Downlink BTC: BTC links can be used in the downlink of

a wireless network. Here, the downlink transmission links

are used to transmit data from the network toward brain

implants. A chief use case in this context is XR services.

Indeed, next-generation XR services may tap directly into

the human cognition in order to provide a truly immersive

virtual world where a wireless user can navigate using

brain-based signals along with various body-implanted

sensors. In such use cases, the brain is the receiver of the

wireless data, and thus, the downlink BTC traffic will

require high data rates.

• Uplink BTC: BTC links can be used for uplink commu-

nications in order to transmit information extracted from
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the human brain through its implants to other network

devices and servers. Two key BMI examples that require

uplink BTC are multi-brain-controlled cinema [61] and

wireless cognition [62]. The first relates to hundreds of

spectators interacting, through brain input, with an audio-

visual performance that unfolds based on their emotions,

reactions, and cognitive engagement. In this scenario, par-

ticipants may interact among themselves and with the

performance, creating a unique experience and possi-

bly revolutionizing the entertainment industry. The latter

depicts a scenario in which a drone or an autonomous

vehicle is controlled by one or multiple brains (see

Section V for details). The two examples highlight critical

applications that require multiple, reliable recordings with

several brain regions, including deep areas, such as amyg-

dala (emotions) and cerebellum (motor control), which

have to be processed to deliver real-time responses to the

target application. Hence, uplink BTC is fundamental.

• Brain-to-Brain Communications: BTC links can be used

to establish direct communications among the brain

implants of different users within the same or different

environments [9]. Brain-to-brain communications can be

seen as the next step in Device-to-Device (D2D) com-

munication, in which the devices are now direct brain

implants. Brain-to-brain BTC links can be useful in many

scenarios, such as immersive gaming, creating unique

user interaction scenarios, and education, by enhancing

the possibilities with which cooperative problem-solving

activities can be developed with groups of students (social

brain networks). In this latter scenario, there is also

substantial evidence that the synchronization of brain

rhythms, both individually and in a group, is related

to learning. Thus, brain-to-brain links could be used to

bolster student engagement as part of effective teaching

methods.

2) Challenges: Having laid out the key use cases for BTC,

our next step is to identify the unique challenges of these

use cases, compared with traditional HTC and MTC services.

First, it is well known that the bottleneck of HTC services

is downlink communication, whereas the bottleneck of MTC

services is uplink communication. In contrast, in BTC, we can

easily see that both uplink and downlink may constitute a bot-

tleneck for data rates. On the one hand, to provide immersive

experiences, significant data must be downloaded in the down-

link toward the brain implants. On the other hand, in order to

provide sensory and control inputs from the human brain to

the network and its services, brain data must be transmitted

from the implant to the network. At first glance, one would

think that the uplink input will still be short packet, small

data, as is the case for MTC. However, results in [62] show

that the amount of data generated by a brain for wireless cog-

nition services can be in the order of terabytes. Hence, uplink

BTC will also require ultrahigh speeds from the wireless links,

which is in sharp contrast with MTC services.

Second, despite its immense computational abilities, the

human brain has its own perceptual and cognitive limitations.

These cognitive limitations can be affected by multiple human

brain sources such as context, attention, fatigue, or limited

cognitive abilities. From a wireless perspective, these cogni-

tive limitations can be translated into limitations on the way

in which a human brain perceives network Quality-of-Service

(QoS) metrics, such as rate or delay. For example, as shown

in [63], because of its architecture and neural network dynam-

ics, the brain may exhibit intrinsic time delays that affect the

way in which it perceives the world around it. Therefore, a

key challenge here is to develop new techniques from neuro-

sciences in order to provide new models for the brain that can

quantify these limitations and potentially be used in a wire-

less network framework to map those limitations into QoS or

Quality-of-Experience (QoE) metrics. Note that this challenge

differs here significantly from traditional QoE metrics, such as

the mean opinion, in which one can simply use interviews or

basic experiments to quantify QoE. Instead, here we need to

quantify the QoPE introduced in [10], in which the specifics of

a human’s physiological characteristics, particularly the brain,

must be captured and mapped into conventional wireless QoS

metrics. Note, however, that the actual requirements for BTC

will be defined by the specific applications, and thus, it is

unfeasible at this point to quantitatively define their minimum

quality levels.

Third, 5G systems are expected to deliver three broad types

of services: Enhanced Mobile Broadband (eMBB) services,

in which high data rates are expected, Ultra Reliable Low

Latency Communication (URLLC) services, in which reliable

low latency transmissions are required for services such as IoT

sensing that do not require high rates, and Massive Machine-

Type Communication (mMTC) that deals with the connectivity

of a massive number of IoT devices. Traditionally, these ser-

vice classes are expected to be distinct from one another.

For example, URLLC services are assumed to not require

any data rate guarantees because they deal with short-packet

transmissions of IoT sensor data. Meanwhile, eMBB services

simply require a high rate and do not need much reliability or

low latency guarantees. In contrast to these traditional service

classes, BTC services may require, simultaneously, high relia-

bility, low latency, and high (eMBB-level) rates. For example,

wireless cognition and remotely controlling an autonomous

vehicle by the brain may call for very high reliability and

very low latency because of the criticality of the circulating

data. Meanwhile, this remote control may also require very

high rates as discussed in [62]. Hence, when dealing with

some BTC services, it is potentially necessary to provide both

eMBB-level rates and URLLC reliability and latency, which

is yet another key challenge. Moreover, as the technology

becomes more mainstream, we can anticipate massive numbers

of BTC links active at a given time, and hence, in this case,

mMTC features will also appear, particularly for brain-to-brain

links. Clearly, the evolution toward BTC may require us to

revisit the existing 5G distinction among different services.

Nevertheless, a detailed comparison between BTC and the

5G-defined regimes URLLC, mMTC, and eMBB is not yet

possible because it will depend on the specific definition of

the BTC applications.

Fourth, although brain-to-brain BTC links share many

of the aforementioned challenges, they also bring a new

dimension that has to do with the interactions among
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human brains, which have different physiologies and cogni-

tive capabilities. Addressing this challenge requires a better

understanding of networks of brains and how they may

interact with one another. Naturally, brain-to-brain com-

munications brings in a suite of interdisciplinary chal-

lenges that require a better understanding of not only

the communication features of brain-to-brain, but also

the potential interactions among the brains of different

users whose context, demographics, and characteristics are

disparate.

A qualitative comparison between HTC, MTC, and BTC is

presented in Table I. The table provides a high-level compari-

son between these three communication paradigms. Although

the numbers for HTC and MTC have been defined by the

standardization bodies, it is unfeasible for us now to numer-

ically determine the different applications of BTC together

with their particular quality requirements. Our objective is

rather to indicate that BTC will open a new paradigm for

diverse applications that may potentially include services that

are more demanding than those defined for 5G and being under

discussion for 6G.

3) Research Problems: Clearly, the aforementioned chal-

lenges bring forward interesting research problems at the

intersection of neurosciences and wireless networks. In gen-

eral, providing wireless networking with “brain-in-the-loop”

is a rich research area with many open problems that follow

directly from the identified challenges.

One of the first open problems in this area pertains to

the need for new techniques that combine neurosciences with

wireless network modeling in order to precisely quantify

QoPE measures. On the one hand, one can take a data-driven

approach to this problem and look for new machine learning

techniques that can dynamically build QoPE metrics by learn-

ing from the network users and their brain behavior. Naturally,

the primary limitation of this approach is that it will require

significant datasets and long-term observation. However, as

datasets in both the neurosciences and wireless communities

are becoming more accessible, we anticipate new opportunities

for designing QoPEs. On the other hand, one can forego the

data-driven approach or complement it with an analytically

rigorous approach to model the brain’s features. In particu-

lar, one can leverage existing tools from control theory and

neurosciences to view the brain as a control system with a

feedback loop and, then, use this observation to quantify how

different inputs (from the wireless network) are translated into

meaningful information for the brain. We can potentially study

the transfer function of this brain control system and under-

stand its behavior with respect to different input excitations

coming from a wireless network. By using this approach,

we can potentially investigate how QoS metrics are translated

into QoPE. This can benefit from some of the existing stud-

ies on how to look at the brain’s control signals (e.g., see

review in [65]). Last, but not least, real-world experiments

with actual participants can be organized to better understand

how the brain perceives QoS. These behavioral experiments

can be combined with behavioral frameworks, such as prospect

theory and cognitive hierarchy theory [66]–[69], that explain

how humans make decisions to yield new insights into how

to model the response of a brain to wireless signal inputs for

different services.

Moreover, as discussed above, there is a need to calcu-

late the processing power of the brain, using techniques of

neuroscience, so as to truly quantify the amount of data

needed. Here, instead of looking at brain limitations, we are

more interested in the brain capabilities and how these can

impact wireless communication. While the calculation of [62]

provides a first step in this direction, there is a need for

more rigorous modeling that takes into account realistic brain

models or real-world brain data.

Once QoPE metrics are developed and brain capabilities

are quantified, a very natural next step is to investigate

how network management, multiple access, and network

optimization techniques will change when dealing with BTC

links and QoPE. In particular, one can design new brain-aware

resource management techniques that can tailor the network

resources and operation to match the performance required of

the brain while also being cognizant of the brain capabilities

as well as its inherent limitations in processing information,

in general, and processing wireless QoS metrics, in particular.

One fundamental question that we can pose in this area per-

tains to whether or not brain constraints lead to a “waste” of

wireless resources because of the delivery of a QoS metric that

cannot be perceived by the brain. For example, it is natural to

ask whether a human brain can see a difference between two

different delay values, i.e., will 10 ms be perceived as a better

QoS than 20 ms?

Moreover, the coexistence of BTC, HTC, and MTC links,

which is expected in early-on deployments of beyond 5G

cellular systems, will bring forth a rich set of resource manage-

ment questions pertaining to how one can enable a seamless

coexistence of these fundamentally different service classes,

as presented in Table I. Here, beyond investigating radio

resource management problems, we can also investigate new

ways to incorporate brain features into network slicing prob-

lems. Indeed, network slicing must now handle a new type

of service, and hence, a rich set of new open problems can

be observed. Furthermore, because BTC links carry char-

acteristics of all three traditional 5G services, i.e., eMBB,

URLLC, and mMTC, it is necessary to investigate how one can

guarantee a high rate, low latency, and high reliability simul-

taneously, in the presence of a potentially large number of

BTC links. Here, one can start by first identifying the achiev-

able performance of BTC links over 5G and beyond systems

(e.g., over terahertz or millimeter wave systems). In particular,

there is a need to analyze the rate–reliability–latency oper-

ation regime that can come out of the deployment of BTC

links over a cellular system and then translate this analysis

into a feasible QoPE regime of operation that maps the rate–

reliability–latency requirements into QoPE measures. Once

this feasible QoPE regime is identified, one can revisit tradi-

tional problems of multiple access in order to see how all three

factors—reliability, latency, and rate—can be matched to the

requirement of both the user’s brain and the network service

that is being adopted. Indeed, here one important direction is

to study how different types of services (e.g., XR, BMI) will

have different brain and QoPE requirements.
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TABLE I
MTC VERSUS HTC VERSUS BTC FEATURES AND REQUIREMENTS IN THE CONTEXT OF MODERN WIRELESS NETWORKS

In this context, 5G and modern wireless technologies

are essential to support mobility requirements, not only in

providing high rates of data traffic but also ensuring secu-

rity and privacy. It is often accepted that 5G can reliably

operate up to 500 km/h, and 6G twice that velocity [70],

which would facilitate coverage in high-speed trains and

airplanes. Further, it is anticipated that modern wireless

technologies, such as 6G, will accommodate the current

conflict between high date rates and high mobility with

advanced handover policies and integration of heterogeneous

networks [14].

Another important open problem is to quantify and mea-

sure information from brain implants. Here, information is

no longer standard digital information, but instead a byprod-

uct of a user’s brain. Hence, using tools from fields such

as information theory, we must study how “information”

can be modeled when it is the output of a brain (e.g.,

using information-theoretic perspectives). Then, we can revisit

the recently introduced concepts of Age of Information

(AoI) [71]–[73] and Value of Information (VoI) and see how

these metrics change when dealing with a brain network. For

example, we can observe that the way in which information

“ages” when it is transmitted among brains may no longer be

linear, as is the case for traditional wireless information trans-

mission. In this respect, aging of brain information transmitted

over BTC or brain-to-brain links may require new approaches

that depart from the classical linear aging process that is used

in most of the AoI literature. Here, it is necessary to investi-

gate how information propagates in a brain (e.g., using models

such as those in [63]) to see how timing delays and the neu-

ral composition of the brain capture and process information.

Similarly, new ways to quantify VoI when it is the output of a

brain are needed. Once information is quantified and its differ-

ent metrics are revisited, we can leverage this analysis for both
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physical layer designs as well as for routing and information

flow problems, as discussed next.

At the physical layer, the deployment of BTC will require

new designs. Here, we anticipate a need for merging tools from

neurosciences, information theory, and communication theory.

To this end, we must investigate how the brain information

that is quantified using information theory techniques can be

translated into digital waveforms. For example, here, by taking

the control-theoretic approach for modeling the brain, we must

investigate how the output of the control system model of the

brain can be translated into a digital communication signal

that can be transmitted over BTC links.

Finally, in terms of routing and information flow, it is nec-

essary to develop new techniques to manage brain-to-brain

and BTC links in a way to optimize AoI and VoI metrics

when those metrics pertain to a brain. As already discussed,

the models for these two metrics will be significantly dif-

ferent when dealing with human brains. As such, existing

latency-optimal or rate-optimal routing and information flow

algorithms will not necessarily be AoI-optimal or VoI-optimal.

Hence, we envision many fundamental routing problems that

can now see a wireless network as an overlay of two inter-

related systems: a) a human-to-human network that receives

and translates information through a brain and b) a D2D

network that carries this information. Modeling the rela-

tionship between these two systems and integrating it into

network routing and information flow optimization problems is

clearly an important and meaningful open problem that brings

together neurosciences, communication theory, and network

science.

4) Sample Results: The area of wireless network design for

incorporating BTCs is still in its infancy, and hence, not many

works have looked at related problems. However, in [74], we

have made the first step in this direction by analyzing how to

use a data-driven approach that uses user brain information to

create QoPE measures that map wireless delays into percep-

tions of the brain and, then, those perceptions are integrated

into a resource allocation problem. In this early work [74], to

model QoPE, we explored the observation in [63] that the brain

can have multiple “modes” depending on the age, sex, demo-

graphic, time of day, and other social features, to learn how the

brain perceives delay in a wireless network. The QoPE therein

pertains to how one can translate a brain mode (extracted from

the data) into a perception of QoS metrics, such as delay.

Our work in [74] showed that, for a wireless network, the

aforementioned brain mode limitations make the wireless user

unable to distinguish the QoS differences between different

wireless delays. In other words, the QoPE of a user maps

each delay value to a different brain perception. Building on

this observation, our results in [74] show that because of the

cognitive limitations of the brain, delivering ultralow latency

for services such as XR may not improve the user experience,

because at a very low latency regime, the user’s brain can no

longer distinguish the difference between different delays. For

instance, our results show that it is less probable that a user

distinguishes between a 20 ms and a 10 ms delay compared

with 30 milliseconds and 20 ms. As such, when designing BTC

links, one key challenge is to properly model and capture the

Fig. 4. Early result from [74] showing how a brain-aware resource manage-
ment approach can save significant resources (in terms of power), particularly
in the low latency regime, by being aware of the cognitive limitations of a
brain that limit its perception of delay. Human cognition is physiologically
limited in terms of sensory perception and motor control, and thus, there is a
delay threshold in the sensorimotor loop below which the human brain can-
not perceive any improvement in QoS. The x-axis represents here the “raw”
maximum tolerable delay threshold of each user.

limitations of the brain and factor in those limitations into the

wireless network design.

In addition, in [74], we then incorporated the learned brain

limitations into a downlink power control problem with brain

perception constraints. We did so in order to test the hypothesis

that the brain-aware resource allocation approach can signif-

icantly save network resources. Here, we have particularly

shown that, by explicitly accounting for the cognitive limita-

tions of a human user’s brain, i.e., the minimum delay below

which users may not be able to perceive because of sensorimo-

tor physiological limitations, the network can better distribute

resources to BTC users that need it when they can actually use

it. To illustrate this, let us consider an interactive and immer-

sive gaming scenario. No human is able to perceive image

flickering with frame rates above 48 Hz [75], whereas motor

control is in the range of a few hundred milliseconds [76].

Thus, there are minimum visual frame rates and body tracking

sampling rates above which the human brain cannot perceive

any improvement in QoS. This is in stark contrast to conven-

tional brain-agnostic network resource allocation techniques

in which resources may be wasted, as they are allocated only

based on application QoS without being aware of whether the

human user’s brain can realistically process the raw QoS target

of the actual service. For instance, in Fig. 4, extracted from

our work in [74], we compare the performance, in terms of

power allocated to optimize the wireless system while meet-

ing the delay threshold and reliability constraints, between a

brain-aware resource allocation approach and a brain-unaware

resource allocation approach. Strikingly, this figure shows that

at very low latencies (below 40 ms), a brain-aware approach

can save significant resources by being aware of the fact that

the brain of a user (depending on the mode of the user) may

not distinguish a QoS difference between different values of



MOIOLI et al.: NEUROSCIENCES AND WIRELESS NETWORKS: POTENTIAL OF BTC AND THEIR APPLICATIONS 1609

latency. Clearly, these promising results can be used as a build-

ing block for new research in this area that can potentially

address the rich set of open problems previously identified.

B. Brain Barriers for Wireless Channels

The physical medium also poses challenges to any wireless

system that would support BTC. Remarkably, the transcranial

wireless channel presents many challenges to the many wire-

less technology options because of its structure and function.

The brain is covered by the skull and surrounding head tissue

that absorb or scatter high-frequency signals.

Lower-frequency signals are known to require the implan-

tation of large devices and may increase head heat. Novel

wireless solutions must cope smartly with those unwanted

effects, but we must take into account that single neurons

are known to have high data rate demands for sensing pur-

poses. We now explore the listed brain barriers in [28]

focusing our discussion on the wireless technologies and on

the communication channel between implants and external

devices.

1) Spatial-Temporal Resolution: The number of neurons

and other brain cell types goes beyond the billion unit mark

and is considered the major challenge in measuring the whole

brain information with the existing technology and infrastruc-

ture. Naive estimates of the lower bound data rate of the

whole brain recording is about 100 Gbits/s, which is already

a challenge for today’s wireless technologies, let alone for

future BMIs. The forthcoming technologies must include com-

pression techniques that minimize the transmission burden

of single action potentials. The compression technique will

have an interesting interplay with the sampling rate of signal

recording and the wireless technologies and their equivalent

data rates.

2) Energy Dissipation: The propagation of transcranial

wireless signals that are transduced by implantable devices

will result in energy dissipated through the tissue. This energy

will be converted into heat, which is also dissipated. Owing

to the tightly packed structure of the brain, damage can occur

as a result of a minimum temperature increase of above two

degrees Celsius. Wireless signals, however, can be easily mod-

ulated in order to operate below the 100% duty cycle of

the system operation, which can help prevent damage caused

by energy dissipation. The brain also has natural cooling

mechanisms that can help restore normal brain temperature.

However, the real challenge lies in the large-scale deployment

of heavy and dense recording and stimulation techniques for

high spatial resolution.

3) Volume Displacement: Insertion of devices into the brain

can cause an increase in its volume, leading to damage to its

functioning tissue. Wireless technologies can help keep these

implantables small by using high-frequency transmission that

enables the decrease of the dimensions of the antenna ele-

ments. If low-frequency transmission is required, the devices

will become larger with larger antenna elements making

them unfeasible to implant into the brain tissue. Therefore

these larger devices will possibly reside above the cortex,

i.e., in the sub-dural brain space. Furthermore, glial scar-

ring (formation of glial tissue around the implant preventing

its interface with neurons) may inhibit the implantable from

functioning properly. Wireless interfaces can help long-term

implants by packaging devices within biocompatible material

that prevents foreign body reaction. Future techniques, such

as Multiple Input Multiple Output (MIMO) wireless systems

for implants, might help the use of low-frequency solutions

for deep brain interfacing that is essential for integrating

existing wireless system platforms into future wireless brain

interfaces.

C. Brain Implants Assisted by Intelligent Reflecting Surfaces

Despite the increased risk of injuries and other related

issues, invasive wireless brain implants exhibit numerous bene-

fits in comparison with conventional over-the-scalp solutions.

It has been shown that these prosthetic devices are capable

of sensing brain activity more accurately, interacting directly

with the brain and providing a higher Signal-to-Noise Ratio

(SNR) [77]. These capabilities make them powerful tools for

enabling BMI in future generations of wireless communica-

tions (e.g., 6G and beyond). However, before this technology

becomes available to the global population, many limiting

issues need first to be addressed. One important limitation of

wireless brain implants is related to the strong signal atten-

uation caused by tissue blockage and absorption. The high

quantity of water molecules in the human body can inter-

act with the electromagnetic waves, absorb a significant part

of transmitted power, and distort the radiation pattern [78].

Such a characteristic can deteriorate the communication link

and impact reliability. One could, to some extent, alleviate

this issue by allocating a higher transmit power; however,

this parameter cannot be increased indiscriminately. Firstly,

there are strong power restrictions due to human health, and

because radio frequency energy heats up brain tissue, there

is a safety-specific absorption rate limit of 0.4 W/kg aver-

aged over the whole body and a maximum output power

density of 10 mW/cm2 for electromagnetic waves passing

through tissue [79], [80]. For illustration purposes, the total

transmission power of a wireless neural recording system

reported by Schwerdt et al. [81] was 47 mW, whereas a device

based on ultrasound communication achieved 0.12 mW [44].

Secondly, in general, the implanted devices have limited access

to energy resources. Therefore, new energy-efficient strate-

gies for improving wireless transmission performance in brain

applications are required.

In particular, Intelligent Reflecting Surfaces (IRSs) have

recently arisen as appealing devices for smart control of the

electromagnetic propagation environment. An IRS consists of

a two-dimensional structure that comprises a large number

of nearly passive subwavelength metamaterial elements with

tunable electromagnetic properties. These elements can be

dynamically configured to collectively change the behavior of

impinging wavefronts so that capabilities like steering, polar-

ization, filtering, and collimation can be achieved [82]. Such

features make the IRS technology attractive for improving

the performance of wireless communication in brain implants.
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Conceptually, if the prosthetic implanted device is assisted

by an IRS, it could send and receive information more reli-

ably without increasing its power consumption. This improved

brain communication system could be implemented, for exam-

ple, by implanting IRSs between the skull bone and the scalp

for assisting sensors and actuators implanted deeper in the

brain. In this architecture, the deeper implants would exchange

information directly with the brain, while the IRSs would

assist the wireless communication established with external

devices. An IRS-assisted BMI can become able to provide the

following capabilities.

• Improved Reliability in wireless data transfer: by proper

tuning of the IRS elements, the signal transmitted from

the brain implants can be boosted so that a higher SNR

can be achieved at an external receiver, thereby improving

the communication reliability.

• Reduced power consumption in the brain implants:

because the SNR can be improved with the help of

IRSs, one can decrease the transmit power at the brain

implant and still achieve a satisfactory communication

performance. This would reduce energy supply require-

ments and prolong the battery life of the implanted

devices.

• Improved communication security: because implants can

sense and stimulate the brain, security issues become

a critical concern in BMI. An IRS can also be benefi-

cial in this context: it can null out information leakage

at a potential eavesdropper, or it can operate in the

shield mode to avoid brain hacking; that is, by prop-

erly optimizing the IRS elements so that transmissions

to the brain implants from a hacker can be completely

absorbed/blocked.

All in all, the development of IRS technologies in the years

to come combined with brain implants would support the

development of BTC applications in the next generations of

wireless systems.

D. Lessons Learned

Throughout this section, we have provided what we fore-

see as a new paradigm for a future wireless communications

system: the brain-type communication (or simply BTC). The

main differences from existing human- and machine-type com-

munications are schematically presented in Table I. We have

also put forth an argument that BTC has the potential to

emerge as one of the main application domains of the forth-

coming 6G. We have also described the challenges that the

“brain environment” poses to the deployment of wireless chan-

nels. Overall, in developing BTC systems, we should be aware

of the fact that there are strict delay and high data rate

requirements for both downlink and uplink connections, with

a high duty cycle, which calls for high energy efficiency.

These are essential to ensure QoPE in wireless networks with

“brain-in-the-loop”. Moreover, brain implants must address

biocompatibility issues, high channel density and data transfer,

and communication security. In this context, we describe intel-

ligent reflecting surfaces as a promising approach. In the next

section, we will move toward our second path by describing

the contributions that wireless communications can bring to

neurosciences.

IV. WIRELESS NETWORKS FOR NEUROSCIENCES

Up to now, we have discussed different ways in which

neurosciences would become part of the future wireless com-

munication systems through BTC, possibly already with the

upcoming 6G. In this section, we will describe how wireless

communication theory and specific communication systems (in

particular, beyond 5G systems) can support future research

and technological development in neurosciences considering

the development of BTC as described in the previous section.

A. BTC Performance for Neurosciences

While the plurality of applications are waiting for the real

development of wireless BMIs, we must conduct an initial

assessment of the existing metrics, or new metrics, that allow

understanding of what is required in the definition of wireless

communication systems for Brains-to-Wireless infrastructure

connections. This initial analysis is made based on the recent

breakthroughs in the 5G and Beyond 5G research, which is the

cornerstone of 6G (supporting our argument that BTC applica-

tions could be included in its standardization process), as well

as recent engineering advancements in neural interfaces, which

are the central elements of BMIs. In this section, we will indi-

cate the requirements that 6G, or any future wireless system to

support BTC, needs to meet to allow for new neurosciences-

based applications. The key vision is to achieve fine granularity

of brain functions from both sensing and actuation capabilities

by integration with a specific wireless communication tech-

nology. Then, the performance expected of 6G or any other

technology is drawn upon the ability of delivering enough

performance that maintains the functioning of future BMIs

for a long time with security and safety for users.

1) Data Rate: A naive estimation of the total brain record-

ing demand is about 100 Gbits/s, which is not supported by

existing and near-deployment 5G infrastructures. However, in

the context of individual connections, this is a considerable

demand for future technologies, which are currently not being

considered because of the lack of popularity of BMIs. This

estimation was also naively performed because it does not

consider the current and future technology for BMI, which

surely can increase this number as more and more techniques

are capable of obtaining not only electrophysiological neuron

signals but also signals from other cell types in the brain, and

lastly, other types of information, such as biomarkers. On top

of that, this naive estimation is also based on the standard sam-

pling rate of neural signal acquisition (1 kHz), which varies

between technologies and recording strategies. The needs for

an increased data rate must deal with all the aforementioned

information, even though it requires more investigation into the

real data rate requirements of BMI. By looking at increased

requirements for spectrum resources, one must keep in mind

that BMI is one of the multiple applications that future wireless

systems will likely accommodate. Together with multimedia,

gaming, e-health applications, and more, BMI can increase
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the burden on future network generations for more data rate

requirements than previously expected.

2) Reliability: BMIs as a technology can open a wide

variety of applications sensitive to network disruption. For

example, remote treatment of epileptic patients will require

a constant usage of the BMI for detecting random seizure

events as well as treating the disease by using current stim-

ulation techniques also driven by the BMI solution. In this

case, the implications of network disruption are above from

conventional application delays or stream interruptions that are

commonly found in conventional networks. In this context, the

disease control mechanisms that are based on a BMI solution

could be disrupted in a way that either can start unpleasant

symptoms in patients or not support advance signal process-

ing techniques for temporal variant data that support diagnosis

systems. Based on the assumption of BMIs actively being used

in small cells, this means not only that high frequencies must

be managed to provide reliable connections that are not inter-

fered by obstacles and environmental molecular effects, such

as water vapor. These phenomena are known as the major

challenges in small cells for present beyond-5G technologies,

where intelligent reflecting surfaces are being currently the

best choice to provide highly reliable connections. However,

this technology is far away from being mature to guarantee

high levels of network reliability based on the primary focus

on physical mechanisms of beam-steering of high frequencies

as opposed to the study of network resilience, which must be

the next step of the research in this topic. The importance

of network reliability brings the focus again to solutions that

maintain a constant data rate in certain applications, where

conventional network solutions must be upgraded in future

technologies, likely already in 6G.

3) Energy Management: Wireless BMIs based on brain

implants will most likely operate on different wireless media

than the wireless infrastructure. For example, while RF is an

option for wireless BMIs, high frequencies are unlikely to

be used because of signal absorption and scattering resulting

from the high water molecule profile of the tissue and skull.

However, the two better fitting options are magnetic induction

and the ultrasound system. Their differences are highlighted

by their performance profile; magnetic induction is better for

the implant data rate, whereas the ultrasound system enables

deepness of implantation. The major challenge is that future

technologies including 6G will most likely operate around

the sub-Terahertz bands, which means that constant frequency

conversion is required in order to provide integration of wire-

less BMIs into the wireless infrastructure. Because frequency

homogenization is not an option, it can be easily foreseen

that BMIs must have short-term memory strategies that sup-

port the frequency translations without loss of data. The issue

here is then that both the frequency conversion techniques and

memory are energy expensive, which adds the concerns for the

constant usage of BMIs for chronic patients, or other appli-

cations, such as streaming or gaming. Energy management

solutions must emerge not only at the device level, but also at

the network level, which can work together by using advanced

protocols or virtual infrastructures that enable efficient and

data lossless connections with BMIs.

4) Latency: Today’s communication infrastructure is

guided by techniques that provide massive ultrareliable and

low-latency communication. This shall not change for com-

munication with BMIs. The importance of these strategies is

directly linked with the future of BMIs and their success,

because the main goal is to allow constant daily usage for

patients and other users. The radical societal change based on

BMI will only happen when we are capable of using this tech-

nology integrated into our daily activities, either to support or

enhance them. 6G and future technologies involve the idea of

massive sensing, which fits into the future BMI technology

that envisions hundreds or thousands of nano-scale devices

that interface with neuronal cells. The information on that

scale, i.e., the LFP, enables rich cellular information that is

now used to make precise predictions of disease states and

trigger events. In addition to that, the idea of massive stimu-

lation can also be implemented, where these several devices

will act on the neural tissue to stimulate whole cell popula-

tions or parts of them. Here, latency is crucial in order to

operate these functions remotely while maintaining the safety

and security of each user. At the same time, BMI has to be

perfectly modeled and tackled in a way that allows scalability.

Scalable BMIs are practically nonexistent, and 6G might as

well be the technology needed to open these doors.

B. Wireless-Based Brain–Machine Interfaces

A more direct application of the future generation of wire-

less technology that neurosciences would benefit from would

be a new generation of BMIs. BMIs have been used to alle-

viate motor deficits but also as a tool to characterize neural

correlates of behavior [46]. Here, tethered neural recording

systems are a major limitation because they hinder natural and

social behavioral interactions. Most notably, in the late 2000s,

novel wireless recording technologies have become available,

which can simultaneously sample several hundreds of neurons

from different brain regions (see [50] for a review of recording

technologies).

Schwarz et al. [83] developed a bidirectional wireless

system capable of implementing part of the signal processing

pipeline at the headstage and transceivers attached to an ani-

mal’s head. Four transceivers were used; each transceiver was

connected to 128 recording channels sampled at 31.25 kHz

per channel, consuming 2 mW per channel, with a total of

48 Mbps aggregate rate of data acquisition, and an optimal

operating range of 3 m. The device was reported to be

able to continuously operate for over 30 h. With the device

implanted in a monkey, authors were able to record 494 neu-

rons from four different brain regions. The animal successfully

performed established BMI tasks wirelessly [84], which con-

firmed the suitability for studying natural, social interactions

and complex movement behaviors.

More recently, the first wireless invasive BMI has been

demonstrated in humans [85]. The interface had 192 elec-

trodes, with 20 kSamples/s per electrode (12 bits per sample).

Prior to wireless transmission, Manchester encoding was used

to reduce error and improve reliability. Each data frame con-

tained one 50 µs 12-bit sample from all electrodes and was
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transmitted at 3.3 GHz or 3.5 GHz. Recordings were carried

out uninterruptedly for a 24 h period, and subjects successfully

performed a computer cursor BMI task.

One major problem is common to invasive recording systems:

implants inevitably cause lesions in the brain tissue, resulting

in inflammation and limiting the sampling of deeper brain

regions. To alleviate this problem, wireless sub-millimeter scale

devices are being developed that can both record and stimulate

neural activity. Ghanbari et al. [86] describe an ultrasonically

powered neural recording implant, with simultaneous power-up

and communication, that can achieve an over 35 kbps/mote

equivalent uplink data rate. Thus, in principle, this device could

operate as part of a wireless BMI.

In terms of noninvasive wireless BMIs, EEG is arguably the

most common recording strategy. By avoiding surgical proce-

dures, EEG has been widely used in human BMIs. However,

EEG signals reflect the activity of millions of neurons from

the surface of the brain, thus hindering decoding performance,

which leads to a limited set of motor commands that can be

extracted in noninvasive BMIs. Common commercial wire-

less devices range from 8 to 64 channels, with sampling

frequencies of up to 1 kHz and a few dozen meters of transmis-

sion [87]. Nevertheless, modern hardware and computational

intelligence methods, such as flexible electronics and deep

learning, have been shown to boost wireless EEG-based BMI

performance, reaching up to 122 bits per minute of information

transfer rate [88].

C. Internet of Bio-Nano Things

Another key promising application is the IoBNT [89]. The

IoBNT can aid the diversity of BMIs and their types by

interacting with the brain using molecules, peptides, and molec-

ular structures in general [90]. As it stands, no molecules are

used to convey synthetic information of any type, which means

that a whole biodiversity of information is being underutilized

as opposed to enhanced means of communication between

implantable devices and brain tissue. The research area of

molecular communications promotes the usage of molecules

as carriers for interactions between implantable–implantable

and between implantable–biological systems [91]. Increased

biocompatibility is thus reached when understanding and using

molecules that are currently being used in biological systems,

now with the purpose of controllable biological communi-

cation [92]. This infrastructure is envisioned to bridge to the

Internet by means of synthetic biology and advanced nanotech-

nology, where electromagnetic-molecular signal translation is

performed toward remote digital control of the internal cellular

process of either Eukaryotic and prokaryotic cells.

The diversity of molecules inside a human body is assumed

to be huge, and therefore, a means of translating molecu-

lar information between tissues is considered to be of great

importance even with the limited investigation by the scien-

tific community so far. The idea for the future technology

is that there are internal synthetic cells capable of converg-

ing molecular information from different types of tissues

and vice versa in order to support the idea of biomolecu-

lar intrabody networks [93]. Therefore, implantables or even

bionanomachines located in different tissues can communicate

with each other without the need of predetermined molecular

coherence, which can empower flexibility and performance of

these systems. At the edge of these networks, the molecu-

lar information is translated into electromagnetic information

by biocyber interfaces that are also capable of translating the

opposite case [94].

Inside the brain, implantables of bionanomachine devices

have the main purpose of influencing the brain activity by

manipulating the ionic channels that are understood to be a

major part of the information propagation in the brain. There

are a variety of molecules on the micro scales of the brain,

including calcium, potassium, and sodium. Neurotransmitters

and gliotransmitters are ions that regulate the information

propagation inside the synaptic channel between neurons.

These molecules have been studied and analyzed for many

decades and are controlled to treat many neurodegenerative

diseases. Brain–machine interfaces for molecular interactions

have a huge impact in the future of the neurodegenerative dis-

eases. The levels of control that can be reached by digital

systems can be tremendously beneficial to chaotic systems,

such as biological systems in the brain [95]. The main chal-

lenge is that the major biological properties of the brain

have been well understood before considering them as control

variables; the understanding of these properties is a time-

consuming effort that has to focus on neuroscientific efforts

undertaken through many decades.

However, there are works that demonstrate the idea of

IoBNT prevailing through existing disease challenges together

with biotechnology as well as future oncology efforts. The EU-

H2020-FET Gladiator project deploys a hybrid neural interface

that is implanted into the brains of patients with glioblas-

toma, with the main goals of utilizing the modulation of

drug propagation in the brain that maximizes drug efficacy

while minimizing its side effects [96]. For that, wireless exter-

nal signals control these hybrid neural interfaces to produce

molecules that contain multiple drug molecules inside them,

called exosomes. These exosomes are drug carriers that ulti-

mately dictate how and when the tumors in the brain are

being treated by this novel cancel therapy. The novel paradigm

of molecular communication is used to characterize the data

rate and capacity of exososome-based communication systems

between the hybrid interface and the brain cancer. Here, the

channel is understood to be the extracellular brain space in

which the exosomes can propagate through a biased random

motion. The many brain cells create tight spaces in which the

exosomes propagate and where there is enough brain fluid to

drive movement, called brain parechyma. The research is now

focusing on the development of both theoretical and in-vitro

models that demonstrate the above-mentioned system, which

can radically change the existing state-of-the-art of cancer

treatment methods.

D. Complex and Chaotic Communications to Quantify

Neural Activity

Tools of communications and information theory can also

provide interesting analytical approaches to assess the behavior
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and fundamental limits of neural communications, which, by

nature, exhibit chaotic properties. Neurons, themselves, have

a complex morphology that allows the connection to many

other neurons. They have several morphological types, but also

varied electrical activity profiles. A single neuron can be con-

nected to thousands of other neurons and non-neuron cells

through millions of synapses. Once these neurons comprise a

large complex network of cells, its nonlinear effects result in

complex or chaotic dynamics. The individual elements of the

network contribute cumulatively to these high-order dynamics

with their simple, yet diverse actions, which can be deter-

ministic or stochastic themselves. Analyzing neural networks

with modeling approaches based on complexity and/or chaos

can provide rich dynamics that are governed by deterministic

processes (i.e., action potentials) in order to obtain nontrivial

patterns and behavior. This is essential to not only understand

and characterize neural networks but at the same time provide

communication systems that can interact with them.

The analysis of neural signals using chaos-based principles

started with EEG signals [97]. It is now accepted, from mea-

sures of entropy, that the brain indeed presents itself, at least

in certain modes of operation, as a chaotic-behaving system.

For example, studies of diseases have been further analyzed

using chaos-based principles, like schizophrenia, which is sug-

gested to be a decay of complexity, either on the side of

randomness (infinite entropy) or order (zero entropy) [98].

Another example is the effect of drugs, like LSD, that are

connected to periodic neural oscillations, thus losing chaoticity

and decreasing complexity [99].

Even though the effort to discover organization in nature

had its origins in randomness, it was realized that measures of

randomness do not capture the property of organization [100].

This is a very important issue in neurosciences, as the knowl-

edge of organization and activity needs to be bridged in order

to provide reliable communications with the brain [101], [102].

In signal processing, one can find measures that capture a

system’s complexity—organization, structure, memory, sym-

metry, and pattern. Complexity measures would allow us to

quantify the hidden micro-level relationships between system

parts that result in the system properties obtainable at the

macro level, which would, for example, quantify the relation-

ship between cellular to network levels [103]. The authors

of [104], [105] argue that a complex system lives in between

a random and a completely regular system, leading to the con-

clusion that a lot of the complexity metrics (e.g., Kolmogorov

complexity in algorithmic information theory, dimensional

complexity in neurobiology) do not measure “true complex-

ity“ because they do not attain small values for both random

and regular systems. Random systems have no structure at any

level, which results in high entropy and low complexity. On

the other hand, regular systems exhibit low entropy and low

complexity because of the repetition of structures at multiple

levels. Therefore, it is obvious that complexity and entropy

are two distinct quantities. As highlighted in [106], entropy

captures the disorder and inhomogeneity rather than the cor-

relation and structure of a system. Therefore, the measure

of randomness, which has previously been applied to neu-

rosciences to quantify neural activity, might be re-evaluated

in terms of capturing the true complexity of neuron activity

inside the brain. It may also be used on multiple scales—for

example, by linking spiking activity in subcortical regions to

the whole brain. Even though we believe that we can recog-

nize complexity when we see it, complexity is an attribute

that is often without any conceptual clarity or quantification

per se; however, because of the many unknowns in neu-

rosciences, it should be further explored. For this purpose,

the brain can also be studied as a complex communication

network associated with structure and function, and evalu-

ated with information-theory-inspired metrics and distributed

communication system performance indicators. This knowl-

edge translation from complex networks to a brain network

can shed light on organization and structures of the brain that

are currently unknown.

E. Lessons Learned

In this section, we indicated how the future generation of

wireless systems, potentially 6G, would benefit the neuro-

sciences community. We have shown the main requirements

that, from our view, future technology would need to meet

to incorporate BTC-based applications, BMI in particular. We

highlight that high data rates, reliability, latency, and energy

management should be the focus of research in wireless-based

BMIs. In this context, considering the particularities of neu-

ronal activity, we brought the discussion to a highly promising

research path: IoBNT, which incorporates molecular-level

communications into the more widely discussed electrical

communications. Finally, we have explored complexity sci-

ences and chaos theory as theoretical tools that could be

helpful to measure and analyze brain activity, and help the

design of more effective dedicated communication systems.

V. CASE STUDY: BRAIN-CONTROLLED VEHICLES

In this section, we present the state-of-the-art of one par-

ticular application called brain-controlled vehicles (BCVs)

and how we foresee its development based on 6G (or other

future wireless technology). BCVs are an interesting, nonmed-

ical application that involves both neurosciences for wireless

networks and wireless networks for neurosciences. The auto-

motive industry is one of the world’s largest industries, highly

competitive and exposed to novel technologies, and therefore,

BCVs could be a disruptive factor in promoting the develop-

ment of BTC technology. Clearly, advanced BCVs cannot rely

on noninvasive technology, but rather on the novel neuroscien-

tific and wireless technologies that we have discussed thus far.

Therefore, the goal of the case study is to show one promising

application in a highly relevant industry and emphasize how

modern BMIs (based on invasive signals) and modern wireless

communications could expand it.

A. State-of-the-Art

The field of BCVs with EEG-based BMI has experienced

a steady growth since 2010, usually focusing on applications

to support disabled patients. In addition to the already dis-

cussed challenges of BMI in relation to developing effective

algorithms for feature extraction and classification, current
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Fig. 5. Future direction of a BCV application, depicting a rescue mission. Users are seated in BTC-enabled chairs with sensors, wearables, and XR devices
connected to the 6G network, and have seamless access to all relevant information for the mission. Neural spikes and molecular signals are registered and
integrated into the IoBNT, supported by the wireless network infrastructure. Simultaneously, users also receive sensory feedback directly by the same invasive
implants. Distributed AI algorithms ensure low-latency communication between users and vehicles as well as between brains. Ambient information, together
with users’ action intentions and emotional state, creates a broad structure of awareness which, altogether, contributes to a successful operation.

BMI hardware has well-known limitations concerning the

communication range and speed.

Despite these challenges, several studies have demonstrated

the feasibility of BCVs. We can mention, for instance, control

of a vehicle in four main directions [107], [108], methods for

obstacle avoidance [109], [110], and hand brake assistance

in emergency situations [111], [112], using diverse platforms

such as vehicle simulators, virtual reality vehicles, vehicles in

video games, quadcopters, drones, helicopters, and fixed-wings

aircrafts. A general simulator-based procedure for training a

participant is shown in Fig. 5.

In a seminal work, Haufe et al. [113] implemented an assis-

tant brake system in emergency cases for BCV applications

based on EEG and electromyography (EMG) signals, which

was tested on a simulated vehicle. The algorithm identifies

brain activity patterns related to emergency braking intentions

in a simulated graphical racing car task. In a similar vein,

Kim et al. [114] attempted to detect the driver’s emergency

braking intention in different situations for a simulated vehi-

cle based on EEG and EMG signals. This method was further

improved in [115], including a real-world experimental task.

In Göhring et al. [116], a semi-autonomous vehicle was imple-

mented with different external sensors and a camera, and then

controlled using EEG-based brain activity patterns. To control

the vehicle, two different scenarios, obstacle avoidance and

braking and steering, were used.

In a series of studies by Bi et al. [111], [117]–[121], differ-

ent approaches to identify and predict the driver’s intention for

moving forward, turning left and right, as well as emergency

braking, were studied. The development of AI-based learning

methods is leading to improvements in those tasks, as reported

in [108], [122]–[128]. Similar research has also been carried

out to study BCVs for aerial vehicles, as in [129]–[131]. A

major challenge lies in separating those features of brain sig-

nals that relate to vehicle control from those that are not. The

second task to enhance the results is to develop or modify the

existing classifiers into a highly accurate multiclassifier, such

as a deep belief learning algorithm. The third limitation is the

limited number of participants for training and testing of the

algorithms.

Arguably, the major limitation on BCVs is the availabil-

ity of more informative neural signals than those that EEG

or EMG can provide. The use of noninvasive brain signals

has led to significant contributions, in particular, better brak-

ing systems, but a comprehensive control of a vehicle requires

fine-tuned actions. State-of-the-art EEG-based BMIs boosted

by deep-learning methods have proven to be feasible for mul-

tidirectional 3D robotic arm control, with success rates of

about 60% [132]. Even the more invasive methods, such as

ECoG, hardly surpass the 80% success rate in 2D cursor con-

trol tasks [133]. Although these are impressive results with

a wide range of practical applications, BCVs require stable,

high success rates. Furthermore, noninvasive methods have

access to cortical information, the outermost layer of the brain,

whereas other deeper brain regions, like the cerebellum or

basal ganglia, may convey information that is fundamental for

a successful vehicle operation.

For a comparison, Gopal et al. [134] report a tethered 96-

electrode BMI with a performance of 6.5 bps, which would

correspond to typing 15 words/min with a basic alphanu-

meric keyboard, whereas a standard EEG-based BMI has a

performance of ∼1.0 bps, or 3 words/min [135]. Considering

the BMI performance scales with the number of neurons

recorded, modern prototype interfaces with thousands of elec-

trodes, such as the one developed by Neuralink [8], indicate

a promising future for BCV.



MOIOLI et al.: NEUROSCIENCES AND WIRELESS NETWORKS: POTENTIAL OF BTC AND THEIR APPLICATIONS 1615

As we discussed in Section III, the progress in direct

brain implants that communicate wirelessly, supported by 6G

or other technologies, will enhance the repertoire of brain

commands to the vehicle and also facilitate bidirectional

communication, in which signals from the vehicle and its sur-

roundings may be delivered directly to the driver’s brain. In

addition, future wireless networks would need to accommo-

date BTC protocols and AI algorithms that can integrate all

of the required processing stages for a robust, pleasant, and

secure driving experience.

B. Future Direction: Neurosciences–Wireless Networks

Converged Applications

Although successfully tested under different conditions,

BCVs as designed today are not a scalable solution as they

would require a wireless connection to support BTC with

high coverage, availability, speed, and low latency to pro-

vide reliability and safety for the end-users. As discussed

above, despite the great development of wireless communi-

cations (remarkably 5G), the existing solutions would not

work today because of the stringent requirements of BTC

(see Section III). However, if the path indicated in this paper

was realized, a scalable BCVs would become feasible by

using a new generation of wireless-connected BMI with 6G-

connected high-density implants supported by IRSs to enable

BTC. This would also be associated with the possibility of

acquiring and processing more biosignals via IoTBNT, linked

with Intelligent Sensor Networks (ISNs) that could sample

the environment in which the BCV is moving. Furthermore,

AI-enabled distributed cloud algorithms could support sophis-

ticated signal processing in the fraction of the second scale

required by a safe driving experience. The performance limits

of such communicative brain devices could be derived from

information- and communication-theoretical tools applied for

chaotic and spiking systems, while new chaos-based wave-

forms for communication might also be developed.

As a rough example, we could imagine the following

future scenario in 10–15 years from now. A major fire out-

break triggers an emergency response central, and multiple

BCV, both aerial and terrestrial, are sent to the dangerous

site. Modern wireless networks, with distributed AI algo-

rithms, support pervasive coverage, ultrahigh throughput, and

low-latency communication. Remote operators are seated in

BTC-enabled chairs with sensors, wearables, and XR devices

connected to the 6G network, and have seamless access to

all relevant information for the mission. The users can com-

municate directly via brain-to-brain communication. Invasive

implants, together with the IRS and IoBNT infrastructure,

establish a bidirectional link with the users’ brains to oper-

ate the semiautonomous vehicles. Ambient information, users’

action intentions, and emotional state create a broad structure

of awareness, which, altogether, contributes to a successful

operation.

Clearly, this scenario could be extended and rethought, but it

illustrates a potential future that we believe is technologically

feasible given the state-of-the-art in wireless communications

and neurosciences, as well as in biosignal processing and

computer sciences. The main lesson to be learned is that the

convergence of those fields is more likely to happen if stim-

ulated by the definition of the future generation of wireless

systems. In particular, having BTC as part of 6G research

agenda would provide clear guidance of how those kinds of

potential futures could become a reality for many applications

related to future 6G-connected BMIs, as the BCV example

indicated.

VI. SECURITY, PRIVACY, AND ETHICAL ASPECTS

Current BMIs are applied mostly in the medical and thera-

peutic context, in which rigid protocols regarding experimental

design and the usage of data are enforced. A substantial

body of literature has proven that it is possible to decode

and manipulate brain activity, thus granting access to one’s

feelings, emotions, and intentions in an unprecedented way.

Clearly, one of the main challenges for the development of

BTC systems relate to security, privacy, and ethical aspects in

BMIs [136]–[138].

First and foremost, despite the astonishing progress in

recording technology, it is still unclear if a long-term neu-

ral implant can be placed without damaging neural tissue (see

Section II-C). This is definitely one of the crucial steps toward

BTCs, because invasive recordings offer access to biosignals

unavailable to noninvasive methods. Thus, the futures of BTC

and neural recording technology are intertwined. Novel works

offer promising initiatives, from nanorobotics to molecular

communication [93].

Then, the capacity to read from and write to an individ-

ual’s brain opens access points to memories and may even be

used to change one’s behavior. Even if implants and commu-

nication networks are safe, BTCs mean that artificial devices

will constantly interact with individuals, possibly shaping their

agency and affecting social behavior. Moreover, human reason

becomes distributed and the sense of responsibility is dramati-

cally impaired: if a harmful action results from the operation of

a BMI, who should be accounted for the damage? The ethical

controversy underlying self-driving vehicles gives a indica-

tion that ethics may play as important a role for technological

development as technical challenges [137].

To ensure that novel technologies that exploit BMIs abide

by international standards and human rights, some of the

most representative researchers in the field have claimed

for guidelines to be established [139]–[141]. Overall, four

main concerns are highlighted: privacy and consent; agency

and identity; augmentation; and bias. In this context, neu-

ral information and neural applications should be strictly

regulated, decentralized, and subject to transparent social

scrutiny and user consent, especially if military purposes are

considered.

From a different but related perspective, established commu-

nication networks approaches have addressed security, privacy,

and ethical aspects of their usage, regardless of the under-

lying technologies. The advent of BTCs and novel BMIs

complicate this nontrivial debate, considering that novel appli-

cations emerge in parallel with the standardization protocols.

More recently, even though 5G networks are yet to be fully
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deployed, there has been an intense security and privacy

concern [142], [143]. In comparison with 5G, 6G, or other

potential future wireless networks will boost real-time respon-

sive systems, capable of AI-based autonomous decisions,

interfacing brains and machines. This draws attention to spe-

cific vulnerabilities related to authentication, access control,

malicious behavior, encryption, and data transmission, which

are closely linked to the novel technologies that support future

technologies [144].

In addition, the advent of two-way BTC systems is accom-

panied by novel vulnerabilities, such as neuronal cyberattacks

to brains [145], which are still largely ignored in the BMI

literature. Until now, the possibility of influence on human

behavior by directly modulating the brain has always been lim-

ited to clinical environments, but here we envision that future

BMIs and BTC systems must take into account the hypothe-

sis of undesired signals, not necessarily malicious, that affect

brain implants.

Several solutions have been proposed [146]–[149]. A cen-

tral aspect is to restrict the centralized processing of neural

information and ensure privacy. For that, blockchain-like

mechanisms, differential privacy, and federated learning offer

promising alternatives. Concurrently, international govern-

ments and regulatory bodies should agree on guidelines for

the usage of neurotechnology, similar to what has been done

for nuclear energy or gene editing applications.

VII. CONCLUDING REMARKS AND LESSONS LEARNED

This tutorial paper provided an in-depth overview of an

interdisciplinary research field at the intersection of neu-

rosciences and wireless communications, as well as signal

processing, control theory, and computer sciences. We argue

here that an organic encounter between these two research

areas has the full potential to take place in future developments

of wireless networks, in particular 6G, which will support

BTC considering not only its strict requirements but also the

particularities of neural signals and brain communication. By

revisiting the literature, we have classified the expected bene-

fits of this joint research into two groups, from where we can

state the following key research directions.

• Neurosciences for wireless networks focuses on how

developments in neurosciences will enable new applica-

tion in the next generation of wireless systems based on

BTC, in contrast to HTC and MTC. The key challenges

relate to latency, high data rate, and high energy effi-

ciency requirements, which are essential to support QoPE

in BTC. Studies on the nature of the neural code, and

how to match neural dynamics to behavior, are imperative

to shed light on communication protocols. In a comple-

mentary effort, future works on materials and biomedical

engineering should move toward brain implants with a

higher channel density whilst ensuring biocompatibility

and security.

• Wireless networks for neurosciences focus on how

future wireless technologies could support new research

and development in neurosciences, potentially includ-

ing novel wireless-enabled BMIs, and IoBNT, as well

as information- and communication-theoretic ways of

evaluating brain communications based on their chaotic

nature. In this context, the core future developments lie

on the strict reliability and latency requirements, consid-

ering critical applications, such as BCVs. Furthermore,

novel research fields, such as IoBNT, which incorpo-

rate molecular-level communications, will increase the

demand for high data rates. Finally, having communicat-

ing brains in wireless networks bring forth serious ethical

and security issues that have to be addressed prior to

deployment of any BTC technology.

We illustrated the potential benefits of this proposed

research agenda by analyzing a brain-controlled vehicle

application.

We expect this contribution to serve as a key reference for

researchers from both domains to start building joint activ-

ities that are necessary to realize the vision indicated here.

The proposed discussions shall point toward a direction full of

potential, from basic research to product development, but this

can only be realized as a truly interdisciplinary task, similar to

the path taken by neuromorphic computing [2]. In particular, a

fully integrated smart city society immersed in an ubiquitous

wireless computation environment will certainly find its great

dilemmas in security, privacy, and ethics, and these topics must

underlie any endeavor. In summary, although we are aware that

the relation between neurosciences and wireless communica-

tions is still not fully established, this tutorial clearly indicates

its feasibility if enough efforts are dedicated toward this goal.

Our view is that this task needs to be put forth now during

the discussions of novel wireless technologies, including 6G,

so that BTC enters the agenda of the standardization bodies,

indicating the research path for the coming ten years.
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