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The pharmacological action of selective serotonin reuptake inhibitor antidepressants may
include a normalization of the decreased brain levels of the brain-derived neurotrophic factor
(BDNF) and of neurosteroids such as the progesterone metabolite allopregnanolone, which
are decreased in patients with depression and posttraumatic stress disorders (PTSD). The
allopregnanolone and BDNF level decrease in PTSD and depressed patients is associated
with behavioral symptom severity. Antidepressant treatment upregulates both allopreg-
nanolone levels and the expression of BDNF in a manner that significantly correlates
with improved symptomatology, which suggests that neurosteroid biosynthesis and BDNF
expression may be interrelated. Preclinical studies using the socially isolated mouse as an
animal model of behavioral deficits, which resemble some of the symptoms observed in
PTSD patients, have shown that fluoxetine and derivatives improve anxiety-like behavior,
fear responses and aggressive behavior by elevating the corticolimbic levels of allopreg-
nanolone and BDNF mRNA expression. These actions appeared to be independent and
more selective than the action of these drugs on serotonin reuptake inhibition. Hence,
this review addresses the hypothesis that in PTSD or depressed patients, brain allopreg-
nanolone levels, and BDNF expression upregulation may be mechanisms at least partially
involved in the beneficial actions of antidepressants or other selective brain steroidogenic
stimulant molecules.
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INTRODUCTION
Impaired neurosteroid biosynthesis has been associated with
numerous behavioral dysfunctions, which range from anxiety-
and depressive-like behaviors to aggressive behavior and changes
in responses to contextual fear conditioning in rodent models
of emotional dysfunction (Pinna et al., 2003, 2004, 2006, 2008;
Uzunova et al., 2004, 2006; Jain et al., 2005; Martin-Garcia and Pal-
lares, 2005; Kita and Furukawa, 2008; D’Aquila et al., 2010; Pinna,
2010). In clinical studies, decreases in the serum, plasma, and cere-
brospinal fluid (CSF) content of neuroactive steroids, including
the progesterone metabolite, allopregnanolone, which is a potent
positive allosteric modulator of the action of γ-aminobutyric acid
(GABA) at GABAA receptors (Puia et al., 1990, 2003; Lambert
et al., 2003, 2009; Belelli and Lambert, 2005), are associated with
several psychiatric disorders such as depression, anxiety spectrum
disorders, posttraumatic stress disorders (PTSD), premenstrual
dysphoric disorder, schizophrenia, and impulsive aggression (Rap-
kin et al., 1997; Romeo et al., 1998; Uzunova et al., 1998; Bloch
et al., 2000; Nappi et al., 2001; Ströhle et al., 2002; Bäckström
et al., 2003; Pinna et al., 2006; Rasmusson et al., 2006; Amin et al.,
2007; Marx et al., 2009; Pearlstein, 2010). Thus, endogenous allo-
pregnanolone exerts the physiological role of regulating emotional

behavior by a potentiation of the inhibitory signal of the neuro-
transmitter GABA at GABAA receptors that are widely distributed
in the glutamatergic neurons of the cortex and limbic areas, such
as the hippocampus and the amygdala.

Allopregnanolone levels in the CSF of patients with PTSD and
unipolar major depression were approximately half of those mea-
sured in the CSF of non-psychiatric patients (Uzunova et al.,
1998; Rasmusson et al., 2006). Post-mortem studies confirmed
that in depressed patients, the decrease of allopregnanolone is
likely induced by a decrease in the expression of 5α-reductase
type I mRNA in the prefrontal-cortex (area BA9) compared with
age- and sex-matched non-psychiatric subjects (Agis-Balboa et al.,
2010; for a biosynthetic representation of allopregnanolone from
progesterone by the action of 5α-reductase, please see Figure 1).
Our clinical studies support the hypothesis of a block in the
synthesis of allopregnanolone in some individuals with PTSD
and depression. This is also shown by the finding that allopreg-
nanolone levels were the lowest among patients with comorbid
PTSD and depression (Rasmusson et al., 2006). Interestingly,
PTSD and major depressive disorder (MDD) are often comor-
bid and share multiple symptoms. Whereas PTSD is defined as a
type of anxiety disorder that can occur as a result of experiencing
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a traumatic event that involved the threat of injury or death, sev-
eral epidemiological studies show that depression diagnosed after
trauma exposure is almost always comorbid with PTSD, which
suggests that comorbid PTSD/MDD may likely be considered as a
more severe PTSD (Breslau et al., 2002).

In depressed patients, treatment with selective serotonin reup-
take inhibitors (SSRIs) including fluoxetine and fluvoxamine nor-
malized CSF allopregnanolone content, which significantly cor-
related with the improvement in depressive symptoms (Uzunova
et al., 1998). These data suggested that a deficit of GABAergic neu-
rotransmission, likely caused by a downregulation of brain allo-
pregnanolone biosynthesis in corticolimbic glutamatergic neu-
rons, should be among the molecular mechanisms considered
in the etiology of depression and PTSD. Upregulation of allo-
pregnanolone biosynthesis appears to be a novel mechanism for
the therapeutic effects of SSRIs (Pinna et al., 2009), at least for
the anxiolytic, antidysphoric, and antiaggressive effects of these
drugs. Likewise, neurosteroidogenic molecules that are unrelated
to the SSRI class of drugs, including the ligands of the 18 kDa
translocase protein (TSPO), which is involved in the transport of
cholesterol across the inner mitochondrial membrane and activa-
tion of neurosteroidogenesis (Rupprecht et al., 2010; Schüle et al.,
2011), have been recently suggested as a new class of anxiolytic
drugs. These drugs exert their anxiolytic effects by increasing the
brain levels of allopregnanolone but unlike benzodiazepines, are
devoid of unwanted side effects, including sedation, tolerance, and
withdrawal symptoms (Serra et al., 1999; Rupprecht et al., 2009;
Schüle et al., 2011). The advantage of a new generation of non-
benzodiazepine anxiolytics for the treatment of PTSD patients lies
in the finding that PTSD patients fail to respond to the pharma-
cological effects of anxiolytic benzodiazepines (Gelpin et al., 1996;
Viola et al., 1997; Davidson, 2004).

Interestingly, parallel investigations by several other labora-
tories have observed that in clinical studies, the brain-derived
neurotrophic factor (BDNF) appears to play an important role
in several psychiatric disorders, including PTSD and depression.
BDNF plays a pivotal physiological role by maintaining trophism
in the adult brain, affecting dendritic spine morphology, branch-
ing and synaptic plasticity, and long-term potentiation (LTP) with
important implications for learning and memory and emotional
behavior (Egan et al., 2003; Nagahara and Tuszynski, 2011). BDNF
expressed in cortical and hippocampal pyramidal neurons can be
released in the surrounding neuropil around cell bodies and den-
drites and thus, becomes available for local utilization (Wetmore
et al., 1994). The synthesis and release of BDNF by these pyramidal
neurons provides evidence for both a paracrine and an autocrine
role for BDNF and establishes a local source of trophic support for
the maintenance of synaptic plasticity in the mature brain (Wet-
more et al., 1994; Waterhouse and Xu, 2009; Cowansage et al.,
2010). Because of these characteristics, BDNF may play an impor-
tant role in the adaptation of corticolimbic areas to stress and to
the action of antidepressants.

In psychiatric patients, BDNF expression was indeed decreased
in both the post-mortem brain and in the blood cells of depressed
patients. Further, the extent of BDNF downregulation positively
correlated with the severity of depressive symptoms (Karege et al.,
2002, 2005; Gonul et al., 2005; Piccinni et al., 2008). The levels

of BDNF in the post-mortem brain of depressed patients were
elevated in antidepressant-treated subjects (Chen et al., 2001;
Aydemir et al., 2005; Gonul et al., 2005; Brunoni et al., 2008;
Piccinni et al., 2008; Sen et al., 2008; Matrisciano et al., 2009).
BDNF expression was also increased when patients were subjected
to transcranial magnetic stimulation, vagus nerve stimulation, or
electroconvulsive therapy (Bocchio-Chiavetto et al., 2006; Lang
et al., 2006).

In protracted stress rodent studies, neurotrophins including
BDNF have been identified as neuroendocrine effectors involved in
the response to stress and in the behavioral dysfunction associated
with anxiety and depression. Protracted stress in rodents induces
morphological changes, such as decreased neurogenesis and neu-
ronal atrophy (Sapolsky, 2000; McEwen et al., 2002; Duman, 2004;
Tsankova et al., 2006). Social deprivation,a condition lacking social
stimuli, for instance might represent a stressful condition trigger-
ing the emergence of dysfunctional emotional behavior charac-
terized by increased emotionality and hypothalamic–pituitary–
adrenal (HPA) axis reactivity in addition to reduced BDNF levels
(Berry et al., 2011). Several antidepressant treatments have been
shown to increase BDNF levels in the brain. Interestingly, antide-
pressant normalization of the stress-induced decrease of BDNF in
mouse models appeared to be associated with long-term treatment
with antidepressants (Nibuya et al., 1995; Shirayama et al., 2002;
Russo-Neustadt et al., 2004; Alfonso et al., 2006). Of note, BDNF
infusion into the hippocampus induces antidepressant-like effects
in animal models of depression (Shirayama et al., 2002). On the
other hand, mice lacking BDNF fail to respond to antidepressants
(Monteggia et al., 2004).

Meanwhile, several preclinical studies observed that fluoxetine,
paroxetine, sertraline, and other SSRIs increase the content of
allopregnanolone in various rodent brain areas (Uzunov et al.,
1996). Using the socially isolated mouse model of behavioral
deficits that resemble symptoms of human anxiety disorders and
PTSD (Pinna et al., 2003, 2004; reviewed in Pinna et al., 2006;
Pinna, 2010 and Pinna et al., 2009), we have shown that corticol-
imbic allopregnanolone levels are decreased in association with
the development of anxiety-like behaviors, resistance to sedation,
and heightened aggression (Pinna et al., 2003, 2006; Nin et al.,
2011). Several reports on the mechanisms by which SSRIs increase
allopregnanolone biosynthesis confirmed the hypothesis that the
behavioral effects of fluoxetine were unrelated to the serotonin
reuptake inhibitory activity of these drugs (Pinna et al., 2003, 2004,
2009).

This review will examine whether neurosteroidogenesis and
BDNF expression are interrelated and whether by elevating
allopregnanolone biosynthesis, antidepressant therapy regulates
BDNF expression.

ALLOPREGNANOLONE AND BDNF BIOSYNTHESIS AND
ACTION IN CORTICOLIMBIC NEURONS
Independent of peripherally-derived progestins, allopregnanolone
may be synthesized in the brain (Baulieu, 1981; Cheney et al.,
1995; Baulieu et al., 2001; Guidotti et al., 2001; Stoffel-Wagner,
2001) from progesterone by the sequential action of two
enzymes: 5α-reductase type I, which reduces progesterone to
5α-dihydroprogesterone (5α-DHP), and is the rate-limiting step
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FIGURE 1 | In the brain, allopregnanolone is synthesized from

progesterone by the sequential action of: (i) 5α-reductase type I (5α-RI),

which reduces progesterone into 5α-dihydroprogesterone (5α-DHP) and

functions as the rate-limiting step enzyme in allopregnanolone

biosynthesis; and (ii) 3α-hydroxysteroid dehydrogenase (3α-HSD), which

either converts 5α-DHP into allopregnanolone (reductive reaction) or

allopregnanolone into 5α-DHP (oxidative reaction).

17β-(N,N -diisopropylcarbamoyl)-androstan-3,5-diene-3-carboxylic acid (SKF
105,111) is a potent competitive 5α-RI inhibitor (Cheney et al., 1995).
S-norfluoxetine stimulates the accumulation of allopregnanolone likely by
targeting 3α-HSD (Griffin and Mellon, 1999). P450 scc, P450 cholesterol
side-chain cleavage; 3β-HSD, 3β-hydroxysteroid dehydrogenase.

enzyme in allopregnanolone biosynthesis (Figure 1); and 3α-
hydroxysteroid dehydrogenase (3α-HSD), which either converts
5α-DHP into allopregnanolone (reductive reaction) or allopreg-
nanolone into 5α-DHP (oxidative reaction; Figure 1).

Allopregnanolone reaches physiologically relevant levels that
modulate GABAA receptor neurotransmission (Puia et al., 1990,
1991, 2003; Majewska, 1992; Pinna et al., 2000; Lambert et al., 2003,
2009; Belelli and Lambert, 2005). Allopregnanolone potently (nM
affinity) induces a positive allosteric modulation of the action of
GABA at GABAA receptors (Puia et al., 1990, 1991; Lambert et al.,
2003, 2009). The physiological relevance of endogenous allopreg-
nanolone is underlined by its facilitation and fine-tuning of the
efficacy of direct GABAA receptor activators and positive allosteric
modulators of GABA effects at GABAA receptors (Pinna et al.,
2000; Guidotti et al., 2001; Matsumoto et al., 2003; Puia et al.,
2003).

Allopregnanolone potentiates GABA responses via two binding
sites in the GABAA receptor that, respectively, mediate the poten-
tiation and direct activation effects of allopregnanolone. Direct
GABAA receptor activation is initiated by the binding of allopreg-
nanolone at a site formed by interfacial residues between the α and
β subunits (Hosie et al., 2006). Binding of allopregnanolone at the
potentiation site located in a cavity within the α-subunit results
in a marked enhancement of GABAA receptor activation (Hosie
et al., 2006).

The localization of enzymes involved in allopregnanolone
biosynthesis in the brain remained unclear until recent investi-
gations in the mouse (Agis-Balboa et al., 2006, 2007; reviewed
in Pinna et al., 2008). In our studies, 5α-reductase and 3α-HSD
were shown to be highly expressed and colocalized in a region-
specific way in primary GABAergic and glutamatergic neurons
(pyramidal neurons, granular cells, reticulo-thalamic neurons,
medium spiny neurons of the striatum and nucleus accumbens,
and Purkinje cells), and were virtually unexpressed in GABAer-
gic interneurons and glial cells (Agis-Balboa et al., 2006, 2007).
Allopregnanolone synthesized in glutamatergic cortical or hip-
pocampal pyramidal neurons or in granular cells of the dentate
gyrus may be secreted in a paracrine manner by which allopreg-
nanolone may reach GABAA receptors located in the synaptic
membranes of other cortical or hippocampal pyramidal neu-
rons (Figure 2, arrow 1). It could also occur in an autocrine
fashion, which would allow allopregnanolone to act locally by

binding post-synaptic or extra-synaptic GABAA receptors located
on the same dendrites or cell bodies of the cortical or hippocam-
pal pyramidal neuron in which allopregnanolone was synthesized
(Agis-Balboa et al., 2006; Figure 2, arrow 2). Allopregnanolone
might also diffuse laterally into synaptosome membranes of the
cell bodies or dendritic arborization of glutamatergic neurons
in which it is produced to attain intracellular access to specific
neurosteroid binding sites of GABAA receptors (Akk et al., 2005;
Agis-Balboa et al., 2006; Figure 2, arrow 3). Allopregnanolone and
5α-dihydroprogesterone (5α-DHP) may also affect intracellular
signaling regulating gene expression, including BDNF expression
(Figure 2, arrow 4).

The pro- and mature-forms of BDNF are synthesized and can
be released from neurons by either a constitutive secretion or
activity-dependent release (Mowla et al., 1999). Mature BDNF
appears to be the most abundant form and that of highest phys-
iological significance in the adult brain (Matsumoto et al., 2008;
Rauskolb et al., 2010). Also, it is widely distributed in the fore-
brain and in most of cortical and limbic regions, including the
cortex and hippocampus (reviewed in Nagahara and Tuszynski,
2011). Upon release, BDNF binds to two different receptors, the
tropomyosin-related kinase receptor type B (TRKB), and the p75
receptor (Soppet et al., 1991). The most widely expressed BDNF
receptor across various brain areas, TRKB is considered highly
significant for BDNF functional actions in adulthood due to its
higher binding affinity with BDNF and brain regional distribu-
tion (reviewed in Nagahara and Tuszynski, 2011). On the other
hand, in the adult brain the BDNF low-affinity p75 receptor is
expressed in basal forebrain cholinergic neurons and in a few
cortical neurons (Lu et al., 1989). Interestingly, while mature
BDNF binds with higher affinity to TRKB receptors, pro-BDNF
has a higher affinity binding for p75 receptors. This difference
in the binding of the two forms of BDNF is pivotal in terms of
function. In fact, whereas the mature form of BDNF, by bind-
ing to TRKB, induces important physiological roles, including
neuronal survival and the activation of several genes such as
the cyclic AMP-response element-binding protein (CREB), the
binding of pro-BDNF to p75 receptors has opposite effects, sup-
porting apoptotic signaling (Koshimizu et al., 2010). The local
release of BDNF in corticolimbic neurons may also regulate
behavior by a rapid action on neurotransmitter systems (see also
Figure 2).
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FIGURE 2 | Allopregnanolone biosynthesis and action on GABAA

receptors located on synaptic membranes of cortical pyramidal

neurons. GABA, after been released from GABAergic interneurons, binds
to and activates post-synaptic and extra-synaptic GABAA receptors.
Allopregnanolone facilitates the synaptic inhibitory action of GABA at
post-synaptic and extra-synaptic GABAA receptors by a paracrine (arrow 1)
or autocrine (arrow 2) mechanism or may access GABAA receptors by
acting at the intracellular sites (arrow 3) of the GABAA receptors. Finally,
allopregnanolone may affect the expression of target genes, including
BDNF, directly (arrow 4) or indirectly (arrow 5) by acting at GABAA receptors.
BDNF may be released and induce rapid effects at synapses via altering ion
channels, or may exert intracellular genomic actions. Modified from Pinna
et al. (2008).

BEHAVIORAL DYSFUNCTIONS ASSOCIATED WITH SOCIAL
ISOLATION
Exposure of mice or rats to protracted social isolation stress for
4–8 weeks induces a decrease in allopregnanolone levels in sev-
eral corticolimbic structures as a result of a downregulation of
the mRNA and protein expression of 5α-reductase type I (Mat-
sumoto et al., 1999; Serra et al., 2000; Pinna et al., 2003; Bortolato
et al., 2011; reviewed in Matsumoto et al., 2007; Pinna, 2010).
5α-reductase is specifically decreased in cortical pyramidal neu-
rons of layers V–VI, in hippocampal CA3 pyramidal neurons
and glutamatergic granular cells of the dentate gyrus, and in the
pyramidal-like neurons of the basolateral amygdala (Agis-Balboa
et al., 2007). However, 5α-reductase fails to change in GABAer-
gic neurons of the reticular thalamic nucleus, central amygdala,
cerebellum, or in the medium spiny neurons of the caudatus and
putamen (Agis-Balboa et al., 2007). The decrease of 5α-reductase
in the above-mentioned brain areas resulted in a reduction of
allopregnanolone levels (Pibiri et al., 2008).

Allopregnanolone biosynthesis appears to be a pivotal bio-
marker of behavioral deficits, including aggression, anxiety-like
behavior, and changes in fear expression induced in rodent models
of depression and anxiety spectrum disorders (Dong et al., 2001;
Pinna et al., 2003, 2006, 2009; Uzunova et al., 2004, 2006; Pinna,
2010). In our laboratory, we have used socially isolated mice to

establish an association between allopregnanolone biosynthesis
and behavioral deficits as well as their reversal following pharma-
cological treatment (Matsumoto et al., 2003; Pinna et al., 2006,
2009; Pibiri et al., 2008; Nelson and Pinna, 2011). In mice socially
isolated for a period of up to 8 weeks,we have demonstrated a time-
dependent increase in aggressive behavior over the first 4 weeks of
isolation accompanied by a time-dependent decrease of corticol-
imbic allopregnanolone levels (Pinna et al., 2003, 2004, 2006, 2008;
Pinna, 2010). Similarly, socially isolated mice exposed to a clas-
sical fear conditioning paradigm showed enhanced conditioned
contextual but not explicitly cued fear responses compared with
group-housed mice (Pibiri et al., 2008; Pinna et al., 2008). The
time-related increase of contextual fear responses correlated with
the downregulation of 5α-reductase mRNA and protein expres-
sion observed in several corticolimbic areas, such as the frontal
cortex, the hippocampus, and the amygdala (Pibiri et al., 2008).
Likewise, social isolation in mice results in anxiety-like behavior
(Pinna et al., 2006; Nin et al., 2011).

Pharmacological treatment with allopregnanolone dose-
dependently decreased aggression in a manner that correlated
with an increase in corticolimbic allopregnanolone content (Pinna
et al., 2003). These antiaggressive effects of allopregnanolone were
confirmed by experiments in which allopregnanolone was directly
infused into the basolateral amygdala, which increased the levels of
basolateral amygdala and hippocampus allopregnanolone (Nelson
and Pinna, 2011).

Allopregnanolone also normalized the exaggerated contextual
fear responses and anxiety of socially isolated mice (Pibiri et al.,
2008). Administration of the potent 5α-reductase competitive
inhibitor SKF 105,111 to normal group-housed mice (Cheney
et al., 1995; Pinna et al., 2000, 2008; Pibiri et al., 2008) rapidly
(∼1 h) decreased levels of allopregnanolone in the olfactory bulb,
frontal cortex, hippocampus, and amygdala by 80–90% (Pibiri
et al., 2008; Pinna et al., 2008) in association with a dose-dependent
increase of conditioned contextual fear responses (Pibiri et al.,
2008). The effects of SKF 105,111 on conditioned contextual fear
responses were reversed by administering allopregnanolone doses
that normalized hippocampus allopregnanolone levels (Pibiri
et al., 2008). The anxiolytic and antidepressant properties of allo-
pregnanolone have been extensively documented by several other
laboratories using various rodent models of abnormal behavior
(Bitran et al., 1991; Wieland et al., 1991; Rodgers and Johnson,
1998; Frye and Rhodes, 2006; Engin and Treit, 2007; Nin et al.,
2008; Frye et al., 2009; Deo et al., 2010).

SSRIs ACT AS SELECTIVE BRAIN STEROIDOGENIC
STIMULANTS AND ABOLISH BEHAVIORAL ABNORMALITIES
Results obtained in our laboratory have suggested that adminis-
tration of a racemic mixture of the R- and S-isomers of fluox-
etine induced increases in corticolimbic allopregnanolone levels
and normalized the righting reflex loss induced by pentobarbi-
tal in mice (Pinna et al., 2003, 2004, 2009). Importantly, at the
doses used, fluoxetine failed to change the behavior and allopreg-
nanolone levels of group-housed mice (Pinna et al., 2003, 2004).
Thus, we hypothesized that fluoxetine could ameliorate the behav-
ioral deficits of socially isolated mice by upregulating corticolim-
bic allopregnanolone levels rather than by inhibiting serotonin
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reuptake. This hypothesis was investigated using the R- and S-
stereoisomers of fluoxetine and norfluoxetine as pharmacological
tools. We expected that these drugs would stereospecifically upreg-
ulate corticolimbic allopregnanolone content but have no stereo-
selectivity with regard to inhibition of 5-HT reuptake. Fluoxetine
dose-dependently and stereospecifically normalized the duration
of pentobarbital-induced sedation and reduced aggressiveness,
fear responses, and anxiety-like behavior at the same submicro-
molar doses that normalized the downregulation of brain allo-
pregnanolone content in socially isolated mice (Pinna et al., 2003,
2004, 2006, 2008, 2009). Interestingly, the S-stereoisomers of flu-
oxetine or norfluoxetine appeared to be three-to-sevenfold more
potent than their respective R-stereoisomers and S-norfluoxetine
was about fivefold more potent than S-fluoxetine. Importantly,
the effective concentrations (EC50s) of S-fluoxetine and S-
norfluoxetine that normalize brain allopregnanolone content are
10- (S-fluoxetine) and 50-fold (S-norfluoxetine) lower than their
respective EC50s needed to inhibit 5-HT reuptake (Pinna et al.,
2003, 2004, 2009; Pinna, 2010). Of note, the SSRI activity of
S or R-fluoxetine and of S or R-norfluoxetine was devoid of
stereospecificity (Pinna et al., 2003, 2004).

These studies have clearly demonstrated that in socially isolated
mice the pharmacological actions of SSRIs are induced by their
ability to act as selective brain steroidogenic stimulants (SBSSs),
which suggests a novel and more selective mechanism for the
behavioral action of this class of drugs.

NEUROSTEROIDS AND NEUROSTEROIDOGENIC
ANTIDEPRESSANTS REGULATE NEUROGENESIS AND
NEURONAL SURVIVAL
Adult neurogenesis in the hippocampus begins by dividing precur-
sor cells originating in the subgranular zone (SGZ). Another brain
structure characterized by intense neurogenesis is the subventricu-
lar zone (SVZ). The differentiation and integration of new neurons
to the adult dentate gyrus plays an important role in plasticity and
represents a fundamental step in hippocampus-dependent learn-
ing/memory processes and possibly affects emotional behavior
(Deng et al., 2010).

A growing number of studies support a role for steroid hor-
mones [progesterone, allopregnanolone, dehydroepiandrosterone
(DHEA) and its sulfated form DHEAS, estradiol, and androgens]
in neurogenesis and cellular survival. Stem cells with multi dif-
ferentiation potential for neuronal phenotypes are influenced by
steroid hormones, such as regulating gene expression by binding to
intracellular steroid receptors, activation of intracellular pathways
involving kinases or intracellular calcium signaling, and modu-
lation of receptors for neurotransmitters (reviewed in Velasco,
2011). Interestingly, steroid hormones can even substitute for
modulate the action of growth factors and also directly influ-
ence self-renewal, proliferation, differentiation, or cell death of
neurogenic stem cells.

Several environmental or internal factors affect neurogene-
sis in the hippocampus, among them social stress, including
protracted social isolation, potently decreases neurogenesis (Dra-
novsky et al., 2011). Likewise, several stress-induced rodent models
of depression show impaired neurogenesis (Coyle and Duman,
2003; Kempermann and Kronenberg, 2003). On the other hand,

environmental enrichment, exercise, learning, and antidepressant
treatments are able to increase the number, differentiation, and
survival of newborn hippocampal neurons (Kempermann and
Gage, 1998; van Praag et al., 1999; Leuner et al., 2004; Dra-
novsky and Hen, 2006). Interestingly, the pharmacological effects
of neurosteroidogenic antidepressants can be abolished by reduc-
ing dentate gyrus neurogenesis (Santarelli et al., 2003; David et al.,
2009), suggesting that the pharmacological effects of antidepres-
sants may include the stimulation of neuronal progenitor cells,
which has been reported in studies with rodent, human, and
non-human primate hippocampus (Kempermann and Kronen-
berg, 2003; Boldrini et al., 2009). The adult amygdala shows signs
of mixed activity-dependent plasticity with reduced numbers of
microglia and a low level of proliferation and limited changes
over time in neuronal and glial immunocytochemical properties
(Ehninger et al., 2011). However, the basolateral amygdala seems
to play a role in antidepressant-mediated hippocampal cell pro-
liferation and survival as demonstrated by studies in rodents in
which only when the basolateral amygdala was lesioned, did flu-
oxetine have a positive effect on hippocampal cell survival and
antidepressant action (Castro et al., 2010).

Glucocorticoids have been shown to exert a primary and per-
missive regulatory role in hippocampal neurogenesis. Whereas
stress-induced increased glucocorticoid levels reduce the prolif-
eration of progenitor cells in the dentate gyrus, the reduction
of their levels following adrenalectomy enhances neurogenesis
(Wong and Herbert, 2004). DHEA and DHEAS also promote
neurogenesis and neuronal survival. Given to rats, DHEA stim-
ulated progenitor cell division and counteracted the suppressive
effects of corticosterone (Karishma and Herbert, 2002). In another
study, DHEA and DHEAS increased neurogenesis in the dentate
gyrus, likely by increasing the concentrations of BDNF. A sin-
gle administration of DHEA or DHEAS changed regional brain
concentrations of BDNF within 5 h (Naert et al., 2007). DHEA
decreased BDNF content in the hippocampus but not in the
amygdala and increased BDNF in the hypothalamus. DHEAS
first decreased BDNF after 30 min post-injection and increased
BDNF after 3 h in the hippocampus. A biphasic increase in
BDNF in the amygdala and decreased BDNF in the hypothala-
mus was also reported (Naert et al., 2007). This work suggests
that DHEA and DHEAS affect BDNF levels by different mecha-
nisms with unclear effects on neurogenesis and neuronal survival.
DHEAS promoted survival of adult human cortical brain tis-
sue in vitro (Brewer et al., 2001). DHEAS was as effective as
the human recombinant fibroblast growth factor (FGF2) in pro-
moting survival of neuron-like cells. DHEAS and FGF2 were
synergistic in increasing cell survival (Brewer et al., 2001). Inter-
estingly, DHEA showed a synergistic effect with antidepressants,
in fact, it can render an otherwise ineffective dose of fluoxetine
capable of increasing progenitor cell proliferation to the same
extent as doses four times higher, which supports a role for
DHEA as a useful adjunct therapy for depression (Pinnock et al.,
2009).

Progesterone and progesterone metabolites, including allopreg-
nanolone, also play a pivotal role on neurogenesis and neuronal
survival. In the dentate gyrus of adult male mice, administra-
tion of progesterone increased the number of cells by twofold,
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likely by enhancing cell survival of newborn neurons (Zhang et al.,
2010). The effects of progesterone appeared to be partially medi-
ated by binding to progesterone receptors, as suggested by the
fact that the 5α-reductase inhibitor finasteride failed to prevent
this effect, which was instead partially blocked by the proges-
terone antagonist RU486 (Zhang et al., 2010). In an in vitro study,
both progesterone and allopregnanolone promoted human and
rat neural progenitor cell proliferation. Allopregnanolone showed
greater efficacy at the same concentration (Wang et al., 2005).
In in vivo studies, allopregnanolone increased BrdU incorpora-
tion in the 3-month-old mouse hippocampal SGZ as well as in
the SVZ (Brinton and Wang, 2006; Wang et al., 2010). These
data suggested that for both neuroprotection and also likely for
neurogenesis, allopregnanolone is the preliminary active agent.
The role of allopregnanolone on neurogenesis was additionally
tested on cerebellar granule cells. Allopregnanolone increased
the proliferation of immature cerebellar granular cells taken
from 6- to 8-day-old pups. This effect was abolished by bicu-
culline and picrotoxin (antagonists of GABAA receptors) and
by nifedipine (dihydropyridine l-type-calcium channel blocker),
which suggested that allopregnanolone increases DNA synthe-
sis through a GABAA receptor-mediated activation (Keller et al.,
2004).

Progesterone synthesized in Schwann cells also exerts impor-
tant effects in the peripheral nervous system by promoting myelin-
ation, likely by an action mediated through progesterone recep-
tors, although allopregnanolone also plays a role. Interestingly,
progesterone stimulated myelin-specific proteins [e.g., protein 0
(P0) and the peripheral myelin protein-22 (PMP-22)] (Désar-
naud et al., 1998; Melcangi et al., 1998, 1999; Notterpek et al.,
1999) and increased the expression of Krox-20, a transcription
factor crucially involved in myelination in the peripheral nervous
system (Guennoun et al., 2001, reviewed in Mellon, 2007). As
mentioned above, some effects on the expression of the myelin
basic protein were likely mediated through allopregnanolone, as
demonstrated by a study in which the use of finansteride to
inhibit 5α-reductase also partially inhibited the effects of prog-
esterone. The involvement of allopregnanolone in myelination
was further demonstrated by the finding that bicuculline inhibited
the effect of allopregnanolone, providing evidence that allopreg-
nanolone was involved in the increased expression of myelin basic
proteins.

Hence, allopregnanolone has pronounced neuroprotective
actions, increases myelination, and enhances neurogenesis and cell
survival. Evidence suggests that allopregnanolone dysregulation
may play a role in the pathophysiology of Alzheimer’s disease and
other neurodegenerative disorders, as demonstrated by data that
allopregnanolone is reduced in the prefrontal and temporal cor-
tex of patients with Alzheimer’s disease compared to cognitively
intact male control subjects and inversely correlated with the neu-
ropathological disease stages. Thus, the normal age-related decline
of allopregnanolone or its decline and that of other neurosteroids
in psychiatric or neurological disorders (e.g., Alzheimer’s disease)
may trigger the subsequent decrease of neurogenesis and decreased
expression of growth factors (Wang et al., 2008). Alternatively, the
restored brain content of allopregnanolone following treatment
with a steroidogenic drugs reverses neurogenesis downregulation

and improves emotional and cognitive function (Santarelli et al.,
2003; David et al., 2009).

RELATIONSHIP BETWEEN BDNF AND ALLOPREGNANOLONE
IN CORTICOLIMBIC NEURONS
Decreased levels of BDNF have been implicated in the mechanisms
underlying the clinical manifestations of PTSD and depression and
also in an impairment of cognitive function in neurologic and psy-
chiatric disorders following protracted stressful events. A hyperac-
tive HPA axis and higher levels of circulating glucocorticoids have
been associated with dysfunctional emotional behavior that can
be normalized by antidepressant treatment (Holsboer and Bar-
den, 1996; Mason and Pariante, 2006). It has been well established
that protracted stressful events affecting emotional behaviors also
decrease the levels of neurotrophins, including BDNF. Both PTSD
and depressed patients express decreased levels of BDNF in the
hippocampus and plasma (Sen et al., 2008). Of note, PTSD and
depression have consistently been associated with decreased hip-
pocampal volume with no differences in total cerebral volume
or functional impairment (Sheline et al., 1996, 2002; Schmahl
et al., 2009; Acheson et al., 2011). Studies aimed at identifying the
functional significance of hippocampal volume loss demonstrated
an association between hippocampal volume decrease and mem-
ory loss (Nagahara and Tuszynski, 2011). Altogether, these studies
suggest that depression and PTSD are associated with hippocam-
pal atrophy. Therapy using neurosteroidogenic antidepressants
resulted in an improvement of PTSD and depressive symptoms
and in a significant improvement in mean hippocampal volume
(Vermetten et al., 2003; Nagahara and Tuszynski, 2011). In sev-
eral studies, these neurosteroidogenic antidepressants have been
reported to upregulate serum and hippocampal BDNF levels in
post-mortem brains, which correlated with improved symptoms
(Chen et al., 2001; Shimizu et al., 2003; Sen et al., 2008). Similar
results were reported in individuals who received electroconvul-
sive therapy (Altar et al., 2003). Thus, these results suggest that
antidepressant-mediated BDNF upregulation may counteract hip-
pocampal atrophy by stimulating dendritic spine arborization and
morphology and neurogenesis.

Several stress models in rodents, including acute or protracted
restrain stress, resulted in decreased expression levels of hippocam-
pal BDNF (reviewed in Smith et al., 1995; Ueyama et al., 1997;
Tapia-Arancibia et al., 2004). Protracted social isolation is also a
powerful stressful condition that would account for several dys-
functional emotional phenotypes associated with reduced expres-
sion of BDNF. For instance, social isolation in mice increased emo-
tionality and HPA axis levels while reducing expression of BDNF
levels (Berry et al., 2011). Isolation of rats at weaning reduced
immobility time in the forced swim test, decreased sucrose intake
and preference, and downregulated both BDNF and activity-
regulated cytoskeletal associated protein (Arc) in the hippocampus
(Pisu et al., 2011). Likewise, a prolonged period of partial social
isolation can modify BDNF protein concentrations selectively in
the hippocampus with no changes in prefrontal cortices and stri-
ata. In this study, housing condition had no effect on basal plasma
corticosterone (Scaccianoce et al., 2006).

Interestingly, plasticity in corticolimbic circuits is a prerequi-
site for triggering extinction of fear conditioning responses (Egan
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et al., 2003; Quirk and Milad, 2010). In these circuits, BDNF medi-
ates plasticity and can be epigenetically regulated in a manner
that correlates with fear extinction (Bredy et al., 2007). Accord-
ingly, mice with a global deletion of one BDNF allele or with a
forebrain-restricted deletion of both alleles show deficits in cogni-
tion, anxiety-like behavior, and elevated aggressive behavior (Rios
et al., 2001). BDNF-restricted knockout mice instead exhibited ele-
vated aggression and social dominance but did not show changes
in anxiety-like behaviors (Ito et al., 2011).

Relying on these reports and on clinical and preclinical studies
from our own group, we hypothesized that in PTSD and depressed
patients who show a decrease of CSF allopregnanolone levels,
antidepressant-induced allopregnanolone level upregulation was
involved in the antidepressant mechanisms underlying the eleva-
tion of BDNF levels. Part of this hypothesis was that allopreg-
nanolone regulates BDNF expression. Studies conducted in our
laboratory in socially isolated mice have shown that a decrease of
corticolimbic allopregnanolone levels is associated with decreased
levels of corticolimbic BDNF mRNA expression (Nelson et al.,
2010). We found that allopregnanolone levels and BDNF mRNA
expression are downregulated in the same brain areas, namely the
medial frontal cortex, hippocampus, and BLA and fail to change
in the cerebellum and striatum (Pibiri et al., 2008; Nelson et al.,
2010).

To test whether these neurochemical deficits were associated
with behavioral dysfunctions (exaggerated contextual fear con-
ditioning and impaired extinction), mice were exposed to a
novel environment (i.e., context, a training chamber) and were
allowed to explore it for 2 min. After this time, they received
an acoustic tone (i.e., conditioned stimulus, CS; 30 s, 85 dB) co-
terminated with an unconditioned stimulus (US; electric foot-
shock, 2 s, 0.5 mA). The tone plus the foot shock were repeated
three times every 2 min. After the last tone + shock delivery, mice
were allowed to explore the context for an additional minute prior
to removal from the training chamber (total of 8 min). On re-
exposure to the context 24 h later, the mice displayed a conditioned
fear response, including sustained freezing behaviors. Freezing
behavior, defined by the absence of any movement except for
those related to respiration while the animal is in a stereotyped
crouching posture (Pibiri et al., 2008), was measured for 5 min
without tone or footshock presentation. Socially isolated mice
also exhibited delayed and incomplete extinction of fear responses,
which was assessed by exposing mice to the conditioning chamber
on five consecutive days. The decrease of corticolimbic allopreg-
nanolone levels and BDNF mRNA expression were also associated
with changes in anxiety-like behavior and aggressiveness, which
were assessed by using an elevated plus maze and the resident–
intruder test, respectively (Pinna et al., 2003, 2006; Nin et al.,
2011).

Of note, in socially isolated mice we further studied the mean of
spine density and the percentage of mature spines in layer III of the
frontal cortex. Spine density was lower for socially isolated mice
along the entire extent of the apical and basilar dendrites. Socially
isolated mice also had a lower percentage of mature spines on
both the apical and basilar dendrites. For the apical dendrite, the
greatest decrease in percentage of mature spines for isolated mice
was in the proximal portion of the dendrite, while for the basilar

dendrite, the greatest decrease in percentage of mature spines was
in the mid and distal portion of the dendrite (Tueting and Pinna,
2002 and manuscript in preparation).

Allopregnanolone treatment or S-norfluoxetine at concen-
trations sufficient to increase the levels of allopregnanolone in
corticolimbic areas normalized BDNF mRNA expression in cor-
ticolimbic areas of socially isolated mice (Martinez et al., 2011).
This treatment also improved dendritic spine morphology and
behavioral deficits. S-norfluoxetine and allopregnanolone treat-
ment induced a reduction of conditioned fear and facilitated fear
extinction (Pibiri et al., 2008; Nelson et al., 2010). These treat-
ments also prevented the reinstatement of fear memory following
extinction, suggesting that allopregnanolone- or S-norfluoxetine-
induced BDNF upregulation in corticolimbic areas strengthens
extinction processing. Importantly, S-norfluoxetine and allopreg-
nanolone actions on conditioned fear responses were mimicked
by a single BDNF bilateral microinfusion into the BLA, which
dose-dependently facilitated fear extinction and abolished the
reinstatement of fear responses in the absence of locomotion
impairment (Martinez et al., 2011). These observations support
the hypothesis that by increasing allopregnanolone levels, SBSS
drugs such as S-norfluoxetine may be involved in the regula-
tion of corticolimbic BDNF expression and may induce long-
term improvement in the behavioral dysfunctions that relate to
PTSD.

These results originated in our laboratory are in accord with
recent investigations suggesting that progesterone regulates BDNF
expression. A study conducted with cerebral cortical explants has
demonstrated that progesterone induces an upregulation of BDNF
mRNA and protein expression (Kaur et al., 2007). Interestingly,
allopregnanolone exerts complex acute actions in several corti-
colimbic structures following i.p. administration (Naert et al.,
2007). In the hippocampus, the content of BDNF following an
injection of allopregnanolone was first decreased after 30 min
following the injection and significantly increased after 3 h. In
the amygdala, BDNF content was increased after 15–60 min from
allopregnanolone, returned normal, and increased again after 5 h.
Finally, in the hypothalamus, BDNF levels were decreased (Naert
et al., 2007). Collectively these studies suggest that part of the
immediate or the long-term behavioral effects exerted by steroido-
genic antidepressants may be explained by the effects of these drugs
on allopregnanolone neosynthesis, which in turn may upregulate
BDNF content and expression in corticolimbic neurons.

CONCLUSION
The incidence and prevalence of posttraumatic stress disorders
and anxiety disorders are predicted to continue to increase, while
current medications remain difficult due to the inefficacy of some
antidepressants and benzodiazepines in the treatment of PTSD
patients (Gelpin et al., 1996; Viola et al., 1997; Davidson, 2004).

We have observed that socially isolated mice, in addition to
expressing a neurosteroidogenic deficit, which results in decreased
levels of allopregnanolone, the most potent physiological positive
modulator of GABAA receptor neurotransmission, also express
a BDNF level downregulation in corticolimbic neurons. Treat-
ment with allopregnanolone or with non-serotonergic doses
of fluoxetine and norfluoxetine normalized both the levels of
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corticolimbic allopregnanolone and the mRNA expression of
BDNF, which is associated with antianxiety and antiaggressive
action as well as improvement of fear conditioning responses.

A new class of drugs, the SBSSs, which include molecules that
share the ability to increase the brain levels of allopregnanolone,
may have therapeutic potential for the treatment of PTSD and
depression, which have been associated with a downregulation of
brain allopregnanolone biosynthesis and BDNF expression.

Direct BDNF application to pharmacotherapy for psychiatric
disorders is highly promising in the treatment of PTSD (Peters
et al., 2010). However, the use of BDNF is difficult, partic-
ularly concerning the delivery of BDNF to the brain (Naga-
hara and Tuszynski, 2011). Thus, molecules that are able to

endogenously stimulate BDNF levels, including SBSSs, may over-
come the delivery challenge represented by administering BDNF
directly.

Therefore, novel SBSS drugs that specifically increase corticol-
imbic allopregnanolone biosynthesis and stimulate BDNF expres-
sion in corticolimbic neurons appear to be highly promising as
a new pharmacological class of future drugs for the treatment of
depression, anxiety, and PTSD.
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